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There is controversy regarding the use of the similarity functions proposed in 
the literature to compare generalized trapezoidal fuzzy numbers since conflict­
ing similarity values are sometimes output for the same pair of fuzzy numbers. 
In this paper we propose a similarity function aimed at establishing a con­
sensus. It accounts for the different approaches of all the similarity functions. 
It also has better properties and can easily incorporate new parameters for 
future improvements. The analysis is carried out on the basis of a large and 
representative set of pairs of trapezoidal fuzzy numbers. 

1. In t roduc t ion 

A great variety of similarity functions have been proposed in the litera­
ture to compare fuzzy numbers. The usual parameters are distance, shape 
and size, which are then aggregated in different ways leading to different 
functions. 

However, there is controversy regarding the use of similarity functions 
since different similarity functions sometimes output conflicting similarity 
values for the same pair of trapezoidal fuzzy numbers. Moreover, their per­
formance is often analyzed based on biased sets of fuzzy numbers, clearly 
highlighting the benefits but disguising the associated drawbacks. 

In this paper we propose a similarity function for generalized trapezoidal 
fuzzy numbers aimed at establishing a consensus between the similarity 
functions reported in the literature, whose performance is analyzed on the 
basis of a large and representative set of pairs of trapezoidal fuzzy numbers. 

In Section 2 we review the most representative similarity functions in 
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the literature and the set of pairs of fuzzy numbers commonly used for 
analyzing their performance. In Section 3 we develop a method for deriving 
a representative set of pairs of fuzzy numbers. We also propose a stable 
consensus similarity function. Finally we conclude with the advantages of 
the proposed consensus function in Section 4. 

2. Similarity Functions for Generalized Trapezoidal Fuzzy 
Numbers 

The similarity measures of fuzzy numbers are usually based on a comparison 
of various associated parameters, such as distance, shape or size. One of 
the first measures of similarity was proposed by Chen1 in 1996. It used the 
geometric distance between the considered fuzzy numbers. However, this 
function is not applicable for generalized fuzzy numbers. 

Chen2 himself extended his similarity measure in 2003 to generalized 
trapezoidal fuzzy numbers, incorporating the distance between the centers 
of gravity of the compared numbers to the similarity function. Another 
measure proposed by Chen3 in 2009 accounted for the perimeter and height 
of the considered generalized trapezoidal fuzzy numbers. 

Gomathi and Sivaraman4 proposed using the geometric mean rather 
than the average distance between vertices. Wen et al.5 added the area of 
the considered fuzzy numbers to the similarity function. 

In 2009 Sridevi and Nadarajan6 replaced Chen’s3 geometrical distance 

by the fuzzy distance 1 - £ H^, with nd(Xi) = 1 - (x4/d) if 0 < xH < d (0 
i=\ 

otherwise), d G (0,1] and Xi = | a* - h |. If d = 1 we have Chen’s similarity 
function. In the same year, Wei and Chen7 proposed a measure adding 
the perimeter and height of generalized trapezoidal fuzzy numbers to the 
geometric distance. 

Xu et al.8 proposed the geometrical distance and the distance between 
the centers of gravity of the compared numbers in 2010. However, this 
function had a serious drawback since S(a, b) = 1 - \a - b\; Va, b G R. 

The most recent proposals are by Zhu and Xu9 in 2012 and Vicente 
et al.10 in 2013. However, Zhu and Xu’s function is not well defined since 
the similarity between a = (0.01, 0.01, 0.01,0.01; 0.5) and b = (1 ,1 ,1 ,1; 1) 
is S(a, b) = V-0 .0021, whereas the function by Vicente et al. is too de­
manding because it imposes a penalty of (1 - a - /?) when the compared 
numbers do not share area. 

Arbitrary sets of fuzzy numbers are usually used to compare the pro­
posed similarity functions, in such a way that the benefits of the proposed 



function are clearly shown but the associated drawbacks remain hidden. 
Chen originally proposed a set with only 15 pairs of fuzzy numbers, which 
was enlarged afterwards by other authors, such as Sridevi and Nadarajan6 

(26 pairs), Xu et al.8 (30 pairs) or Vicente-Cestero et al.11 (35 pairs), but 
other authors, such as Gomathi and Sivaraman4, continue to use small sets 
of pairs (5 pairs). Besides, some sets are clearly deficient. For example, Xu 
et al. and Gomathi and Sivaraman use fuzzy numbers with zero height, 
which does not make sense. 

Figure 1 shows the performances of the above similarity functions on the 
basis of the set of pairs proposed by Chen and Chen2 (15 pairs). The sim­
ilarity output by the different functions varies enormously for some pairs, 
especially, 3, 4, 8, 10, 11 and 15. 

Fig. 1. Similarity values on the set of Chen and Chen 

Different criteria could be used to search for a consensus among the 
considered similarity functions. We have considered the Pearson correlation 
coefficient, i.e., the consensus function should maximize the Pearson corre­
lation coefficient regarding the other similarity functions. The functions by 
Gomathi and Sivaraman and by Zhu and Xu will not be considered hence­
forth since they generate atypical data associated with incorrectly processed 
pairs. An analytical expression of a similarity function that satisfies these 
criteria is derived in Section 3. 



3 . Deriving a Consensus Similari ty Funct ion 

The most used parameters in similarity functions are the arithmetic and 
geometric distances, distances between the centers of gravity, differences be­
tween the heights, perimeters and areas. We consider the following families 
of similarity functions: 

Si (a, b) = 1 - (widi + w2d2 + w3d3), 

S2(a,b) = 1 - (w1d1+w2d2+w3d3) (j4Y1 (fyY* (^Y3 (^Y4 f11 3 ) 

53(a, 6) = 1 - (widi + w2d2 + w3d3) n 
i=i 

v1id4+v2id6+v3id8+v4id10+v5id12 
v1id5+v2id7+v3id9+v4id11+v5id13 

54(a, 6) = [i - (Widi+W2d2+W3d3)] n 1 i 4 +zXZ3 i:Z4 i 1Z^3 • 
i=l 

with a = (a1,a2,a3,ai;w1) and 6 = (&i, 52, 53, 64; w2), ^ = ( E k ~ &il)/4, 
the Euclidean distance; d2 = d (X5, 1%), ( ^ , 1 ~ ) ) , the distance be-
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tween their centers of gravity; d3 = (J\\ai-bi l)1/4> the geometric 

mean; d4 = min{P^P^ (d5 = maxiP^P^), the minimum (maxi­

mum) of their perimeters; d6 = min{A(a), A(b)} {d7 = max{A(a), A(b)}), 

the minimum (maximum) of their areas; d$ = min{wz,w~}, d9 = 

max{wu,wi\, dw = min{Qs,Qi}, dn = max{Qs,Qi}, with Q„ = 

yj{d2 - ai)2 + (a3 - a2f + (a4 - a3f + w|; and d12 = ^ n-nl{x)dx 

[d13 = ^ ii~]Sb{x)dx), the intersection area (union), wuw2,w3,Vj,Vji € 
[0,1], with w1+w2+w3 = l,J2 vj = 1 and J2 vji = 1-

Note that the second family generalizes to the first family when we 
consider Vi = 0 Vi. The third family generalizes to the second family when 
we consider n = 5 and {Vi = 1, Vji = 0 Vi ^ j) Vi = 1,..., 5. 

We have found using Monte Carlo simulation that the functions that 
best fit the consensus are from the fourth family (S4(a,6)) with n = 1. 
Therefore, we focus on this family with n = 1 to identify the consensus 
function. 

Then, the problem is to compute the values Wi,Vj G [0,1] that max­
imizes the minimum Pearson correlation coefficient Ik between the func­
tion S4 and each considered similarity function on the basis of 48 pairs of 
fuzzy numbers taken from Xu et al., Gomathi and Sivaraman, Sridevi and 
Nadarajan and Wei and Chen: 

max z = min{Ri} 
i 

s.t. w-i + w2 + w3 = 1, 0 < W j < l , V « 
V1 + V2 + V3 + V4 + V5 = 1, 0 < Vj < 1, Vj 



However, the above optimization problem is complex and it is necessary 
to use metaheuristics to solve it. The optimum solution using simulated an­
nealing12 is Wf =0.234, W |=0.744, ^ = 0 . 0 2 2 , ^=0.109, «2*=0.123, ^=0 .15 , 
v*A =0.604 and vt, =0.013. Note that the most relevant parameters in the op­
timal solution are w|, associated with the distance between the centers of 
gravity; and v\, associated with elements Qa and Qz proposed by Gomathi 
and Sivaraman to reduce computational time for the perimeter assessment. 

The correlation coefficients of the consensus function regarding the sim­
ilarity functions by Wei and Chen, Chen, Xu et al, Wen et al, Vicente et 
al and Sridevi and Nadarajan are 0.96, 0.92, 0.90, 0.91, 0.96 and 0.95, re­
spectively. Figure 2 shows how the fit of the consensus function compared 
with the considered similarity functions. 

Fig. 2 . Comparing the values output by the consensus function 

4 . Conclusion 

We have proposed a consensus function on the basis of different similar­
ity functions reported in the literature for generalized trapezoidal fuzzy 
numbers. The proposed function has better properties than some similarity 
functions reported in the literature, such as those proposed by Xu et al, 
which does not properly measure the similarity between two real numbers, 
or by Zhu and Xu, which is not fully defined. 

The proposed function aggregates the approaches of different similarity 
functions whose outputs vary enormously, making a consensus necessary. 
Besides, it can easily incorporate new perspectives (parameters) for future 



improvements. The appropriateness of parameters can be evaluated, and 
parameters with low weights can be discarded, leading to a refined function 
with fewer parameters. 
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