
Inverse Optimization, Part II: Network
Flow Problems

by
Ravindra K. Ahuja

James B. Orlin

SWP# 4003 February 1998



Inverse Optimization, Part II: Network Flow Problems

Ravindra K. Ahuja*
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

(Revised January 25, 1998)

On leave from Indian Institute of Technology, Kanpur 208 016, INDIA.



Inverse Optimization, Part II: Network Flow Problems

Ravindra K. Ahujal and James B. Orlin2

ABSTRACT

In this paper, we study inverse optimization problems defined as follows: Let S

denote the set of feasible solutions of an optimization problem P, let c be a specified cost

vector, and x° be a given feasible solution. The solution x0 may or may not be an optimal

solution of P with respect to the cost vector c. The inverse optimization problem is to

perturb the cost vector c to d so that x is an optimal solution of P, and lid - cllp is

minimum, where lid - clip is some selected Lp norm. In Part 1 of this paper, we

considered inverse linear programming problems under the L 1 and L, norms. In this

paper, we consider the specialization of these results to the following network flow

problems: the shortest path problem, the assignment problem, the minimum cut problem,

and the minimum cost flow problem. We show that in the case of the L 1 norm, the

inverse versions of each of these network flow problems reduce to a problem of the same

kind; that is, the inverse shortest path problem reduces to the shortest path problem, the

inverse assignment problem reduces to the assignment problem, and so on. We next

consider the case of the Lo, norm, and show that the inverse versions of the shortest path

problem, the assignment problem, and the minimum cost flow problem reduce to the

minimum mean cycle problem. (The minimum mean cycle problem is a directed cycle

whose cost divided by the number of arcs in it is minimum.)

1 Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

2 Sloan School of Management, MIT, Cambridge, MA 02139, USA.

2



1. INTRODUCTION

In this paper, we study inverse optimization problems defined as follows: Let S

denote the set of feasible solutions of an optimization problem P, let c be a specified cost

vector, and let x0 be a given feasible solution. The solution x may or may not be an

optimal solution of P with respect to the cost vector c. The inverse optimization problem

is to perturb the cost vector c to d so that x becomes an optimal solution of P, and

lid - clip is minimum, where 11.11p denotes some selected Lp norm. In Part I of this paper,

Ahuja and Orlin [1998a], we considered inverse linear programming problems under a

weighted L1 norm (that is, we minimize XjEJ wjldj - cjl}) and also under a weighted Lo,

norm (that is, we minimize max{wjldj - cjl: j E J}, where J is the index set of decision

variables x. In this paper, we consider the specialization of those results to the following

network flow problems: the shortest path problem, the assignment problem, the minimum

cut problem, and the minimum cost flow problem. We consider the unit weight as well

as general weight cases. In an another paper, Ahuja and Orlin [1998b], we consider

combinatorial algorithms for the network flow problems with unit weights and develop

combinatorial proofs of correctness.

Inverse optimization is a relatively new area of research. Ahuja and Orlin [1998a]

provide various references in the area of inverse optimization and compile several

applications. There has already been some research devoted to inverse network flow

problems. Burton and Toint [1992, 1994], and Burton, Pulleyblank and Toint [1997] have

considered inverse shortest path problems (multi-source, multi-sink problems) under the

L2 norm and solved them using non-linear programming techniques. Cai and Yang

[1994], and Xu and Zhang [1995] have considered the inverse shortest path problem under

the weighted L1 norm; Yang and Zhang [1996] have considered the maximum capacity

path problems; Huang and Liu [1995] have studied the minimum cost flow problem under

the weighted L1 norm; Yang, Zhang and Ma [1997], and Zhang and Cai [1998] have

considered the minimum cut problem under the weighted L1 norm. Each of these

problems reduces to solving a minimum cost flow problem. Sokkalingam [1996] in his

doctoral dissertation, under the supervision of the first author, also considered the inverse

minimum cost flow problem under the weighted L1 and weighted Loo norms. Our research

subsumes most of the previous research on the network flow problems under the L1 and

Lo norms. We present a unified approach, provide simpler proofs, and obtain faster

algorithms for the unit weight cases.

3



In this paper, we refer to the inverse version of an optimization problem P under

the L 1 norm as inverse P, and the inverse version of problem P under the Loo norm as

minimax inverse P. The major contributions made in this paper are as follows:

1. We show that inverse versions of each of the following network flow problems under

the L 1 norm and unit weights reduce to a network flow problem of the same kind: the

shortest path problem, the assignment problem, the minimum cut problem, and the

minimum cost flow problem; that is, the inverse shortest path problem reduces to the

shortest path problem, the inverse assignment problem reduces to the assignment

problem, and so on. The weighted case for each of these problems reduces to a

minimum cost flow problem.

2. We show that the inverse versions of each of the following network flow problems

under the Lo. norm reduce to the minimum mean cycle problem: the shortest path

problem, the assignment problem, and the minimum cost flow problem. (A minimum

mean cycle is a directed cycle whose cost divided by the number of arcs in it is

minimum among all directed cycles in the network.)

2. PRELIMINARIES

In this paper, we review some results from the inverse linear programming

problem proved in Part 1 of this paper, Ahuja and Orlin [1998a]. We summarize these

results in this section for the sake of completeness.

Inverse Linear Programming Problem

Consider the following bounded variable linear programming problem LP:

Minimize EjEJ cjxj, (2.1 a)

subject to

jeJaij xj {< bi, for all i E I, (2.lb)

0 < xj < uj, for all j J, (2.1c)

4



where J denotes the index set of decision variables x, and I denotes the index set of

constraints. Let x0 be a feasible solution of LP. We call a cost vector d to be inverse

feasible for LP (with respect to the solution x0 ) if x0 is an optimal solution of (2.1) when
the cost vector c is replaced by the cost vector d. Inverse LP problem under the L1 norm

is to find an inverse feasible cost vector d* of LP for which lid* - clll = Ejjl dj - cj is

minimum among all inverse feasible vectors d. Inverse LP problem under the Loo norm is

to find an inverse feasible cost vector d* of LP for which lId* - clo, = max{i d - cjl: j E J}

is minimum. We call such a vector d* an optimal cost vector. In this paper, we refer to
the inverse LP problem under the L1 norm as the inverse LPproblem, and the inverse LP

problem under the L® norm as the minimax inverse LP problem. In the first part of the

paper, we proved the following result:

Theorem 1. Let x be a feasible solution of LP and B c I denote the index set of

constraints that are binding with respect to x O. Then the inverse linear programming

problem under the LI norm is the dual of of the following problems.

O-centered dual inverse problem: Same as LP except that we (i) replace the variables xj

by the variables yj and make the right-hand side of (2. b) and (2.1c) zero; (ii) we

eliminate those constraints in (2. Ib) and (2. ic) which are non-binding with respect to the

solution x°; and (iii) add the following constraints: -1 < yj <1 for allj E J

x-centered dual inverse problem: Same as LP except that we (i) eliminate those

constraints in (2. ib) and (2.1c) which are non-binding with respect to the solution x°;

and (ii) add the following constraints. x -1 < x _ x +! for alljE J

Let gc denote the optimal dual variables associated with the binding constraints. Then the

optimal cost vector d* is given by

cj - Ic if cj > O andx > O,

dj = lC + I cl if c < O and x < uij, (2.2)

icy otherwise.

5



A generalization of the inverse LP problem is the case with the objective function

jEJWj dj - cjl, where wj's are specified constants. We refer to this problem as the

weighted inverse LP problem. The 0-centered dual inverse problem for the weighted
version is the same as in the unweighted case except that the constraint -1 < yj < 1 is

replaced by the constraint -wj < j < wj. The x-centered problem for the weighted

version is the same as the unweighted case except that the constraint x° -1< x < x +1 is

replaced by the constraint xj - wj < xj < x + wj.

Inverse 0-1 Linear Programming Problem

A special case of (2.1) is a linear programming problem where uj = 1 for each j 

J, and for which there always exists an optimal solution which is a 0-1 solution. Let x0

denote a feasible solution of the 0-1 linear programming problem. We have shown in

Ahuja and Orlin [1998a] that the x0-centered dual inverse problem for the 0-1 linear

programming program is the following linear programming problem:

Minimize ZjJ cjxj, (2.3a)

subject to

Yjej aij xj bi, for all i EB, (2.3b)

0 < xj < 1, for allj E J, (2.3c)

where B is the index set of binding constraints. In this case, we can also restate the

formula for the optimal cost vector d*. Let x* be an optimal solution of the x0-centered

dual inverse problem. If follows from the bounded variable linear programming theory

that (i) if cj < 0 then x = uj = 1, and (ii) if cJ > O then xj = 0. Using these results in

(2.2) yields the following optimal cost vector:

[cj -cjl foralljsatisfyingxj = land x = 0,

d* =cj + I±cjI foralljsatisfyingxj= Oand xj= 1, (2.4)

cj otherwise.

6



Minimax Inverse Linear Programming Problem

In the first part of this paper, we proved the following result:

Theorem 2. Let x be a feasible solution of LP and B c I denote the index set of

constraints that are binding with respect to x. Then the inverse linear programming

problem under the L., norm is the dual of of the following problems.

O-centered minimax dual inverse problem: Same as LP except that we (i) replace the

variables xj by the variables yj and make the right-hand side of (2. lb) and (2. Ic) zero;

(ii) eliminate those constraints in (2. Ib) and (2. 1c) which are non-binding with respect to

the solution x°; and (iii) add the following constraints: Z eJ IYj i1.

x 0-centered minimax dual inverse problem: Same as LP except that (i) we eliminate

those constraints in (2. lb) and (2.1 c) which are non-binding with respect to the solution

x°; and (ii) add the following constraints: ZEJ Ixj -xj 1.

Let zc denote the optimal dual variables associated with the binding constraints. Then the

optimal cost vector d* is given by (2.2), which is the same as thatfor the L 1 norm.

In the weighted minimax inverse linear programming problem, the objective
function is to minimize max{wjldj - cjl : j E J}, where wj 0 for each j E J. The

formulation of the weighted O-centered minimax dual inverse problem is exactly the same

as the formulation for the unit weight case except that the constraint ZjEJ yjl < 1 is

replaced by the following constraint: jEj and wj o0 Iyjl/wj < 1 and yj = 0 for all j for

which wj = O0. The optimal cost vector d* is computed using (2.2).

3. THE INVERSE SHORTEST PATH PROBLEM

In this section, we study the single-source, single-sink shortest path problem.

Inverse shortest path problems have earlier been studied by Burton and Toint [1992,

1994], and Burton, Toint, and Pulleyblank [1997]. They studied multi-source, multi-sink

shortest path problems with the L2 and suggested nonlinear programming techniques to

solve those problems. Cai and Yang [1994], Xu and Zhang [1995], and Zhang, Ma and

7



Yang [1995] have studied various kind of inverse shortest path problems and showed that

they reduce to minimum cost flow problems. Dial [1997] has studied the inverse shortest

path problem in acyclic networks. In this section, we obtain results which for the

weighted L1 norm are comparable to the results of Cai and Yang [1994] and Xu and

Zhang [1995]. In addition, we show that the unit weight inverse shortest path problem is

the dual of the shortest path problem and can be solved far more efficiently.

Let G = (N, A) be a directed network, where N denotes the node set and A

denotes the arc set. Let nodes s and t denote two specified nodes. Let us associate a cost
cij for each arc (i, j) E A. The (single-source, single-sink) shortest path problem is to

determine a directed path from node s to node t in G (henceforth called an s-t path)

whose cost, given by (ij)eP Cij, is minimum among all s-t paths in G. The shortest path

problem can be formulated as the following linear programming problem:

Minimize (i,j)eA Cij Xij (3.1a)

subject to
1 for i = s,

Z xij - E xji = 0 for all i o{s,t}, (3.lb)
{j:(i,j) A} {j:(j,i) A} 1- for i = t,

0 < xij < 1 for all (i, j) E A. (3.1c)

We assume that the network G does not contain any negative cost cycle; under

this assumption (3.1) has a finite optimal solution. In the inverse shortest path problem,

we are given a s-t path PO in G that we wish to make a shortest s-t path by perturbing the

arc costs. Let x° be the flow corresponding to PO, that is, x = 1 for all (i, j) E P and

xj = 0 for all (i, j) P. The shortest path problem is a special case of the 0-1 linear

programming problem, and it follows from our discussion in Section 2 that the x0 -

centered dual inverse shortest path problem is identical to (3) because all constraints in
(3.lb) are binding constraints. Let P* denote the shortest s-t path in G with cij as the arc

costs and let x* denote the corresponding 0-1 flow. For the shortest path problem, the

reduced cost of an arc (i, j) is given by c = cij - ci + nj. It is well known (see, for

example, Ahuja, Magnanti and Orlin [1993]) that the reduced costs corresponding to the

shortest path P* satisfy the following conditions:

8



cij = 0, for all (i, j) E P*, and (3.2a)

ciJ 2 0, for all (i, j) P*. (3.2b)

We will now use (2.4) to determine the optimal cost vector d*. Let P*\PO = {(i, j)

E A: (i, j) E P* and (i, j) PO }, and PO\P* = {(i, j) E A: (i, j) E P0 and (i, j) P*}. It

follows from (3.2a) that cij = 0 for all (i, j) P*. Using these results in (2.4) gives the

following optimal cost vector d*:

* cj -cj forall(i,j) ePO\P*

d g 1j, 9 for all (i, j) P0 \ P*

In words, the above result implies that for each arc which is in PO but not in P*,

we decrease the arc cost by an amount equal to the optimal reduced cost of the arc. The

cost of every other arc remains unchanged. This change decreases the cost of the path PO

by Z(ij)epop* c units and does not affect the cost of the path P*. After this change, the

modified reduced cost of each arc (i, j) in PO becomes 0, and it becomes an alternate

shortest s-t path in G.

We illustrate our algorithm for the inverse shortest path problem using a

numerical example. Figure 1 shows a shortest path network where node 1 is the source

node, node 12 is the sink node, and PO = 1-2-5-8-11-12. We solve a shortest path

problem on the network shown in Figure 1 (a). The optimal node potentials are given by

7r = {0, -10, -30, -15, -35, -55, -20, -30, -70, -50, -45, -95}. We point out that optimal

node potentials are the negative of the shortest path distances. Figure l(b) shows the

optimal reduced costs. The shortest path in the network is P* = 1-2-3-6-9-12. Thus PO\P*

= {(2, 5), (5, 8), (8, 11), (11, 12)}, and the optimal cost vector d* is obtained by

decreasing the costs of the arcs (2, 5), (5, 8), (8, 11), and (11, 12) by 10, 10, 0, and 15

units, respectively.

We have shown above that the inverse shortest path problem can be solved by

solving a shortest path problem. When all arc costs are non-negative, we can solve the

shortest path problem in O(m + n log n) time using Fredman and Tarjan's [1984]

implementation of Dijkstra's algorithm. In case some arc costs are negative, we can

solve the shortest path problem in O(nm) time using the FIFO label correcting algorithm

9



(a) (b)

Figure 1. Illustrating the algorithm for the inverse shortest path problem.

c�4

i u j
c ij

i j



(see, for example, Ahuja, Magnanti and Orlin [1993]), or in O(-n¶m log C) time using
Goldberg's [1995] algorithm, where C = max{lcijI: (i, j) E A}.

Weighted Case

In the weighted version of the inverse shortest path problem, the constraint 0 < xij

< 1 in (3.1) is replaced by the constraint x - wij < xij < x + wij. The resulting linear

program is no more a shortest path problem. In fact, it is a minimum cost flow problem

with possibly negative lower bounds on arc flows. Using standard transformations,

negative lower bounds can be replaced by zero lower bounds yielding a standard

minimum cost flow problem. Currently, the fastest strongly polynomial time algorithm

for the minimum cost flow problem is due to Orlin [1988] and runs in O(m(m + n log n)

log n) time. The fastest weakly polynomial algorithm for the minimum cost flow
problem is O(min{nm log(n2/m) log(nC), nm(log log W) log(nC)}, where C = max{lcijI :

(i, j) A}, and W = max{wij : (i, j) E A}; the two time bounds in this expression are due

to Goldberg and Tarjan [1987] and Ahuja et al. [1992].

4. THE INVERSE ASSIGNMENT PROBLEM

Let G = (NluN2 , A) be a bipartite directed network with IN11 = IN2 1 and A c

N 1xN2. We associate a cost cij for each arc (i, j) E A. The assignment problem is the

following linear programming problem:

Minimize (i,j)EA Cij Xij (4.1a)

subject to

Exij = 1 forall i eN 1 (4.1lb)
{j:(i,j) EA}

- Zxij=-1 forall jeN 2 (4.1c)
{i:(i,j) EA}

0 < xij < 1 for all (i, j) E A. (4.1 d)

Each 0-1 solution x of (4.1) defines an assignment M = {(i, j) A: xij = 1}.

Conversely, each assignment M defines a solution x of (4.1). In the inverse assignment

problem, we are given an assignment M ° in G, which we wish to make optimal by

perturbing the arc costs. As in the case of the shortest path problem, the assignment

10



problem is a special case of the 0-1 linear programming problem (2.3) and its x0-centered

dual inverse problem is the same as (4.1). Let M* denote the optimal assignment in G

and let ciJ = cij - ni + rj denote the optimal reduced costs of arcs. The optimal reduced

costs satisfy the condition that ci = 0 for all (i, j) E M*, and ci > 0 for all (i, j) M*

Using this result in (2.4) gives us the following optimal cost vector d* for the inverse

assignment problem:

cij -cj forall(i,j) MO\M*
dij = c~ (4.2)

ij 9 for all(i, j) M°\M

In words, to make the given assignment M° optimal for the assignment problem,

we determine an optimal assignment M* and decrease the cost of each arc (i, j) E MO\M*

by an amount equal to ci7 (the optimal reduced cost of arc (i, j)). This makes the cost of

the assignment M ° equal to that of M* and M ° becomes an alternate optimal assignment.

Currently, the best available strongly polynomial time bound to solve the assignment

problem is O(nm + n2 log n) and is attained by several algorithms (see, for example,

Goldfarb [1985]). The best available weakly polynomial algorithm is due to Gabow and
Tarjan [1989] and it runs in O(v m log(nC)) time, where C = max{lcij : (i, j) E A}.

We illustrate our algorithm for the inverse assignment problem using the

numerical example shown in Figure 2. Let M0 = {(1, 6) (2, 7), (3, 8), (4, 9), (5, 10)} be

the assignment that we wish to make optimal by perturbing the arc costs. We solve an

assignment problem in the network shown in Figure 2(a). The optimal assignment is M*

= {(1, 7), (2, 6), (3, 8), (4, 10), (5, 9)}, the optimal dual variables are given by re = {0, -5,

15, -10, 25, -10, -10, -20, -5, -25}, and the optimal reduced costs are shown in Figure

2(b). The set MO\M* = {(1, 6), (2, 7), (4, 9), (5, 10)} and the optimal cost vector d* is

obtained by decreasing the costs of arcs {(1, 6), (2, 7), (4, 9), (5, 10) by 0, 15, 10, and 5

units, respectively.

Weighted Case

In the weighted version of the inverse assignment problem, the constraint 0 < xij <

1 in (4.1) is replaced by the constraint x- wij < xij < x + wij. The resulting linear
i1 j 

11



(a) (b)

Figure 2. Illustrating the algorithm for the inverse assignment problem.

C
ij

i j i ?I j



program is no more an assignment problem. It is a minimum cost flow problem and can

be solved using any minimum cost flow algorithm.

5. THE INVERSE MINIMUM CUT PROBLEM

In this section, we study the inverse minimum cut problem. The inverse

minimum cut problem has earlier been studied by Yang, Zhang, and Ma [1997], and

Zhang and Cai [1998], and they show that the weighted version of the inverse minimum

cut problem can be reduced to a minimum cost flow problem. We obtain this result too,

and in addition we show that the unit weight version of the inverse problem reduces to

solving a minimum cut problem.

Consider a connected network G = (N, A) where uij's denote arc capacities and s

and t are two specified nodes, called the source and sink nodes, respectively. We assume
that uij > 0 for each (i, j) E A. In the network G, we define an s-t disconnecting set as a

set of arcs whose deletion disconnects the network into two or more components such

that nodes s and t belong to different components. We define an s-t cut as an s-t

disconnected set whose no proper subset is an s-t disconnecting set. This minimality

property implies that in deleting the arcs in an s-t cut creates exactly two components

with nodes s and t in different components. Let S and S (with S = N - S) denote the

sets of nodes in the components defined by an s-t cut; we assume that s S and t E S.
We represent this s-t cut as [S, S]. Let (S, S) denote the set of forward arcs in the cut,

that is, (S, S) = {(i, j) E A: i E S and j E S } and (S,S) denote the set of backward arcs

in the cut, that is, (S,S) = {(i, j) E A: i E S and j S}. We define the capacity of the

s-t cut [S, S] as the sum of the capacities of the forward arcs in the cut and denote it by

u[S, S], that is, u[S,S] = E(ij)cs ) uij . The minimum cut problem is to determine an

s-t cut of minimum capacity. In the inverse minimum cut problem we are given an s-t cut

[SO, °] which we wish to make a minimum cut by perturbing the arc capacities.

It is well known that the minimum cut problem is equivalent to the dual of the

maximum flow problem and can be solved by using standard maximum flow algorithms.

Let x* denote a maximum flow in the network G, and let S denote the set of nodes

reachable from the source node using augmenting paths. Then, [S, S] is a minimum cut

in G (see, for example, Ahuja, Magnanti and Orlin [1993]).

12



The minimum cut problem can be formulated as a linear programming problem in

several ways. We will use the formulation from which the inverse problem is easier to
obtain. We associate a variable Yij for each arc (i, j) E A whose value is 1 or 0,

depending upon whether the arc is a forward arc in the minimum cut or not. We denote

by C(G) the collection of all directed paths from node s to node t in the network G. The

minimum cut problem can be formulated as the linear program:

Minimize (i,j)eA Uij Yij (5.la)

subject to

Z(i,j)P Yij 2 1, for all P C(G), (5.lb)

0< ij < 1, for all (i, j) E A. (5.1c)

We point out that the upper bound constraints on yij's are redundant since any

optimal solution would automatically satisfy these constraints; however, for simplicity of

exposition we prefer to impose those constraints. If we eliminate the upper bound

constraints, then the dual of (5.1) can be easily shown to be the path flow formulation of

the maximum flow problem (see, for example, Ford and Fulkerson [1962]). The

maximum flow minimum cut theorem implies that there always exists an integer (in fact,

a 0-1) optimal solution of (5.1).

There is one-to-one correspondence between integer 0-1 solutions of (5.1) and s-t
cuts in G. To see this, consider any s-t cut [S,S]. Setting Yij = 1 for each arc (i, j) E

(S, S) and Yij = 0 for each (i, j) X (S, S) gives a solution y of cost u[S, S] satisfying (5.1)

because every directed path from node s to node t must contain at least one forward arc in

(S, S) . Notice that a directed path from node s to node t can contain p > 1 forward arcs

from the set (S,S), but then it must contain p-1 backward arcs from the set (S,S).

Further, notice that every feasible 0-1 solution y of (5.1) gives an s-t disconnecting set,

but an optimal solution of (5.1) must be an s-t cut because arc capacities are strictly

positive.

We will now consider the inverse minimum cut problem, where we wish to make

the cut [So, S] a minimum cut by modifying the arc capacities. The formulation (5.1) is

a special case of the 0-1 linear programming problem and its x-centered dual inverse

problem is the same as (5.1) except that we eliminate the non-binding constraints in

(5.lb) with respect to the s-t cut [S°,S°]. If the path P E C(G) contains no backward

13



arcs in the cut [SO,SO], then it has exactly one forward arc in the cut [S0 ,S], and the

constraint in (5.lb) for path P is binding. If the path P E C(G) has p 1 backward arcs in

the cut [SO,SO], then it contains p+l forward arcs in the cut [SO,SO], and the constraint

in (5. lb) for path P is non-binding. Let G' = (N, A') denote the directed graph obtained

by deleting the backward arcs in the cut [SO,S ], that is, A' = A\(S0,S0). Let C(G')

denote the set of all directed paths from node s to node t in G'. We can thus state the

inverse minimum cut problem as:

Minimize (i,j)eA Uij Yij (5.2a)

subject to

(ij)PYij 2 1, for all P C(G'), (5.2b)

0 < Yij < 1, for all (i, j) E A', (5.2c)

which is the formulation of the minimum cut problem in the graph G'. We can determine

the minimum cut in G' by solving a maximum flow problem in it. Let x* denote the

maximum flow in G' and [S*, S*] denote a minimum cut in G'. We can determine the

optimal cost vector d* for the inverse minimum cut problem using (2.4), which requires

the determination of arc reduced costs. We will now explain how to determine these
reduced costs. Let fp denote the dual variable associated with the constraint in (5.2b) for

the path P; this dual variable corresponds to the flow sent along the path P in the dual of

(5.2) which is a maximum flow problem in the graph G'. Then the reduced cost of the

variable Yij, which we denote by ui, is ui = uij - {PEC(ij)} fp, where C(i, j) denote

the set of all paths in C(G') which contain arc (i, j). But notice that {PEC(i,j)} fP = Xij,

fthe flow on arc (i, j) in the flow x*. Hence ui = uij - xi, which is the unused capacity

arc (i, j) in the flow x*. Substituting this value of reduced costs in (5.2) yields:

uij + (uij -xj) for each arc (i,j) E (S*, *)\ (S°,S0)

di = ui-(ui - xij) for each arc (i, j) e(S°, °)\(S*,§*) (5.3)

uij for every other arc (i, j).

14



We now note that for each arc (i, j) E (S*,S*), uij = x (because each forward

arc in the minimum cut must have flow equal to its capacity). Substituting this result in

(5.3) yields:

[, xi for each arc (i, j) E (SO°, )\(S* ,*)

Luii for each arc (i, j) o (S°, S°)\ (S*, g*)

In other words, in order to make the cut [S, S ° ] a minimum cut, we decrease the

capacity of each forward arc (i, j) in the cut [S,S0] to x. This ensures that each

forward arc in the cut [SO,S o] has flow equal to its capacity. Further, since the cut

[S 0 , S0] has no backward arcs in G', the cut [S0, S] is a minimum cut in G.

We illustrate our algorithm for the inverse minimum cut problem using the

numerical example shown in Figure 3(a). In the network shown in Figure 3(a), we wish

to make the s-t cut [S,S0 ] a minimum cut where SO = {1, 2, 3, 4}. This cut has only

one backward arc (6, 4). We delete it from the network and solve a maximum flow

problem. Figure 3(b) shows the maximum flow and the minimum cut [S*, *] with S* =

{ 1, 2, 3, 4, 6, 7}. The optimal capacity vector is obtained by setting the capacities of arcs

in (SO,S o) equal to their flow values; this results in decreasing the capacity of the arc (3,

6) from 40 to 30 and the capacity of the arc (4, 7) from 15 to 10.

To summarize, we have shown that the inverse minimum cut problem reduces to

solving a minimum cut problem that can be solved using any maximum flow algorithm.

Currently, the fastest strongly polynomial bound to solve the minimum cut problem (and

the maximum flow problem) is O(nm log(n2/m)) and is due to Goldberg and Tarjan

[1986]. The best weakly polynomial bound to solve the maximum flow problem is

O(min{n2/ 3 , ml/2 }m log(n2/m) log U) and is due to Goldberg and Rao [1997], where U =
max{uij: (i,j) A.

Weighted Case

We now consider the weighted inverse minimum cut problem. Using the same

approach as used for the unit weight case, the weighted inverse minimum cut problem

can be formulated as the following linear programming problem:

15



(a)

QXi.

(b)

Figure 3. Solution of an inverse minimum cut problem.

Uij

i j



Minimize X(ij)eA Uij Yij

subject to

-(i,j)epYij > 1, for all P E C(G'), (5.5b)

0 < Yij < wij, for all (i, j) such that y = 0, (5.5c)

l-wij < Yij < 1, for all (i, j) such that y = 1. (5.5d)

It can be shown that the dual of (5.5) is a minimum cost flow problem. Hence the

weighted inverse minimum cut problem can be solved using any minimum cost flow

algorithm.

6. THE INVERSE MINIMUM COST FLOW PROBLEM

In this section, we study the inverse minimum cost flow problem. The weighted

inverse minimum cost flow problem has earlier been studied by Huang and Liu [1995]

and Sokkalingam [1996], and they show that it reduces to a minimum cost flow problem.

We obtain the same result, and in addition we show that the unit weight inverse minimum

cost flow problem reduces to a unit capacity minimum cost flow problem and thus can be

solved more efficiently.

The minimum cost flow problem in a network G = (N, A) concerns determining

the least cost shipment that meets the demands at some nodes of the network by the

available supplies at some other nodes. In the minimum cost flow problem, each arc (i, j)

E A has an associated cost cij and an associated capacity uij, and each node i has an

associated supply/demand b(i). If b(i) > 0, then node i is a supply node; otherwise it is a

demand node. We will assume in this section that for any node pair (i, j) both (i, j) and (j,

i) do not belong to A. The minimum cost flow problem can be formulated as the

following linear programming problem:

Minimize (ij)eA cij xij (6.1 a)
subject to

E xij - E xji = b(i), for all i E N, (6.lb)
{j:(i,j) eA} {j:(j,i) e.A}

0 < xij < uij, for all (i, j) A. (6.1c)

16

(5.5a)



In the inverse minimum cost flow problem, we are given a feasible solution x0 of

(6.1) which we wish to make optimal by perturbing the arc costs. Using the solution xO,

we partition the arc set A into the following three subsets L, U, and F, as follows: L :=

{(i, j)E A: x =0}, U :={(i, j)E A: x = uij}, F:= {(i, j)E A:O< x <uij}. Then it

follows from Theorem 1 that the O-centered dual inverse problem of (6.1) is the following

linear programming problem:

Minimize Z(i,j)eA Cij Yij (6.2a)

subject to

E Yij - E Yji = 0, for all i E N, (6.2b)
{j:(i,j) eA} {j:(j,i) eA}

Yij > 0, for all (i, j) E L, (6.2c)

Yij < 0, for all (i, j) U, (6.2d)
-1 < Yij < 1, for all (i, j) E A. (6.2e)

The constraints (6.2c), (6.2d), and (6.2e) can alternatively be stated as follows:

0 < Yij < 1, for all (i, j) E L, (6.3a)

-1 < Yij < 1, for all (i, j) E F, (6.3b)

-1 < Yij < , for all (i, j) E U. (6.3c)

We can convert the above linear programming problem into a standard minimum

cost flow problem (that is, where all variables have a zero lower bound on arc flows) by

performing the transformation of variables: (i) for each arc (i, j) E L, replace the variable

Yij by the variable yij defined as Yij = Yij with cost c = cij; (ii) for each arc (i, j) E U,

replace the variable Yij by the variable Yji defined as Yji = -Yij with cost cji = -cij, and

(iii) for each arc (i, j) E F, replace the variable Yij by the two variable Yi'j and Yj'i defined

as Yij = Yij - Yj'i with cost cj = cij and cj'i = - cij. Each variable Yij is required to be non-

negative. Let A(x° ) denote the index set of the variables yij 's. In terms of the variables

yij 's, the inverse minimum cost flow problem can be reformulated as the following

linear programming problem:

17



Minimize cjj yj (6.4a)
(i,j)eA(x °)

subject to

Yij - CYji = 0, forallieN, (6.4b)
{j:(i,j)e A(x 0)} {j:(j,i)A(x0)}

0 I< yj < 1, for all (i, j) E A(xO). (6.4c)

Now observe that (6.4) is the formulation of the minimum cost circulation

problem (that is, the minimum cost flow problem with zero supply/demand vector) on a

unit capacity network. Further, the network on which the minimum cost circulation

problem is solved is known as the residual network of G corresponding to the flow xO

where all arc residual capacities are set to one.

The minimum cost flow problem (6.4) is in general easier to solve than the

original minimum cost flow problem (6.1) because all arc capacities in it are one. Using

the successive shortest path algorithm, this minimum cost circulation problem can be

solved in O(m(m + n log n)) time (see, for example, Ahuja, Magnanti, and Orlin [1993]).

Using the cost scaling algorithm, this minimum cost circulation problem can be solved in

O(O(min{n 5/ 3 , m 3 /2}log(nC)) time, using the algorithm due to Gabow and Tarjan [1989],
where C = maxlcijI: (i, j) A}.

We now explain how to obtain the optimal cost vector d*. Let denote the

optimal dual variables associated with (6.4b), and c = cij - rci + rcj denote the optimal

reduced costs. It follows from our discussion in Section 2 that the optimal cost vector d*

is given by

[cj - l le if c > O and x >O,

dj = Icj + I C *if cy < O and < , (6.5)

cj otherwise.

We illustrate our algorithm for the inverse minimum cost flow problem using a

numerical example. Figure 4(a) shows a minimum cost flow problem where arc costs are

as shown and each arc capacity equals 2. The flow x0 consists of sending 1 unit of flow

along each of the two paths: 1-2-4-6-7-8 and 1-2-3-5-7-8. Figure 4(b) shows the residual

18



Qi.

(a)

(b)

(c)

Figure 4. Solution of an inverse minimum cost flow problem.

Cij
i j

C7�

i j



network G(x°). Each arc in G(x0 ) has unit capacity. The optimal circulation in G(x ° )

consists of sending unit flows along each of the cycles 1-3-2-1 and 6-8-7-6. Figure 4(c)

optimal reduced costs of arcs. The solution y* is as follows: Yl2 = -1, Y3 = -1, 13- 1,

Y68 = 1, Y7*8 = -1, and Y67 = -1. Applying (6.5) yields that we must increase the costs of

arcs (1, 3) and (6, 8) by 3 and 9 units, and decrease the cost of arc (2, 3) by 5 units.

Weighted Case

For the weighted version of the inverse minimum cost flow problem, we get the

same formulation as (6.4) except that the constraints (6.4c) replaced by the following

constraint:

0 < Yij < wij, for all (i, j) E A(x°). (6.4c')

The resulting problem is again a minimum cost flow problem but, in general, all

arcs do not have unit capacities. Hence the resulting minimum cost circulation problem

cannot be solved as efficiently as in the case of unit capacities.

7. THE MINIMAX INVERSE MINIMUM COST FLOW PROBLEM

We will now apply our results for the minimax inverse linear programming

problem to the minimum cost flow problem. Our results also apply to the assignment

problem and the shortest path problem as special cases.

In the minimax inverse minimum cost flow problem, we are given a feasible

solution x ° of the minimum cost flow problem (6.1) which we wish to make optimal by

perturbing the arc costs in a manner so that the maximum perturbation is minimum. In

the solution x0, we partition the arc set A into the following three subsets L, U, and F, as

follows: L := {(i, j) A: x = 0}, U := {(i, j) A: x = uij}, F := {(i, j) E A: 0 < <

uij}. It follows from Theorem 2 that the 0-centered minimax dual inverse problem of

(6.1) is the following linear programming problem in the residual network G(xO):

minimize (i,j)eA Cij Yij (7.1a)

subject to

19



Z Yij Yji 0, for allieN, (7.lb)
{j:(i,j) EA} {j:(ji) eA

Yij > 0, for all (i, j) E L, (7.1c)

Yij < 0, for all (i, j) e U, (7.1d)

(i,j)EA IYijl < 1. (7.1e)

We now perform the same transformation of variables as we did in Section 6 to
transform (7.1) to a standard minimum cost flow problem where we replace yij's by the

non-negative variables Yi 's. The minimum cost flow problem after this transformation

can be simplified to the following linear program:

Minimize cjj yi (7.2a)

(i,j) eA(x ° )

subject to

Yij - lYi = 0 for all i E N, (7.2b)
{j:(i,j)e A(x°)} {j:(j,i) A(x0 )}

(ij)eA(x) Yij < 1, (7.2c)

yj > 0, for all (i, j) E A(xO). (7.2d)

It is well known that (7.2) is the formulation of the minimum mean cycle

problem. A minimum mean cycle in the residual network G(x°) is a directed cycle W for

which the mean cost given by X(ij)ew cij /WI is minimum. We can obtain a minimum

mean cycle in G(x0 ) using an algorithm due to Karp [1978] which runs in O(nm) time, or

using the algorithm due to Orlin and Ahuja [1992] which runs in O(4nm log C) time,
where C = max{cij : (i, j) A}. Let 7r denote the vector of optimal dual variables of (7.2)

and c = cij - i + Cj denote the optimal reduced costs. A minimum mean cycle

algorithm yields mean cost of the minimum mean cycle and the vector 7r of optimal dual

variables. The optimal cost vector d* can be obtained using (6.5).

We illustrate our algorithm for the inverse minimum cost flow problem using a

numerical example shown in Figure 4(a), where arc costs are as shown and each arc

capacity equals 2. The flow x0 consists of sending 1 unit of flow along each of the two

paths: 1-2-4-6-7-8 and 1-2-3-5-7-8. Figure 5(a) shows the residual network G(xO). The

minimum mean cycle in G(x° ) has mean cost -3, and the optimal dual variables are given

20



(a)

,3,©

(b)

(c)

Figure 5. Solution of a minimax inverse minimum cost flow problem.

C
U

i j



by {0, -1, -5, -6, -11, -10, -13, -18}. With respect to these dual variables, the optimal

reduced costs are shown in Figure 5(b). The optimal cost vector d* computed using (6.5)

is shown in Figure 5(c). It can be verified that with respect to the modified arc costs,

every directed path from node 1 to node 8 has cost 18.

Weighted Case

For the weighted case, we get the same formulation as in (7.2) except that (7.2c)

is replaced by {(i,j)EG(xo): wij0o} (yij/wij) < 1 and Yij = 0 if wij = 0, which is the

formulation of the minimum cost-to-weight ratio cycle problem (also known as the tramp

steamer problem). The minimum cost-to-weight ratio problem is to identify a directed

cycle W in the network for which ((ij)Ew cij)/ ((ij)EW wij) is minimum. Using an

algorithm due to Lawler [1966], the minimum cost-to-weight ratio problem can be solved

in O(nm log(CW)) time using Lawler's algorithm or in O(n4 log n) time using Meggido's
[1979] algorithm, where C = maxcij : (i, j) A} and W = {wij : (i, j) E A}, where C =

max{lcijI : (i, j) A} and W = max{wij : (i, j) A}. It can also be solved in O(V/-nm

log 2(CW)) time using Goldberg's [1995] shortest path algorithm.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support from the Office of Naval Research under

contract ONR N00014-96-1-0051 as well as a grant from the United Parcel Service. We

also acknowledge the help of Don Wagner who raised some perceptive and fundamental

questions that led to the pursuit of the research reported in this paper.

21



REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications, Prentice Hall, NJ.

Ahuja, R. K., A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. 1992. Finding minimum cost

flows by double scaling. Mathematical Programming 53, 243-266.

Ahuja, R. K., and J. B. Orlin. 1998a. Inverse Optimization, Part 1: Linear programming

and general problem. Working Paper, Sloan School of Management, MIT,

Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1998b. Combinatorial algorithms for inverse network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Burton, D., B. Pulleyblank, and Ph. L. Toint. 1997. The inverse shortest paths problem

with upper bounds on shortest paths costs. In Network Optimization, edited by P.

Pardalos, D. W. Hearn, and W. H. Hager, Lecture Notes in Economics and

Mathematical Systems, Volume 450, pp. 156-171.

Burton, D., and Ph. L. Toint. 1992. On an instance of the inverse shortest paths problem.

Mathematical Programming 53, 45-61.

Burton, D., and Ph. L. Toint. 1994. On the use of an inverse shortest paths algorithm for
recovering linearly correlated costs. Mathematical Programming 63, 1-22.

Cai, M. and X. Yang. 1994. Inverse shortest path problems. Technical Report, Institute

of Systems Sciences, Academia Sinica, Beijing, China.

Dantzig, G. B., W. Blattner, and M. R. Rao. 1966. Finding a cycle in a graph with

minimum cost to time ratio with application to a ship routing problem. In Theory

of Graphs: International Symposium. Dunod, Paris, and Gordon and Breach,

New york, pp. 209-213.

Dial, B. 1996. Minimum-revenue congestion pricing, Part 1: A fast algorithm for the

single-origin case. Technical Report, The Volpe National Transportation Systems

Center, Kendall Square, Cambridge, MA 02142.

22



Ford. L. R. Jr., and D. R. Fulkerson. 1962. Flows in Networks. Princeton University

Press, Princeton, NJ.

Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses in improved

network optimization algorithms. Proceedings of the 2 5
th Annual IEEE Symposium

on Foundations of Computer Science, pp. 338-346.

Gabow, H. N., and R. E. Tarjan. 1989. Faster scaling algorithms for network problems.

SIAMJournal on Computing 18, 1013-1036.

Goldberg, A. V. 1995. Scaling algorithms for the shortest path problem. SIAM Journal on

Computing 24, 494-504.

Goldberg, A. V., and S. Rao. 1997. Length function for flow computation. Technical

Report # 97-055, NEC Research Institute, 4 Independence Way, Princeton, NJ.

Goldberg, A. V., and R. E. Tarjan. 1986. A new approach to the maximum flow problem.

Proceedings of the 18th ACM Symposium on the theory of Computing, pp. 136-146.

Full paper in Journal ofACM35(1990), 873-886.

Goldberg, A. V., and R. E. Tarjan. 1987. Solving minimum cost flow problem by

successive approximation. Proceedings of the 19th ACM Symposium on the theory

of Computing, pp. 7-18. Full paper in Mathematics of Operations Research

15(1990), 430-466.

Goldfarb, D. 1985. Efficient dual simplex algorithms for the assignment problem.

Mathematical Programming 33, 187-203.

Karp, R. M. 1978. A characterization of the minimum cycle mean in a diagraph Discrete

Mathematics 23, 309-311.

Lawler, E. L. 1966. Optimal cycles in doubly weighted linear graphs. In Theory of

Graphs: International Symposium, Dunod, Paris, and Gordon and Breach, New

York, pp. 209-213.

23



Huang, S., and Z. Liu. 1995. On the inverse version of the minimum cost flow problem.

Working Paper, Dept. of ISMT, School of Business and Management, Hong

Kong University of Science and Technology, Hong Kong.

Meggido, N. 1979. Combinatorial optimization with rational objective functions.

Mathematics of Operations Research 4, 414-424.

Orlin, J. B. 1988. A faster strongly polynomial minimum cost flow algorithm.

Proceedings of the 20 th ACM Symposium on the Theory of Computing, pp. 377-

387.

Orlin, J. B., and R. K. Ahuja. 1992. New scaling algorithms for the assignment and

minimum cycle mean problems. Mathematical Programming 54, 41-56.

Sokkalingam, P.T., 1996. The Minimum Cost Flow Problem . Primal Algorithms and

Cost Perturbations. Unpublished Dissertation, Department of Mathematics,

Indian Institute of Technology, Kanpur, INDIA.

Xu, S., and J. Zhang. 1995. An inverse problem of the weighted shortest path problem.

Japanese Journal of Industrial and Applied Mathematics 12, 47-59.

Yang, C., and J. Zhang. 1996. Inverse maximum capacity path with upper bound

contraints. To appear in OR Spektrum.

Yang, C., J. Zhang, and Z. Ma. 1997. Inverse maximum flow and minimum cut problem.

Optimization 40, 147-170.

Zhang, J., and M. C. Cai. 1998. Inverse problem of minimum cuts. Mathematical

Methods of Operations Research 47, No. 1.

Zhang, J., Z. Ma, and C. Yang. 1995. A column generation method for inverse shortest

path problems, ZOR-Mathematical Methods for Operations Research 41, 347-

358.

24


