1,404 research outputs found

    On Throughput Maximization of Grant-Free Access with Reliability-Latency Constraints

    Full text link
    Enabling autonomous driving and industrial automation with wireless networks poses many challenges, which are typically abstracted through reliability and latency requirements. One of the main contributors to latency in cellular networks is the reservation-based access, which involves lengthy and resource-inefficient signaling exchanges. An alternative is to use grant-free access, in which there is no resource reservation. A handful of recent works investigated how to fulfill reliability and latency requirements with different flavors of grant-free solutions. However, the resource efficiency, i.e., the throughput, has been only the secondary focus. In this work, we formulate the throughput of grant-free access under reliability-latency constraints, when the actual number of arrived users or only the arrival distribution are known. We investigate how these different levels of knowledge about the arrival process influence throughput performance of framed slotted ALOHA with KK-multipacket reception, for the Poisson and Beta arrivals. We show that the throughput under reliability-latency requirements can be significantly improved for the higher expected load of the access network, if the actual number of arrived users is known. This insight motivates the use of techniques for the estimation of the number of arrived users, as this knowledge is not readily available in grant-free access. We also asses the impact of estimation error, showing that for high reliability-latency requirements the gains in throughput are still considerable.Comment: Accepted for publication in ICC'201

    Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times

    Full text link
    In this work, we consider the case where a source with bursty traffic can adjust the transmission duration in order to increase the reliability. The source is equipped with a queue in order to store the arriving packets. We model the system with a discrete time Markov Chain, and we characterize the performance in terms of service probability and average delay per packet. The accuracy of the theoretical results is validated through simulations. This work serves as an initial step in order to provide a framework for systems with arbitrary arrivals and variable transmission durations and it can be utilized for the derivation of the delay distribution and the delay violation probability.Comment: ISWCS 201

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Frameless ALOHA with Reliability-Latency Guarantees

    Get PDF
    One of the novelties brought by 5G is that wireless system design has increasingly turned its focus on guaranteeing reliability and latency. This shifts the design objective of random access protocols from throughput optimization towards constraints based on reliability and latency. For this purpose, we use frameless ALOHA, which relies on successive interference cancellation (SIC), and derive its exact finite-length analysis of the statistics of the unresolved users (reliability) as a function of the contention period length (latency). The presented analysis can be used to derive the reliability-latency guarantees. We also optimize the scheme parameters in order to maximize the reliability within a given latency. Our approach represents an important step towards the general area of design and analysis of access protocols with reliability-latency guarantees.Comment: Accepted for presentation at IEEE Globecom 201

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    5g new radio access and core network slicing for next-generation network services and management

    Get PDF
    In recent years, fifth-generation New Radio (5G NR) has attracted much attention owing to its potential in enhancing mobile access networks and enabling better support for heterogeneous services and applications. Network slicing has garnered substantial focus as it promises to offer a higher degree of isolation between subscribers with diverse quality-of-service requirements. Integrating 5G NR technologies, specifically the mmWave waveform and numerology schemes, with network slicing can unlock unparalleled performance so crucial to meeting the demands of high throughput and sub-millisecond latency constraints. While conceding that optimizing next-generation access network performance is extremely important, it needs to be acknowledged that doing so for the core network is equally as significant. This is majorly due to the numerous core network functions that execute control tasks to establish end-to-end user sessions and route access network traffic. Consequently, the core network has a significant impact on the quality-of-experience of the radio access network customers. Currently, the core network lacks true end-to-end slicing isolation and reliability, and thus there is a dire need to examine more stringent configurations that offer the required levels of slicing isolation for the envisioned networking landscape. Considering the factors mentioned above, a sequential approach is adopted starting with the radio access network and progressing to the core network. First, to maximize the downlink average spectral efficiency of an enhanced mobile broadband slice in a time division duplex radio access network while meeting the quality-of-service requirements, an optimization problem is formulated to determine the duplex ratio, numerology scheme, power, and bandwidth allocation. Subsequently, to minimize the uplink transmission power of an ultra-reliable low latency communications slice while satisfying the quality-of-service constraints, a second optimization problem is formulated to determine the above-mentioned parameters and allocations. Because 5G NR supports dual-band transmissions, it also facilitates the usage of different numerology schemes and duplex ratios across bands simultaneously. Both problems, being mixed-integer non-linear programming problems, are relaxed into their respective convex equivalents and subsequently solved. Next, shifting attention to aerial networks, a priority-based 5G NR unmanned aerial vehicle network (UAV) is considered where the enhanced mobile broadband and ultra-reliable low latency communications services are considered as best-effort and high-priority slices, correspondingly. Following the application of a band access policy, an optimization problem is formulated. The goal is to minimize the downlink quality-of-service gap for the best-effort service, while still meeting the quality-of-service constraints of the high-priority service. This involves the allocation of transmission power and assignment of resource blocks. Given that this problem is a mixed-integer nonlinear programming problem, a low-complexity algorithm, PREDICT, i.e., PRiority BasED Resource AllocatIon in Adaptive SliCed NeTwork, which considers the channel quality on each individual resource block over both bands, is designed to solve the problem with a more accurate accounting for high-frequency channel conditions. Transitioning to minimizing the operational latency of the core network, an integer linear programming problem is formulated to instantiate network function instances, assign them to core network servers, assign slices and users to network function instances, and allocate computational resources while maintaining virtual network function isolation and physical separation of the core network control and user planes. The actor-critic method is employed to solve this problem for three proposed core network operation configurations, each offering an added degree of reliability and isolation over the default configuration that is currently standardized by the 3GPP. Looking ahead to potential future research directions, optimizing carrier aggregation-based resource allocation across triple-band sliced access networks emerges as a promising avenue. Additionally, the integration of coordinated multi-point techniques with carrier aggregation in multi-UAV NR aerial networks is especially challenging. The introduction of added carrier frequencies and channel bandwidths, while enhancing flexibility and robustness, complicates band-slice assignments and user-UAV associations. Another layer of intriguing yet complex research involves optimizing handovers in high-mobility UAV networks, where both users and UAVs are mobile. UAV trajectory planning, which is already NP-hard even in static-user scenarios, becomes even more intricate to obtain optimal solutions in high-mobility user cases

    5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View

    Get PDF
    The grand objective of 5G wireless technology is to support three generic services with vastly heterogeneous requirements: enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communications (URLLC). Service heterogeneity can be accommodated by network slicing, through which each service is allocated resources to provide performance guarantees and isolation from the other services. Slicing of the Radio Access Network (RAN) is typically done by means of orthogonal resource allocation among the services. This work studies the potential advantages of allowing for non-orthogonal sharing of RAN resources in uplink communications from a set of eMBB, mMTC and URLLC devices to a common base station. The approach is referred to as Heterogeneous Non-Orthogonal Multiple Access (H-NOMA), in contrast to the conventional NOMA techniques that involve users with homogeneous requirements and hence can be investigated through a standard multiple access channel. The study devises a communication-theoretic model that accounts for the heterogeneous requirements and characteristics of the three services. The concept of reliability diversity is introduced as a design principle that leverages the different reliability requirements across the services in order to ensure performance guarantees with non-orthogonal RAN slicing. This study reveals that H-NOMA can lead, in some regimes, to significant gains in terms of performance trade-offs among the three generic services as compared to orthogonal slicing.Comment: Submitted to IEE
    corecore