
///iL_7:¢/-YYy 7

NASA Technical Memorandum 89009
NASA-TM-89009 19860021844

Towards Automatic Markov Reliability Modeling of

Computer Architectures

Carlos A. Liceaga and Daniel P. Siewiorek

FoR REFEp,_;r,_CE
August 1986 "--"-----'-

NoTTO t_ r/'t._g_i FIlOt.! Tlh'3 llO0!f

,. o •

, ._.";.." f_; fq>_i1

NationalAeronauticsand LI_R,_Ry,NASA
SpaceAdministration uL

LangleyResearchCenter
Hampton,Virginia:>3665

https://ntrs.nasa.gov/search.jsp?R=19860021844 2020-03-20T13:36:27+00:00Z

Summary

The analysis and evaluation of reliability measures using time-

varying Markov models has gained in importance for computer

architectures that use standby redundancy or can be repaired. The task

of generating these models for arbitrary Processor-Memory-Switch (PMS)

interconnection structures, however, is tedious and prone to human

error due to the large number of states and transitions involved in any

reasonable structure. Existing programs that evaluate these models

make the followingassumptions:

a) The case analysis of success states of the system has been carried
out. Such analysismust be done manually.

b) The input to the program is either an intermediaterepresentation
(e.g.Fault Tree), or the state transitionmatrix (STM).

This is the first attempt to (a) identify and analyze the problems

involved in the automatic generation of reliability and availability

Markov models for arbitrary interconnection structures at the PMS

level, and (b) generate and implement solutions to these problems.

This work will automate the task o_ case analysis and generation of the

STM in the computation of the reliability and availability of PMS

structures. The advantages of such an approach are (a) utility to a

larger class of users, not necessarily expert in reliability analysis,

and (b) a lower probability of human error in the computation.

A program named ARM (Automated Reliability Modeling) will be

constructed as a research vehicle. ARM will accept as inputs:

a) The interconnection graph of the PMS structure.

b) The behavior of the PMS structure components in terms of their
internal communication structure, and their distributions and

corresponding parameters of performance and reliability.

c) The groups of redundant components (e.g. processor triads).

d) A succinct statement of the operational requirements on the PMS

structure in the form of a modified Booleanexpr_ssion.

i

The operational requirements in the case of a redundant multiproeessor

may be, for example, "two processor triads and two memory triads". The

communication structures in the PMS system (e.g. buses) will be

considered in addition to the explicitly stated requirements to

determine how the interconnection structure affects the system

reliability and availability. The output of the ARM program will be

tlle reliability or availability STM. The STM will be formulated for

direct use by evaluation programs.

ii

Acknowl edgcmento

The authors are very grateful for the assistance of Larry D. Lee of

NASA-LaRC in defining the various types of time-varying Markov models,

calculating the number of repetitions simulations required, and

developing a useful state space reduction technique. His numerous and

detailed comments have greatly improved the clarity of this document.

iii

Table of Contents

I. Introduction...I

1.1 Background ...4
1.2 PreviousWork ..11
1.3 Motivation •................. 15
1.4 Organization...15

2. System Description ...16

2.1 ComponentTypes,_....................................17
2.2 RedundantGroups ...20
2.3 System Watchdog Timers21
2.4 PMS Structure ..23
2.5 Intracomponent Port Connections •............... 24

2.6 Intra Component-Type Communication 25

2.7 Component Clustering .. 26

2.8 System Requirements .. 26

2.9 Example .. 27

3. Automated Reliability Modeling Considerations 30

3.1 Detection of Symmetry in the PMS Graph 31

3.2 Segmentation of the PMS Graph 32

3.3 Identification of Success and Failure States 33

3.4 Generation of Models for PMS Graph Segments 35

3.5 Merging of Models for PMS Graph Segments 37

3.6 Reduction of the State Space 37

4. Automated Reliability Modeling Examples 40

4.1 Cm* Computer Module .. 41

4.2 Effect of the System Requirements 43
4.3 Cm* Cluster ... 44eo• oeo

4.4 Effect of the PMS Interconnection • 46

5. Plans for Future Work .. 49

6. Conclusion ... 50

A. ARM Program Algorithms ... 51

A.I Symmetry Detection Algorithm 51

A.2 Segmentation Algorithm 52

A.3 Success and Failure State Identification Algorithm 54

A.4 Minimal Subtree Model Generation Algorithm 55

References .. 58

iv

List of Figures

Figure I-I: Reliability Graph of a Triad with I Spare .. 9
Figure I-2: Hierarchy of Time-Varying Markov Models 11
Figure 2-I: Use of Component Type Information in Reliability Models 19
Figure 2-2: Reliability Graph of a Triad with a Watchdog 22
Figure 2-3: Grammar of Requirements 26
Figure 2-4: PMS Diagram of Multiprocessor Described in Table 2-2 .. 29
Figure 3-I: Parse tree of requirement expression (3.1) 35
Figure 4-I: Cm* Architecture 41
Figure 4-2: Cm* Computer Module 41
Figure 4-3: Model of Figure 4-2 Cm* Requiring I P & I M 42
Figure 4-4: Model of Figure 4-2 Cm* Requiring I P & 2 M 44
Figure 4-5: Cm* Cluster ... 44
Figure 4-6: Model of Figure 4-5 Cm* Requiring 2 P & 5 M 45
Figure 4-7: Nonsymmetrical connection of Figure 4-5 Cm* Cluster ... 46
Figure 4-8: Model of Figure 4-7 Cm* Requiring 2 P & 5 M 48

v

List of'Tables

Table 2-I: Redundancy Technique Specification 21
Table 2-2: Multiprocessor System Description Example 28
Table 3-I: Automated Reliability Modeling Steps 30
Table 3-2: Minimal Subtree Modeling Steps 36
Table 3-3: Two Model Merging Steps 37
Table 4-I: Failure Rates of Cm* Modules 41

vi

1. Introduction

Computer systems are growing in complexity and sophistication as

multiprocessor and distributed computer systems are coming into

widespread use to achieve higher performance and reliability. This

growth is being assisted by the availability of successively more

complex building blocks. This trend has increased the importance of

fault-tolerance and system reliability as design parameters. Thus the

computation of system reliability measures has become one of the system

design tasks. Several efforts have been reported in the literature and

are in progress to make the task of computing system reliability

measures easier and more efficieht by providing designers with

reliability evaluation tools.

The analysis and evaluation of system reliability for complex

computer systems is very tedious and prone to error even for

experienced reliability analysts. With the exception of the ADVISER

program, discussed in Section 1.2, existing software tools usually

assume an understanding of reliability analysis techniques and

therefore are more in the nature of computational aids once the

preliminary system decomposition and analysis has been manually

achieved. Although ADVISER does not make this assumption it uses

combinatorial techniques and is therefore limited in the complexity of

systems and fault types it can analyze.

More advanced techniques are required to analyze computer

architectures that use standby redundancy, can be repaired, and are

susceptible to transient or intermittent faults. One possibility is a

time-varylng Markov model. The advantages offered by time-varying

Markov models are that they are in widespread use among reliability

analysts and several programs, discussed in Section 1.2, have been

developed to solve them. However time-varying Markov models can not

analyze concurrent events. For example, a fault that arrives while the

system is reconfiguring itself around a previous fault would be

represented by a transition to a state where two faults are present.

2

This new state would not take into account the time thesystem already

spent reconfiguring from the first fault.

Another possibility is the extended stochastic Petri net (ESPN)

described in [Dugan 84]. The advantages offered by the ESPN is that it

can analyze concurrent events and model systems at a lower level of

detail than time-varying Markov models. The ESPN can be concurrent

because its 'tokens' can be simultaneously enabled to move concurrently

at independent transition times. The low level modeling capability is

due to mechanisms such as queues and counters that can simulate the

algorithm of the process being modeled. To solve an ESPN analytically

it must be converted to a time-varying Markov model. This conversion

is not possible if tokens are moving concurrently at independent

transition times tha% are not exponentially distributed, because this

makes the process non-Markovian (i.e. the transition probabilities

depend on past states). In general an ESPN must be solved by

simulation.

Simulations can include any level of detail, and are thus flexible,

but many repetitions of the simulation are needed to ensure accuracy.

For example, say the probability of failure P is going to be estimated

with a relative error no more than 10% within a confidence interval of

95%. The relative error E is defined as:

JP-PI
• . E - (1.1)

P

A ^

where P is the estimate of P. P is defined as:

^

P = F / N (I.2)

where F is the number of failures observed and N is the sample size. "

Then an expression for N must be found such that:

Pr(E _ .I) = .95 (1.3)

Substituting (1.1) into (1.3) and multiplying the inequality by P

gives:

^

Pr(IP - PI _ .Ie) = .95 (1.4)

Substituting (1.2) into (1.4) and multiplying the inequality by N

gives:

Pr(Ie - NP I _ .INP) = .95 (1.5)

Substituting _ for NP in (1.5) gives:

er(IF- lJl _ .I_) = .95 (1.6)

The inequality in (1.6) can be expressed as:

Pr(.9_ _ F S 1.1_) = .95 (1.7)

If N is large and P is small F is approximately Poisson distributed

with mean _ = NP and (1.7) can be expressed as:

1.1_J l_le-_

- .95 (I.8)
i=.9_ i!

Therefore in life critical applications where a probability of failure

in the order 10-9 is required, approximately 3.8 x 1011 simulation

repetitions are necessary! In general those applications require an

analytic approach.

It is the intent of this paper to explore the issues in the automatic

generation of reliability and availability Markov models for arbitrary

interconnection structures at the Processor-Memory-Switch (PMS) level.

The result of this effort wi!l be implemented and experimentally

validated in the ARM (_utomated _eliability Modeling) program which

will accept the PMS interconnection structure and a simple set of

operational requirements on the structure. The program will attempt to

efficiently analyze, using the divide-and-conquer methodology, the

various system states based on the interconnection structure and the

operational requirements.

The output of the ARM program will be a file containing the

reliability or availability state transition matrix. The output format

will vary depending on the program to evaluate the state transition

matrix. The evaluation programs whose format the user will be able to

specify are: SURE, HARP, and ARIES (described in Section 1.2).

4

The following sections will present a brief background on reliability

calculation at the PMS level using time-varying Markov models.

Previous work in the generation and evaluation of reliability models is

surveyed. The goals for ARM wil! be stated and compared with those of

previous efforts. The final section will present the Organization of

this paper.

1.1 Background

Present day computer systems can be viewed at varying levels of

detail, and therefore so can the process of designing and analyzing

them. Four levels were defined by Siewiorek, Bell, and Newell

[Siewiorek 82a]. These range from the circuit level, through the logic

and programming levels, to the PMS level. The PMS level view of

digital systems is one where the primitives are processors, memories,

switches, transducers, etc. as opposed to the logic level where the

primitives may be gates, registers, multiplexers, etc.

Hardware components are susceptible to permanent, transient, and

intermittent faults as discussed in [Siewiorek 82b]. A fault is an

erroneous state of hardware or software resulting from a physical

change in the hardware or interference from the environment. Permanent

or hard faults are continuous and stable, and result from an

irreversible physical change. Transient faults result from temporary

environmental conditions. Intermittent faults are occasionally present

due to unstable hardware, or varying hardware or software states (for

example, as a function of load or activity).

Fault-tolerant computer systems can be affected by a limited set of
°

faults without interruptions in their operation. Some computer systems

achieve fault-tolerance by using redundant groups of components to

perform the same operations. The system must determine which is the

correct output using diagnostics or majority voting. Siewiorek and

Swarz [Siewiorek 82b] discuss the various redundancy techniques, the

more relevant ones are defined below.

STATIC REDUNDANCY - In static redundancy faults are masked through a

majority vote involving a fixed group of redundant components. Thus,

when the masking redundancy is exhausted by component faults, any

further faults will cause errors at the output.

DYNAMIC REDUNDANCY - In dynamic redundancy faults are not masked but

the faulty components are detected° isolated, and reconfigured out of

the system. The faulty components may be replaced by spares if

available.

HYBRID REDUNDANCY - In hybrid redundancy faults are masked through a

majority vote involving a group of redundant components that is

reconfigured when spares are available. Thus, when the redundancy is

exhausted by component faults, any further faults 'will cause errors at

the output.

ADAPTIVE VOTING - In adaptive voting faults are masked through a

majority vote involving a variable group of redundant components

without spares. Faulty components are reconfigured out of the system

by excluding them from the voting process and the voter threshold

adjusted to reflect a smaller number of components. Thus, when the

redundancy is exhausted by component faults, any further faults that

occur will cause errors at the output.

ADAPTIVE HYBRID - In adaptive hybrid faults are masked through a

majority vote involving a variable group of redundant components that

is reconfigured when spares are available. If spares are not available

faulty components are reconfigured out of the system by excluding them

from the voting process and adjusting the voter threshold. Thus, when

_ the masking redundancy is exhausted by component faults, any further

faults that occur before a faulty component is replaced by a spare or

° reconfigured out of the voting process will cause errors at the output.

For example, a triad is a group of 3 components that use hybrid

redundancy to tolerate at least one fault. If a triad recovers from a

6

fault by replacing the faulty component with a spare it can then

tolerate a second fault. Recovery is the process of detecting,

isolating, and reconfiguring the faulty component out of the system.

The fault coverage of a component is the probability that the system

can survive a fault in this component and successfully recover. If the

system can always recover it has a "perfect" coverage of I.

Reliability measures are defined in terms of probabilities because

the failure processes in hardware components are non-deterministic.

Siewiorek and Swarz [Siewiorek 82b] discuss these various measures, the

more relevant ones are defined below.

RELIABILITY - The reliability, R(t), of a system as a function of time

t is the conditional probability that the system has survived the

interval [0, t] given that it was operational at time zero. It is a

non'increasing function whose initial value is one.

MTTF - The MTTF (Mean Time To Failure) is the expected time of the

first system failure assuming a new (perfect) system at time zero.

AVAILABILITY - The availability, A(t), of a system as a function of

time t ks the probability that the system is operational at that

instant of time t.

If the limit of A(t) exists as t goes to infinity, it expresses the

expected fraction of time that the system is available to perform

useful computations. Availability is typically used as a figure of

merit in systems in which service can be delayed or denied for short

periods to perform preventive maintenance or repair without serious

consequences. The availability is important in the computation of

system life-cycle costs.

Reliability is used to describe systems in which repair is typically

infeasible such as aerospace applications. The MTTF can be derived

from R(t) as follows:

7

MTTF = f R(t) dt
o

The most commonly used reliability function for a single component is

based on a Poisson process with an exponential distribution. This is

called the exponential reliability function, and has the form:

-At
R(t) = e

where A is the hazard or failure rate. The failure rate is a constant

which reflects the reliability of the component and for highly reliable

components is usually expressed in failures per million hours. The

exponential reliability function is used when the failure rate is time-

independent, such as when components do not age. It is often observed

that, after a burn-in period, permanent faults in electronic components

follow a relatively constant failure rate. The MTTF for the

exponential reliability function has the form:

I
! MTTF = -

Many other reliability functions have been formulated. The second

most common reliability function is based on the Weibull distribution.

This is called the Weibull reliability function, and has the form:

R(t) = e

•where i is the scale parameter and e is the shape parameter(other

reparameterizedforms are also common). It is equivalentto the

exponentialfunctionwhen e is one. The Weibull reliabilityfunction

•is used when the failurerate is time-dependent. Permanentfaults for

componentsthat age can be described using an increasingfailurerate

(alphagreater than one) and in this ease the system is not as good as

new when repair takes place. Data presentedin [McConnel81] indicates

that transientfaults follow a decreasingfailurerate (alpha less than

one).

8

The failure processes of different components will be assumed to be

independent of each other. This assumption is not strictly true, such

as when electrical, mechanical, or' thermal conditions in one component

affect other components in its proximity. However it is close enough

in practice to be used to simplify the analysis.

The state of a system represents all that must be known to describe

the system at any instant. 'As the system changes, such as when

components fail or are repaired, so does its state. These changes of

state are called state transitions. If all possible states are assumed

to be known a discrete-state system model is used; if this assumption

is not made a continuous-state system model is used. If the state

transition times are assumed to be restricted to some multiple of a

give n time interval a discrete-time system model is used. If it is

assumed that state transitions cart occur at any time a continuous-time

system model is used. Most systems can be classified aceordlng to

their state space and time parameter as

a) discrete-state and discrete-time

b) discrete-state and continuous-time

c) continuous'state and discrete-time

d) continuous-state and continuous-time

For a discrete-state system a state transition diagram (STD) may be

drawn. The transition diagram is a directed graph. The nodes

correspond to system states and the directed arcs indicate allowable

state transitions. Each arc has a label that identifies the

distribution of the conditional probability that the system will go

from the originating node to the destination node of that directed arc

given the previous history of the system and that the system was

initially at the originating node. The _ label used depends on the

distribution. For example, the label could be the hazard rate for the _

exponential distribution, the scale and shape parameters for the

Weibull distribution, or the filename of a histogram for more general

distributions.

If transitions are allowed from failed states to operational states

then the STD is an Availability graph and A(t) may be obtained from it.

R(t) may be obtained by specifically disallowing failed to working

state transitions from the STD thus making it a Reliability graph.

A Reliability graph of a triad is given in Figure I-I. In this model

it is assumed that the system h_s a perfect coverage of I. The

horizontal transitions represent fault arrivals. These follow an

exponential distribution and consequently I represents the constant

hazard rate. The coefficients of i represent the number of working

processors are being actively used in the configuration. The vertical

transitions represent recovery from a fault. These follow a general

distribution and consequently _ represents the filename of the

histogram defining the distribution. There is a race between the

occurrence of a second fault ana the removal of the first. If the

second fault wins the race, then system failure occurs. If the removal

of the first fault wins the race, then the system reconfigures into a

simplex (i.e. only uses one of the two working components). Unless

otherwise noted in the state descriptions, all working processors are

being actively used in the configuration.

Key: State Description

I 3 working

2 2 working

3 system faile(_

4 2 working, uses I

5 system failed

Figure I-I: Reliability Graph of a Triad with I Spare

10

The information conveyed by the STD is often summarized in a square

matrix called the state transition matrix (STM). The STM element in

row i and column j is the labe! in the arc from state i to state j.

The terminology used in this paper to denote the various types of

time-varying Markov models, and the assumptions they are based on are

defined below. The hierarchy of time-varying Markov models is

illustrated in Figure I-2.

TIME-VARYING MARKOV PROCESS - A stochastic process whose future state

depends only upon the present state, and not upon the history that led

to its present state.

HOMOGENEOUS MARKOV MODEL - A model that uses a pure Markov process

whose state transition probabilities are time-independent. For the

continuous-time homogeneous Markov process this implies that the state

transition times follow an exponential distribution. This model is

discussed in [Chung 67] and [Romanovsky 70].

SEMI-MARKOV MODEL - A model that uses a generalization of the pure

Markov process whose state transition probabilities depend upon the

local time spent in the present state. For the continuous-tlme semi'

Markov process this implies that the state transition times do not

follow an exponential distribuCion, they might follow a Weibull

distribution or any other distribution. This model is discussed and

applied to computer systems in [White 84].

NON-HOMOGENEOUS MARKOV MODEL - A model that uses a generalization of

the pure Markov process whose state transition probabilities depend

upon the global time. For the continuous-time non-homogeneous Markov

process this implies that the state transition times do not follow an

exponential distribution. Often _hey are assumed to follow a Weibull

distribution, but they can follow any other distribution. This model

is discussed and applied to computer systems in [Trivedi 81].

11

Time-Varying Markov

/ I \--/ \

Homogeneous Semi-Markov Non-Homogeneous
(tlme-lndependent) (local time-dependent) (global time-dependent)

Figure I-2: Hierarchy of Time-Varying Markov Models

The probability of being in a particular state for a discretelstate

and continuous-time Markov model can be expressed with a differential

equation. The set of simultaneous differential equations that describe

these models are called the _continuous-time Chapman-Kolmogorov

equations. For homogeneous Markov models these equations can be solved

using matrix or Laplace transformations.

If the state transition probabilities are time-dependent it may be

quite difficult to obtain explicit solutions to the continuous-time

Chapman-Kolmogorov equations. To obtain the exact probability of

reaching a state through a particular path of transitions requires the

solution of a multiple integral, where each integral represents the

probability of making one of the transitions in the path. Often the

integrals are approximated using numerical integration techniques

[Stiffler 79]. An alternative method is to approximate the continuous-

time process with dlscrete-time equivalents [Siewiorek 82b]. The major

• difficulty with the second method is that many transition rates that

are effectively zero in the continuous'time process assume small but

nonzero probabilities in a discrete-time process.

1.2 Previous Work

There are several p_ograms that use time-varying Markov models to

evaluate the reliability and/or availability of systems that use

. standby redundancy or can be repaired, and are susceptible to hard,

transient, and intermittent faults, such as CARE III, ARIES, SURE,

SURF, and HARP. All these programs can evaluate both the reliability

and availability of a system, except for CARE III which can only

12

evaluate the reliability. Except for CARE III, they all have as one of

the system specification methods the state transition matrix.

CARE III (Computer-_ided Reliability Estimation), described in

[Bavuso 84], can evaluate the reliability of systems that use

reconfiguration to tolerate component faults but do not repair the

faulty components. It uses a behavioral decomposition/aggregatlon

solution technique described in [Trivedi 81]. This technique assumes

that the fault-occurrence behavior is composed of relatively infrequent

events while the fault-handling behavior is composed of relatively

frequent events. The fault-handling behavior is separately analyzed

using a fixed semi-Markov model that can use exponentlal and uniform

distributions. The fault occurrence behavior is analyzed using an

aggregate non-homogeneous Markov model that can use exponential and

Weibull distributions, The fault handling behavior is reflected by

parameters in the aggregate non-homogeneous Markov model. Numerical

integration techniques are used to solve these time-varying Markov

models. The fault-occurrence behavior is specified using extended

fault trees, which are automatically converted to the non-homogeneous

Markov model. The fault-handling behavior is specified by providing

the transition parameters of the fixed semi-Markov model. Therefore

state transition matrices can not be accepted as input directly. CARE

III was developed at Raytheon, it is written in FORTRAN 77, and runs on

a Cyber or a VAX.

ARIES (Automated Reliability _nteractive Estimation _ystem),

described in [Makam 82], is restricted to homogeneous Markov models.

The system can be specified using a state transition matrix, or as a

series of independent subsystems each containing identical modules that

are either active or serve as spares. It uses a matrix transformation

solution technique that assumes distinct eigenvalues for the state

transition matrix. It was developed at UCLA and runs on a VAX.

Butler [Butler 84] describes a program named SURE (Semi-Markov

_nreliability Range Evaluator) which evaluates the unreliability upper

13

and lower bounds of semi-Markov models. It uses new mathematical

theorems proven in [White 84] and [Lee 85]. These theorems provide a

means of bounding the probability of traversing a specific path in the

model within a specified time. By applying the theorems to every path

of the model, the probability of the system reaching any death state

can be determined within usually very close bounds. These theorems

assume that slow (with respect to the mission time) exponential

transitions describe the occurrence of faults, and fast general

transitions describe the.recovery process. Faults can be modeled as

permanent, transient, or intermittent. Its only input method is the

state transition matrix. SURE was developed at NASA's Langley Research

Center, it is written in VAX-11 Pascal, and runs under VAX/VMS.

SURF, described in [Landrault 78], can solve semi-Markov models that

use exponential distributions or non-exponential distributions that are

related to the exponential (e.g. Gamma, Erlang, etc.). The method of

stages [Cox 68] is used to produce a homogeneous Markov model. Matrix

transformations are used to obtain time-independent values, such as

MTTF and the limiting availability. The Laplace transform is used to

obtain time-dependent values, such as availability and reliability.

Written in PL/I, it runs on a IBM System/370 at the IBM research

facility in Yorktown Heights, New York. SURF was developed in

Toulouse, France.

For HARP (Hybrid Automated Reliability _redictor), described in

[Trlvedi 85], the state transition probabilities can have exponential,

uniform, Weibull, or general (i.e. histogram list must be provided)

distributions. _ If the state transition matrix is given by the user

HARP can only evaluate the availability of systems with constant repair

rates. HARP has several additional methods of specifying the fault-

occurrence behavior (e.g. fault trees), all of which are automatically

converted to a non'homogeneous Markov model. The fault-handling

behavior can also be specified by providing the transition parameters

of one of several models. The fault-handling models available are: an

extended stochastic Petri net, the CARE III model, the ARIES model, and

14

the SURE model. It uses the same behavioral decompositlon/aggregation

solution technique as CARE III, but the various models are solved in a

hybrid fashion. Time-varying Markov models are solved analytically

using numerical integration techniques, and extended stochastic Petri

nets are solved by simulation. It is written in FORTRAN 77 and runs on

a VAX. It is still under development at Duke University and Clemson
L

University.

An abstract specification langu_ge for Markov reliability models was

described by Butler [Butler 85]. The language has statements to

specify (a) the state space by defining the state variables and their

range, (b) the start state by the initial values of the state

variables, (c) the death states by a Boolean expression of the state

variables, and (d) the state transitions by a set of if-then rules that

define the possible transitions, their rates, and their destination

states all in terms of the state variables. This language has been

implemented in the ASSIST program to generate Markov reliability models

in the SURE input language. The algorithm used in ASSIST to generate

the model will be applicable with modifications to ARM as described in

Section 3. ASSIST was developed at NASA's Langley Research Center, it

is written in VAX-11 Pascal, and runs under VAX/VMS.

Kini [Kini 81] describes a program named ADVISER (Advanced

_nteractive _ymbolic Evaluator of Reliability) which automatically

generates symbolic reliability functions for PMS structures. It_

assumptions are: (a) all faults are permanent and stochastically

independent, (b) the PMS system has a perfect coverage, and (c) failed

components are not repaired and returned to a non-faulty state. Its

primary input is the interconnection graph of the PMS structure. Other

program inputs describe the components of the PMS structure by their

types, reliability functions, internal port connections, and ability to

communicate with components of the same type. The program also takes

as input the requirements for the system, and its subsystems or

clusters, in the form of modified Boolean expressions. The methods

used in ADVISER for detecting PMS graph symmetries and tree structures

15

will also be applicable with modifications to ARM as described in

Section 3. ADVISER was developed at CMU, it is written in BLISS, and

runs on a PDP-10.
J

1.3 Motivation

The goal of this research and development effort is to provide the

computer architect a powerful and easy to use software tool that will

assume the burden of an advanced reliability analysis that considers

intermittent, transient, and permanent faults for computer systems of

high complexity and sophistication. The PMS level of computer system

description was selected because (a) it is the highest level view of

digital systems and therefore the easiest to specify, and (b) it is

well known to computer architects. The time-varying Markov model

technique of reliability and availability analysis was selected because

(a) it is powerful enough to accurately analyze most situations except

for concurrent events, and (b) it is in widespread use among

reliability analysts and several evaluation programs have been

developed.

Previous efforts have been limited in one of two ways. Most provided

a computational aid once the preliminary system decomposition and

reliability analysis had been manually achieved. Alternatively

computer systems of less complexity and sophistication were considered

without transient and intermittent faults.

1.4 Organization

The system description required to generate a reliability or

availability Markov model is described in Section 2. The problems

involved in the automatic generation of reliability and availability

Markov models are discussed in Section 3. Examples of automatically

generated Markov reliability models are presented in Section 4. A

summary of the research and a plan for its accomplishment are presented

in Section 5. The algorithms used by the ARM program are described in

Appendix A.

16

2. System Description

It is important to have a general system description method that will

accommodate new fault-tolerant techniques and system designs. This

section presents the system description method currently envisioned for E

the ARM program. The generality of this method needs to be

investigated to correct any deficiencies.

When calculating a reliability measure for an arbitrary system of

components, four items of information are necessary, namely:

a) The reliability behavior of the system components (Section 2.1).

b) The fault tolerant function of individual components or groups of
components in the system (Sections 2.2 and 2.3).

c) The communication paths that components in the system may use, and

which are the components that need to exchange information
(Sections 2.4 to 2.6).

d) The operational requirements placed on the system and its
subsystems (Sections 2.7 and 2.8).

Item (b) is the only one that is not necessary for some systems] The

ARM program will use eight input categories to obtain these items of

information for any arbitrary system. For some systems only three ARM

input categories are required to convey the information in (a), (c),

and (d). These minimum ARM input categories are: a reliability

description of the component types (Section 2.1), the interconneetion

structure (Section 2.4), and the system requirements (Section 2.8).

The following sections will discuss the purpose and necessity of the

input categories that provide the ARM program with these items of

information. The fina! section will give an example of how a

multiprocessor system can be specified using all the input categories

of the ARM program.

17

2.1 Component Types

The first input category is a list describing the types of components

in the PMS structure. Components of the same type are assumed to be

identical in function and reliability. The concept of component types

is natural and reduces the system specification burden. The other

alternative would be to specify the characteristics of each particular

component.

Each type declaration will specify the coverage probability, and the

rates of the various failure, recovery, and repair processes for

components of that type. Rates will be specified by a probability

distribution and the parameters of that distribution. A rate may

follow more than one distribution as a function of the system state.

The function of the system state that determines the distribution of a

rate will be in the form of a modified Boolean expression as defined in

Section 2.8. A distribution can be exponential, Weibull, or general

(i.e. a histogram must be provided).

The nine classes of information a type declaration can contain are

defined below. Each type declaration must contain at least the first

two classes. Figure 2-I illustrates how the first seven classes are

Used in reliability models.

TYPE - The first class is the name of the component type.

HARD - The second class is the Hard failure rate _. Hard faults are

assumed to be caused by permanently damaged components that

continuously produce errors when exercised.

TRANSIENTS - The third class consists of two rates. One is the

transient failure rate _. Another is the transient duration rate 6,

that is the rate at which the transient stops producing errors. It is

assumed transients are not caused by or produce any permanent damage to

the components.

18

INTERMITTENTS - The fourth class consists of three rates. One is the

intermittent failure rate _. Another is the intermittent benign rate

_, that is the rate at which an intermittent becomes benign or stops

producing errors. Last is the active rate e, that is the rate at which

an intermittent fault that had stopped producing errors becomes active

and starts producing errors once more. It is assumed intermlttents are

caused by permanently damaged components.

COVERAGE - The fifth class is the fault coverage C expressed as the

probability that the system can survive a fault in this type of

component and successfully recover'. This probability defaults to I.

Coverage has a great impact on t1_ereliability of a system. Therefore

it must be estimated very accurately using one or more of the

following: simulation, analytic methods, or fault injection

experiments.

REPAIR - The sixth class is the repair rate _, that is the rate at

which components of this type are repaired and returned to service.

Only if the repair rate is specified can the availability of the system

be modeled.

RECOVERY - The seventh class is the recovery rate p, that is the rate

at which the system can detect, isolate, and reconflgure from faults in

components of this type by using a shadow (a hot or powered up spare

that is imitating the active component).

SHADOW - The eighth class is the shadow activation rate o, that is the

rate at which the system can provide a shadow. A shadow is a spare

component that is performing all the functions of a redundant group of

active components with the exception that its output is not being used.

The purpose of shadows is to increase the recovery rate. An example of

this is the rate at which a memory module can be reloaded to shadow a

different memory triad. A shadow can be provided by changing the

redundant group that a hot or powered up spare is imitating, or by

powering up and activating a cold or unpowered spare.

19

©

\

Key: State D_scription

I no faults

2 hard fault

3 transient fault

4 active intermittent fault

5 benign intermittent fault

6 correct fault detection, isolation, and reconfiguration
7 incorrect fault detection, isolation, and reconfiguration

Figure 2-I: Use of Component Type Information in Reliability Models

DEGRADATION - The ninth class is the degradation rate 8. That is the

rate at which the system can gracefully degrade by elimlnatlng'one"

20

redundant group of components which are all of this type. A group is a

set of components performing the same operations such that the correct

output can be selected using diagnostics or majority vote. Degradation

is necessary when a group component fails, there are no spares to

replace it, and the number of these groups is above the minimum

requirements for the system. This is done because a group with a

failed component has a greater probability of failure (fewer group

components need to fail for the group not to meet its minimum

rcquirements), and if a group fails and there is no watchdog timer

(defined in Section 2.3) the system fails.

2.2 Redundant Groups

The second input category is a list that specifies any redundant

group of components in the system. A group is a set of components

performing the same operations such that the correct output can be

selected using diagnostics or majority vote. Each group declaration

will contain the maximum number of groups of this type, the group name,

the requirements, the type of components in the group, and if uslng

adaptive voting the name of the adapted group and the adaptive rate.

The adapted group is the group with the adjusted voter threshold. The

adaptive rate corresponds to the time involved in changing the voting

threshold.

Currently the redundancy technique used for a component is specified

by three things. One is whether it is part of a redundant group or

not. The other two are whether its recovery and adaptive rates are

zero or not. Table 2-I shows how each redundancy technique is

specified. This method of redundancy technique specification must be

extended so systems with new redundancy techniques can be described.

The semantics for this input category are the following. When a

component in a group using hybrid or adaptive hybrid redundancy fails,

there are no spares to replace it, and the number of these groups is

above the minimum requirements for the system, then the system

! 21

gracefully degrades by eliminating the group. If the number of these

groups is not above the minimum requirements for the system and the

group uses adaptive hybrid redundancy, then the system reconfigures the

faulty component out of the voting process.

If there are shadows, then they are assumed to be evenlydistributed

among the groups. If a group has to be able to transmit to another

group, then each component of the transmitting group has to be able to

transmit to all the components of the receiving group. The reason for

the latter is so each component of the receiving group can do an

independent majority vote on the information from the transmitting

group.

REDUNDANT GROUP RECOVERY RATE ADAPTIVE RATE

STATIC REDUNDANCY yes zero zero

DYNAMIC REDUNDANCY no nonzero zero

HYBRID REDUNDANCY yes nonzero zero

ADAPTIVE VOTING yes zero nonzero

ADAPTIVE HYBRID yes nonzero nonzero

i

Table 2-I: Redundancy Technique Specification

2,3 System Watchdog Timers

The third input category is a list that specifies which (if any)

component type or group of components acts as a watchdog timer for the

system, and the rate at which the watchdog can restart the system. A

watchdog is assumed to have a timer that must be reset before it runs

out or the watchdog will restart the system. A watchdog decreases the

probability that multiple faults in a redundant group of components

will cause system failure.

22

Key:. State Description State Description

I 3 working 7 system failed

2 2 working 8 watchdog failed

3 system crashed 9 2 working, no watchdog
4 I working 10 system failed

5 2 working, uses I 11 2 working, uses I, no watchdog
6 system crashed 12 system failed

Figure 2-2: Reliability Graph of a Triad with a Watchdog

23

The semantics for this input category are the following. If there is

no watchdog, and any group fails, then the system fails. If the

watchdog fails, and any group fails, then the system fails. In other

words, there has to be a watchdog for the system to survive a group

failure.

Adding a watchdog timer modifies the system model by preventing some
}

i states from being failure states and by creating new states. For
=!

!i example, if a watchdog with failure rate _ and system restart rate 0 is

ii! added to a triad the system model changes from the one in Figure I-I to

ili the one in Figure 2"2. In this new model it is assumed that the system

i has a perfect coverage of I and the failure of the watchdog wili not

i cause system failure. The watchdog prevents a system crash caused by

i the failure of two processing elements from causing system failure by

il restarting the system as a simplex without spares.

2'4 PMS Structure

The fourth input category is an interconnection list of the PMS

structure. It is assumed that critical components which are required

for the system to be operational must be able to communicate. The main

i purpose of the interconnection list is to analyze which componenti,i ' •

_ failures will prevent communication between critical components and

therefore cause system failure.

The interconnection list can also be used to detect which

substructures in the PMS graph are symmetrical in their component types

and neighboring components. Syc_etrical substructures are assumed to

be identical in function and reliability. Therefore the reliability

] models of symmetrical substructures are identical and only have to be

generated once. These models can then be duplicated and merged to

obtain the reliability model of the system.

Each component will have an interconnection declaration that

i specifies its type and neighboring components. Since the PMS graph is

24

non-directed it is possible to completely specify an arc by its

occurrence in one interconnection declaration. However, it will be

noted that each arc must occur on two interconnection declarations.

The purpose of this redundancy is twofold. Firstly, inconsistencies

can be detected thus making the system specification less likely to

contain errors. Secondly, a reader of a system specification can more

easily comprehend the structure if the connection is made quite

expllcit with two-way links.

Although not within the scope of the current work, the system

specification could be further eased by a graphics based user friendly

interface. The interconnection list would then be provided by an input

interface that would accept a graphic description of the PMS structure,

Since this is not part of the current research and ARM could easily

accept its input from an interface program, this interface could be

generated independently by support personnel using tools such as the

Future Net program for the IBM PC. Such a graphics interface already

exists for the PERQ personal work stations at CMU.

2.5 Intracomponent Port Connections
i

The fifth input category is a list specifying the internal port

connectivity of some components and/or component types. The purpose of

the interna! port connectivity is to analyze which component failures

will prevent communication between critical components and therefore i

cause system failure. This information is needed to prevent the

reliability modeling program from assuming incorrect communication

paths through intermediate components to other components. Not taking

this behavior into account would lead to an optimistic evaluation of

the system reliability.

This input category is needed because it is impossible for a

reliability modeling program to have this knowledge for all the

component types that will be designed. Even if the PMS graph where

modified to be a directed graph, the program would still need to know

if information passed from A to B can be passed from B to C.

25

If not specified, the default is for every port of a component to be

connected bidirectlonally to all other ports of the component. If the

internal port connectivity is specified, then for that component or

component type all port connections and their direction must be made

explioit. Each connection declaration contains the following

parameters:

VERTEX The specific components or component type whose port

i connections are being specified.

_: TRANSMITTER A transmitter port.of the VERTEX. It is specified by

_ the component or component type connected to it.

RECEIVER A port that receives from the previous transmitter
port. It is specified by the component or component
type connected to it.

r_

2.6 Intra Component-Type Communication
j,

it
!,! The majority of components of like type are passive and do not need

to communicate. Examples of passive components are memories, buses,

and Input/output transducers. Active or self-talklng components need

to exchange information amongst each other. Examples of active

_I components are processors, direct-memory-access device controllers, and

_J other "smart" controllers. If not specified the default is for

_ components to bepassive and not communicate with their own type.

The sixth input category is a list specifying the component types for

which communication between components_of like type is necessary. The

purpose of the intra component type communication list is to analyze

which component failures will prevent communication between critical

components that need to exchange information and therefore cause system

failure. This information is needed to prevent the reliability

modeling program from requiring communication paths between components

of the same type that never exchange information. Not taking this

behavior into account would lead to a pessimistic evaluation of the

system reliability.

26

2.7 Component Clustering

The seventh input category is a list specifying which (if any)

components form clusters, that is subsystems with their own separate

requirements. If the cluster requirements are not met all the cluster

components fail but the system ma___yycontinue to operate depending on the

system requirements. The purpose of clusters is to represent the

dependencies that sometimes exist between components. Each cluster

declaration will contain the name of the cluster, its components, and

its requirements in the form of a modified Boolean expression as

defined in Section 2.8.

2.8 System Requirements

The eighth input category is a succinct statement of the minimum set

of critical component types and/or component groups which are required

for the system to be operational. Together they constitute a minimum

critical resource set (MCRS). The set is minimum in the sense that the

system may only function if a MCRS of components are functional

(depending on the status of other components in the structure). In

other words, the success of an MCRS is a necessary, though not

sufficient, condition for system success.

The MCRS will be defined using a modified Boolean expression. The

simple grammar of requirements is shown in the traditional BackusCNaur

form in Figure 2-3.

<requirementS> ::= <conjunction> i <conjunction> OR <requirements>

<conjunction> ::= <atom>i I <atom> AND <conjunction> I (<requirements>)

<atom> ::= <integer> OF <type> I <integer> OF <group>

Figure 2-3: Grammar of Requirements

i_' 27

2.9 Example

i •

In this example a multiprocessor system is described using ARM's

i_ tabular format in Table 2-2. Failure rates are assumed to be specified

_ in failures per million hours, all other rates are assumed to be on a

per hour basis. All rates default to zero and are assumed to follow a

single exponential distribution unless otherwise indicated. A multiple

_,! distribution rate is specified with a 'M' followed by the name of the
I
W_: file containing the necessary discriminating function and distribution

specifications. For the exponential distribution only its constant

I_ rate is given. The Weibull •distribution is specified wfth a 'W'

f followed by the scale and shape parameters. A general distribution•is

IiiI; specified with a 'G' followed by the name of the file containing the

,: necessary histogram.

_. The first component type described in Table 2-2 is a processor P with

_ the following characteristics:

hard failure rate: i = 200 failures per million hours

transient failure rate: oL= 10000 failures per million hours
i

i!

transient benign rate: 6 = 3600 per hour

ii intermittent failure rate: i = 10000 failures per million hours
_j

intermittent benign rate: _ = 3600 per hour

intermittent active rate: e = 360 per hour

coverage probability: C = I

repair rate•: _ = Weibull distribution of scale=1 ond shape=1.1

recovery rate: p = multiple rates defined in the file RECP

shadow rate: o = general distribution defined in the file SHADP

degradation rate: 8 = general distribution defined in the file DEGP

The PMS diagram of the multiprocessor is shown if Figure 2-4. The

multiprocessor has 10 LRU (Line Replaceable Units) clusters, LRU.I to

LRU.IO] LRU.i has a processor P.i, a memory M.i, and a watch dog timer

28

Component Types (Section 2.1):
TYPE HARD TRANSIENT INTERMITTENT COVERAGE REPAIR RECOVERY SHADOW DEGRADATION

P 200 (10000, 3600) (20, 3600, 360) I W 1 1.1 M RECP G SHADP O DEGP

M 210 (10500, 3600) (21, 3600, 360) I W I 1.1 M RECM G SHADM G DEGM

WT 50 (2500, 3600) (5, 3600, 360) I W 1 1.1 M RECW G SHADW

B 10 (500, 3600) (I, 3600, 360) I W 1 1.1 M RECB G SHADB

WB I0 (500, 3600) (I, 3600, 360) I W 1 1.1 M RECWB G SHADWB

Redundant Groups (Section 2.2):
SIZE GROUPNAME REQUIREMENTS TYPE ADOPTS ADAPTATION

3 PTriad 2 OF 3 P PSimplex G ADAPTP

I PSimplex I OF I P
2 MTriad 2 OF 3 M MSimplex G ADAPTM

I MSimplex I OF I M

I WTriad 2 OF 3 WT WSimplex G ADAPTW

I WSimplex I OF I WT
I BTriad 2 OF 3 B

I WBTriad 2 OF 3 WB

System Watchdog Timers (Section 2.3): WTriad

PMS Structure (Section 2.4):

COM PONEN T TY PE NEIGHBORLCOMPONENTS

P.I-I0 P B.I-5, WB. I-5
M. I-I0 M B.I-5, WB. I-5

WT.I-IO WT B.I-5, WB. I-5

B.I-5 B P.I-I0, M.I-I0, WT.I-5

WB.I-5 WB P.I-I0, M.I-I0, WT.I-5

Intracomponent Port Connections (Section 2.5):
VERTEX TRANSMITER RECEI VER

B P M

B P WT

B M P

WB WT P

WB WT M

Intra Component-Type Communicators: (Section 2.6): P

Component Clusters (Section 2.7):
CLUSTERNAME COMPONENTS REQUIREMENTS

LRU.I-IO P.i, M.i, WT.i I OF M.i

Syste m Requirements (Section 2.8):
(I OF PTriad OR I OF PSimplex) AND (I OF MTriad OR I OF MSimplex)

Table 2-2: Multiprocessor System Description Example

29

WT.i, and for any of its components to be available M.i must be working

properly. Components of the same type are grouped into 2 out of 3

triad subsystems.

The system uses adaptive hybrid redundancy so that if a component

other than a bus fails and there is only one triad without spares of

that component type, then it reconfigures the two remaining components

into a simplex (a single component emulating a triad) with a spare.

i The system must have a minimum of I processor triad or simplex, and I

memory triad or simplex to be operational.
!

_i Processor and memory triads transmit on a bus triad formed out of 5

!! buses, B.I to B.5. A processor triad can transmit to any kind of triad
i
i including another processor triad. A memory triad can only transmit to

i processor triads. The watchdog triad transmits on another bus triad
!

formed out of 5 buses, WB.I to WB.5. The watchdog triad can only

transmit to processor and memory triads.

_' LRU. I LRU. I0

,t

i: w 0 7oi0r
i

B.I

B.2,-"

B.3

B.4

!

: B.5

_. WB. I

WB .2......

.................._,L,_,__,L_WB.3-L---L

•WB.4--L--'

WB. 5

Figure 2-4: PMS Diagram of Multiprocess0r Described in Table 2-2

3O

3. Automated Reliability Modeling Considerations

The ARM program will attempt to efficiently generate the system

reliability model based on the interconnectlon structure and the

operational requirements. The divide-and-conquer methodology was

selected to increase the computational efficiency and reduce the

program development complexity. The steps the ARM program is going to

follow in generating reliability models are shown in Table 3-I.

I) Interface with user and obtain system description.

2) Detect symmetries in the PMS graph.

3) Segment the PMS graph.
t

4) Identify the PMS system success and failure states based onthe
operational requirements.

5) Generate the models for the PMS graph segments.

6) Merge the models for the PMS graph segments.

7) Reduce the state space of the resulting model.

8) Format and output the state transition matrix of the model.

Table 3-I: Automated Reliability Modeling Steps

Steps 2 and 3 of Table 3-I have been implemented using algorithms

derived from those presented in Kini's dissertation [Kini 81] because

they are mature, well documented, and simple. The major research

effort will be the identification, analysis, and solution of the

fundamental problems in each of steps I, and 4 through 7 of Table 3-I.

The research will also include the development of efficient algorithms,

and methods to theoretically and experimentally validate the

algorithms.

The feasibility of the algorithms developed depends on their

efficiency due to the large number of states and transitions involved

in any reasonable structure. The validity of these algorithms is

I 31

particularly important for life critical applications where a

probability of failure in the order 10-W is required.

The following sections will discuss the purpose and necessity Of

steps 2 through 7. Progress already made in identifying and analyzing

the problems involved, and developing and implementing algorithms to

solve them is also presented.

ilI 3.1 Deteotion of Symmetry in the PMS Graph

r Substructures in the PMS graph G will be considered symmetric if they

are isomorphic and the corresponding vertices of the two graphs have

identical component type labels. Symmetrical substructures willbe

assumed to be identical in function and reliability. Therefore the

reliability models of symmetrical substructures are identical. The

purpose of detecting symmetrical substructures is to avoid needless

duplication of effort by generating their reliability model only once.

These models will then be duplicated and merged to obtain the

reliability model of the system.

The symmetry detection algorithm ks shown in Appendix A.I. It is

based on the component type labels and the degree of the vertices in

_ the graph. The degree of a vertex is the number of neighbor vertices

it has. Two vertices are neighbors if they are interconnected.

The algorithm requires three steps to partition the vertex set_of a

labelled graph into equivalence classes whose vertices are symmetrical.

In the first step the partition is based on the component type label of

each vertex. For the second step the partition is based on the degree

of each vertex. The third step attempts to partition based on the

number of neighbors each vertex has in each equivalence class.

The last step must be repeated until there are no more changes in the

equivalence classes. The reason for this is that each partition

changes the number of neighbors in each equivalence class, and

32

therefore other partitions may become necessary. In the worst case

this repetition will stop when each equivalence class has a single i

element.

Each class is related to other classes in a connectivity sense

because the vertices in the class are symmetrically connected to the

vertices in other classes. These equivalence classes and their
,i

connectivity relationships may be viewed as defining another graph G'.

The vertices of G' correspond uniquely to the equivalence classes in G.

Unlike the basic non-directed graph without self-loops, which was taken

to be the model for G, G' may have vertices which have self-loops.

This would be the result of a case in which vertices in the same

equivalence class are connected to each other in some symmetric

fashion, thus making the equivalence class its own neighbor. Also, the

number of links or connection density between two vertices of G' can be

greater than one. This would be the result of a case in which multiple

vertices in the same equivalence class are connected to one or more

vertices in another equivalence class.

3.2 Segmentation of the PMS Graph

The purpose of segmenting the PMS graph is to follow the divlde2and-

conquer methodology. The segmenting proceeds by searching for what are

termed Pendant Tree Subgraphs (PTS). These are maximal trees, that is

they are not part of another tree. In these tree subgraphs the slmple

path between any pair of vertices is the only path between those

vertices in the overall graph, in other words there are no cycles. It

is common to find PTS's in most PMS structures. In particular

input/output subsystems typically assume this character.

If the PMS interconnection graph G is not a PTS and all its PTS's,

excluding their roots, are removed then the remaining vertices and arcs

form a subgraph of G that is not tree-connected. This will be referred

to as the Kernel. The root of each PTS has dual status as member of

the PTS as well as the Kernel. The PTS's along with the Kernel form a

33

natural set of segments of G on the basis of which the reliability

computation task may be divided.

The segmentation algorithm is shown in Appendix A.2. It discovers

the PTS's in a given PMS structure by collecting those leaf vertices of

G' which represent classes of leaf vertices of G (step I). These

"germinal trees" are then "grown" upward towards the root by adding on

neighboring vertices of these leaves (step 2), and merging the germinal

trees that overlap at their roots (step 3). Steps 2 and 3 continue

until no more adding of vertices or merging of trees is possible. At

this point a set of tree subgraphs of G' have been generated.

Depending on the number of vertices of G represented by the root, each

of these trees in G' may represent one PTS of G or a set of PTS's. In

the latter instance all PTS's in the set will be symmetric.

There are three "stopping conditions" under which a tree is not

capable of further growth, due to the fact that cycles would be formed

and it would no longer be a tree. The first condition is when the root

of the tree is a neighbor to itself. The second condition is when the

root of the tree has a single neighbor, which is not already in that

tree, with a connection density greater than one. The third condition

is when the tree has been merged with another tree that meets one of

the previous conditions.

3.3Identification of Success and Failure States

Depending on whether the system is operational or not the states in

the reliability model are termed success states or failure states

respectively. The identification of success and failure states is

essential during the generation of the reliability model because they

assume a very different form. Success states must have transitions to

other states, because the system must be able to reach a failure state

through some sequence of transitions. Failure states are trapping

states and therefore can not have any transitions to other states.

34

The identification of failure states may also prevent some

unnecessary generation of failure states. The reason some failure

states are not needed is that the only way the system can arrive at

them is by being in another failure state.

For example, consider a system that requires 2 out of 3 processors to

be operational. For that system the failure state where all three

processors have failed does not have to be generated. The reason for

this is thatthe only way the system can arrive at that state is by

being in another failure state where two processors have failed.

An algorithm to identify success and failure states has already been

developed and implemented. This algorithm is shown in Appendix A.3.

It traverses the system requirements parse tree searching for some way

in which a system state can satisfy the requirements. The system state

is assumed to include those components that are not operational because

they do not have communication paths, due to the failure of other

components. The Boolean expression of requirements is assumed to have

been transformed into a sum-of-products form so that it does not

contain any parenthesis.

The parse tree of a sum-of'products Boolean expression only has three

• levels. The bottom level•represents atomic requirements such as "2 of

processors". The intermediate level represents pure conjunctive

requirements, that is an AND expression of atomic requirements. The

top level represents the sum-of-products expression of the system

requirements, that is an OR expression of pure conjunctive

requirements.

For example, consider a system that can operate with either one

processor and two memories, or with one processor, one disk, and one

memory. For readability the symbol _(N,X) will represent the atomic

35

requirement "N of X". The sum-of-products expression of the system

requirements is

_(I,P) AND _(2,M) OR _(I,P) AND _(I,D) AND _(I,M) (3.1)

The parse tree of such an expression is shown in Figure 3-I.

The algorithm is a Boolean function that takes a state as an argument

and returns true if it is a success state. The algorithm works at

three levels that correspond to the levels of the parse tree. At the•

first level it will return true if any conjunctive requirement, in the

sum-of-products expression of system requirements, is meet. At the

second level it will return true if all atomic requirements in a

conjunction are meet. The third level determines which atomic

requirements are meet.
L

OR

/ \
/ \

AND AND

I \ / I \
/ \ / I \

_(I ,P) _(2,M) _IJ(1,P) _(I ,D) _(I ,M)

Figure 3-I: Parse tree of requirement expression (3 I)

3.4 Generation of Models for PMS Graph Segments ..

The generation of the system reliability model will also follow the

divide-and-conquer methodology. For that purpose, the states and

transitions corresponding to the different segments of the equivalence

class graph G', will be separately generated and then merged to produce

the system reliability model. The generation of states and transitions

in the model will be implemented using algorithms derived from the

model generation algorithm presented in [Butler 85].

An algorithm for what are termed minimal subtrees of PTS's has

already been developed and implemented. This algorithm is shown in

Appendix A.4. Minimal subtrees of PTS's are those that are below the

36

minimum system requirements or meet them exactly. When the root of a

minimal subtree of a PTS fails all the nodes in that minimal subtree

fai! because none of the subtrees within it, which become isolated from

other nodes in the graph, can meet the system requirements by itself.

This algorithm is limited to hard faults in non-redundant and non-

repairable minimal subtrees. The steps the algorithm follows in

generating the minimal subtree models are shown in Table 3-2.

The minimal subtree model generation algorithm must be extended to

redundant and repairable minimal subtrees which are susceptible to

transient and intermittent faults. Two more algorithms must be

developed to generate the system reliability model. The f_rst

algorithm will generate a model for those nodes of a PTS that are not

in a minimal subtree, and merge it with the minimal subtree models to

produce the PTS model. The second algorithm will generate a model for

the kernel and merge it with the PTS models to produce the system

reliability model.

I) Initialize the set of new states New Set to the start state.

2) While the New Set is not empty, get a state out of the New Set
until a success state is found.

3) For every equivalence class node in the minimal subtree, if more

components of this class can fail then generate the transitions
out of the success state.

4) For every transition generated:

a) If the destination state is new then add it to the New Set.
D

b) Add the transition to the model by obtaining the two factors

whose product is the transition's rate: the number of working _

components in the class whose failure is described by the i
transition, and their failure rate.

: Table 3-2: Minimal Subtree Modeling Steps

37

3.5 Merging of Models for PMS Graph Segments

For the purpose of following the divide-and-conquer methodology, the

models of the segments of the equivalence class graph G' will be merged

to generate the PTS models and also the system reliability model. When

two models with N and M states are merged the resulting model has at

most NM states. All the states in the original models and their

incoming transitions appear in the resulting model along with new ones.

Table 3-3 shows the steps that must be followed to merge two models.

Algorithms that follow these steps must be developed and implemented to

generate the PTS models and also the system reliability model.

I) Retain only one of the two identical start states.

2) Retain all the other original states, which amount to N . M - 2
states.

3) Produce at most NM - N - M + I new states by combining each

original state in one model with all the original states in the

other model, except for the start states.

Table 3-3: Two Model Merging Steps

3.6 Reduction of the State Space

The use of time-varying Markov models to analyze complex systems runs

into three problems when the state space becomes extremely iarge.

First, the models become intractable for any human, but this can be

alleviated by the use of computer aided modeling and evaluation tools

such as the ARM program and others already discussed. Second, the

computational cost of evaluating the model may become prohibitive.

Third, the evaluation of the model using certain computer systems may

become impossible due to their memory space limitations. For the

purpose of alleviating the last two problems the user of the ARM

program will have the option of applying a state space reduction

technique to the system reliability model.

38

The number of states can be reduced by merging them into subsets and

computing the equivalent transition rates between the subsets [Singh

72]. The equivalent transition rate between subsets A and B is

IAB = _ I.. for any icA (3 2)
j_B ij

where lij is the transition rate from state i in subset A to state j in

subset B. State merging must follow two conditions. First, the

equivalent transition rate given by equation (3.2) must be the same for

any state i in subset A. Second, the probabilities of all the states

merged into a subset must be equal.

The number of states can also be reduced by deleting states with a

relatively low probability. Two techniques that can be used for this

purpose are called state space truncation [Singh 72] and sequential

truncation [Singh 75].

State space truncation must follow two conditions. First, the

biggest probability in the truncated state space should be less that

the smallest probability in t_e remaining state space. Second, after

the states have been truncated, the states transition diagram should be

examined to see if the process of truncation hasgenerated any new

absorbing states. Either the new absorbing states should be deleted or

the states whose truncation has generated this new absorbing states

should be retalned. In systems consisting of N identical components

with two states these conditions are not hard to achieve. The state

space may be divided into N + I subsets, each subset having states of a

certain level of coincident failures. At first an arbitrary level of

truncation should be selected. The computation can then be repeated by

including the next subset. If the new values are not significantly

different from the previous ones, the computation can be stopped,

otherwise one more subset should be included and the computations

repeated. This should be extensible to systems with different types of

components which are susceptible to transient and intermittent faults.

39

In sequential truncation the state probabilities are calculated every

time a hew state is generated and states with probabilities less than a

reference value are deleted. This method consumes more computation

time than state space truncation but does not have to be repeated to

insure the accuracy of the approximation.

The state space truncation technique can be extended to produce a

conservative estimate. The states with a certain level of coincident

failures can be made failure states. This eliminates the out going

transitions of the new failure states, and truncates those states that

could only be reached through the new failure states. This will

produce a conservative estimate because the truncated states will also

be analyzed as though they were failure states.

Only the extended state space truncation technique is applicable to

the ARM program. The reason for this is that the ARM program will not

be evaluating the reliability model. State space truncation will be

attempted during the generation of the models for the PMS graph

segments. Algorithms that follow this technique must be developed and

implemented.

4O

4. Automated Reliability Modeling Examples

Currently the ARM program is limited to systems that are non C

redundant and non-repairable minimal subtrees, and are not susceptible

to transient or intermittent faults. Only the three minimum ARM input

categories have been implemented. These input categories are: the hard

failure rate of the component types, the interconnection structure, and

the system requirements. Only the output format for the SURE program

has been implemented. The Cm* multiprocessor architecture described in

[Swan 77] will be used to illustrate the current capabilities of the

ARM program.

The Cm* multiprocessor architecture is based on the LSI-11

microcomputer. Figure 4-I shows one possible version of the

architecture. Each computer module (Cm) is composed of one processor

module connected via an interface (Slocal) to one or more memory

modules. The memories in the structure collectively realize the

virtual address space shared by the processors. Each cluster is

composed of a cluster controller (Kmap) and two or more Cms. The

Slocal controls local memory access and passes external references

(i.e. to memory elsewhere in the cluster or in a different cluster) to

the Kmap. The Kmaps are mapping controllers which allow processors in

Cms to access memory elsewhere in the cluster or in other clusters via

the Intercluster Buses (B in the figure). The components marked L in

the figure are interfaces from the Kmaps to the Intercluster Buses.

The following sections will illustrate the automatic generation of

reliability models by modeling several versions of the Cm*

architecture. The sensitivity of the models generated to the system

requirements and the PMS interconnection graph is demonstrated. To

validate the models generated they will be evaluated using the SURE

program, and compared with the results of manually derived probability

of failure equations. The exponential failure rates used to evaluate

the models where obtained from [Siewiorek 78] and are reproduced in

Table 4-I.

41

B B

I\ / \
/ \. / \

L L L L

Kmap Kmap Kmap
/\ /\ /\

. I \ I \ I \
Slocal Slocal Slocal Slocal Slocai Slocal

/ ', / ', / \ /t\ /1\ / ',
P M M P M M P M M P M M P M M P M M

Key:

B Intercluster Bus Slocai Local Switch
L Intercluster Bus Interface P Processor

Kmap Mapping Controller M Memory

Figure 4-I: Cm* Architecture

Processor 29.893E-6
Memory 46.278E-6

Local Switch 24.059E-6

Mapping Controller 130.935E-6

Intercluster Bus Interface 34.836E-6
Intercluster Bus O.O00E-6

Table 4-I: Failure Rates of Cm* Modules

4.1Cm* Computer Module

The Cm* computer module to be modeled is composed of one processor,

module connected via an interface (Slocal) t•o three memory modules •.

The PMS diagram of the Cm* computer module is shown in Figure 4-2.

Slocal

IIi
/ / \ \

P M M M

Figure 4-2: Cm* Computer Module

42

The model ARM automatically generated when the Cm* computer module in

Figure 4-2 requires one processor and one memory to perform its

function is shown in Fig_e 4-3. Only states I, 4, and 6 are not

failure states. The computer module will fail if three memories fail,

or if any single component other than a memory fails. The system

starts in state I with all its components working. The probability of

failure, during the first ten hours of operation, obtained from this

model is 5.39375E-4.

_ Q
/

Key : State Failed components

I None
2 I S
3 I P
4 I M

i 5 I M& I P
6 2M
7 2M & I P
8 3M

Figure 4-3: Model of Figure 4-2 Cm* Requiring I P & I M

The equatlon for the probability of failure Pf is

Pf = I - RsRp(R3 + ..2 m)2) "m 3_m(I - Rm) . 3Rm(1 - R (4.1)

43

where Rs, Rp, and Rm are the reliability functions of a local switch, a

processor, and a memory. The R3 term corresponds •to the state in whichm

all three memories function. The 3R2(I - Rm) term corresponds to the

state in which one memory failed and two are functional. The

- 3Rm(1 - Rm)2 term corresponds to the state in which two memories failed

and one is functional. The probability of failure, during the first

" ten hours of operation, obtained from this equation is 5.39375E-4.

This is the same result obtained from the model in Figure 4-3.

4.2 Effect of the System Requirements

The number of components N required for a system to perform its

function affects both the number of states and the probability of

failure. The number _of states is a non-increasing function of N. The

probability of failure is a non-decreasing function of N.

For example, the model ARM automatically generated when the

requirements of the Cm* computer module in Figure 4-2 are increased to

I processor and 2 memories is shown in Figure 4-4. Only states I and 4•

are not failure states. The computer module will fail if two memories

fail, or if any single component other than a memory fails. The system

starts in state I •with all its components working. Comparing this

model to the one shown in Figure 4-3, the number of states decreased to

six and the probability of failure, during the firstten hours of

operation, •increased to 5.40016E-4.

The equation for the probability of failure Pf is

Pf = I - RsRp(R _ + 3R_(I - Rm)) (4"2)

. where Rs, Rp, and Rm are the reliability functions of a local switch, a

processor, and a memory. The R3 term corresponds to the state in whichm

- all three memories function. The 3R_(I - Rm) term corresponds to the

state in which one memory failed and two are functional. The

probability of failure, during the first ten hours of operation,

obtained from this equation is 5.40016E-4. This is the same result

obtained from the model in Figure 4-4.

44

Key : State Failed components

I None

2 I S

3 I P

4 IM

5 IM& I P

6 2M

Figure 4-4: Model of Figure 4-2 Cm* Requiring I P & 2 M

4.3 Cm* Cluster

The Cm* cluster to be modeled is composed of three computer modules

connected via a cluster controller (Kmap). Each computer module is

composed of one processor module connected via an interface (Slocal) to

two memory modules. The PMS diagram of the Cm* cluster is shown in

Figure 4-5.

Kmap

/ \
Slocal Slocal Slocal

I , \ I \
P M M P M M P M M

Figure 4-5: Cm* Cluster

The model ARM automatically generated when the Cm* cluster in

Figure 475 requires 2 processors and 5 memories to perform itg function

is shown in Figure 4-6. All the failure states have been collapsed

• 45

into state 2. The cluster will fail if two memories or two processors

fail. The system starts in state I with all its components working.

In state 5 one processor and one memory in the same computer module
E

have failed, therefore if their local switch fails no other components

will be affected. In state 6 one processor and one memory in a

different computer module have failed, therefore if a local switch

fails other components will also be affected. The probability of

failure, during the first ten hours of operation, obtained from this

model is 2.03253E-3.

Key: State Failed components

I None
2 I K or I S or 2 P or 2 M
3 I P

- 4 I M
5 I M & I P in the same Cm
6 I M & I P in a different Cm

Figure 4-6: Model Of Figure 4-5 Cm* Requiring 2 P & 5 N -

46

The equation for the probability of failure Pf is

Pf = I -R'R3(R3Ks p + 3R_(I -Rp))(R6m + 6R5(1m -Rm)) (4.3)

where Rs, Rp, and Rm are the reliability functions of a local switch, a

processor, and a memory. The R3 term corresponds to the state in which

• pall three processors function. The 3R (I - Rp) term corresponds to the

state in which one processor failed and two are functional. The R6
m

term corresponds to the state in which all six memories function. The

6R_(I - Rm) term corresponds to the state in which one memory failed

and five are functional. The probability of failure, during the first

ten hours of operation, obtained from this equation is 2.03253E-3.

This is the same result obtained from the model in Figure 4-6.

4/4 Effect of the PMS Interconnection

The PMS interconnection affects both the number of states and the

probability of failure. For example, let us change the PMS

interconnection of the Cm* cluster in Figure 4-5 so that two computer

modules are composed of one processor and one memory, and the third

computer module is composed of one processor and four memories. The

resulting PMS diagram of the Cm* cluster is shown in Figure 4-7.

Kmap

zi\
/ I \

Slocal. Slocal I Slocal_
" \ " \ _"1

I \ I \ I I \ \

PI MI PI MI P2 M2 M2 M2 M2

Figure 4-7: Nonsymmetrical connection of Figure 4-5 Cm* Cluster

The model ARM automatically generated when the Cm* cluster in

Figure 4-7 requires 2 processor and 5 memories to perform its function

is shown in Figure 4-8. All the failure states have been collapsed

into state 2. The cluster will fail if two memories or two processors

47

fail. The system starts in state I with all its components working.

._ Comparing this model to the one shown in Figure 4-6, the number of

states increased to twelve and the probability of failure, during the

first ten hours of operation, decreased to 1.55366E-3.

The equation for the probability of failure Pf is

_--'-_k__ +_ (_-__ +_-_m_-. _. C_-__ _,._
where Rs, Rp, and Rm are the reliability functions of a local switch, a

processor, and a memory. The only difference between this equation and

R2(I - Rs)R R term This termequation (4.3) is the addition of the 2Rk s

corresponds to the state in which one local switch SI failed and the

other two local switches are functional. The probability of failure,
i

during the first ten hours 'of operation, obtained from this equation is

1.55366E-3. This is the same result obtained from the model in Figure

428.

48

Key: State Failed components State Failed components

I None 7 I M2

2 I K, I S2, 2 P, or 2 M 8 I P! & M.l in the same Cm

3 I SI & I P! & I MI 9 l P! & M. in a different Cm

4 I P! 10 I P! & 11M-

5 I MI 11 I P2 & I M2 "
6 I P2 12 I P2 & I M2

Figure 4-8: Mode! of Figure 4-7 Cm* Requiring 2 P & 5 M

49

5. Plans for Future Work

The architectures and fault _.ypes the research will address will

increase in complexity in phases as described below. The reason for

breaking the research work into phases is to keep the complexity of the

problem being addressed at a manageable level. The results of each

phase of the research will be theoretically and experimentally

validated before proceeding to the next phase. The ARM program will be

used as part of the experimental validation of each phase. Next the

performance and range of applications of the ARM program must be

evaluated. Based on the results of the validation and evaluation the

approach will be reformulated as necessary.

The first phase Of the research will address hard faults, and non-

redundant and non-repairable PMS tree structures that require their

root to be operational. This phase will only involve research into

steps I, 4, and 5 of Table 3-I. All subsequent phases will involve

research into steps I, and 4 through 7 of Table 3-I.

Phase two of the research will address hard faults and non-redundant

general structures with no repair. The third phase of the research

will address hard faults, and dynamically redundant architectures that

can have imperfect coverage, and repair. Examples of such

architectures are a multiprocessor at CMU, named Cm* [Swan 77], and the

Electronic Switching Systems (ESS) used in the Bell System [Toy 78].

Cm* and ESS will be used in the experimental validation of this phase/

Phase four _ of the research will address hybrid redundant

architectures but only for hard faults. The fifthand last phase of

" the research will address intermittent, transient, and hard faults.

For the last two phases the architectures used for experimental

validation will be the Fault-Tolerant Multiprocessor (FTMP) at NASA's

Langley Research Center [Lala 83], an Intel 432 [Siewiorek 82] based

multiprocessor, Cm*, and ESS.

50

6. Conclusion

The previous sections presented an approach for automatic Markov

reliability and availability modeling of computer architectures. This

approach consists of eight steps which were summarized in Table 3-I.

The Automated Reliability Modeling (ARM) program is being developed to

implement these steps. The first step is to obtain a system

description consisting of the Processor-Memory-Swi tch (PMS)

interconnection graph, the behavior of the PMS components, the fault-

tolerant Strategies, and the operational requirements. Section 2

described the eight input categories currently envisioned for the

system description method of the ARM program. These input categories

are capable of describing most of the current computer architectures.

The other steps generate the Markov model from this System

descripLion. Section 3 discussed the purpose and necessity of these

steps. Progress already made in identifying and analyzing the problems

involved, and developing and implementing algorithms to solve them was

also presented.

Section 4 presented examples of the current capabilities of the ARM

program. The sensitivity of the models generated to the system

requirements and the PMS interconnection graph was also demonstrated.

Section 5 presented the current plans for extending the capabilities of

the ARM program to include all of the steps in Table 3-I.

51

A. ARM Program Algorithms

A.I Symmetry Detection Algorithm

Function definitions:

Split class(R, C, L) - If relation R is not satisfied it then

partitions class C and creates a new class after the last class L.

Returns the number of equivalence classes.

Size(C) - Returns the number of elements in the vertex equivalence

class C.

Element(E, C) - Returns element E of the vertex equivalence class C.

Equivalent(E, C, R) - True if element E of class C is equivalent in

terms of relation R to the preceding class elements.

Equal Degree(E, C) ' True if element E of class C has the same degree

as the _receding elements of class C.

Equal_Neighbor Classes(E, C) - True if element E of class C has the
same number of neighbors in each class as the preceding elements of
class C.

procedure Symmetry;

function Equivalent(Current Element, Class, Relation);

begin -

if Relation = Degree then

return Equal_Degree(Current Element, class)

else return Equal_Neighbor_Class_s(Current_Element, Class);
end;

function Split_Class(Relation, This_class, Last_class);

begin

Split := false;
for I := 2 to Size(This Class) do

begin
Current Element := Element(I, This Class);

" if not Equivalent(Current_Element,-This_class, Relation) then
begin

• if not Split then

begin

Split := true;

Last Class := Last Class + I;

(Create a new Last class with the degree and neighbor
attributes of the Current element of This class.);

end;

52

(Move the Current_Element of This_class to the Last class.);
end;

end;

return Last Class;
end; { Split C_ass }

begin { Symmetry }

{ Step I: Split based on equal type. }

Last Class :: Last Type;
for _ :: I to Last Class do

(Add elements of type I to class I.);

{ Step 2: Split based on equa± degree. }

I :: I;

while I <-- Last Class do
n

begin

Last Class := Split Class(Degree, i, Last Class);
I ::I + I;

end;

{ Step 3: Split based on equal neighbor classes. }

New_Last :--Last Class;
Done :--false;
while not Done do

begin
for I :-- I to Last Class do

New Last := SplTt Class(Neighbors, I, New Last);
if Las_ Class _ New Last then

Done :_ true

else Last_Class :--New_Last;
end;

end; { Symmetry }

A.2 Segmentation Algorithm

Funct ion def ini tions :

Degree(C) - Returns the degree of class C.

Root(T) - Returns the root of tree T. i

Neighbors(C) - Returns the set of neighbors of class C.

Up_Neighbors(C) - Returns the number of neighbors of class C that are
not already in the tree of which class C is the root.

53

Up Degree(C) - Returns the degree of connectivity of class C with
neighbors that are not already in the tree of which class C is the
root.

Variable definitions:

Dead[T] - True when tree T has been merged intoanother tree. All
the array is initialized as false.

Complete[T] - True when tree T is not capable of further growth. All
the array is initialized as false.

procedure Segmentation;

begin

{ Step I: Collect the germinal trees, that is the leaf vertices Of
G' which represent classes of leaf vertices of G. }

Last Tree := O;
for _ :_ I to Last class do

if Degree(I) _ I then
begin

Last Tree :_ Last Tree . I;
(InTtialize the _ast Tree with class i as its root and
single node.);

end;

{ Continue growing the germinal trees (steps 2 and 3) until no more
adding of vertices or merging of trees is possible. }

Changes :: true;
while Changes do
begin

Changes := false;

{ Step 2: Grow these germinal trees upward by adding on
neighboring vertices of these leaves. }

for I := I to Last Tree do

if not Dead[I] and not Complete[I] then

° { Stopping condition I: The root is a neighbor _o itself. }

• if Root(I) in Neighbors(I) then
Complete[I] := true

else if Up_Neighbors(I) = I then

54

{ Stopping condition 2: The root has a single

neighbor outside of the tree with density greater
than one. }

if Up_Degree(I) = I then
begin

(Grow the tree by adding the root's unique
neighbor, outside of the tree, with density

of one as its new root.);

Changes :=true;
end

else Complete[I] := true;

{ Step 3: Merge the germinal trees that overlap at their roots. }

for i := I to Last Tree do

if not Dead[I] then
for J := I + I to Last Tree do

if not Dead[J] then-

if Root(I) = Root(J) then

begin

(Merge tree J into tree I.);

Changes := true;

Dead[J] := true;

{ Stopping condition 3: The tree is merged with
another tree that meets conditions I or 2. }

if Complete[J] then

Complete[I] := true;

end;

end; { while Changes }

end; { Segmentation }

A.3 Success and Failure State Identification Algorithm

Variable definitions:

Last Conjunction - The number of conjunctions in the sum-of-products

expressTon of system requirements.

Last Atom[I] - The number of atomic requirements in conjunction I.

Classes[I][J] - The set of equivalence classes whose components a_e

of the type specified by atomic requirement J of conjunction I.

•Max Dead[I][J] - The maximum number of components, of the type

specifTed by atomic requirement J of conjunction I, that can fail and

t_e system remain operational.

State[K] - The number of components in class K that have failed when

the system is in this state.

55

function Success(State); { True if its argument is a success state. }

begin
I := I;
Alive := false;

{ Level I: If any conjunctive requirement, in the sum-of-products
expression of system requirements, is meet then this is a success
state. }

while not Alive and I <= Last_Conjunction do
begin

J := I;
Alive := true;

{ Level 2: If all atomic requirements in a conjunction are meet
then this is a success state. }

while Alive and J <--Last Atom[I] do
begin

K := I;
Dead := 0;

{ Level 3: Count the number of components Of the specified
type that have failed and if it does not exceed the maximum
value then the state meets the atomic requirement. }

while Alive and K <= Last Class do
begin

if K in Classes[I][J] then
begin

Dead :--Dead + State[K];
if Dead > Max Dead[I][J] then

Alive := false;
end;
K:=K + I;

end; "
J :=J + I;

end;
I :=I + I;

end; { while not Alive }
Success := Alive;

end; { Success }

A.4 Minimal Subtree Model Generation Algorithm

Function definitions:

Get_State(N) - Returns a state from the set of new states N and
removes it from the set.

Success(S) - True if state S is a success state.

56

Class(T) -Returns the equivalence class of node T of the minimal
subtree.

Size(C) - Returns the number of elements in the equivalence class C.

New State(S) - True if state S is a new state.
m

Lambda(C) - Returns the failure rate of components in class C.

Vari able def initions :

State[C] - The number of components in class C that have failed when

the system is in this state.

Last Node - The number of nodes in the minimal subtree.

Subtree[I][C] -The number of components in class C that are in
subtree I of the mfnimal subtree.

Next[I][C] - The number of components in class C that have failed

When the system reaches its next state I.

Working[I][J] - The number of working components in the class whose

failure is described by the transition from state I to state J.

Failure Rate[I][J] - The failure rate of the class of component

whose fail_re is described by the transition from state I to state J.

procedure Model Subtree(Subtree, LastNode);

begin

{ Step I: Initialize New Set to the start state. }

for I := I to Last Class do

State[I] := 0;

New Set := [State];

{ Step 2 : While the New Set is not empty, get a state out of the
New Set until a success state is found. }

while New Set <> [] do

begin
State := Get State(New Set);

if Success(STate) then-

57

{ Step 3: For every node in the minimal subtree, if more
components of this class can fail then generate the
transitions out of the success state. }

for I := I to Last Node do
m

begin
C :: Class(Subtree[I]) ;
if State[C] < Size(C) then
begin

Num States :--O;
If Ta node subtree has all its components working) then
begin

(generate a transition for one such subtree failure);
Num States :--Num States + I;

D

end;
For J := I to (number of subtrees with a different set

of failed components) do
begin

(generate a transition for the failure of subtree J);
Num States :--Num States + J;

end;

{ Step 4: For every transition generated: }

for J := I to Num States do
begin

{ Substep 4a: If the destination state is new Lhen
add it to the New Set. }

if New State(Next[J]) then
New Set :: New Set + Next[J];

{ Substep 4b: Add the transition to the model. }

if J = I then

Working[State] [Next[J]] :=
Size(C) - State[C] - Num States +

else Working[State][Next[J]] := I;

FailureRate[State][Next[J]] := Lambda(C);
end;

end; { if more can fail }
end; { for all nodes in minimal subtree }

end; { while the set of new states is not empty }
" end; { Model Subtree }

58

References

[Bavuso 84] S.J. Bavuso, P. L. Peterson, and D. M. Rose.
CARE III Model Overview and User's Guide.

Technical Report TM85810, NASA-LaRC, 1984.

[Butler 84] Ricky W. Butler.

The Semi-Markov Unreliability Range Evaluator (SURE)
Program.

Technical Report TM86261, NASA-LaRC, 1984.

[Butler 85] Ricky W. Butler.

An Abstract Specification Language for Markov
Reliability Models.

Technical Report TM86423, NASA-LaRC, 1985.

[Cox 68] R.E. Cox and H. D. Miller.

The Theory of Stochastic Processes.

Methuen, 1968.

[Chung 67] Kai Lai Chung.

Mark0v Chains with Stationary Transition
Probabilities.

Springer-Verlag, 1967.

[Dugan 84] Joanne B. Dugan.

Extended Stochastic Petri Nets: Applications and

Analysis.

Ph.D. Thesis, Duke University, 1984.

[Kini 81] Vittal Kini.

Automatic Generation of Reliability Functions for

Processor-Memory-Switch Structures.

Ph.D. Thesis, Carnegie-Mellon University, 1981.

[Lala 83] Jaynarayan Lala and T. Basil Smith IIi.

Development and Evaluation of a Fault-Tolerant

Multiprocessor (FTMP) Computer.

Technical Reports CR166071-3, NASA-LaRC, 1983.

[Landrault 78] C. Landrault and J. C. Laprie.

SURF-A Program for Modeling and Reliability Prediction

for Fault-Tolerant Computing Systems.

In Josef Moneta (editor), Information Technology,
North-Holland, 1978. i

[Lee 85] Larry D. Lee.

Reliability Bounds for Fault-Tolerant Systems With
Competing Responses to Component Failures.

Technical Report TP2409, NASA-LaRC, 1985.

[Makam 82] S.V. Makam, A. Avizienis, and G. Grusas.
ARIES 82 User's Guide.

Technical Report CSD-82-830, UCLA, 1982.

59

[McConnel 81] Stephen R. McConnel.

Analysis and Modeling of Transient Errors in Digital

Computers.

Ph.D. Thesis, Carnegie-Mellon University, 1981.

[Romanovsky 70] V. I. Romanovsky.
Discrete Markov Chains.

Wolters-Noordhoff, 1970.

[Siewiorek 78] D.P. Siewiorek and D. E. Thomas (Eds.).

The Analysis of the Performance, Reliability and Life

Cycle Cost of Multi-Processor Architectures and

their Impact on SENET.

Technical Report CMU-CS-78-126, CMU, 1978.

[Siewiorek 82a] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell.

Computer Structures: Principles and Examples.
McGraw Hill, 1982.

[Siewlorek 82b] D. P. Siewiorek and R. S. Swarz.

The Theory and Practice of Reliable System Design.

Digital Press, 1982.

[Singh 72] Chanan Singh.

Reliability Modelling and Evaluation in Electric Power

Systems.

Ph.D. Thesis, University of Saskatchewan, Saskatoon,

Canada, 1972.

[Singh 75] Chanan Singh.

Reliability Calculations of Large Systems.

In Proceedings of the Reliability and Maintainability

Symposium, 1975.

[Stiffler 79] J.J. Stiffler, L. A. Bryant, and L. Guccione.

CARE III Final Report: Phase One.

Technical Report CR159122, NASA-LaRC, 1979.

[Swan 77] R.J. Swan, S. H. Fuller, and D. P. Siewiorek.

Cm*-A Modular, Multi-microprocessor.

In Proceedings of the National Computer Conference,
AFIPS, 1977.

[Toy78] W.N. Toy.

Fault-Tolerant Design of Local ESS Processors.

In Proceedings of the IEEE, 1978.

[Trivedi 81] K. Trivedi and R. Geist.

A Tutorial on the CARE III Approach to Reliability

Modeling

Technical Report CR3488, NASA-LaRC, 1981.

60

[Trivedi 85] K. Trivedi, R. Geist, M. Smotherman, and J. B. Dugan.

A Description of the HARP User Interface.

Duke University, 1985.

[White 84] Allan L. White.

Upper and Lower Bounds for Semi-Markov Reliability I

Models of Reconfigurable Systems.
Technical Report CR172340, NASA-LaRC, 1984.

I. Ro_rt No. 2. Go,renan, Acc_ionNo. 3. gocipient%CJt,k_ No.
NASA TM-89009

4. 1";tle and Subtitle S. Report Date

Towards Automatic Markov Reliability Modeling of August 1986
Computer Architectures 6.P_orm_ Or_,._z,tlo.Cod,

505-66-21-02

7. Author(S| 8. Pm'fo_m;ngOrpn;zation Report No.

Carlos A. Liceaga and Daniel P. Siewiorek

10. Work Unit No.
9. Pm'forn'gngO_gm_izat_n Name and Addrels

NASA Langley Research Center "11.Contrsct or Grant NO.

Hampton, Virginia 23665-5225

13. TyI_ of Report and F_iod CoverlK:l

2.soo.,._ _,.cy Na,., _ Ac_r,u Technical Memorandum

National Aeronautics and Space Administration
14 Spo.nso_'ingAgency Code

Washington, DC 20546-0001

15. Sup_em4_tary Note'l

Carlos A. Liceaga, NASA Langley Research Center, Hampton, Virginia.

Daniel P. Siewiorek, Carnegie-Mellon University, _Pittsburgh, Pennsylvania.

16. A_=_

The analysis and evaluation of reliability measures using time-varylng
Markov models is required for Processor_Memory-Switch (PMS) structures

that have competing processes such as standby redundancy and repair, or
renewal processes such as transient or intermittent faults. The task

of generating these models is tedious and prone to human error due to

the large number of states and transitions involved in any reasonable

system. Therefore model formulation is a major analysis bottleneck,

and model verification is a major validation problem. The general

unfamiliarity of computer architects with Markov modeling techniques
further increases the necessity of automating the model formulation.

This paper presents an overview of the Automated Reliability Modeling
(ARM) program, under development at NASA Langley Research Center. ARM

will accept as input a description of the PMS interconnection graph,

the behavior of the PMS components, the fault-tolerant strategies, and
the operational requirements. The output of ARM will be the

reliability or availability Markov model formulated for direct use by

evaluation programs. The advantages of such an approach are (a)

utility to a larger class of users, not necessarily expert in
reliability analysis, and (b) a lower probability of human error in the
computation.

'17. K_ W_ (Sugge'=t_ _ Auth.(s|) 18. O;$_;_ti_ Statement

Reliability Analysis
Automated Reliability Modeling

Time-Varying Markov Models Unclassifled--Unlimited
Fault-Tolerance

Processor-Memory-Switch (PMS) Structures Subject Category 66

19. Sec_i W Osif. (of th_ mporU _. Sec_riw CLIff. (of tha pl_e) 21. No. of P_ 2_. _;ce

Unclassified Unclassified 67 A04

_ F= _lebyt_ Natm_lTechn,callnf_tionService. SpringfieldV,rEmja2216!

