Enabling autonomous driving and industrial automation with wireless networks
poses many challenges, which are typically abstracted through reliability and
latency requirements. One of the main contributors to latency in cellular
networks is the reservation-based access, which involves lengthy and
resource-inefficient signaling exchanges. An alternative is to use grant-free
access, in which there is no resource reservation. A handful of recent works
investigated how to fulfill reliability and latency requirements with different
flavors of grant-free solutions. However, the resource efficiency, i.e., the
throughput, has been only the secondary focus. In this work, we formulate the
throughput of grant-free access under reliability-latency constraints, when the
actual number of arrived users or only the arrival distribution are known. We
investigate how these different levels of knowledge about the arrival process
influence throughput performance of framed slotted ALOHA with K-multipacket
reception, for the Poisson and Beta arrivals. We show that the throughput under
reliability-latency requirements can be significantly improved for the higher
expected load of the access network, if the actual number of arrived users is
known. This insight motivates the use of techniques for the estimation of the
number of arrived users, as this knowledge is not readily available in
grant-free access. We also asses the impact of estimation error, showing that
for high reliability-latency requirements the gains in throughput are still
considerable.Comment: Accepted for publication in ICC'201