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Abstract: Delphi multi-round survey is a procedure that has been widely and successfully used
to aggregate experts’ opinions about some previously established statements or questions. Such
opinions are usually expressed as real numbers and some commentaries. The evolution of the
consensus can be shown by an increase in the agreement percentages, and a decrease in the number
of comments made. A consensus is reached when this percentage exceeds a certain previously set
threshold. If this threshold has not been reached, the moderator modifies the questionnaire according
to the comments he/she has collected, and the following round begins. In this paper, a new fuzzy
Delphi method is introduced. On the one hand, the experts’ subjective judgments are collected as
fuzzy numbers, enriching the approach. On the other hand, such opinions are collected through a
computerized application that is able to interpret the experts’ opinions as fuzzy numbers. Finally,
we employ a recently introduced fuzzy ranking methodology, satisfying many properties according
to human intuition, in order to determine whether the expert’s fuzzy opinion is favorable enough
(comparing with a fixed fuzzy number that indicates Agree or Strongly Agree). A cross-cultural
validation was performed to illustrate the applicability of the proposed method. The proposed
approach is simple for two reasons: it does not need a defuzzification step of the experts’ answers,
and it can consider a wide range of fuzzy numbers not only triangular or trapezoidal fuzzy numbers.

Keywords: fuzzy Delphi method; fuzzy number; ranking; consensus; experts’ opinions

1. Introduction

The Delphi method was developed during the 1950–1960s to forecast the impact of
technology on warfare by Dalkey and Helmer [1] and Rieger [2]. This approach consists of
a survey conducted in several rounds that presents some common characteristics:

1. The process can be conducted by a moderator.
2. An anonymous group of experts is invited to participate through the process of mail

or online questionnaires and to give their independent opinions (the questionnaire
survey is conducted anonymously and does not require meeting them in person)
about the items of the questionnaire.

3. Iterative surveys (often more than two, up to three or four rounds) are usually used.
4. The experts give their opinions about each item in a numeric way or by using la-

bels and make some commentaries to improve the statement of the item from their
respective point of views.

5. After each round, a report with the results from the previous round is sent to the
experts for the next round, so they can modify their opinions in order to increase
the collective agreement, taking into account the report and the comments made by
other experts.
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6. This process is repeated until some consensus conditions are reached (or after a
previously set number of rounds).

Although the traditional Delphi methods have been widely accepted as an effective
tool and have been used in a wide range of applications, problems of ambiguity and
uncertainty in experts’ opinions still remain. The measurement of human judgement is con-
sidered as being an emotional, complex, perceptual, subjective, and personal phenomenon,
involving many domains of an individual life experience. In general, classic rating scales
(e.g., 5- or 7-point Likert scales) inherently consider crisp numbers to measure human
thinking. However, due to the complicated nature and uncertainty of a human judgment,
it is very difficult to get an accurate numerical number for evaluating it.

The Fuzzy Delphi Method (FDM) was developed to overcome this problem through
the combination of fuzzy theory and the classical methodology [3–9]. In general, FDMs
usually use linguistic variables in designing the questionnaires to gather opinions from
experts and, after that, they consider a defuzzification step; that is, a step in which linguistic
labels (or fuzzy numbers) are reduced to real numbers. As a consequence, the process
suffers a great loss of information. The reason for considering defuzzification is not based
on the difficulty to operate with fuzzy numbers (which is reasonably easy in some contexts)
but on the fact that there is no universally accepted methodology for ranking fuzzy numbers.
Although many procedures have been introduced in the last fifty years, almost all of them
suffer the same drawback: it is relatively easy to determine two fuzzy numbers that, when
ordered through the proposed methodology, one gets the opposite ordering that any expert
would propose. In other words, these procedures lead to results that, in many cases, are
counter-intuitive, so they cannot be considered in a decision-making process.

To face the above-mentioned problems, the main aim of this paper is to develop a
simple theoretical and methodological approach that leads to diverse applications in many
fields and can be employed without a defuzzification step, considering a wide range of
fuzzy numbers to collect the experts’ judgments. On the one hand, the experts’ opinions
are collected as fuzzy numbers, which enrich the different ways of expressing an (maybe,
subjective) opinion. On the other hand, such opinions are collected through a computerized
application that is able to interpret the experts’ opinions as fuzzy numbers. In addition,
in order to overcome the ordering drawback, we propose employing a recently introduced
fuzzy ranking methodology (see [10]) in order to determine whether the expert’s fuzzy
opinion is favorable enough (comparing with a fixed fuzzy number that indicates Agree or
Strongly Agree). The main advantages of the proposed methodology are the following:
(1) it satisfies a great set of reasonable properties (see [11,12]); (2) it is according to human
intuition in practical cases; (3) it is applicable to the whole set of fuzzy numbers (it is not
reduced to triangular or trapezoidal fuzzy numbers); (4) it is very easy to compute and
interpret in practice, and it overcomes certain shortcomings that appear when applying
other more complex algorithms; and (5) in the case of triangular or trapezoidal fuzzy
numbers, the procedure is particularly simple and intuitive (see [13]).

In the traditional case, Delphi studies usually consider a certain level of agreement
(e.g., more than 80% on a 5-point Likert scale in the two top measurements, desirable/highly
desirable) as a consensus [14]. In this paper, we propose a method that tries to extend this
idea to the fuzzy context: the moderator will set a particular fuzzy number for indicating
Agree (or Strongly Agree), and he/she will compare each expert’ opinion to this fuzzy
threshold by using the proposed fuzzy ranking. After that, the computation of the per-
centage of experts’ opinions that are greater than or equal to this threshold will determine
whether a sufficient level of consensus is attained or not. Furthermore, to reach a consensus,
it is often required that no comments are made by the experts (which means that they do
not know how to improve the item).

To illustrate the approach, we consider a cross-cultural adaptation of a questionnaire
performed using fuzzy answers in a healthcare study. In this context, a visual analogue scale
(introduced by Freyd [15]) is often used. For example, the amount of pain that a patient
feels ranges indicate a point across a continuum line between two points that is from none
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to an extreme amount of pain. In this case, this choice appears continuous since the answer
does not take discrete jumps, as a categorization of none, mild, moderate, and severe
would suggest. It captures this idea of an underlying continuum that this scale was devised
on. No training is required to determine a score, and traditional statistical techniques can
be used to analyze them. Therefore, it is commonly used to appropriately translate the
intensity of symptoms between the patient and the medical and healthcare professionals.
Taking into account that a visual analogue scale is often used in epidemiologic and clinical
research to measure the intensity or frequency of various symptoms [16], this research
also investigates the development of a computational appliance for the rapid collection of
fuzzy data.

The organization of the rest of the paper is as follows. First, we give some background
on fuzzy numbers and fuzzy ranking. Next, we present the framework of the proposed
fuzzy Delphi method, in which the computerized application to collect experts’ opinions as
TFNs plays an important role. In the fourth section, we describe the results of an application
of this method to the problem of consensus in healthcare, and later, we discuss the obtained
results. Finally, some conclusions are given, and prospective work is proposed.

2. Preliminaries

In this section, we include some basic definitions and notations about fuzzy numbers
and the fuzzy ranking considered in this paper for a good comprehension of the rest of
the manuscript.

2.1. Fuzzy Numbers

Let R and I stand for the set of all real numbers and the closed real interval [0, 1],
respectively. A fuzzy set on R is an arbitrary function A : R→ I (no additional assumptions
are supposed on a fuzzy set). However, although a fuzzy number is a fuzzy set, there is no
unique definition associated with the notion of fuzzy numbers because distinct properties
can be considered. As a consequence, several notions about the idea of fuzzy numbers can
be found in the literature (see, for instance, [17–19]). For our purposes, we will employ the
following one.

A fuzzy number A (for short, a FN) of the real line R is a fuzzy set of the real
line, A : R → I, satisfying: (1) normality (A(x0) = 1 for some x0 ∈ R), (2) fuzzy
convexity (A(λx + (1− λ)y) ≥ min{A(x),A(y)} for x, y ∈ R and λ ∈ [0, 1]), and (3)
upper semicontinuity (if x0 ∈ R and ε > 0, there is δ > 0 such that A(x)−A(x0) < ε
whenever | x− x0 | < δ). Some researchers replace the normality condition with the
existence of an absolute maximum. Function A is usually referred to as the membership
function of the FN. Each real number A(x) ∈ [0, 1] can be interpreted as the uncertain
degree that the point x belongs to the FN A.

For each α ∈ (0, 1], the α-level set (or α-cut) of the FN A is the crisp set Aα = { x ∈ R :
A(x) ≥ α }, and the kernel (or core) of A is kerA = A1. Each level set is a (bounded or
unbounded) closed interval of the real line (involving the Euclidean topology). In general,
when A is an FN, the set { x ∈ R : A(x) > 0 } can be closed, open, or none of them.
To maintain the closedness of the level sets, we define the support of an FN A as the set
supp(A) = cl({x ∈ R : A(x) > 0}) , where cl(Ω) denotes the closure of a subset Ω ⊆ R
in the Euclidean topology. In such a case, its support is also a closed interval. Notice that
Aα ⊆ Aβ ⊆ supp(A) for all α, β ∈ (0, 1] such that β ≤ α.

Each level set and the support of an FN can be bounded or unbounded in R. For our
purposes, we will only consider FNs whose supports are bounded in R. Coherently, we will
denote by F the set of all FNs of the real line with bounded support. In such a case, if we
use the convention A0 = suppA, then each level set is a non-empty, closed, and bounded
real interval, so it can be denoted by Aα = [ a α, aα ] for each α ∈ I, where a α and aα are,
respectively, the inferior and superior extremes of the α-level set Aα of the FN A.

Although FNs can be represented by very general functions, we prefer to restrict
our study to FNs (general enough) with simple shapes because, in practice, these are the
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FNs that are most frequently used in practical applications. For instance, given four real
numbers a1, a2, a3, and a4 ∈ R such that a1 ≤ a2 ≤ a3 ≤ a4, a trapezoidal fuzzy number (for
short, a TFN), denoted by A = (a1/a2/a3/a4), is the FN defined by (as shown in Figure 1):

A(x) =



x− a1

a2 − a1
, if a1 < x < a2,

1, if a2 ≤ x ≤ a3,

a4 − x
a4 − a3

, if a3 < x < a4,

0, in any other case.

1

a a a
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2

Figure 1. An example of FNs.

The real numbers a1, a2, a3, and a4 are usually called the corners of the FN A because,
when a1 < a2 < a3 < a4, they correspond to the vertices of the trapezoid that we obtain
when the real functionA is plotted. Triangular FNs, denoted by (a1/a2/a4), are trapezoidal
FNs such that a2 = a3. The previous definition extends the notion of a real number to the
fuzzy setting because when a1 = a2 = a3 = a4 = r ∈ R, the FN r̃ = (r/r/r/r) (which takes
the value 1 if x = r and the value 0 in any other case) represents the real number r.

TFNs are appropriate tools in order to represent both the imprecision that is necessarily
associated with each measuring instrument and the subjective opinions that several experts
could express about a finite set of items. For instance, the TFN (8.5/8.7/8.8/9) could
represent a very good, but imprecise, opinion about the quality of a wine when the range
interval [0, 10] is considered.

Basic operations on the real line can also be extended to the family F by Zadeh’s
Extension Principle [20], that is, by defining

(A � B)(x) = sup({min(A(s),B(t)) : s � t = x}) for all x ∈ R,

where � ∈ {+,−, ·, /} is a traditional operation (notice that the division can only be consid-
ered when the real number 0 does not belong to the support of the divisor, see [18,21,22]).
This definition is equivalent to that obtained by the interval arithmetic with the α-level
sets ([23]): for instance, if A,B ∈ F , then

C = A+ B, (A+ B)[α] =
[

a α + b α , aα + bα

]
, cα = a α + b α, cα = aα + bα,

C = A · B, (A · B)[α] = [min ∆α
AB , max ∆α

AB ],

where ∆α
AB =

{
a α b α, a αbα, aα b α, aαbα

}
.

2.2. Fuzzy Ranking

As we commented in the Introduction, it is not an easy task to rank FNs. Many
approaches have been introduced, but many of them produce counter-intuitive results
when the FNs are twisted, that is, when their corresponding graphic representations show
several common points, giving place to intricate positions. The pointwise binary relation
among functions is not useful when such functions have a concrete meaning in order
to generalize the real numbers. In this context, in [10], Roldán López de Hierro et al.
introduced a novel methodology for ranking FNs, whose main characteristic is to be
according to human reasoning in most cases. To describe it, let µ denote the Euclidean
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measure of subsets of R (in practice, the measure of a real bounded interval [a, b] is b− a).
Given two FNs A,B ∈ F , let us consider the subsets of I defined as:

IA,B = { α ∈ I : Aα ≤ Bα } and IB,A = { α ∈ I : Bα ≤ Aα }.

In a way, the set IA,B (which is an interval when A and B are TFNs) represents the
family of probabilistic levels α in which the FN A is less than or equal to B with regards to
the binary relation 4 that is going to be defined. Therefore, the respective measures of the
sets IA,B and IB,A must be compared in the following way. We will write

A 4 B if


either µ(IA,B) ≥ µ(IB,A) and µ(IA,B) > 0,

or µ(IA,B) = µ(IB,A) = 0 and
a 0 + a 1 + a1 + a0 ≤ b 0 + b 1 + b1 + b0

(1)

This binary relation 4 is not based on any ranking index, and, as we have commented,
it satisfies a great list of reasonable properties according to human intuition (see [10]).
In [13], the authors completely described how this ranking methodology works when
it is applied to compare two TFNs. We highlight that we will use the ranking process
given by Equation (1) in order to obtain the agreement percentage that we consider in the
main sections (necessary code can be found in Appendix A).

3. A Novel Fuzzy Delphi Methodology

In this section, we describe a novel FDM in order to face any problem in which a
consensus between many experts is needed regarding one or more items. Our approach
assumes that the experts’ opinions are given by FNs, which generalize other methodologies
based on real numbers and/or linguistic labels, and also permit the judges to express their
opinions using a range of ambiguity that is full of information. Before explaining the main
steps to apply the proposed FDM, we highlight the work done to program a computerized
tool, developed in cooperation with professionals of the healthcare system, to facilitate a
rapid and secure application of the fuzzy method.

3.1. A Computerized Application to Collect Experts’ Opinions as TFNs

Starting from the visual analogic scale, in healthcare studies, we can consider FNs
described as follows. Respondents select a representative rating point on a bounded
interval and indicate higher or lower rating points, depending on the relative ambiguity of
their judgment (see Figure 2).

Figure 2. Example of an answer collected from a writing form using a fuzzy rating scale.

In this case, the interval is the largest support that can be considered for any FN in the
study, i.e., [0, 10], and it corresponds to a 10-centimeter line in the printed questionnaire.
This free-response format gives triangular FNs and lets us collect fuzzy data without
training. However, we need to use a ruler to measure the values corresponding to the FN
and safe data manually before applying the FDM.

Following this idea, we have generated a computerized application to collect the
fuzzy data. In the first stage of the implementation, we considered green/blue/red marks
indicated in the bar to gather the opinions in terms of triangular FNs. Respondents select
a representative rating point using the blue mark in a bar that represents the bounded
interval [0, 10] and indicates higher or lower rating points with the green and red marks,
respectively (see Figure 3). When the survey is finished, the fuzzy data are exported to an
.xlsx file (which can be easily imported in RStudio [24] for fuzzy computations).

The second stage of the implementation considers TFNs, A = (a1/a2/a3/a4), for the
answers. In this case, responders were instructed to select a representative rating interval
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using two blue marks within a bounded bar and then move the green and the red marks
to indicate lower and upper rating points, respectively (see Figure 4). The green and
red marks give two numbers, a1 and a4, corresponding to the support [a1, a4] of the TFN,
and the interval defined by the blue marks corresponds to the kernel [a2, a3] of the TFN.

Figure 3. Example of answers collected from an electronic form via the web using a fuzzy rating scale that generates
triangular FNs.

Item 1 

Item 2 

Item 3 

Item 4 

 

Figure 4. Example of answers collected from a computerized application using a fuzzy rating scale that generates trape-
zoidal FNs.

With this computer appliance, the ambiguity of the judgement can be easily and
automatically translated into a quantitative form based on TFNs and collected for applying
the FDM explained in the next subsection.

3.2. The Proposed Fuzzy Delphi Method

In this subsection, we describe the steps we have to follow to carry on the proposed
FDM and the framework in which it can be developed. Without loss of generalization and
to facilitate its comprehension, we will assume that the experts’ opinions are performed by
TFNs (in fact, the computerized application was designed only to capture the four corners
of such kind of FNs). Moreover, the methodology implemented in Equation (1) can be
applied even if the experts’ opinions are modeled by FNs with more complicated shapes,
which means that the following procedure can be applied to a wide range of FNs collected
by a fuzzy questionnaire.

Suppose that a committee of experts (or judges), represented by E1, E2, . . . , En, are
asked about m items (or decision criteria). Let Ak

i = (ak
i /bk

i /ck
i /dk

i ) be a TFN to represent
the fuzzy performance rating assigned to the i-th item (e.g., the agreement of the cultural
translation to Spanish of the item of the QOD-LTC questionnaire) by expert Ek (where
i ∈ {1, 2, . . . , m} and k ∈ {1, 2, . . . , n}).

In the next lines, we describe the proposed fuzzy Delphi approach:

Step 1: To create an initial version of the questionnaire, describing the items as clearly
as possible. At the same time, set the necessary elements to identify the consensus.
For instance, in the research we will describe in the next section, having the maximum
support [0, 10] to express an opinion in mind, we have chosen the triangular FN
C = (8/9/10) to indicate Agree and Strongly Agree (other researchers could use
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any other threshold). To reach the consensus on the i-th item, it will be necessary
that two conditions hold: (1) there is, at least, 80% agreement among experts about
the item, that is, at least 80% of experts’ opinions A1

i ,A2
i , . . . ,An

i about the i-th item
will satisfy C 4 Ak

i (this means that the expert’s opinion is very favorable to the
item); (2) there will not be any comments from experts (if there is at least one comment,
we understand that the item could be improved).

Step 2: To create a group of people that are experts on the subject that agree accept to
participate in the survey.

Step 3: To email the questionnaire and collect the answers, which refer (measure) to the
level of agreement with each of the items. In this step, experts were invited to
respond using a free-response format fuzzy rating scale-based questionnaire via the
web involving TFNs.

Step 4: After receiving the experts’ opinions and the corresponding comments, the next
step is to compute the agreement percentage pi among experts about the i-th item
(i ∈ {1, 2, . . . , m}), as the quotient between the number of experts’ opinions for which
C 4 Ak

i (from 1 to n) over the number n of experts, multiplied by 100. Then, compute
the number Ni of commentaries made by the set of experts.

Step 5: If the consensus is reached for the i-th item using the criteria previously set in
the first step, then such item will not be posed again to the experts in the next
round. On the contrary, if the consensus is not attained on some items (maybe
because the percentage pi is not great enough or maybe because there still exist some
commentary), the moderator will modify the items in which there is not a consensus
by following the experts’ commentaries, and he/she will complete a report in order
to let all experts know about the other experts’ opinions. Such a new questionnaire
and report will be submitted to the experts, and Step 3 starts again.

Step 6: The procedure will stop after iterative surveys (often more than twice, up to three
or four rounds) when the consensus is reached on each item or after a previously set
number of rounds.

4. Survey Outcomes (Results)

Many questionnaires and measurements have been developed to assess medical
conditions and quality of life or death. Measuring the quality of the dying experience
is important for improving care for dying patients. However, few instruments exist that
assess the quality of one’s dying process in Spain. This study uses the new FDM proposed
to validate the design of a new Spanish version of the “Quality of Dying in Long-Term
Care” (QoD-LTC) [25], one of the most widely used scales to assess the quality of dying in
long-term care facilities.

For Spain, 11 issues were proposed (m = 11). This section summarizes the FDM in
terms of how much consensus and stability evolved through rounds 1 to 3 by the agreement
percentages and the number of comments (we also include the mean of the answers).

A heterogeneous group of thirteen experts (eight nurses, three psychologists, and two
doctors) was considered (n = 13). The average age was 43 years, and the average profes-
sional experience was 10.8 years (5 are dedicated to care work, 8 to teaching and clinical
research, and 1 to both tasks).

The initial version of the questionnaire was submitted to the 13 experts, and by using
the computerized tool, we collected their opinions about the 11 items. For instance, Figure 5
represents the 13 experts’ opinions {Ak

1 = (ak
1/bk

1/ck
1/dk

1) }k=13
k=1 collected for Item 1 in the

blue color, and in the red color, the comparison FN C = (8/9/10) is presented. We can
observe that, although it is clear the relative positions between some TFNs Ak

1 and C, there
are other cases in which even experts on fuzzy ranking could suffer some doubts about
what FN is greater or lesser. Hence, it was necessary to apply the binary relation 4 to decide
whetherAk

1 4 C or vice versa. Such comparisons can be observed in Figure 6a. Ana arrows
diagram with the 13 experts’ opinions as blue circles (denoted by E1, E2, . . . , E13) and
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the comparison FN, C, in red color is shown. We have used the following criterion: each
arrow points to the largest fuzzy number by the fuzzy binary relation 4; that is, if Ak

1 ≺ C,
we have plotted the arrow Ek −→ C; if C ≺ Ak

1, the represented arrow is C −→ Ek; and if
Ak

1 ≈ C, we have plotted Ek ←→ C.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Figure 5. Fuzzy rating scale-based data from the 13 experts on Item 1 in blue and the comparison FN,
C, in red.

E1
E2

E8

E9

E13

C

E4

E6

E10

E11
E5

E12E7

E3

(a) Round 1, item 1
⇒

E1

E8

C

E7

E12

E3

E4
E2

E9

E5

E10

E11

E13E6

(b) Round 2, item 1
⇒ Consensus in Round 2

Figure 6. Fuzzy data corresponding to the 13 expert’s opinions (in blue color) ranked for the first
round and the first item and the comparison FN C (in red color).

As we can see, eight opinions were greater than C by the fuzzy binary relation 4,
and five of them were lower than C. As a consequence, the percentage of the agreement of
the cultural translation to Spanish for Item 1 of the QOD-LTC questionnaire was 8/13 =
61.5%, which was clearly insufficient to reach the consensus. Moreover, four comments
were collected from the experts for Item 1 in the first round, which confirms that the
consensus was not attained. These data can be found on the third line of Table 1, associated
with Item 1, where we can notice that the agreement percentage was 61.5%, and the number
N of comments was four.

Taking into account the experts’ suggestions, the moderator modified Item 1 in the
questionnaire, and it was submitted to the experts in the second round. The experts had
access to other experts’ opinions, and they expressed their opinions about the new version
of Item 1. In the second round, as we can see in Figure 6b, 11 opinions were greater than
C by the fuzzy binary relation 4, and only 2 of them were lower than C. As a result,
the percentage of agreement for Item 1 in the second round was 11/13 = 84.6%, which
was greater than 80%. As there was no comments, we considered that the consensus
was reached for Item 1. Accordingly, Item 1 was not included in the third round of the
questionnaire. The corresponding information can also be found in the third line of Table 1
in the columns that are dedicated to the second round.
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This process was implemented for each one of the 11 items considered in the ques-
tionnaire. In order not to be repetitive, we summarize the results obtained for each item as
follows. Figure 7a–p represent the fuzzy data corresponding to the 13 expert’s opinions (in
blue color), ranked for each round and each item. In this ranking, the comparison FN C
was plotted in red.

Table 1 summarizes the results of the fuzzy Delphi rounds. For each round, the first
four columns give four numbers (RI , RC1, RC2, RS) corresponding to the fuzzy mean of the
13 experts’ opinions; the next column gives the computed agreement percentage (%); the
last column is the number of comments made corresponding to each item, denoted by N.
Figure 7a–p let us easily check the obtained agreement percentage. We can interpret the
sixth line of Table 1 (corresponding to Item 4) as follows. In the first round, the agreement
percentage among experts was 46.2%, and there were eight comments. As the consensus
was not reached, a second round was necessary. In the second round, there was an
agreement percentage among experts around 76.9%, and there were three comments.
Consequently, a new round was carried out. Finally, in the third round, the mentioned
percentage was 84.6% with no comments. The consensus about Item 4 was reached after
three rounds. These data have been represented in Figure 7g–i, which correspond to Item
4. It is interesting to notice that, in the case of Item 3, there was 100% agreement on the
proposed translation. However, this item was included in the second round because there
was still one comment that could improve the statement of the item.

Finally, we highlight that the consensus on all items was reached after three rounds.
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Table 1. The results of the fuzzy Delphi rounds, with the reasons why an item must be included in the following round
highlighted in gray.

Round 1 Round 2 Round 3

RI RC1 RC2 RS % N RI RC1 RC2 RS % N RI RC1 RC2 RS % N

Item 1 7.4 8.2 8.8 9.4 61.5 4 8.0 9.1 9.5 9.5 84.6 0 - - - - - -

Item 2 7.2 8.0 8.8 9.8 61.5 4 7.7 8.5 9.3 9.6 84.6 0 - - - - - -

Item 3 8.8 9.4 9.6 10.0 100.0 1 9.3 9.6 9.8 10.0 100.0 0 - - - - - -

Item 4 7.4 8.1 8.8 9.4 46.2 8 8.2 8.7 9.1 9.6 76.9 3 9.1 9.4 9.5 9.5 84.6 0

Item 5 7.2 8.0 8.8 9.9 46.2 2 8.8 9.3 9.6 9.7 84.6 0 - - - - - -

Item 6 8.7 9.4 9.5 10.0 92.3 3 8.4 9.0 9.2 9.4 76.9 0 9.0 9.5 9.7 9.9 84.6 0

Item 7 7.3 8.2 8.8 9.4 84.6 4 9.2 9.6 9.9 10.0 100.0 0 - - - - - -

Item 8 7.2 8.0 8.8 9.9 84.6 4 8.9 9.3 9.6 9.9 100.0 0 - - - - - -

Item 9 8.7 9.4 9.5 10.0 84.6 6 9.1 9.4 9.6 9.7 84.6 0 - - - - - -

Item 10 7.4 8.2 8.8 9.4 100.0 1 9.5 9.7 9.9 9.9 100.0 0 - - - - - -

Item 11 7.2 8.0 8.8 9.9 84.6 3 9.1 9.4 9.6 9.7 84.6 0 - - - - - -

5. Discussion

The Delphi results show a change in experts’ views towards consensus and stability.
For all the items, an increase in the percentage agreements was observed over the three
rounds. The highest disagreement percentage in round 1 corresponds to Item 4, demon-
strating that by taking into account the experts’ comments, these views can be considerably
altered. The number of comments decreased in each round. This reduction supports the
evolution of the consensus.

The proposed method, which follows the original methodology for the case of fuzzy
answers, is suggested to be an effective way to measure group consensus. The main
characteristics of the proposed FDM are: (1) the computerized tool to collect the experts’
opinions, which avoids any kind of imprecision when measuring the TFNs plotted on a
paper, and (2) the fuzzy binary relation 4, which contains the necessary fuzzy complexity
in order to decide whether the expert’s opinion is favorable enough to the item.

This methodology is distinct from other previously introduced FDMs because it
does not involve any kind of defuzzification at any stage of the process. For us, it is
very important that the experts’ opinions are expressed in terms of FNs because these
judgements need to involve a certain level of ambiguity that cannot be modeled by using
real numbers and/or linguistic labels. Hence, if we apply any kind of defuzzification on
the experts’ opinions at any step of the process, we will suffer a great loss of information
that will cause the use of fuzzy elements to seem unjustified throughout the process.
Although many researchers have attempted to develop FDMs, few of them have proposed
methods without a defuzzification step, and we have not found any method that could be
applied to the whole set of FNs in the literature.

6. Conclusions and Prospect Works

The Delphi multi-round survey is a procedure that has been widely and successfully
used to aggregate experts’ opinions. The Fuzzy Delphi Method (FDM) is the modified
and enhanced version of the classical Delphi technique. In this paper, the proposed
method expands a classic Delphi method to incorporate the fuzzy data in experts’ opinions.
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The evolution of consensus is shown by the increase in agreement percentages and a
decrease in the number of comments made.

In this paper, we have presented a novel FDM that overcomes some of the shortcom-
ings that usually appear in this context. On the one hand, we have assumed that the experts’
opinions can be modeled by FNs, which are more appropriate to perform the complex
human judgement about each item of the questionnaire. On the other hand, we have devel-
oped a computerized tool in order to easily collect the experts’ responses. This information
system is, for the moment, reduced to collect TFNs, but, in prospective work, we plan to
develop a computer tool that will be capable of collecting any kind of FN. By comparing the
experts’ fuzzy responses with a fuzzy agreement level (implemented as a particular FN),
the moderator is able to determine whether there is a sufficient percentage of experts that
is reasonable according to the statement given on each item of the questionnaire. If such a
minimal percentage is not attained, the moderator can start a new round after modifying
the questionnaire accordingly to experts’ comments. Some advantages of the proposed
FDM are the following:

• It is simple and can be employed without loss of information (that is, without a defuzzi-
fication step).

• It can be applied to a wide range of FNs not only TFNs.

• The computer appliance developed for collecting the fuzzy data saves time and costs in
handling fuzzy questionnaires.

A cross-cultural adaptation was used to illustrate the new approach. Many processes
in healthcare that may need a consensus are susceptible to applying the introduced method-
ology. Further research is needed in this field of study in order to complete the development
of new products, services, and techniques that may also be needed to consider a FDM.
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Appendix A. R Code for Ranking Two TFNs

In Appendix A, we include the necessary code in order to rank two TFNs by using
Roldán López de Hierro et al.’s methodology [10] described in Equation (1).
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Suppose that we wish to rank two TFNs, A = (a1/a2/a3/a4) and B = (b1/b2/b3/b4),
for which we know their corners. We identify such TFNs in R as the vectors FNa =
c(a1, a2, a3, a4) and FNb = c(b1, b2, b3, b4). Next, we describe all the functions we need.

(z) The function LeftInterval(a, b) takes two vectors a = c(a1, a2) and b = c(b1, b2) as
inputs representing the inferior corners of the TFNs A and B, that is, a1, a2, b1 and
b2, and it produces the compact subinterval (closed an bounded) I ⊆ I of all values
α ∈ I as output such that a α ≤ b α. Such interval is described as a vector c(α, β),
where α and β are the extremes of that interval. If such interval is empty, the output is
c(−1,−1) (in what follows, we use the number −1 to represent a computing mistake
or the empty set).

LeftInterval= function(a,b){
a1<-a[1]
a2<-a[2]
b1<-b[1]
b2<-b[2]
if(a1<= b1 && a2 <= b2){

return(c(0,1))
} else if(b1<a1 && b2<a2){

return(c(-1,-1))
} else if(a1<=b1 && b1<=b2 && b2<= a2){

y1<-abs(a1-b1)/(abs(a1-b1) + abs(a2-b2))
return(c(0,y1))

} else if(b1<=a1 && a1 <= a2 && a2<= b2){
y1<-abs(a1-b1)/(abs(a1-b1) + abs(a2-b2))

return(c(y1,1))
} else{# some paremeter is wrong

cat(paste(‘‘Something’s wrong:
Failure in function -LeftInterval-.’’))

}
}

(z) The function RightInterval(a, b) takes two vectors a = c(a3, a4) and b = c(b3, b4) as
inputs representing the superior corners of the TFNs A and B, that is, a3, a4, b3 and
b4, and it produces the compact subinterval I ⊆ I of all values α ∈ I as output such
that aα ≤ bα. Such interval is described as a vector c(α, β), where α and β are the
extremes of that interval. If such interval is empty, the output is c(−1,−1).

RightInterval= function(a,b){
a3<-a[1]
a4<-a[2]
b3<-b[1]
b4<-b[2]
if(a3<= b3 && a4 <= b4){

return(c(0,1))
} else if(b3<a3 && b4<a4){

return(c(-1,-1))
} else if(a3<=b3 && b3<=b4 && b4<= a4){

y2<-abs(a4-b4)/(abs(a3-b3) + abs(a4-b4))
return(c(y2,1))

} else if(b3<=a3 && a3 <= a4 && a4<= b4){
y2<-abs(a4-b4)/(abs(a3-b3) + abs(a4-b4))

return(c(0,y2))
} else{# some paremeter is wrong

cat(paste(‘‘Something’s wrong:
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Failure in function -RightInterval-.’’))
}

}

(z) The function Intersection(i1, i2) takes two intervals i1 and i2 (described as vectors
c(ij1, ij2)) as inputs, and it computes their intersection i1 ∩ i2 (also described as a
vector c(α, β)). If such interval is empty, the output is c(−1,−1).

Intersection= function(i1,i2){
alfa1<-i1[1]
beta1<-i1[2]
alfa2<-i2[1]
beta2<-i2[2]
if(alfa1 == -1 || alfa2 == -1){

return(c(-1,-1))
}
else {

if(max(alfa1,alfa2)<= min(beta1,beta2)){
return(c(max(alfa1,alfa2),min(beta1,beta2)))
} else{

return(c(-1,-1))
}

}
}

(z) The function Interval(FNa, FNb) takes two TFNs (described as the vectors FNa =
c(a1, a2, a3, a4) and FNb = c(b1, b2, b3, b4)) as inputs, and it computes the interval
IA,B given as a vector c(α, β). If such interval is empty, the output is c(−1,−1).

Interval= function(FNa,FNb){
return(Intersection(

LeftInterval(c(FNa[1],FNa[2]),c(FNb[1],FNb[2])),
RightInterval(c(FNa[3],FNa[4]),c(FNb[3],FNb[4]))
))

}

(z) The function LengthInterval(i) takes a compact interval (described as a vector c(α, β))
as input, and it computes the length β− α (which is a real number). If such interval
is empty, the output is −1.

LengthInterval= function(i){
if(i[1]==-1 )

return(0)
else

return(i[2]-i[1])
}

(z) The function Decision(FNa, FNb) takes two TFNs (described as the vectors FNa =
c(a1, a2, a3, a4) and FNb = c(b1, b2, b3, b4)) as inputs, and it gives the following logical
value: TRUE, if A 4 B, and FALSE, if the ranking A 4 B is false.

Decision= function(FNa, FNb){
lengthAB<- LengthInterval(Interval(FNa, FNb))
lengthBA<- LengthInterval(Interval(FNb,FNa))
if(lengthAB>0 && lengthAB>=lengthBA)

return(TRUE)
else if(lengthAB==0 && lengthBA==0 && (sum(FNa)<=sum(FNb)))
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return(TRUE)
else

return(FALSE)
}

(z) The function Ranking2TraFN(FNa, FNb, TextoA, TextoB) takes two TFNs (described
as the vectors FNa = c(a1, a2, a3, a4) as inputs and FNb = c(b1, b2, b3, b4)) and two
character strings (linguistic labels), TextoA and TextoB, that represent such TFNs,
and it produces the following character string as output:

TextoA ∼ TextoB, if A 4 B and B 4 A hold at the same time,
TextoA < TextoB, if A 4 B holds and B 4 A is false,
TextoA > TextoB, if A 4 B is false and B 4 A holds.

Notice that this function asks us for the linguistic labels that we want to use to denote
the fuzzy numbers. It is usual to call the first fuzzy number “A” and “B” as the
second. In this way, the function will produce one of the following three outputs:
“A < B”, “A ∼ B”, or “A > B”. However, when working with more than two fuzzy
numbers, it is usual to use other labels. In this case, if we write other linguistic labels,
we could get outputs, such as “C < D”, “A1 ∼ B2”, or “FN1 > FN2”. It will depend
on the text that we will introduce into the arguments.

Ranking2FN = function(FNa, FNb, texta, textb){
AlessB<- Decision(FNa,FNb)
BlessA<- Decision(FNb,FNa)
if(AlessB == TRUE && BlessA == TRUE)

return(paste(texta,‘‘~’’,textb))
else if(AlessB == TRUE && BlessA == FALSE)

return(paste(texta,‘‘<’’,textb))
else if(AlessB == FALSE && BlessA == TRUE)

return(paste(texta,‘‘>’’,textb))
else

cat(paste(‘‘Something’s wrong:
Failure in function -Ranking2FN-.’’))

}

(z) The function menu() will ask the user for the four corners of the TFNs A and B
jointly with their linguistic labels TextoA and TextoB, and after checking that the
inequalities a1 ≤ a2 ≤ a3 ≤ a4 and b1 ≤ b2 ≤ b3 ≤ b4 hold, the output is the
correct ranking of the FNs A and B by employing the labels TextoA y TextoB (if
the inequalities are not fulfilled, it outputs a warning message). This function uses
the library “FuzzyNumbers” in order to represent the involved TFNs, so it will be
necessary to previously install such library.

install.packages(‘‘C:/FuzzyNumbers_0.4-6.tar.gz’’,
repos = NULL, type = ‘‘source’’)

menu = function(){
# We check that library ’FuzzyNumbers’ is installed
if (!require(’FuzzyNumbers’))

stop(‘‘Please, install library ’FuzzyNumbers’
before continuing.’’)

library(’FuzzyNumbers’) # start

cat(paste(‘‘Insert the quantity of trapezoidal fuzzy numbers
to carry out the ranking’’))
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cantidadNumeros<-scan(n=1)
# if a positive number has been loaded

if(cantidadNumeros>0){
# Initializing the vectors for parameters as null
a=NULL
b=NULL
c=NULL
d=NULL
etiqueta = NULL

cat(paste(‘‘\nPlease, insert each fuzzy number through
its corners (a,b,c,d) and a label (text)\n’’))

cat(paste(‘‘\n(recall b=c if it is triangular)\n’’))
cat(paste(‘‘\n(make sure a<=b<=c<=d)\n’’))

# caption of the corners of the fuzzy numbers
for(i in 1:cantidadNumeros){

cat(paste(‘‘\nCorners of the trapezoidal fuzzy
number’’,i,‘‘are :\n’’))

num=scan(nmax =4)
# We check that corners are correctly ordered as
# real numbers
if(num[1]<=num[2]&&num[2]<=num[3]&&num[3]<=num[4]){

a=c(a,num[1])
b=c(b,num[2])
c=c(c,num[3])
d=c(d,num[4])
# caption of labels
cat(paste(‘‘Insert the label of this fuzzy

number\n’’))
etiqueta= c(etiqueta,scan(,what = character(),1))

}else{
cat(paste(‘‘Failure:

corners are incorrectly ordered. END.’’))
return(0)

}
}

}
else{

cat(paste(‘‘Failure: incorrect quantity of fuzzy
numbers. END.’’))

return(0)
}

# computation of ranking
valorRanking<-Ranking2FN(c(a[1],b[1],c[1],d[1]),

c(a[2],b[2],c[2],d[2]), etiqueta[1],etiqueta[2])

# definition of the trapezoidal fuzzy number for plotting
A<-TrapezoidalFuzzyNumber(a[1],b[1],c[1],d[1])
B<-TrapezoidalFuzzyNumber(a[2],b[2],c[2],d[2])

A1<-as.PiecewiseLinearFuzzyNumber(A, knot.n=0)
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B1<-as.PiecewiseLinearFuzzyNumber(B, knot.n=0)

# computation of the appropriate interval for plotting
FNa<-c(a[1],b[1],c[1],d[1])
FNb<-c(a[2],b[2],c[2],d[2])
m1<-min(FNa,FNb)
m2<-max(FNa,FNb)
l<-m2-m1
l1<-m1-0.15*l
l2<-m2+0.15*l

# Plotting fuzzy numbers and ranking
plot(A1, xlim=c(l1,l2), main=‘‘Ranking trapezoidal

fuzzy numbers’’,lwd=2, col=‘‘red’’)
plot(B1, add=TRUE, lwd=2,col=‘‘blue’’)
legend(‘‘topright’’, legend=c(etiqueta[1], etiqueta[2]),

col=c(‘‘red’’,‘‘blue’’), lty=c(1,1), title = valorRanking,
bg=’lightblue’)

}
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