6,573 research outputs found

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Building the Infrastructure for Cloud Security

    Get PDF
    Computer scienc

    myTrustedCloud: Trusted cloud infrastructure for security-critical computation and data managment

    Get PDF
    Copyright @ 2012 IEEECloud Computing provides an optimal infrastructure to utilise and share both computational and data resources whilst allowing a pay-per-use model, useful to cost-effectively manage hardware investment or to maximise its utilisation. Cloud Computing also offers transitory access to scalable amounts of computational resources, something that is particularly important due to the time and financial constraints of many user communities. The growing number of communities that are adopting large public cloud resources such as Amazon Web Services [1] or Microsoft Azure [2] proves the success and hence usefulness of the Cloud Computing paradigm. Nonetheless, the typical use cases for public clouds involve non-business critical applications, particularly where issues around security of utilization of applications or deposited data within shared public services are binding requisites. In this paper, a use case is presented illustrating how the integration of Trusted Computing technologies into an available cloud infrastructure - Eucalyptus - allows the security-critical energy industry to exploit the flexibility and potential economical benefits of the Cloud Computing paradigm for their business-critical applications

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Security and trust in a Network Functions Virtualisation Infrastructure

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Trust and integrity in distributed systems

    Get PDF
    In the last decades, we have witnessed an exploding growth of the Internet. The massive adoption of distributed systems on the Internet allows users to offload their computing intensive work to remote servers, e.g. cloud. In this context, distributed systems are pervasively used in a number of difference scenarios, such as web-based services that receive and process data, cloud nodes where company data and processes are executed, and softwarised networks that process packets. In these systems, all the computing entities need to trust each other and co-operate in order to work properly. While the communication channels can be well protected by protocols like TLS or IPsec, the problem lies in the expected behaviour of the remote computing platforms, because they are not under the direct control of end users and do not offer any guarantee that they will behave as agreed. For example, the remote party may use non-legitimate services for its own convenience (e.g. illegally storing received data and routed packets), or the remote system may misbehave due to an attack (e.g. changing deployed services). This is especially important because most of these computing entities need to expose interfaces towards the Internet, which makes them easier to be attacked. Hence, software-based security solutions alone are insufficient to deal with the current scenario of distributed systems. They must be coupled with stronger means such as hardware-assisted protection. In order to allow the nodes in distributed system to trust each other, their integrity must be presented and assessed to predict their behaviour. The remote attestation technique of trusted computing was proposed to specifically deal with the integrity issue of remote entities, e.g. whether the platform is compromised with bootkit attacks or cracked kernel and services. This technique relies on a hardware chip called Trusted Platform Module (TPM), which is available in most business class laptops, desktops and servers. The TPM plays as the hardware root of trust, which provides a special set of capabilities that allows a physical platform to present its integrity state. With a TPM equipped in the motherboard, the remote attestation is the procedure that a physical node provides hardware-based proof of the software components loaded in this platform, which can be evaluated by other entities to conclude its integrity state. Thanks to the hardware TPM, the remote attestation procedure is resistant to software attacks. However, even though the availability of this chip is high, its actual usage is low. The major reason is that trusted computing has very little flexibility, since its goal is to provide strong integrity guarantees. For instance, remote attestation result is positive if and only if the software components loaded in the platform are expected and loaded in a specific order, which limits its applicability in real-world scenarios. For such reasons, this technique is especially hard to be applied on software services running in application layer, that are loaded in random order and constantly updated. Because of this, current remote attestation techniques provide incomplete solution. They only focus on the boot phase of physical platforms but not on the services, not to mention the services running in virtual instances. This work first proposes a new remote attestation framework with the capability of presenting and evaluating the integrity state not only of the boot phase of physical platforms but also of software services at load time, e.g. whether the software is legitimate or not. The framework allows users to know and understand the integrity state of the whole life cycle of the services they are interacting with, thus the users can make informed decision whether to send their data or trust the received results. Second, based on the remote attestation framework this thesis proposes a method to bind the identity of secure channel endpoint to a specific physical platform and its integrity state. Secure channels are extensively adopted in distributed systems to protect data transmitted from one platform to another. However, they do not convey any information about the integrity state of the platform or the service that generates and receives this data, which leaves ample space for various attacks. With the binding of the secure channel endpoint and the hardware TPM, users are protected from relay attacks (with hardware-based identity) and malicious or cracked platform and software (with remote attestation). Third, with the help of the remote attestation framework, this thesis introduces a new method to include the integrity state of software services running in virtual containers in the evidence generated by the hardware TPM. This solution is especially important for softwarised network environments. Softwarised network was proposed to provide dynamic and flexible network deployment which is an ever complex task nowadays. Its main idea is to switch hardware appliances to softwarised network functions running inside virtual instances, that are full-fledged computational systems and accessible from the Internet, thus their integrity is at stake. Unfortunately, currently remote attestation work is not able to provide hardware-based integrity evidence for software services running inside virtual instances, because the direct link between the internal of virtual instances and hardware root of trust is missing. With the solution proposed in this thesis, the integrity state of the softwarised network functions running in virtual containers can be presented and evaluated with hardware-based evidence, implying the integrity of the whole softwarised network. The proposed remote attestation framework, trusted channel and trusted softwarised network are implemented in separate working prototypes. Their performance was evaluated and proved to be excellent, allowing them to be applied in real-world scenarios. Moreover, the implementation also exposes various APIs to simplify future integration with different management platforms, such as OpenStack and OpenMANO

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore