5,594 research outputs found

    On spatial selectivity and prediction across conditions with fMRI

    Get PDF
    Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.Comment: PRNI 2012 : 2nd International Workshop on Pattern Recognition in NeuroImaging, London : United Kingdom (2012

    On spatial selectivity and prediction across conditions with fMRI

    Get PDF
    International audienceResearchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Advancing functional connectivity research from association to causation

    Get PDF
    Cognition and behavior emerge from brain network interactions, such that investigating causal interactions should be central to the study of brain function. Approaches that characterize statistical associations among neural time series-functional connectivity (FC) methods-are likely a good starting point for estimating brain network interactions. Yet only a subset of FC methods ('effective connectivity') is explicitly designed to infer causal interactions from statistical associations. Here we incorporate best practices from diverse areas of FC research to illustrate how FC methods can be refined to improve inferences about neural mechanisms, with properties of causal neural interactions as a common ontology to facilitate cumulative progress across FC approaches. We further demonstrate how the most common FC measures (correlation and coherence) reduce the set of likely causal models, facilitating causal inferences despite major limitations. Alternative FC measures are suggested to immediately start improving causal inferences beyond these common FC measures

    Spatially informed voxelwise modeling for naturalistic fMRI experiments

    Get PDF
    Voxelwise modeling (VM) is a powerful framework to predict single voxel responses evoked by a rich set of stimulus features present in complex natural stimuli. However, because VM disregards correlations across neighboring voxels, its sensitivity in detecting functional selectivity can be diminished in the presence of high levels of measurement noise. Here, we introduce spatially-informed voxelwise modeling (SPIN-VM) to take advantage of response correlations in spatial neighborhoods of voxels. To optimally utilize shared information, SPIN-VM performs regularization across spatial neighborhoods in addition to model features, while still generating single-voxel response predictions. We demonstrated the performance of SPIN-VM on a rich dataset from a natural vision experiment. Compared to VM, SPIN-VM yields higher prediction accuracies and better capture locally congruent information representations across cortex. These results suggest that SPIN-VM offers improved performance in predicting single-voxel responses and recovering coherent information representations

    Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices.

    Get PDF
    Computational theories propose that attention modulates the topographical landscape of spatial 'priority' maps in regions of the visual cortex so that the location of an important object is associated with higher activation levels. Although studies of single-unit recordings have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here we used functional magnetic resonance imaging and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size

    Spatial specificity and inheritance of adaptation in human visual cortex

    Get PDF
    Adaptation at early stages of sensory processing can be propagated to downstream areas. Such inherited adaptation is a potential confound for functional magnetic resonance imaging (fMRI) techniques that use selectivity of adaptation to infer neuronal selectivity. However, the relative contributions of inherited and intrinsic adaptation at higher cortical stages, and the impact of inherited adaptation on downstream processing, remain unclear. Using fMRI, we investigated how adaptation to visual motion direction and orientation influences visually evoked responses in human V1 and extrastriate visual areas. To dissociate inherited from intrinsic adaptation, we quantified the spatial specificity of adaptation for each visual area as a measure of the receptive field sizes of the area where adaptation originated, predicting that adaptation originating in V1 should be more spatially specific than adaptation intrinsic to extrastriate visual cortex. In most extrastriate visual areas, the spatial specificity of adaptation did not differ from that in V1, suggesting that adaptation originated in V1. Only in one extrastriate area—MT—was the spatial specificity of direction-selective adaptation significantly broader than in V1, consistent with a combination of inherited V1 adaptation and intrinsic MT adaptation. Moreover, inherited adaptation effects could be both facilitatory and suppressive. These results suggest that adaptation at early visual processing stages can have widespread and profound effects on responses in extrastriate visual areas, placing important constraints on the use of fMRI adaptation techniques, while also demonstrating a general experimental strategy for systematically dissociating inherited from intrinsic adaptation by fMRI
    • …
    corecore