736,659 research outputs found

    Consensus-Based Agglomerative Hierarchical Clustering

    Get PDF
    Producción CientíficaIn this contribution, we consider that a set of agents assess a set of alternatives through numbers in the unit interval. In this setting, we introduce a measure that assigns a degree of consensus to each subset of agents with respect to every subset of alternatives. This consensus measure is defined as 1 minus the outcome generated by a symmetric aggregation function to the distances between the corresponding individual assessments. We establish some properties of the consensus measure, some of them depending on the used aggregation function. We also introduce an agglomerative hierarchical clustering procedure that is generated by similarity functions based on the previous consensus measuresMinisterio de Economía, Industria y Competitividad (ECO2012-32178)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13

    Ordinal proximity measures in the context of unbalanced qualitativescales and some applications to consensus and clustering

    Get PDF
    Producción CientíficaIn this paper, we introduce ordinal proximity measures in the setting of unbalanced qualitative scales by comparing the proximities between linguistic terms without numbers, in a purely ordinal approach. With this new tool, we propose how to measure the consensus in a set of agents when they assess a set of alternatives through an unbalanced qualitative scale. We also introduce an agglomerative hierarchical clustering procedure based on these consensus measures.Ministerio de Economía, Industria y Competitividad (ECO2012-32178)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13

    Searching for a consensus similarity function for generalized trapezoidal fuzzy numbers

    Get PDF
    There is controversy regarding the use of the similarity functions proposed in the literature to compare generalized trapezoidal fuzzy numbers since conflicting similarity values are sometimes output for the same pair of fuzzy numbers. In this paper we propose a similarity function aimed at establishing a consensus. It accounts for the different approaches of all the similarity functions. It also has better properties and can easily incorporate new parameters for future improvements. The analysis is carried out on the basis of a large and representative set of pairs of trapezoidal fuzzy numbers

    a consensus view among methods with different system identification and tracking criteria

    Get PDF
    The Mediterranean storm track constitutes a well-defined branch of the North Hemisphere storm track and is characterised by small but intense features and frequent cyclogenesis. The goal of this study is to assess the level of consensus among cyclone detection and tracking methods (CDTMs), to identify robust features and to explore sources of disagreement. A set of 14 CDTMs has been applied for computing the climatology of cyclones crossing the Mediterranean region using the ERA-Interim dataset for the period 1979–2008 as common testbed. Results show large differences in actual cyclone numbers identified by different methods, but a good level of consensus on the interpretation of results regarding location, annual cycle and trends of cyclone tracks. Cyclogenesis areas such as the north-western Mediterranean, North Africa, north shore of the Levantine basin, as well as the seasonality of their maxima are robust features on which methods show a substantial agreement. Differences among methods are greatly reduced if cyclone numbers are transformed to a dimensionless index, which, in spite of disagreement on mean values and interannual variances of cyclone numbers, reveals a consensus on variability, sign and significance of trends. Further, excluding ‘weak’ and ‘slow’ cyclones from the computation of cyclone statistics improves the agreement among CDTMs. Results show significant negative trends of cyclone frequency in spring and positive trends in summer, whose contrasting effects compensate each other at annual scale, so that there is no significant long- term trend in total cyclone numbers in the Mediterranean basin in the 1979–2008 period

    The Cost of \u27Basic Necessities\u27 Has Risen Slightly More Than Inflation Over the Last 30 Years

    Get PDF
    [Excerpt] Contracts often use an all-items index to ensure that payments are adjusted to account for overall consumer inflation in the economy. The CPI is designed to track the average change over time in the prices paid by either urban consumers or urban wage earners for a constant-quality market basket of goods and services. Cost-of-living adjustments that use the CPI for All Items are based on changes in the average level of prices across the broadest range of goods and services available in the consumer marketplace. However, one might be interested in price change across a more limited range of items. For example, one might wish to know how the price of a set of items that constitute “basic necessities” for daily living changes. A general consensus on the set of goods and services necessary for daily living is perhaps elusive; however, this Beyond the Numbers article constructs three pairs of experimental indexes for three different sets of goods and services that might reasonably be considered necessary for daily living. Each pair consists of a U.S. city average for the CPI-U and for the CPI-W. Thus, six indexes are presented for comparison

    PuFFIN--a parameter-free method to build nucleosome maps from paired-end reads.

    Get PDF
    BackgroundWe introduce a novel method, called PuFFIN, that takes advantage of paired-end short reads to build genome-wide nucleosome maps with larger numbers of detected nucleosomes and higher accuracy than existing tools. In contrast to other approaches that require users to optimize several parameters according to their data (e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment sizes) our algorithm can accurately determine a genome-wide set of non-overlapping nucleosomes without any user-defined parameter. This feature makes PuFFIN significantly easier to use and prevents users from choosing the "wrong" parameters and obtain sub-optimal nucleosome maps.ResultsPuFFIN builds genome-wide nucleosome maps using a multi-scale (or multi-resolution) approach. Our algorithm relies on a set of nucleosome "landscape" functions at different resolution levels: each function represents the likelihood of each genomic location to be occupied by a nucleosome for a particular value of the smoothing parameter. After a set of candidate nucleosomes is computed for each function, PuFFIN produces a consensus set that satisfies non-overlapping constraints and maximizes the number of nucleosomes.ConclusionsWe report comprehensive experimental results that compares PuFFIN with recently published tools (NOrMAL, TEMPLATE FILTERING, and NucPosSimulator) on several synthetic datasets as well as real data for S. cerevisiae and P. falciparum. Experimental results show that our approach produces more accurate nucleosome maps with a higher number of non-overlapping nucleosomes than other tools

    A Fuzzy Delphi Consensus Methodology Based on a Fuzzy Ranking

    Get PDF
    Delphi multi-round survey is a procedure that has been widely and successfully used to aggregate experts’ opinions about some previously established statements or questions. Such opinions are usually expressed as real numbers and some commentaries. The evolution of the consensus can be shown by an increase in the agreement percentages, and a decrease in the number of comments made. A consensus is reached when this percentage exceeds a certain previously set threshold. If this threshold has not been reached, the moderator modifies the questionnaire according to the comments he/she has collected, and the following round begins. In this paper, a new fuzzy Delphi method is introduced. On the one hand, the experts’ subjective judgments are collected as fuzzy numbers, enriching the approach. On the other hand, such opinions are collected through a computerized application that is able to interpret the experts’ opinions as fuzzy numbers. Finally, we employ a recently introduced fuzzy ranking methodology, satisfying many properties according to human intuition, in order to determine whether the expert’s fuzzy opinion is favorable enough (comparing with a fixed fuzzy number that indicates Agree or Strongly Agree). A cross-cultural validation was performed to illustrate the applicability of the proposed method. The proposed approach is simple for two reasons: it does not need a defuzzification step of the experts’ answers, and it can consider a wide range of fuzzy numbers not only triangular or trapezoidal fuzzy numbers
    corecore