
Combinatorial Algorithms for Inverse
Network Flow Problems

by
Ravindra K. Ahuja

James B. Orlin

SWP# 4004 February 1998

Combinatorial Algorithms for Inverse Network Flow Problems

Ravindra K. Ahuja*
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

(Revised January 25, 1997)

On leave from Indian Institute of Technology, Kanpur 208 016, INDIA.

Combinatorial Algorithms for Inverse Network Flow Problems

Ravindra K. Ahuja' and James B. Orlin2

ABSTRACT

An inverse optimization problems is defined as follows: Let S denote the set of

feasible solutions of an optimization problem P, let c be a specified cost vector, and xO be

a given feasible solution. We want to perturb the cost vector c to d so that x is an

optimal solution of P with respect to the cost vector d , and lid - clip is minimum, where

11.llp denotes some selected Lp norm. In this paper, we consider inverse versions of the

following network flow problems: the shortest path problem, the assignment problem, the

minimum cut problem, and the minimum cost flow problem. We consider inverse

problems under the L1 norm (where the objective is to minimize jJ wjldj - cjl), and

under the Lo norm (where the objective is to minimize max{wjldj - cjl : j J}). We

show that the inverse version of each of the problem considered under the L 1 norm

reduces to solving a problem for the same kind; that is, an inverse shortest path problem

reduces to a shortest path problem, an inverse assignment problem reduces to an

assignment problem, and so on. We next show that inverse versions of the shortest path

problem, the assignment problem, and the minimum cost flow problem, under the Lo

norm reduce to solving a minimum mean cycle problem (where we wish to identify a

cycle whose cost divided by the number of arcs in it is minimum). We also consider the

inverse minimum cut problem under the Lo norm and suggest a polynomial-time binary

search algorithm.

1 Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

2 Sloan School of Management, MIT, Cambridge, MA 02139, USA.

1

1. INTRODUCTION

An inverse optimization problem is defined as follows: Let S denote the set of

feasible solutions of an optimization problem P, let c be a specified cost vector, and xO be

a given feasible solution. We want to perturb the cost vector c to d so that x ° is an optimal

solution of P with respect to the cost vector d, and lid - clip is minimum, where 11.llp

denotes some selected Lp norm. In this paper, we consider inverse optimization problems

under the weighted L1 norm, where the objective is to minimize ZjeJ wjldj - cjl, and

under the weighted Loo norm, where the objective is to minimize max{wjldj - cjl: j E J.

Here, wj's are specified weights.

Inverse optimization problems have been investigated rather extensively in the

past few years, and inverse versions of the following problems have been studied:

shortest path problem, maximum capacity path problem, spanning tree problem, sorting

problem, minimum cut and maximum flow problems, minimum cost flow problem,

shortest arborescence problem, matroid intersection problem, and polymatroidal flow

problem. Ahuja and Orlin [1998a] provide various references in the area of inverse

optimization, compile several applications, and develop algorithms to solve the general

inverse problem and inverse linear programming problems. In Ahuja and Orlin [1998b],

they specialize their inverse linear programming algorithms to inverse network flow

problems.

We will present a brief survey of the literature devoted to inverse network flow

problems. Burton and Toint [1992, 1994], and Burton, Pulleyblank and Toint [1997]

have considered inverse shortest path problems (multi-source, multi-sink problems) under

the L 2 norm and solved them using nonlinear programming techniques. Cai and Yang

[1994], Xu and Zhang [1995], and Zhang and Yang [1995] have considered inverse

shortest path problems under the weighted L 1 norm; Yang and Zhang [1996] have

considered maximum capacity path problems; Huang and Liu [1995] have studied the

minimum cost flow problem under the weighted L 1 norm; Yang, Zhang and Ma [1997],

and Zhang and Cai [1998] have considered the minimum cut problem under the weighted

L 1 norm. Each of these problems reduce to solving a minimum cost flow problem.

Sokkalingam [1996] in his doctoral dissertation, under the supervision of the first author,

also considered the inverse minimum cost flow problem under the weighted L 1 and

weighted Lo, norms. Almost all of this research uses linear programming duality theory

2

to solve inverse problems.

In this paper, we present combinatorial algorithms for solving inverse problems,
in contrast with the linear programming based approaches suggested in the literature. We
develop algorithms for solving inverse network flow problems using combinatorial
arguments and not relying on the inverse linear programming duality theory. We further
restrict attention (for most problems) to the unit weight inverse problems, that is, where

wj = 1 for each index j E J. Though our resulting algorithms are identical to those given

in Ahuja and Orlin [1998b], this approach provides shorter proofs of inverse algorithms
and gives an additional insight into inverse network flow problems.

We consider a directed network G = (N, A) with N as the node set and A as the

arc set. Let n = INI and m = Al. Each arc (i, j) A has an associated cost cij, an

associated capacity uij > 0, and perhaps an associated weight wij > 0. Let C = max{Icijl:

(i, j) E A}, Let U = max{uij: (i, j) E Al, Let W = max{wij : (i, j) A}. Table 1 gives a

list of inverse problems considered in this paper and the problem to which the considered
inverse problem reduces.

3

Table 1. Summary of problems considered in this paper and the results obtained.

2. PRELIMINARIES

This paper relies on elementary results from the network flow theory, for which

we refer the reader to the textbook by Ahuja, Magnanti and Orlin [1993]. The notations

used in this paper are also adapted from the same book.

Let P denote the following optimization problem: min(cx : x E S}, where S is the

set of feasible solutions. Let xO S denote a feasible solution of P which we wish to

make optimal to P by perturbing the arc cost vector c. We call a cost vector d to be

inverse feasible for P (with respect to the solution xO) if x0 is an optimal solution of P
when the cost vector c is replaced by the cost vector d. The inverse problem under the L 1

norm is to find an inverse feasible cost vector d* of P for which lid* - cll = Ej-l d - cjl

4

Inverse Problem Considered: Reduces to solving the following problem:

Inverse single-source, single-sink A single-source, single-sink

shortest path problem shortest path problem

(unit weights, L1 norm)

Inverse assignment problem An assignment problem

(unit weights, L1 norm)

Inverse minimum cut problem A minimum cut problem

(unit weights, L1 norm)

Inverse minimum cost flow problem A unit capacity circulation problem

(unit weights, L 1 norm)

Inverse shortest path, assignment and A minimum mean cycle problem

minimum cost flow problems

(unit weights, Loo norm)

Inverse shortest path, assignment and A minimum cost-to-weight ratio problem

minimum cost flow problems (also known as the tramp steamer problem)

(general weights, Loo norm)

Inverse minimum cut problem O(log(nU)) minimum cut problems

(unit weight, Lo norm)

Inverse minimum cut problem O(log(nUW)) minimum cut problems

(general weights, Lo, norm)

is minimum among all inverse feasible cost vectors d. The inverse problem under the Loo

norm is to find an inverse feasible cost vector d* of P for which lid* - cllK = max{I dj - cjl

: j J} is minimum. We refer to d* an optimal cost vector for the inverse problem. In
this paper, we call the inverse problem under the L1 norm as the inverse problem, and the

inverse problem under the Lo norm as the minimax inverse problem.

In this paper, we denote lid* - clll by Id* - cl. We will first prove a result that will

be used several times in deriving combinatorial proofs of algorithms. Suppose that P is a

0-1 integer programming problem. Let x' denote a feasible 0-1 solution to P. The

following lemma establishes a lower bound on the objective function value of the inverse

problem, Id* - cl, in terms of the costs of the solutions x' and x °.

Lemma 1. Id* - cl 2cxO - cx'

Proof. Notice that

Id* - cl = Ic - d*l > (c - d*).(xO - x') = (cxO - cx') + (d*x' - d*xO) > cx0 - cx', (2.1)

where the first inequality in (1) follows from the fact that both x0 and x' are 0-1 vectors,

and the second inequality follows from the fact that dx' > dx0 (because x ° is an optimal

solution of P with d* as the cost vector. +

Let x* denote an optimal solution of P with c as the cost vector. Then, Lemma 1

implies that cx0 - cx* is a lower bound on Id* - cl, the optimal objective function value of

the inverse problem. In fact, it gives the tightest possible lower bound on Id* - cl. We

will use this result several times in the following sections to prove the correctness of our

algorithms.

3. THE INVERSE SHORTEST PATH PROBLEM

In this section, we study the single-source, single-sink shortest path problem

under the L 1 norm. Cai and Yang [1994], Xu and Zhang [1995], and Zhang, Ma and

Yang [1995] have studied various kind of inverse shortest path problems with weighted

L 1 norm and showed that they reduce to minimum cost flow problems. Dial [1997] has

studied the inverse shortest path problem in acyclic networks and showed that it can be

5

solved in O(m) time. In this section, we show that the unit weight inverse shortest path

problem reduces to a shortest path problem and can be solved far more efficiently than

solving a minimum cost flow problem. We assume that the network G does not contain

any negative cost cycle; without this assumption, the shortest path problem is a NP-

complete problem.

The single-source, single-sink shortest path problem is to determine a directed

path from node s to node t in G (henceforth called an s-t path) whose cost, given by c(P)

= (ij)eP Cij, is minimum among all s-t paths in G. For each s-t path P in G, we can

associate a 0-1 flow x in the following manner: xij = 1 for each (i, j) E P and xij = 0 for

each (i, j) X P. In the inverse shortest path problem, we are given an s-t path PO which

we wish to make a shortest path from node s to node t by modifying the arc cost vector c

to d* in a manner such that Id* - cl is minimum.

Let c denote the shortest path distances in G from node s to all other nodes with
cij's as arc costs, and let P* denote a shortest s-t path. Then, 71 = - gives the optimal dual

variables for the shortest path problem. Let di = cij - 7ci + cj denote the reduced cost of

any arc (i, j) A. It follows from the shortest path optimality conditions (see, for

example, Ahuja, Magnanti and Orlin [1993]) that

cj = 0 for each arc (i, j) E P*; (3.1a)

ci7 > 0 for each arc (i, j) P*. (3.lb)

These conditions are also sufficient for the optimality of a solution. Now consider

the following cost vector d*, which we will show to be an optimal cost vector of the

shortest path problem:

ij c - c for all (i, j) E PO,
~~~d ~~~iji~~ = c~~~~~~~(3.2)

for all (i, j) PO.

Let di i = dij - 7i + Cj for each arc (i, j) E A. It follows from (3.1) and (3.2) that

diJ = 0 for each arc (i, j) E P and diJ > 0 for each arc (i, j) X P. It follows from the

shortest path optimality conditions that d* is an inverse feasible cost vector with respect

6



to the solution xO. In words, the above result implies that for each arc in PO we decrease

the arc cost by an amount equal to the optimal reduced cost of the arc. The cost of every

other arc remains unchanged. This change decreases the cost of the path PO by

(ij)Ep0c units and does not affect the cost of the path P* (because each arc in it has

zero reduced cost). After this change, the modified reduced cost of each arc (i, j) in PO

becomes 0, and it becomes an alternate shortest s-t path in G.

We next show that d* is an optimal cost vector. Lemma 1 implies that c(P0 ) -

c(P*) is a lower bound on the optimal objective function value of the inverse problem.

We will show that d* - cl = c(P0) - c(P*) which would imply that d* is an optimal cost

vector. Note that

Id*-cl= E c = E cij- 7 + t= cij- cij = c(PO) - c(P*), (3.3)
(i, 0 (i(i,j) P° (i,j)P° (ij)*

where the first equality in (3.3) follows from (3.2), the second equality follows from the

fact that c = cij - i + xj and that in the summation the intermediate 7ri's cancel out, and

the third equality follows from the facts that 7ts = 0 and that ct is the negative of the

length of the path P*. It follows from (3.3) and Lemma 1 that d* is an optimal cost vector

of the inverse shortest path problem.

We have shown above that the inverse shortest path problem can be solved by

solving a shortest path problem. When all arc costs are non-negative, we can solve the

shortest path problem in O(m + n log n) time using Fredman and Tarjan's [1984]

implementation of Dijkstra's algorithm. In case some arc costs are negative, we can

solve the shortest path problem in O(nm) time using the FIFO label correcting algorithm

(see, for example, Ahuja, Magnanti and Orlin [1993]), or in O(V-m log C) time using

Goldberg's [1995] algorithm.

4. THE INVERSE ASSIGNMENT PROBLEM

In this section, we study the inverse assignment problem. To the best of our

knowledge, no one yet has studied the inverse assignment problem, except as a special

case of the inverse minimum cost flow problem.

7



Let G = (N1uN2 , A) be a bipartite directed network with INl = IN21 and A c

NlxN2 . The assignment problem is to identify an assignment M such that each node i E

N1 is assigned to a distinct node j N2 so that the cost of the assignment given by

(i,j)eM ij is minimum. For each assignment M in G, we can associate a 0-1 flow x in

the following manner: xij = 1 for each (i, j) E M and xij = 0 for each (i, j) X M. Let c(M)

= c(ij)EM cij. In the inverse assignment problem, we are given an assignment M ° which

we wish to make an optimal assignment by modifying the arc cost vector c to d* in a

manner such that Id* - cl is minimum.

Let M* denote an optimal assignment in G and rc denote the optimal dual

variables. Let ci = cij - 7i + j denote the reduced cost of any arc (i, j) E A. The

optimality conditions of the assignment problem imply that

ci=O for each arc (i, j) E M*; (4.1a)

cj> 0 for each arc (i, j) M*. (4.1 b)

These conditions are also sufficient for the optimality of a solution. Now consider

the following cost vector d*, which we will show to be an optimal cost vector of the

assignment problem:

cij -c for all (i, j) E M 0,
(4.2)

forall(i,j) M (4.2)

Let diJ = dij - ci + j for each arc (i, j) E A. It follows from (4.1) and (4.2) that

di = 0 for each arc (i, j) E M ° and diT 2 0 for each arc (i, j) M °, implying that d* is

an inverse feasible cost vector with respect to the solution MO. In words, the above result

implies that for each arc in M0 we decrease the arc cost by an amount equal to the

optimal reduced cost of the arc. The cost of every other arc remains unchanged. This

change decreases the cost of the assignment M0 by X(ij)EMO cj units and does not affect

the cost of the assignment M* (because each arc in it has zero reduced cost). After this

change, the modified reduced cost of each arc (i, j) in M ° becomes 0, and it becomes an

alternate optimal assignment in G.

8



Now note that

Id* - cl = C = c(M0 ) - (7j i-7 j ) = c(MO) - E (T i-7j)
(i,j) EM (i,j) EM0 (i,j) EM*

= c(M°) - c(M*), (4.3)

where the first equality in (4.3) follows from (4.2), the second equality follows from the

fact that cij = cij - ei + nrj, the third equality follows from the fact both M0 and M* are

perfect matchings, and the fourth equality follows from (4. la) which implies that cij = i -
rj for each (i, j) E M*. Using Lemma 1 in (4.3) yields that d* is an optimal cost vector

for the inverse assignment problem.

Currently, the best available strongly polynomial time bound to solve the
assignment problem is O(nm + n2 log n) and is attained by several algorithms (see, for
example, Goldfarb [1985]). The best available weakly polynomial algorithms are due to
Gabow and Tarjan [1989] and Orlin and Ahuja [1992], and they both runs in O(/-nm

log(nC)) time.

5. THE INVERSE MINIMUM CUT PROBLEM

In this section, we study the inverse minimum cut problem. The inverse
minimum cut problem has earlier been studied by Yang, Zhang, and Ma [1997], and
Zhang and Cai [1998], and they show that the weighted version of the inverse minimum
cut problem can be reduced to a minimum cost flow problem. We show that the unit
weight version of the inverse problem reduces to solving a minimum cut problem.

Consider a network G = (N, A) where uij's denote arc capacities and s and t are

two specified nodes, called the source and sink nodes, respectively. In the network G, we
define a cut as a set of arcs whose deletion disconnects the network into two or more
components, and such that no subset of arcs in it has this property. This minimality
property of a cut implies that a cut disconnects the network into exactly two components.
We call a cut an s-t cut if the nodes s and t belong to different components. An alternate
method to represent a cut is by using the sets of nodes in the two components it forms.
Let S and S (with S = N - S) denote the sets of nodes in the components defined by a
cut containing the nodes s and t respectively. Then, we can represent the s-t cut as [S, S] .
Let (S, S) denote the set offorward arcs in the cut, that is, (S, S) = {(i, j) A: i S and

9



j E S }, and (S,S) denote the set of backward arcs in the cut, that is, (S,S) = {(i, j) E A

: i E S and j E S}. We define the capacity of the s-t cut [S,S] as the sum of the

capacities of the forward arcs in the cut. We denote it by u[S,S], that is, u[S,S] =

E{(i,j)(sS)} U ij . The minimum cut problem is to determine an s-t cut of minimum

capacity. The inverse minimum cut problem is to modify the arc capacity vector u to d*

so that the cut [SO, S ] is a minimum cut with respect to the capacity vector d* and

Id* - ul is minimum.

We can associate the 0-1 solution x with each cut [S,S] in G in the following

manner: xij = 1 for each (i, j) E (S, S) and xij = 0 for each (i, j) o (S, S). It is easy to see

that ux = u[S,S]. We can hence use the result in Lemma 1. We will also use the

following variant of the max-flow min-cut theorem in our analysis:

Property 1. An s-t cut [SO,S°]is a minimum cut in G if and only if there exists a

feasible flow yfrom node s to node t in G that saturates the cut [S 0 , S°], that is, y = u

for each arc (i, j) E (S°,S°)andyi = Ofor each arc (i, j) E (S°,S°).

Let the network G' = (N, A') be obtained from G = (N, A) by deleting the

backward arcs in the cut [S°, S°]. In other words, A' = A\(S0,S0). Observe that every

flow y that saturates the cut [S° , SO] in G, we can define a corresponding flow y' in G' by

setting y = Yij for each arc (i, j) E A\ (S 0 ,SO). Similarly, for every flow y' saturating

the cut [S , 0] in G', we can define a flow y saturating the same cut in G by setting Yij =

yij for each (i, j) E A\(S 0 ,SO) and Yij = 0 for each (i, j) (°,S°). These observations

together with Property 1 implies the following lemma:

Lemma 2. The cut [SO,S] is a minimum cut in G if and only if [S°,S° ] is a

minimum cut in G.

Lemma 2 allows us to solve the inverse minimum cut problem on the network G'

instead of the network G. It will be clear in the subsequent arguments why solving the

inverse minimum cut problem in G' is more straightforward than solving the inverse

minimum cut problem in G. We first solve a maximum flow problem in G'. Let y*

denote the maximum flow and [S*,S ] be a minimum cut in G'. Let v* = u[S*,S*]

10



denote the maximum flow value. We know that the "net" flow across the cut [SO , Sgo] (as

a matter of fact, across any s-t cut) equals v*, that is,

(ij)ESS )Yij -S(i) S)Y = v = u[SS]. (5.1)

We know that the cut [SO,S 0 ] has no backward arcs in G', that is, (SO,SO)= 5 .

Hence, (5.1) reduces to (i j)E( s°Oy = u[S*,S*]. Further, by definition,

Y(i,j)E(so,o) uij = u[S,S°]. Subtracting the preceding two equations yields:

(i,j)e(SO,S( ) u ,(Uij - ) = u[S ,S .] (5.2)

Let the capacity vector d* be defined as follows:

*i: [Yi for eacharc (i, j) E(S°,°),
dij = (5.3)

u ij for each arc (i, j) X (S°, °).

Then the capacity of the cut [S, Sgo] with respect to d* is the same as the capacity

of the cut [S*,S*], and the flow y* saturates both the cuts. Therefore, the cut [SO, S0] is

a minimum cut in G' with respect to d* as the arc capacity vector, implying that d* is an

inverse feasible cost vector for the inverse problem.

We next show that d* is an optimal cost vector. Lemma 1 in the context of the

minimum cut problem implies that u[S°,S°]- u[S*,S*] is a lower bound on the optimal

objective function value of the inverse problem. Now notice that

Id* - u u- d*l= u(ij)EsOs ) (uij - Y)= u[S0,S0]- u[S*,S*], (5.4)

where the second equality follows from (5.3) and the third inequality follows from (5.2).

Hence, d* is an inverse feasible cost vector that attains the lower bound of u[S°,S°]-

u[S*,S*] on the objective function value of the inverse problem; therefore, it must be an

optimal cost vector.

11



To summarize, we have shown that the inverse minimum cut problem reduces to

solving a minimum cut problem. Currently, the fastest strongly polynomial bound to

solve the minimum cut problem (and the maximum flow problem) is O(nm log(n2 /m))

and is due to Goldberg and Tarjan [1986]. The best weakly polynomial bound to solve

the maximum flow problem is O(min{n 2/3 , ml/2}m log(n2/m) log U) and is due to

Goldberg and Rao [1997].

6. THE INVERSE MINIMUM COST FLOW PROBLEM

In this section, we study the inverse minimum cost flow problem. The weighted

inverse minimum cost flow problem has earlier been studied by Huang and Liu [1995]

and Sokkalingam [1996], and they show that it reduces to a minimum cost flow problem.

We show that the unit weight inverse minimum cost flow problem reduces to a unit

capacity minimum cost flow problem and thus can be solved more efficiently.

In the minimum cost flow problem on a network G = (N, A), each arc (i, j) E A

has an associated cost cij and an associated capacity uij, and each node i has an associated

supply/demand b(i). If b(i) > 0, then node i is a supply node; otherwise it is a demand

node. The problem concerns determining the least cost shipment that meets the demands

at demand nodes of the network by the available supplies at the supply nodes by sending

a flow that honors arc capacities. We will assume in this section that for any node pair (i,

j) both (i, j) and (j, i) do not belong to A. This condition is not necessary for our

algorithm but simplifies our notation. Further, this condition can easily be imposed by

inserting an artificial node on one of the arcs (i, j) or (j, i).

Our proof requires the construction of the residual network G(xO) defined with

respect to the flow x0 . To construct it, we consider each arc (i, j) A one by one, and

add arcs to G(x0 ) in the following manner: (i) if xi < uij, then we add the arc (i, j) of cost

cij to A(xO); (ii) if > 0, then we add the arc (j, i) with cost -cij; and (iii) 0 < x < uij,

then we add the arcs (i, j) and (j, i) with costs cij and -cij respectively. Using our

assumption that for any pair of nodes i and j, both (i, j) and (j, i) do not belong to A, it is

easy to observe one-to-one correspondence between arc costs in G and arc costs in G(x0 ).

We represent the arc costs in G(x °) by placing a bar over the arc costs in G. For example,

the arc cost vectors c and d in G are denoted by the cost vectors and d in G(xO). We

call an arc (i, j) E A(x0 ) a forward arc if (i, j) E A, and an arc (i, j) E A(x0 ) a reverse arc

12



if (j, i) E A. Notice that if an arc (i, j) is a forward arc in G(x0 ) then cij = cij, and if the

arc (i, j) is a reverse arc in G(xO) then cij = -cji.

We define I d - c in the residual network somewhat differently than in G. For

any arc (i, j) E A, the residual network G(x0 ) may contain both the arcs (i, j) and (j, i).

Their costs have the same magnitudes but opposite sign, and changing the cost of one arc

changes the cost of the other arc automatically by the same amount. We will assume that

whenever both (i, j) and (j, i) are present, only one of these arcs will contribute to I d - c i.

The following property follows directly from this definition.

Property 2. If c and d are two arc cost vectors in G, and and d are the two

corresponding arc cost vectors in G(xO), then d - c = d - c 1.

A byproduct of Property 2 is that d* is an optimal cost vector in G if and only if

d* is an optimal cost vector in G(x°). Our algorithm uses the following well known

results from the network flow theory.

Property 3. The flow x 0 is an optimal flow of the minimum cost flow problem if and only

if G(xO) contains no negative cost directed cycles (called negative cycles).

Property 4. Let zi be any vector of size n and ci denote the arc reduced costs defined

as ci? = c- - i + zrj. Then, for any directed cycle W in G(xO), (ij)wi =

Z(i) W ci. Consequently, if ci Ž 0 for each arc (i, j) E A(xO), then G(xO) does not

contain any negative cycle.

We will first determine an optimal cost vector d* for the residual network G(x0 )

and then use it to obtain an optimal cost vector d* for the network G. To prove the

optimality of the cost vector d*, we will use Property 3. Let W = W 1, W2 , ... , WK}

denote any collection of arc-disjoint negative cycles in the residual network G(x0 ). We

henceforth assume that an arc-disjoint collection of cycles does not contain both the arcs

(i, j) and (j, i) for any node pair i and j. There is no loss of generality in this assumption
because if a directed cycle Wp contains the arc (i, j) and another directed cycle Wq

contains the arc (j, i), then the directed walk {WpuWq}\{(i, j)u(j, i)} can be decomposed

13



into directed cycles satisfying the assumption and both have the same cost. Let (Wk)

denote the cost of the cycle Wk, that is, (Wk) = ij)Wk ij, and (W) denote the

cost of the collection, that is, (W) = k=.(Wk) . Observe that in an optimal cost

vector d*, costs of arcs in any cycle Wk must increase by at least - c(Wk) units in order

to eliminate this negative cycle. Hence

(ij)EWk dij- cij > - (Wk) · (6.1)

Since all the cycles W 1, W 2, ... , WK are arc-disjoint, it follows from (6.1) that

* - cl = (ij)eA(xO) dij- ij - > k=l (ij)eWk I d- ijl --K=l (Wk) = - () ,(6.2)

establishing the following lemma:

Lemma 3. Let W be any collection of arc-disjoint negative cycles in G(xO). Then,

-c(W) is a lower bound on I d* - - 1.

Now notice that any collection W of arc-disjoint cycles in G(x0 ) defines a 0-1

circulation in G(x °) obtained by sending unit flow along each of the cycles W 1, W2 , ... ,

WK. (A circulation is a flow with zero supply/demand vector.) Also notice that any 0-1

circulation defines a collection of arc-disjoint cycles in G(x°). These observations imply

that we can find a minimum cost collection of arc-disjoint cycles in G(x °) by solving a

minimum cost circulation in G(x °) subject to the additional restriction that each arc

capacity is 1. Let y* denote the optimal 0-1 flow in G(x0 ) obtained by setting each arc

capacity to 1. Let 'c denote the optimal dual variables, and 's denote the optimal

reduced costs. In the circulation y*, arcs with y = 0 are at their lower bounds and arcs

with y = 1 are at their upper bounds. This fact together with the minimum cost flow

optimality conditions imply that

i > 0 for all (i, j) with yi = 0, (6.3a)

iJj < 0 for all (i, j) with Yij = 1, (6.3b)

14



where = cij - i + j. We will show that the following cost vector d is an optimal

cost vector for the residual network G(x°):

= { ij + ci for all (i, j) with < o0, (6.4)
(6.4)

jcij otherwise.

We will show that if we modify arc costs as given by (6.4), then the modified

reduced cost of each arc (i, j) E A(x0 ) becomes nonnegative. First consider any arc (i, j)

E A(x0 ) with i < 0. In this case, the cost of the arc increases by the amount I-J I and

after the increase the modified reduced cost of the arc (i, j) becomes zero. Notice that

increasing the cost of arc (i, j) affects the reduced cost of the arc (j, i) in case it is also

present in the residual network G(x0). But since i = - c, the modified reduced cost of

the arc (j, i) also becomes zero after the change. In the other case when 2 0 and the

arc (j, i) X A(x°), cost of the arc (i, j) does not change and hence its modified reduced

cost remains non-negative. Since all modified reduced costs are non-negative, it follows

from Property 3 that the residual network G(x0 ) does not contain any negative cycle,

implying that d is an inverse feasible cost vector.

We next prove that d* is an optimal cost vector. Let W* = { W, W2 , ... , WK }

denote the arc-disjoint collection of negative cycles with respect to the flow y*. Observe

that

_I* dC= - I-C1 | = -k= (ij)EWkC1
{(i,j) A(x 0):ij <O} {(i,j)eA(x0 ):y~=1}

k=l(i,j)eWi i = c(W) (6.5)

where the first equality follows from (6.4), the second equality follows from (6.3b), the

third equality follows from the definition of W*, and the fourth equality follows from

Property 4. The fact d - = - (W*) in view Lemma 3 implies that d* is an optimal

cost vector for G(x°).

We next convert the optimal cost vector d for G(x0 ) into an optimal cost vector

d* for G. It follows from the definition of the residual network that increasing the cost of

15



a forward arc (i, j) E A(x0 ) increases the cost of the arc (i, j) in G and increasing the cost

of a reverse arc (j, i) decreases the cost of the arc (i, j) in G. These observations allow us

to write an equivalent from of (6.5) as follows:

Cij + I1 Iif i < 0 and (i, j) is a forward arc in G(x°),

di = cij - j-i if ci < 0 and (j,i) is a reverse arc in G(x°), (6.6)

cij otherwise.

To summarize, we have reduced the inverse minimum cost flow problem into a

minimum cost flow problem in a unit capacity network. The minimum cost flow
problem in a unit capacity network is in general easier to solve than the general minimum
cost flow problem. Using the successive shortest path algorithm, this minimum cost
circulation problem can be solved in O(m(m + n log n)) time (see, for example, Ahuja,
Magnanti, and Orlin [1993]). Using the cost scaling algorithm, this minimum cost
circulation problem can be solved in O(O(min{n 5/3, m 3/2}log(nC)) time, using the
algorithm due to Gabow and Tarjan [1989].

7. THE MINIMAX INVERSE MINIMUM COST FLOW PROBLEM

In the minimax inverse minimum cost flow problem, our objective is to modify
the cost vector c to d* so that the given solution x0 becomes a minimum cost flow in G

and max{I d - cijl: (i, j) E A} is minimum. We will subsequently refer to the objective

function of this inverse problem by lid* - cllo. We will show that the minimax inverse

minimum cost flow problem reduces to a minimum mean cycle problem in the residual
network G(x0) = (N, A(x0 )).

Similar to what we did in the previous section, we shall first determine an optimal

cost vector d for the residual network G(x0 ) and then use it to obtain an optimal cost
vector d* for the network G. Clearly, if G(x °) does not contain any negative cycle with
c as the arc cost vector, then d = ; otherwise, arc costs must be modified to eliminate
such negative cycles. We will henceforth assume that G(x0) contains a negative cost
cycle. Let W* be the minimum mean cycle in G(x0 ), that is, a directed cycle in G(x 0) for
which the mean cost given by (W)/IW] is minimum among all directed cycles W in the

network. Let jt* = (W*)/W*I. By our assumption, t* < 0.

16



Consider any negative cycle W in G(x°). Let c(W) denote the cost of this cycle,

that is, (W) = (ij)eWCij. Then in the optimal cost vector d , costs of the arcs in the

cycle W must increase by at least -c(W) units in order to eliminate this negative cycle.

It is easy to see that if we wish to minimize the maximum increase in the cost of any arc

cost, then each arc cost in the cycle W must increase by at least -c(W*)/IW*[ units.

Hence, every negative cycle W in G(x0 ) gives a lower bound of -c(W*)/IW*I on

II d c oo, the objective function of the inverse problem. Clearly, the tightest possible

bound on 11 d* - II,o is - (W*)/IW*I = -*, provided by the minimum mean cycle W*.

We will show that this lower bound is achievable, that is, there exists a feasible cost

vector d which satisfies 11 d - dc = *

We solve a minimum mean cycle problem in G(x0 ) whose solution gives the

minimum mean cost t* and the dual variables such that c- p> t* for each arc (i, j) E

A(x0 ). The preceding inequalities can be stated as

-- _< -* for every arc (i, j) E A(xO). (7.1)

Now consider the cost vector d defined as follows:

ij= Cij + I for all (i, j) with C< 0,(7.2)
Cij otherwise.

If follows from our discussion in the previous section that if we modify arc costs

as in (7.2), then all modified reduced costs in G(x °) become nonnegative, and from

Property 4, G(x °) contains no negative cost cycle. This establishes that d* is an inverse

feasible cost vector. Next notice that

*1 d - maxlo I max{l - J < } = max{--ij: i <} <*, (7.3)

where the first equality follows from (7.2), the second equality follows from the fact that

c-j < 0, and the third equality follows from (7.1). It follows from (7.3) that -* is an

upper bound on I d - lo --. We showed earlier that - is a lower bound on the optimalupper bound on lid - E [1oo We showed earlier that -C1t is a lower bound on the optimal

17



objective function value of the inverse problem. Consequently, d is an optimal cost

vector for the minimax inverse minimum cost flow problem in the residual network

G(xO). The corresponding optimal cost vector d* in the network G can be determined

using (6.6).

To summarize, we have shown above that the minimax inverse minimum cost

flow problem reduces to solving a minimum mean cycle problem. Since the shortest path

problem and the assignment problem are special cases of the minimum cost flow

problem, the minimax versions of these cases also reduce to a minimum mean cycle

problem. Currently, the best available strongly polynomial time algorithm to solve the

minimum mean cycle problem is an O(nm) algorithm due to Karp [1978], and the best

available weakly polynomial time algorithm is an O( VH m log(nC)) algorithm due to

Orlin and Ahuja [1992].

Weighted Version

We next study the weighted version of the minimax inverse minimum cost flow

problem. In this problem, the objective function of the inverse problem is to minimize

max{wijl dj - cijl: (i, j) E A}, where wij > 0 for each (i, j) A. As earlier, we will

assume that the residual graph G(x0) contains a negative cycle.

Consider any negative cycle W in G(x°). Let c(W) denote the cost of this cycle.

Then, in an optimal cost vector d*, costs of the arcs in the cycle W must increase by at

least - c(W) units in order to eliminate this negative cycle. Suppose that we increase the

cost of an arc (i, j) W by ij units. Then, X(ij)W (zij - (W). The impact of this

change on the objective function value will be max{wjcij: (i, j) E W}. This impact will

be minimum when each wijcij is the same for every arc (i, j) E W, say, wijocij = T.

Substituting this result in Ž(ij)ew cij - (W) yields "(ij)w T/wi > - (W), which can

be restated as T > - (W) /T(W), where (W) = "(ij)EW tij with tij = l/wij. We have thus

shown that each negative cycle W provides a lower bound of - (W) /z(W) on the optimal

solution value of the inverse problem. Let W* denote a directed cycle in G(xO) with the

smallest value of (W) /(W); we call such a cycle the minimum cost-to-weight ratio

cycle. Let ,u* = (W*) /(W*). Then, -* gives the greatest lower bound on the optimal

objective function value of the inverse problem. While solving the minimum cost-to-

18



time ratio cycle in G(x0 ) with cij's as arc costs and ij's as arc times, we obtain both t*

and a vector Xr so that - I/ij < -*. We define the arc cost vector d* as in (7.2). Using

similar arguments as in the unit weight case, it can be shown that d* is an optimal cost

vector for the weighted minimax inverse minimum cost flow problem in G(xO). After

obtaining the optimal cost vector d* for G(x0 ), we convert it into an optimal cost vector

d* for G using (6.6).

We have thus shown that the weighted minimax inverse minimum cost flow

problem can be solved by solving a minimum cost-to-weight ratio cycle problem. The

minimum cost-to-weight ratio problem can be solved in O(nm log(CW)) time using

Lawler's algorithm, or in O(n 4 log n) time using Meggido's [1979] algorithm, where C =
maxcij : (i, j) A} and W = wij : (i, j) E A}. It can also be solved in O(V/nm

log2(CW)) time using Goldberg's [1995] shortest path algorithm.

8. THE MINIMAX INVERSE MINIMUM CUT PROBLEM

We shall now study the minimax inverse minimum cut problem. This is the

minimax version of the inverse minimum cut problem studied in Section 5, where the

objective is to modify the capacity vector u to d* so that the s-t cut [S,S ] becomes a

minimum cut in the network G and max{ dl - uij: (i, j) E A} is minimum. We will show

that if all arc capacities are integer, then we can solve the minimax inverse minimum cut

problem as a sequence of O(log(nU)) minimum cut problems. We will use the same

notation in this section as used in Section 5.

To solve the inverse problem, we first delete the backward arcs in the cut [SO, S0]

and denote the resulting network by G'. Lemma 2 implies that [SO, S0 ] is a minimum cut

in G if and only if [SO,S ] is a minimum cut in G'. In view of this result, we can restrict

attention to solving the inverse problem in G'. We next obtain a minimum cut [S*, S*] in

G' by solving a maximum flow problem. If u[S , S ] = u [S*, *], then [S°, ] is also a

minimum cut in G' and d* = c; otherwise arc capacities must be modified.

Suppose that the optimal objective function value of the minimax inverse
minimum cut problem is 6*, that is, lid* - ullo = 6*. Observe that there exists an optimal

solution of the inverse problem where the modified capacity dij of each arc (i, j) E

19



(s0,s0) satisfies d = max{O, uij - *} and the modified capacity d of each arc (i, j) o

(S°,S0) satisfies di = uij + 6*; for (i) if di > max{O, uij - 6*} for some arc (i, j)

(SO,sO), then we can decrease d to (uij - 6*) and [SO,So] remains a minimum cut in

* -*G', and (ii) if dij < uij + 6* for some arc (i, j) M (SO , S), then we can increase d to (uij

+ 6*) and (SO,S0) remains a minimum cut in G'; in either case the objective function

value of the inverse problem, lid* - ullo, does not increase. Let G'(6) denote the network

obtained from G' by defining the arc capacities in the following manner:

= max{0,uij-6} for each arc(i,j) e(S°,S), (8.1)
dij() i (8.1)

uij +6 for each arc (i, j) (S°, °).

Each value of 6 for which [SO,S0] is a minimum cut in G'(6) gives an inverse

feasible cost vector d(6). The minimax inverse problem is to find the minimum value of

6 for which d(6) is an inverse feasible cost vector. Let k[6] denote the capacity of a

minimum cut in G'(6). Now consider k[6] as a function of 6. As we increase the value of

6 from zero, capacities of some s-t cuts decrease, but the capacity of the cut [S 0,S 0]

decreases at the fastest rate. Eventually, [SO,S °] becomes a minimum cut and then

remains a minimum cut until its capacity becomes zero. It is easy to see that M[6] is a

piecewise linear convex function of 6 and the minimax inverse problem is to find the

minimum value of 6, say 6 opt, when [SO, S °] becomes a minimum cut in G'(6). We refer

to the points where the slope of the function [6] changes as breakpoints of X[6].
Clearly, 6op t will be a breakpoint of the function G'(6). We can determine this value by

using a binary search algorithm and performing search on the possible values of 6 and

solving a minimum cut problem in G'(6) at each search point. In the binary search

algorithm, we start with the search interval [0, U], and at each iteration we reduce the

search interval by a factor of 2 until eventually the search interval becomes so small that

it contains exactly one breakpoint.

We now discuss how small the search interval should be before it is guaranteed to

contain a single breakpoint. Observe that each linear segment in G'(6) represents a line

of the form a + s6, where both a and s are integer numbers and the slope of the line

segment s satisfies 0 < sl < m (recall our assumption that all arc capacities are integer).

Consequently, a breakpoint, which is formed by the intersection of two line segments,

20



say, a + s16 and a2 + s26, is a rational number of the form p/q, where both p and q are

integer numbers and q < 2m. Further, two distinct rational numbers with integer

denominators bounded by 2m must differ by at least 1/4m 2 . This observation implies that

we can terminate the binary search algorithm when the size of the search interval

becomes less than 1/4m2. Hence we obtain a bound of log(4m2U) = O(log(nU)) on the

number of iterations performed by the binary search algorithm, and an overall bound of

O(O(T(n, m, U) log(nU)) on the running time of the algorithm, where T(n, m, U) is the

time needed to solve a minimum cut problem on a network with n nodes, m arcs, and

maximum arc capacity U. Currently, T(n, m, U) = O(nm log(n 2/m)) due to Goldberg and

Tarjan [1986] is the best strongly polynomial bound, and T(n, m, U) = O(min{n 2/3,

m1/2 }m log(n2/m) log U) due to Goldberg and Rao [1997] is the best available weakly

polynomial bound.

Weighted Version

We next study the weighted version of the minimax inverse minimum cut

problem. In this problem, the objective function of the inverse problem is to minimize

maxwijl dl - cijl : (i, j) E A} where wij > 0 for each arc (i, j) E A. As in the unit weight

case, we delete the backward arcs in [S °, So] to obtain the network G'. Let 6* denote the

optimal objective function value of the inverse problem. Using arguments similar to the

unit weight case, it can be shown that there exists an optimal solution of the inverse

problem where d~ = max{O, uij - 6*/wij} for every arc (i, j) E (SO,S ° ) and d = uij +

6*/wij for every arc (i, j) (SO,SO). We define the network G'(6*) with arc capacities

defined in the following manner:

(max{0,uij-6/wij} foreacharc(i,j) e(S°,S ),
dij(61) u +wi (8.2)

uij + 6 /wiJ for each arc (i, j) (S°,S°).

We next use the binary search for 6 in the interval [0, UW] to determine the

minimum value 6* of 6, for which [SO,s 0] is a minimum cut in G' and terminate the

binary search when the length of the search interval is less than 1/4m2W 2. At

termination, d* = d(6*). The running time of this method is O(T(n, m, U) log(nUW)),

where T(n, m, U) is the time needed to solve a minimum cut problem with n nodes, m

arcs, and maximum arc capacity C.

21



ACKNOWLEDGEMENTS

We gratefully acknowledge the support from the Office of Naval Research under
contract ONR N00014-96-1-0051 as well as a grant from the United Parcel Service. We

also acknowledge the help of Don Wagner who raised some perceptive and fundamental

questions that led to the pursuit of the research reported in this paper.

22



REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications, Prentice Hall, NJ.

Ahuja, R. K., and J. B. Orlin. 1998a. Inverse optimization, Part I: Linear programming

and general problem. Working Paper, Sloan School of Management, MIT,

Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998b. Inverse optimization, Part 2: Network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Burton, D., B. Pulleyblank, and Ph. L. Toint. 1997. The inverse shortest paths problem

with upper bounds on shortest paths costs. In Network Optimization, edited by P.

Pardalos, D. W. Hearn, and W. H. Hager, Lecture Notes in Economics and

Mathematical Systems, Volume 450, pp. 156-171.

Burton, D., and Ph. L. Toint. 1992. On an instance of the inverse shortest paths problem.

Mathematical Programming 53, 45-61.

Burton, D., and Ph. L. Toint. 1994. On the use of an inverse shortest paths algorithm for

recovering linearly correlated costs. Mathematical Programming 63, 1-22.

Cai, M. and X. Yang. 1994. Inverse shortest path problems. Technical Report, Institute

of Systems Sciences, Academia Sinica, Beijing, China.

Dial, B. 1997. Minimum-revenue congestion pricing, Part 1: A fast algorithm for the

single-origin case. Technical Report, The Volpe National Transportation Systems

Center, Kendall Square, Cambridge, MA 02142.

Ford. L. R., Jr., and D. R. Fulkerson. 1962. Flows in Networks. Princeton University

Press, Princeton, NJ.

Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses in improved

network optimization algorithms. Proceedings of the 25 th Annual IEEE Symposium

on Foundations of Computer Science, pp. 338-346.

23



Gabow, H. N., and R. E. Tarjan. 1989. Faster scaling algorithms for network problems.
SIAM Journal on Computing 18, 1013-1036.

Goldberg, A. V. 1995. Scaling algorithms for the shortest path problem. SIAM Journal on

Computing 24, 494-504.

Goldberg, A. V., and S. Rao. 1997. Length function for flow computation. Technical
Report # 97-055, NEC Research Institute, 4 Independence Way, Princeton, NJ.

Goldberg, A. V., and R. E. Tarjan. 1986. A new approach to the maximum flow problem.
Proceedings of the 18th ACM Symposium on the theory of Computing, pp. 136-146.
Full paper in Journal ofACM35(1990), 873-886.

Goldfarb, D. 1985. Efficient dual simplex algorithms for the assignment problem.
Mathematical Programming 33, 187-203.

Huang, S., and Z. Liu. 1995. On the inverse version of the minimum cost flow problem.
Working Paper, Dept. of ISMT, School of Business and Management, Hong
Kong University of Science and Technology, Hong Kong.

Karp, R. M. 1978. A characterization of the minimum cycle mean in a diagraph Discrete

Mathematics 23, 309-311.

Lawler, E. L. 1966. Optimal cycles in doubly weighted linear graphs. In Theory of

Graphs: International Symposium, Dunod, Paris, and Gordon and Breach, New

York, pp. 209-213.

Meggido, N. 1979. Combinatorial optimization with rational objective functions.

Mathematics of Operations Research 4, 414-424.

Orlin, J. B., and R. K. Ahuja. 1992. New scaling algorithms for the assignment and

minimum cycle mean problems. Mathematical Programming 54, 41-56.

Sokkalingam, P.T., 1996. The Minimum Cost Flow Problem : Primal Algorithms and

Cost Perturbations. Unpublished Dissertation, Department of Mathematics,

Indian Institute of Technology, Kanpur, INDIA.

24



Xu, S., and J. Zhang. 1995. An inverse problem of the weighted shortest path problem.

Japanese Journal of Industrial and Applied Mathematics 12, 47-59.

Yang, C., and J. Zhang. 1996. Inverse maximum capacity path with upper bound

contraints. To appear in OR Spektrum.

Yang, C., J. Zhang, and Z. Ma. 1997. Inverse maximum flow and minimum cut problem.

Optimization 40, 147-170.

Zhang, J., and M. C. Cai. 1998. Inverse problem of minimum cuts. Mathematical

Methods of Operations Research 47, No. 1.

Zhang, J., Z. Ma, and C. Yang. 1995. A column generation method for inverse shortest

path problems, ZOR-Mathematical Methods for Operations Research 41, 347-358.

25


