27,391 research outputs found

    Managing Well Integrity using Reliability Based Models

    Get PDF
    Imperial Users onl

    Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions

    Full text link
    In this paper, we develop a numerical approach based on Chaos expansions to analyze the sensitivity and the propagation of epistemic uncertainty through a queueing systems with breakdowns. Here, the quantity of interest is the stationary distribution of the model, which is a function of uncertain parameters. Polynomial chaos provide an efficient alternative to more traditional Monte Carlo simulations for modelling the propagation of uncertainty arising from those parameters. Furthermore, Polynomial chaos expansion affords a natural framework for computing Sobol' indices. Such indices give reliable information on the relative importance of each uncertain entry parameters. Numerical results show the benefit of using Polynomial Chaos over standard Monte-Carlo simulations, when considering statistical moments and Sobol' indices as output quantities

    Operational strategies for offshore wind turbines to mitigate failure rate uncertainty on operational costs and revenue

    Get PDF
    Several operational strategies for offshore wind farms have been established and explored in order to improve understanding of operational costs with a focus on heavy lift vessel strategies. Additionally, an investigation into the uncertainty surrounding failure behaviour has been performed identifying the robustness of different strategies. Four operational strategies were considered: fix on fail, batch repair, annual charter and purchase. A range of failure rates have been explored identifying the key cost drivers and under which circumstances an operator would choose to adopt them. When failures are low, the fix on fail and batch strategies perform best and allow flexibility of operating strategy. When failures are high, purchase becomes optimal and is least sensitive to increasing failure rate. Late life failure distributions based on mechanical and electrical components behaviour have been explored. Increased operating costs because of wear-out failures have been quantified. An increase in minor failures principally increase lost revenue costs and can be mitigated by deploying increased maintenance resources. An increase in larger failures primarily increases vessel and repair costs. Adopting a purchase strategy can negate the vessel cost increase; however, significant cost increases are still observed. Maintenance actions requiring the use of heavy lift vessels, currently drive train components and blades are identified as critical for proactive maintenance to minimise overall maintenance costs

    After-sales services optimisation through dynamic opportunistic maintenance: a wind energy case study

    Get PDF
    After-sales maintenance services can be a very profitable source of incomes for original equipment manufacturers (OEM) due to the increasing interest of assets’ users on performance-based contracts. However, when it concerns the product value-adding process, OEM have traditionally been more focused on improving their production processes, rather than on complementing their products by offering after-sales services; consequently leading to difficulties in offering them efficiently. Furthermore, both due to the high uncertainty of the assets’ behaviour and the inherent challenges of managing the maintenance process (e.g. maintenance strategy to be followed or resources to be deployed), it is complex to make business out of the provision of after-sales services. With the aim of helping the business and maintenance decision makers at this point, this paper proposes a framework for optimising the incomes of after-sales maintenance services through: 1) implementing advanced multi-objective opportunistic maintenance strategies that sistematically consider the assets’ operational context in order to perform preventive maintenance during most favourable conditions, 2) considering the specific OEMs’ and users’ needs, and 3) assessing both internal and external uncertainties that might condition the after-sales services’ success. The developed case study for the wind energy sector demonstrates the suitability of the presented framework for optimising the after-sales services.EU Framework Programme Horizon 2020, MSCA-RISE-2014: Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) (grant agreement number 645733- Sustain-Owner-H2020-MSCA-RISE-2014) and the EmaitekPlus 2016-2017 Program of the Basque Government

    Towards automatic Markov reliability modeling of computer architectures

    Get PDF
    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges
    • …
    corecore