1,062,864 research outputs found

    Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report

    Get PDF
    The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity

    Modal analysis of UH-60A instrumented rotor blades

    Get PDF
    The dynamic characteristics of instrumented and production UH-60A Black Hawk main rotor blades were measured, and the results were validated with NASTRAN finite element models. The blades tested included pressure and strain-gage instrumented blades, which are part of the NASA Airloads Flight Research Phase of the Modern Technology Rotor Program. The dynamic similarity of the blades was required for accurate data collection in this program. Therefore, a nonrotating blade modal analysis was performed on the first 10 free-free modes to measure blade similarities. The results showed small differences between the modal frequencies of instrumented and production blades and a close correlation with the NASTRAN models. This type of modal testing and analysis is recommended as a standard procedure for future instrumented blade flight testing

    Stress testing credit risk: a survey of authorities' approaches

    Get PDF
    This paper reviews the quantitative methods used at selected central banks to stress testing credit risk, focusing in particular on the methods used to link macroeconomic drivers of stress with bank specific measures of credit risk (macro stress test). Stress testing credit risk is an essential element of the Basel II Framework; because of their financial stability perspective, central banks and supervisors are particularly interested in quantifying the macro-to-micro linkages and have developed a specific modeling expertise in this field. In assessing current macro stress testing practices, the paper highlights the more recent developments and a number of methodological challenges that may be useful for supervisors in their review process of the banks' stress test models as required by the Basel II Framework. It also contributes to the on-going macroprudential research efforts that aim to integrate macroeconomic oversight and prudential supervision, in the direction of early identification of key vulnerabilities and assessment of macro-financial linkages.Macro stress testing, financial stability, macro-prudential analysis, credit risk,probability of default

    Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Get PDF
    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives

    Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations

    Get PDF
    Machine tools are susceptible to exogenous influences, which mainly derive from varying environmental conditions such as the day and night or seasonal transitions during which large temperature swings can occur. Thermal gradients cause heat to flow through the machine structure and results in non-linear structural deformation whether the machine is in operation or in a static mode. These environmentally stimulated deformations combine with the effects of any internally generated heat and can result in significant error increase if a machine tool is operated for long term regimes. In most engineering industries, environmental testing is often avoided due to the associated extensive machine downtime required to map empirically the thermal relationship and the associated cost to production. This paper presents a novel offline thermal error modelling methodology using finite element analysis (FEA) which significantly reduces the machine downtime required to establish the thermal response. It also describes the strategies required to calibrate the model using efficient on-machine measurement strategies. The technique is to create an FEA model of the machine followed by the application of the proposed methodology in which initial thermal states of the real machine and the simulated machine model are matched. An added benefit is that the method determines the minimum experimental testing time required on a machine; production management is then fully informed of the cost-to-production of establishing this important accuracy parameter. The most significant contribution of this work is presented in a typical case study; thermal model calibration is reduced from a fortnight to a few hours. The validation work has been carried out over a period of over a year to establish robustness to overall seasonal changes and the distinctly different daily changes at varying times of year. Samples of this data are presented that show that the FEA-based method correlated well with the experimental results resulting in the residual errors of less than 12 ÎŒm

    Influence of notch orientation on ductile tearing in SENT specimens

    Get PDF
    There is a growing interest for the use of spiral welded pipes in strain based design related applications. Since the influence of the spiral weld on the plastic behaviour of the pipe is not yet fully understood, further research on this topic is required. An important aspect of this plastic behaviour is the effect of mixed mode loading on weld defects located in the helical weld. This paper elaborates on the first experimental trials to evaluate ductile tearing by means of single edge notched tensile specimen (SENT) testing with slanted notches. Tests were performed on two SENT specimens, one with a slanted notch and another with a straight notch in order to investigate the influence of mixed mode loading. The crack mouth opening displacement and crack extension were determined experimentally by means of digital image correlation and potential drop measurements respectively. The crack extension and the potential drop measurements were related by means of finite element simulations

    Measurement of strain and strain rate during the impact of tennis ball cores

    Get PDF
    The aim of this investigation was to establish the strains and strain rates experienced by tennis ball cores during impact to inform material characterisation testing and finite element modelling. Three-dimensional surface strains and strain rates were measured using two high-speed video cameras and corresponding digital image correlation software (GOM Correlate Professional). The results suggest that material characterisation testing to a maximum strain of 0.4 and a maximum rate of 500 s-1 in tension and to a maximum strain of -0.4 and a maximum rate of -800 s-1 in compression would encapsulate the demands placed on the material during impact and, in turn, define the range of properties required to encapsulate the behavior of the material during impact, enabling testing to be application-specific and strain-rate-dependent properties to be established and incorporated in finite element models

    Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)

    Get PDF
    Within the field of composite manufacturing simulations, it is well known that the bending behavior of fabrics and prepregs has a significant influence on the drapeability and final geometry of a composite part. Due to sliding between reinforcements within a fabric, the bending properties cannot be determined from in-plane properties and a separate test is required. The Peirce cantilever test represents a popular way of determining the flexural rigidity for these materials, and is the preferred method in the ASTM D1388 standard. This work illustrates the severe inaccuracies (up to 72% error) in the current ASTM D1388 standard as well as the original formulation by Peirce, caused by ignoring higher-order effects. A modified approach accounting for higher-order effects and yielding significantly improved accuracy is presented. The method is validated using finite element simulations and experimental testing. Since no independent tests other than the ASTM D1388 standard are available to determine the bending stiffness of fabric materials, experimental validation is performed on an isotropic, homogeneous Upilex-50S foil for which the flexural rigidity and tensile stiffness are related. The flexural rigidity and elastic modulus are determined through both the cantilever test (ASTM D1388) and tensile testing. The results show that the proposed method measures an elastic modulus close to that determined through tensile testing (within 1%), while both the Peirce formulation (+18%) and ASTM standard (+72%) over-estimate the elastic modulus. The proposed methodology allows for a more accurate determination of flexural rigidity, and enables the more accurate simulation of composite forming processes

    A validated finite element analysis procedure for porous structures

    Get PDF
    Cellular materials are gaining interest thanks to developments in additive manufacturing. Whilst Finite Element Analysis (FEA) is commonly used to obtain the mechanical behaviour of these structures, different modelling and simulation methodologies are followed in literature. Consequently, there is not a clear procedure to accurately evaluate the mechanical properties of porous structures. This study presents a method to perform FEA of lattice structures with accurate results. All inputs required to simulate compression testing of lattices in FEA were investigated, these included the modelling type, element size, number of unit cells required, boundary conditions and the material model. The effect of these variables on the modulus and yield strength of a lattice structure was studied. Lattices with two unit cell structures, varying unit cell sizes and relative densities were additively manufactured in stainless steel, compression tested and compared to FE simulations. The material model for the FE simulations was obtained from tensile testing individual micro-struts of varying diameters. FE simulation results were in good agreement with the experimental results with an average error for the modulus and yield strength of ~10% and 17% respectively. The methodology presented should provide a foundation to accelerate development and adoption of these structures
    • 

    corecore