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Abstract—One of the novelties brought by 5G is that wireless
system design has increasingly turned its focus on guarantee-
ing reliability and latency. This shifts the design objective of
random access protocols from throughput optimization towards
constraints based on reliability and latency. For this purpose, we
use frameless ALOHA, which relies on successive interference
cancellation (SIC), and derive its exact finite-length analysis of
the statistics of the unresolved users (reliability) as a function of
the contention period length (latency). The presented analysis
can be used to derive the reliability-latency guarantees. We
also optimize the scheme parameters in order to maximize the
reliability within a given latency. Our approach represents an
important step towards the general area of design and analysis
of access protocols with reliability-latency guarantees.

I. INTRODUCTION

In a number of emerging wireless technologies, there is
an increased focus on offering low-latency services with
high reliability1 guarantees [1]. In this respect, perhaps the
biggest novelty that will be brought by 5G is the mode of
Ultra-Reliable Low Latency Communication (URLLC) [2]. An
important contributor to latency in wireless networking is the
access protocol, through which multiple uncoordinated devices
attempt to connect to the same access point (AP). The design
of random access protocols has traditionally been focused on
optimizing the average throughput. The focus on reliability-
latency guarantees changes the design problem of an access
protocol, which sets the main motivation for this article.

Random access protocols in mobile cellular networks have
been based so far on classical slotted ALOHA (SA). Specifi-
cally, the well-known result states that the average through-
put of SA under the collision channel model is 1/e ≈
0.37 packet/slot. Another line of works investigated the ex-
pected delay performance of SA and its relation to the protocol
stability [3]. On the whole, it is easy to draw a conclusion that
the classic SA is inadequate to support URLLC services. At
the moment of writing, 3GPP has so far considered variants
of semi-persistent scheduling as the solution for the uplink
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1The reliability is here defined as the probability that a packet is success-
fully received at the access point within a predefined time (i.e., latency) [1].

URLLC services [4], [5], but this approach is suitable only for
devices with periodic traffic patterns, as it otherwise exhibits
very low efficiency. In this context, random access protocols
may indeed be required to play a role in the execution of
URLLC, as a building block of grant-free solutions.

Recently, the design space of SA has been significantly
expanded by the introduction of successive interference can-
cellation (SIC) [6]. Following this work, in [7] it was shown
that SIC-based reception for the collision channel model in
the protocol variant where the users contend with replicas of
their packets is analogous to the iterative belief-propagation
decoding of erasure-correcting codes, motivating the use of
the theory and tools of codes-on-graphs to design and analyze
SA schemes with SIC. It was demonstrated that such approach
asymptotically achieves expected throughputs that are close to
1 packet/slot [7]. This is the ultimate upper bound for the
collision channel model and this result has inspired a number
of works dealing with application and adaptation of various
erasure-correction coding schemes into the SA framework [8].

In general, SA schemes with SIC were analytically treated
in terms of the asymptotic packet-loss rate and the asymptotic
throughput performance, through the use of density evolution
technique [9]. In contrast, the finite-length performance was
investigated via simulations or approximate techniques that are
appropriate in the error-floor region [10]. A notable exception
can be found in recent works [11], [12], where the expected
finite-length packet-loss rate and throughput were analytically
derived for frameless ALOHA [13], for the collision channel
model and single- and multiple-packet reception, respectively.

In this paper, we focus on frameless ALOHA, a variant
of SA with SIC where the slots in which the users con-
tend for access are successively “added” on the wireless
medium until the target performance has been reached. So
far, the performance parameter that drove the optimization
of frameless ALOHA was the expected throughput [11]–[14].
Nevertheless, frameless ALOHA has the inherent potential to
embed reliability-latency guarantees as its performance goal,
which is the main driver of the work presented in the paper.
Specifically, in the paper we extend the results from [11] and
analytically characterize the finite-length reliability-latency
performance of frameless ALOHA. An original contribution
of the paper is the introduction of multiple slot classes, where
each class is characterized with a corresponding slot-access
probability. The output of the analysis is the probability mass
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Fig. 1. An example of contention in Frameless ALOHA. All three users
randomly and independently decide on a slot basis whether to transmit or
not. Slot 1 and slot 2 are collision slots; the colliding transmissions can not
be decoded and the AP stores the slots (i.e., the signals observed in them)
for later use. Slot 4 is a singleton slot and the AP decodes a replica of the
packet of user 2 from it. The AP also learns that a replica of packet of user 2
occurred in slot 1, and removes (cancels) it from the stored signal. Slot 1 now
becomes singleton and a replica of the packet of user 1 becomes decoded. In
the same manner, the successive process of replica removal and decoding of a
new packet replica occurs in slot 2. As all three users have become resolved,
the AP terminates the contention period after slot 4, and starts a new one.

function (pmf) of the number of unresolved users2 for given
number of contending users and given number of slots in a
class. Building on this result, we optimize the protocol such
that the probability that at least a predefined fraction of users
becomes resolved in the contention period of a given length is
maximized. For a given target latency, expressed as the number
of slots, we show that very high levels of reliability can be
guaranteed through an adequate choice of the number of slot
classes, number of slots in a class, and the corresponding
slot-access probabilities. To the best of our knowledge, this
is the first work that produces this type of finite-length
characterization for any SA scheme with SIC. Moreover, such
characterization is the key constituent for the evaluation of the
protocol performance in a comprehensive model that involves
packet arrivals, backlog, and retransmission policy.

The organization of the rest of the text is as follows.
Section II provides a brief overview of frameless ALOHA and
describes the system model. Section III presents the finite-
length analysis whose output is the pmf of the number of
unresolved users for the given number of slots. Section IV
deals with the protocol optimization in order to maximize
reliability for the target latency. Section V concludes the paper.

II. BACKGROUND AND SYSTEM MODEL

A. Background: Frameless ALOHA

Frameless ALOHA [13] is a variant of SA with SIC that
is inspired by rateless coding framework [15]. The time in
frameless ALOHA is divided into equal-length slots. The slots
are organized in contention periods, where the length of a con-
tention period (in terms of the number of slots) is not a-priori
defined. In each slot of the contention period, every contending
user independently decides on the slot basis whether or not
to transmit a replica of its packet, using a predefined slot-
access probability. It is assumed that each replica embeds the
information about the slots in which the other related replicas

2A user is resolved when its packet is successfully decoded/received.
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Fig. 2. The clouds and the ripple (variables denote the cardinalities).

are placed (e.g., via the seed of a random number generator
included in the packet header, from which the position of
all previous and potential subsequent replicas is extracted).
The AP processes slots of the contention period sequentially,
decoding and removing replicas. When a predefined criterion
becomes satisfied. e.g., the target throughput is reached and/or
a predefined fraction of users becomes resolved [14], the AP
terminates the current contention period and starts the new
one. The start/termination of a contention period can be done
via means of beacon signal transmitted by the AP. An example
of frameless ALOHA is depicted in Fig. 1.

B. System Model
We assume that there are n users, contending for the access

to a single AP. We focus on a single contention period lasting
m slots, where m is not a-priori fixed value, and with k dif-
ferent slot classes. Out of m slots, exactly m(1),m(2), ...m(k)

belong to slot class 1, 2, ..., k. In all slots of class h, the users
use the same slot access probability p(h)a , given by p(h)a = β(h)

n .
It is easy to verify that β(h) is the mean number of users that
transmitted in a slot of class h, and, thus, the mean number
of transmissions contained in the slot.

The contention is performed on the collision channel, whose
properties are: (i) singleton slots, i.e., slots containing a single
transmission, are decodable with probability 1, and (ii) colli-
sion slots, i.e., slots containing two or more transmissions, are
not decodable with probability 1. The interference cancellation
is assumed to be perfect, i.e., the removal of replicas from the
slots leaves no residual transmission power.3

In order to model the reception algorithm, i.e., the succes-
sive process of decoding and replica removal, we introduce
the following definitions:

Definition 1 (Initial slot degree). The initial slot degree is the
number of transmissions originally occurring in the slot.

Definition 2 (Reduced slot degree). The reduced slot degree
is the current number of transmissions in the slot, over the
iterations of the reception algorithm.

Definition 3 (Ripple). The ripple is the set of slots of reduced
degree 1, and it is denoted it by R.

3This assumption is reasonable for practical interference cancellation meth-
ods and moderate to high signal-to-noise ratios [7].



The cardinality of the ripple is denoted by r and its associated
random variable as R.

Definition 4 (h-th cloud). The h-th cloud is the set of slots of
class h with reduced degree d > 1, and it is denoted by C (h).

The cardinality of the h-th cloud is denoted by c(h) and the
associated random variable as C(h).

Upon reception, the reduced degree of a slot is equal to its
initial degree. If its reduced degree is d > 1, the slot of class
h is placed in the h-th cloud. Each time the slot is affected by
the interference cancellation (i.e., a packet replica contained
in it becomes removed), its reduced degree is lowered by 1.
If its reduced degree d is/becomes 1, the slot is placed in the
ripple, when the transmission (i.e., packet replica) contained in
it becomes decoded. After decoding, the slots in the ripple are
of no further use and their reduced degree is set to 0. This is
depicted in Fig. 2. The reception algorithm stops either when
all users are decoded, or when the ripple becomes empty.

In the context of the example in Fig. 1, and assuming that
there is a single slot class, slots 1 and 2 are in initially in the
cloud and slot 4 in the ripple. After fist round of decoding and
replica removal, slot 4 leaves the ripple, while slot 1 leaves
the cloud and enters the ripple. In the next round of decoding
and replica removal, slot 1 leaves the ripple, while the slot 2
leaves the cloud and enters the ripple. The reception algorithm
stops when slot 2 leaves the ripple.

Finally, we also introduce slot degree distribution Ω(h) ={
Ω

(h)
1 ,Ω

(h)
2 , ...,Ω

(h)
n

}
for the slot class h = 1, 2, ..., k, where

Ω
(h)
j is equal to the probability that a slot from class h has

the initial degree equal to j. It is straightforward to verify that
Ω

(h)
j , j = 1, 2, ..., n, is given by

Ω
(h)
j =

(
n

j

)(
p(h)a

)j (
1− p(h)a

)n−j
=

(
n

j

)(
β(h)

n

)j (
1− β(h)

n

)n−j
.

The probability that a slot of class h initially contains no
transmission at all is Ω

(h)
0 , the probability that it initially

belongs to the ripple is Ω
(h)
1 , and the probability that it initially

belongs to the h-th cloud is (1− Ω
(h)
0 − Ω

(h)
1 ).

III. FINITE-LENGTH ANALYSIS

For the sake of analysis we shall assume that the receiver
works iteratively. If the ripple is empty, the receiver simply
stops. Otherwise, it carries out the following steps:

• Selects at random one of the slots in the ripple;
• Resolves the user active in that slot (decodes its packet);
• Cancels the interference contributed by the resolved user

from all other slots in which its packet replicas was
transmitted. This may cause some slots to leave the cloud
and enter the ripple. Furthermore, some slots from the
ripple may become degree zero and leave the ripple.
These last slots correspond to slots in the ripple in which
the resolved user was active.

Thus, in each iteration, reception algorithm either fails, or
exactly one user gets resolved. These assumptions are made
to ease the analysis and have no impact on the performance.

Following the approach in [11], [16], [17], the iterative
reception of frameless ALOHA with k different slot classes is
represented as a finite state machine with state

Su := (C(1)u , C(2)u , · · · , C(k)u , Ru)

i.e., the state comprises the cardinalities of the first to k-
th cloud and the ripple at the reception step in which u
users are unresolved. Each iteration of the reception algorithm
corresponds to a state transition. The following proposition
establishes a recursion used to determine the state distribution.

Proposition 1. Given that its state is
Su = (c

(1)
u , c

(2)
u , · · · , c(k)u , ru), when u users are unresolved

and ru > 0 (i.e., the ripple is not empty), the probability of
the receiver being at state Pr{Su−1 = sssu−1} when u − 1
users are unresolved is given by

Pr{Su−1 = (sssu + www)|Su = sssu} =

(
ru − 1

au − 1

)(
1

u

)au−1

×

(
1− 1

u

)ru−au
h=k∏
h=1

(
c
(h)
u

b
(h)
u

)
q(h)u

b(h)
u (1− q(h)u )c

(h)
u −b(h)

u

with
sssu = (c(1)u , c(2)u , · · · , c(k)u , ru)

www = (−b(1)u ,−b(2)u , · · · ,−b(k)u ,

k∑
h=1

b(h)u − au)

and

q(h)u =

n∑
d=k+1

Ω
(h)
d

d
n

(
d−1
k

) (u−1
k )

(n−1
k )

( n−u
d−k−1)

(n−k−1
d−k−1)

1−
k∑
h=0

n∑
d=h

Ω
(h)
d

(u
h)(n−u

d−h)
(n
d)

(1)

for 0 ≤ b
(h)
u ≤ c

(h)
u , 1 ≤ au ≤ ru.

Proof: The proof builds up on the proof of Theorem 1 in
[11]. We need to consider the variation of the cloud and the
ripple cardinalities in the transition from u to u−1 unresolved
users. In this transition, exactly one user is resolved and all
replicas of its packet are removed from the slots in which they
appear, which results in some slots leaving the h-th cloud, C(h)u

and/or the ripple Ru, as depicted in Fig. 3.
Denote by B

(h)
u the random variable associated to the

number of slots leaving C
(h)
u , and by b

(h)
u its realization.

Similarly, denote by Au the random variable associated to
the number of slots leaving the ripple Ru, and by au its
realization. Given the fact that users choose whether to be
active or not in every slot independently from other users,
every slot is statistically independent from all other slots. Thus,
the random variables B(h)u are independent to each other. From
[11] (proof of Theorem 1), we have that the distribution of B(h)u

conditioned to C
(h)
u = c

(h)
u is binomial with parameters c

(h)
u

and q(h)u , with q(h)u given in (1).
The distribution of Au conditioned to Ru = ru is [11]

Pr{Au = au|Ru = ru} =(
ru − 1

au − 1

)(
1

u

)au−1(
1− 1

u

)ru−au

.
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Fig. 3. Evolution of the ripple and the h-th cloud through decoding and
removal of replicas. Resolution of a single user, i.e., decoding a replica of its
packet and removal of the other replicas, causes Au slots to leave the ripple
and B

(h)
u slots to leave the h-th cloud and enter the ripple.

The proof is completed by observing that from the definition
of au and b

(h)
u it follows that

ru−1 = ru − au +

k∑
h=1

b(h)u and c
(h)
u−1 = c(h)u − b(h)u .

Recall that out of the m slots in the contention period,
exactly m(1),m(2), ...m(k) belong to slot class 1, 2, ..., k. We
focus on slots of class h, of which there are m(h). The
initial state distribution corresponds to a multinomial with
mh experiments (slots) and three possible outcomes for each
experiment, the slot being in the cloud, the ripple or having
degree 0, with respective probabilities (1−Ω

(h)
1 −Ω

(h)
0 ), Ω

(h)
1

and Ω
(h)
0 . Denoting by R

(h)
n the random variable associated to

the number of slots of class h of reduced degree 1 when all
n users are still undecoded, we have

Pr{(C(h)n = c(h)n , R(h)n = r(h)n } =

m(h)!

c
(h)
n ! r

(h)
n ! (m(h) − c

(h)
n − r

(h)
n )!

×

(
1− Ω

(h)
1 − Ω

(h)
0

)c(h)
n

Ω
(h)
1

rn
Ω
m(h)−c(h)

n −r(h)
n

0 (2)

for all non-negative c
(h)
n , r

(h)
n such that c(h)n + r

(h)
n ≤ m(h).

Observing that, when all n users are still undecoded, the
total number of degree one slots Rn is given by

Rn =

k∑
h=1

R(h)n

we obtain from (2) the initial state distribution of the receiver.
By applying recursively Proposition 1 and initializing as

described the finite state machine one obtains the state proba-
bilities. The following theorem is the main result of the paper.

Theorem 1. The probability that exactly u users remain
unresolved after a contention period of m slots, Pu, is given
by

Pu =
∑
c
(1)
u

∑
c
(2)
u

. . .
∑
c
(k)
u

Pr{Su = (c(1)u , c(2)u , · · · , c(k)u , 0)}.
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Fig. 4. Examples of probability mass function of the number of undecoded
users u for n = 50, m = 60.

Proof: The result is evident from the state machine
definition. In particular, the user resolution ends at stage u
whenever ru = 0 (i.e., whenever the ripple is empty), and this
leaves exactly u users unresolved. Thus, we have

Pu = Pr{Ru = 0} (3)

=
∑
c
(1)
u

∑
c
(2)
u

. . .
∑
c
(k)
u

Pr{Su = (c(1)u , c(2)u , · · · , c(k)u , 0)}

where the summations is taken over all possible values of c(h)u ,
h = 1, ..., k.

By applying Theorem 1 for u = 0, 1, ..., n, one obtains pmf
of the number of unresolved users for the given n and m,
where the m corresponds to the delay in the number of slots.4

As an example, in Fig. 4 we show the pmf of the number of
undecoded users u, i.e., Pu for u = 1, ..., n, when n = 50 and
m = 60, for (i) one slot class with mean initial slot degree
β = 2.68, and (ii) two slot classes, with m(1) = 50 slots
in the first class, m(2) = 10 slots in the second class, with
mean initial degrees β(1) = 3 and β(2) = 5, respectively.5

The figure shows analytical results according to Theorem 1
and the outcome of Monte Carlo simulations. We see that the
match is tight (100000 contention periods were simulated).

Finally, for the sake of completeness, we also provide result
on the the expected packet error rate, i.e., the probability that
a user is not resolved, which is derived from (3) as

P =

n∑
u=1

∑
cu

u

n
Pu

=

n∑
u=1

∑
c
(1)
u

∑
c
(2)
u

. . .
∑
c
(k)
u

u

n
Pr{Su = (c(1)u , c(2)u , · · · , c(k)u , 0)}

(4)

4Note that Pu implicitly depends on the initial state distribution that is
obtained through (2), while (2) depends on the number of slots in a class
m(h), h = 1, 2, ..., k, and thereby on the total number of slots m.

5Recall that slot access probability of a class h is p(h)a = β(h)/n.



TABLE I
OPTIMAL PARAMETERS FOR FRAMELESS ALOHA THAT MAXIMIZE Ft

FOR t ∈ {48, 50}, WHEN n = 50 AND m = 100, AND k ∈ {1, 2, 3}.

t 48 50

k = 1 (one slot class)
β 2.9 3.33

Fmax
t 0.9985 0.9934

k = 2 (two slot classes)

m(1) 88 86
β(1) 2.4 2.53
m(2) 12 14
β(2) 12.94 22.08
Fmax
t 0.99965 0.9986

k = 3 (three slot classes)

m(1) 45 88
β(1) 2.37 2.51
m(2) 45 11
β(2) 2.47 17.39
m(3) 10 1
β(3) 12.71 50
Fmax
t 0.999783 0.99917

while the expected throughput is simply

T =
n(1− P)

m
.

IV. OPTIMIZATION

The results derived in the previous section can be used to
perform optimizaton of frameless ALOHA in different ways.
In this paper, we focus on maximization of the probability
that at least t out of n contending users are resolved after
a contention period of m slots, where m corresponds to the
allowed latency. We denote this probability as Ft, and it is
computed as

Ft =

n−t∑
u=0

Pu = 1−
n∑

u=n−t+1

Pu.

Obviously, Ft corresponds to the cumulative mass function of
the pmf Pu derived in the previous section, evaluated in the
point n − t, where n − t is the number of unresolved users
when t users are resolved.

The optimization parameters are number of slot classes k,
number of slots in the class h, i.e., m(h), and their mean
initial degrees β(h), for h = 1, ..., k, with the constraint that∑k
h=1m

(h) = m. Since Pu and, thus, Ft, implicitly depend
on the optimization parameters, the straightforward approach
is to employ exhaustive search. However, this quickly becomes
impractical. Instead, we performed a joint optimization over
all parameters using Nelder-Mead simplex search method in
Matlab [18]. For fixed k, n and m, we perform several
optimizaton runs, each from a different starting point, since
a run may converge to local minima/maxima, and take the
best solution.

We demonstrate the optimization results for n = 50, m =
100 and for t ∈ {48, 50}, i.e., the target is to maximize the
probability that at least 96 % and 100 % of users becomes
resolved after 100 slots, respectively. Table I shows the optimal
value of parameters and the maximum values of Ft, when the
number of classes k is varied from 1 to 3; note that when
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Fig. 5. Evolution of the mean number of resolved users nr as the slots of
the contention period progress, for n = 50, m = 100 and the scheme with
two slot classes from Table I optimized for t = 50.

k = 1, the number of slots in the class is equal to the total
number of slots, i.e., equal to 100.

The results demonstrate that increasing number of classes
pushes the performance in terms of number of “nines”. How-
ever, identification of the optimal number of classes that, for
the given t, n and m, provide the overall maximum of Ft
is an open question. Another insight is that, for the given
number of classes k, the more slots in a class, the lower the
mean initial degree of the slots in the class. This is somewhat
reminiscent of the optimal degree distributions for LT codes
[19], which are a category of rateless codes, and where, in
general, the high degrees are less probable then low degrees.
The purpose of the slots with high mean initial degrees (i.e.,
high slot-access probabilities) is to increase the probability that
a user actually transmits in the contention period, which is the
necessary precondition for the user to become resolved. This is
demonstrated in Fig. 5, which shows the evolution of the mean
number of resolved users, denoted by nr, for the scheme with
two slot classes from Table I optimized for t = 50, where it is
assumed that initial batch of 86 slots belongs to class 1, and
the final 14 slots belong to class 2.6 Note that nr is computed
using (4) as nr = n(1−P), where P is computed for each slot
of the contention period. A closer inspection reveals that, after
86th slot, there is a boost in nr, which is due to the increase
in β(2) with respect to β(1).

On the other hand, high initial slot degrees may be problem-
atic from the perspective of the actual reception of a composite
signal in a slot and when the interference cancelation is non-
ideal. A potential approach to alleviate this issue in systems
where downlink channel is available is the one where AP
acknowledges the resolved users, which then abstain from
transmitting in the rest of the contention period and thus
effectively decrease the initial slot degrees.

6Here we remark that slots from different classes do not necessarily have
to appear in continuous batches if one is interested only at the performance at
the end of the contention period, which is the case considered in this paper.
In particular, the performance at the end of the contention period will be the
same regardless of the organization of the slots in the contention period, if
the “stipulated” number of slots from each class is met.



Adaptive Frameless ALOHA

The optimization performed in the previous text is static,
in the sense that all the parameters are defined a-priori. On
the other hand, in the systems with a “balanced” uplink and
downlink, like in mobile cellular systems, the downlink can
be used to dynamically, i.e., adaptively drive the contention
process by periodically informing the users of the optimal
slot-access probability that should be subsequently used. The
optimal slot access probability can be derived on the basis
on the current state of the ripple and the clouds, e.g., using
Markov decision processes framework. The detailed analysis
and derivation of the update rules is beyond the paper scope.
Nevertheless, we demonstrate the potential of the adaptive
approach using a heuristic rule in which slot-access probability
pa, i.e., the corresponding β, is updated after every slot as

β =
n

u

(
1 + (β∗ − 1)

m− (n− u)− cu

m

)
where n is the number of users, u is the current number of
unresolved users, m is the (total) number of slots, cu is the
current cardinality of the cloud (here the cloud comprises all
slots with reduced degree greater than 1), and β∗ is the mean
initial degree that maximizes the peak throughput in the static
optimization for the single slot class, see [11]. The motivation
behind this heuristic is the following: (i) if no users have been
decoded, i.e., u = n, and the cloud is empty, i.e., cu = 0, β is
set to β∗, (ii) if there is a large number of slots in the cloud,
β takes a value close to n/u , which makes a new slot belong
to the ripple with high probability, (iii) otherwise, β is set to a
value between n/u and β∗. For n = 50, m = 100, β∗ = 2.47,
and t = 50, it can be shown via means of simulation that this
strategy achieves Ft = 0.9999975. I.e., all users are resolved
with reliability of more than 5 nines after 100 slots.

V. CONCLUSIONS AND DISCUSSION

We presented finite-length analysis of frameless ALOHA
for collision channel model, which could be used to assess the
reliability of the scheme for the given contention period length.
We also performed optimization of the scheme, such that
probability that at least the target fraction of users becomes
resolved at the end of the contention period. The obtained
results are promising, showing that very high probabilities of
user resolution can be reached. To the best of our knowledge,
this the first work dealing with the exact derivation of the
reliability-latency results for any SA scheme with SIC.

The assumed framework in which the latency (i.e., the
contention period length) is fixed may seem to oppose the
frameless nature of the protocol. However, reliability guaran-
tees naturally involve latency deadlines, and the design goal
was to tune the distributions to drive the protocol in a way that,
after a given deadline, a statistical guarantee can be offered.

The presented work can be extended in several ways. As
already hinted, further investigations can be made in terms
of the identification of the optimal number of slot classes
for given n, m and t, as well as of the achievable bound
on Ft. Also, the results presented in Fig. 4 show that the
obtained pmfs are bimodal; in this respect, investigating the

shape of the pmf as function of the scheme parameters,
as well as its explicit modeling seem to pose interesting
problems. Another potential extension is an optimization of
the scheme not only with respect to the performance at the
end of the contention period, but also taking into account its
intermediate performance. Such approach could be used when
one is interested in a balanced latency profile; in terms of
Fig. 5, this would imply a more “linear” increase of the number
of resolved users. Another, similar case would be the one in
which the intermediate performance guarantees are of interest.
The complexity of the used optimization approach quickly
increases with the number of slot classes k. A part of our
on-going work is devoted to low-complexity approximations.
Finally, the results show that assessment and optimization of
the dynamic, adaptive version of the scheme are also worth
considering. These tasks are also part of our ongoing work.
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