82,905 research outputs found

    On Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network that is subject to Byzantine failures. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the authentic message and nothing else), but they require a highly connected network. An approach giving only probabilistic guarantees (correct nodes deliver the authentic message with high probability) was recently proposed for loosely connected networks, such as grids and tori. Yet, the proposed solution requires a specific initialization (that includes global knowledge) of each node, which may be difficult or impossible to guarantee in self-organizing networks - for instance, a wireless sensor network, especially if they are prone to Byzantine failures. In this paper, we propose a new protocol offering guarantees for loosely connected networks that does not require such global knowledge dependent initialization. In more details, we give a methodology to determine whether a set of nodes will always deliver the authentic message, in any execution. Then, we give conditions for perfect reliable broadcast in a torus network. Finally, we provide experimental evaluation for our solution, and determine the number of randomly distributed Byzantine failures than can be tolerated, for a given correct broadcast probability.Comment: 1

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) have recently received an increasing interest. They are now expected to be deployed for long periods of time, thus requiring software updates. Updating the software code automatically on a huge number of sensors is a tremendous task, as ''by hand'' updates can obviously not be considered, especially when all participating sensors are embedded on mobile entities. In this paper, we investigate an approach to automatically update software in mobile sensor-based application when no localization mechanism is available. We leverage the peer-to-peer cooperation paradigm to achieve a good trade-off between reliability and scalability of code propagation. More specifically, we present the design and evaluation of GCP ({\emph Gossip-based Code Propagation}), a distributed software update algorithm for mobile wireless sensor networks. GCP relies on two different mechanisms (piggy-backing and forwarding control) to improve significantly the load balance without sacrificing on the propagation speed. We compare GCP against traditional dissemination approaches. Simulation results based on both synthetic and realistic workloads show that GCP achieves a good convergence speed while balancing the load evenly between sensors

    Parameterizable Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network, despite the presence of Byzantine failures: some nodes are malicious and behave arbitrarly. We focus on non-cryptographic solutions. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the good information), but require a highly connected network. A probabilistic approach was recently proposed for loosely connected networks: the Byzantine failures are randomly distributed, and the correct nodes deliver the good information with high probability. A first solution require the nodes to initially know their position on the network, which may be difficult or impossible in self-organizing or dynamic networks. A second solution relaxed this hypothesis but has much weaker Byzantine tolerance guarantees. In this paper, we propose a parameterizable broadcast protocol that does not require nodes to have any knowledge about the network. We give a deterministic technique to compute a set of nodes that always deliver authentic information, for a given set of Byzantine failures. Then, we use this technique to experimentally evaluate our protocol, and show that it significantely outperforms previous solutions with the same hypotheses. Important disclaimer: these results have NOT yet been published in an international conference or journal. This is just a technical report presenting intermediary and incomplete results. A generalized version of these results may be under submission

    A Scalable Byzantine Grid

    Full text link
    Modern networks assemble an ever growing number of nodes. However, it remains difficult to increase the number of channels per node, thus the maximal degree of the network may be bounded. This is typically the case in grid topology networks, where each node has at most four neighbors. In this paper, we address the following issue: if each node is likely to fail in an unpredictable manner, how can we preserve some global reliability guarantees when the number of nodes keeps increasing unboundedly ? To be more specific, we consider the problem or reliably broadcasting information on an asynchronous grid in the presence of Byzantine failures -- that is, some nodes may have an arbitrary and potentially malicious behavior. Our requirement is that a constant fraction of correct nodes remain able to achieve reliable communication. Existing solutions can only tolerate a fixed number of Byzantine failures if they adopt a worst-case placement scheme. Besides, if we assume a constant Byzantine ratio (each node has the same probability to be Byzantine), the probability to have a fatal placement approaches 1 when the number of nodes increases, and reliability guarantees collapse. In this paper, we propose the first broadcast protocol that overcomes these difficulties. First, the number of Byzantine failures that can be tolerated (if they adopt the worst-case placement) now increases with the number of nodes. Second, we are able to tolerate a constant Byzantine ratio, however large the grid may be. In other words, the grid becomes scalable. This result has important security applications in ultra-large networks, where each node has a given probability to misbehave.Comment: 17 page

    Resource-Aware Multimedia Content Delivery: A Gambling Approach

    Get PDF
    In this paper, we propose a resource-aware solution to achieving reliable and scalable stream diffusion in a probabilistic model, i.e. where communication links and processes are subject to message losses and crashes, respectively. Our solution is resource-aware in the sense that it limits the memory consumption, by strictly scoping the knowledge each process has about the system, and the bandwidth available to each process, by assigning a fixed quota of messages to each process. We describe our approach as gambling in the sense that it consists in accepting to give up on a few processes sometimes, in the hope of better serving all processes most of the time. That is, our solution deliberately takes the risk not to reach some processes in some executions, in order to reach every process in most executions. The underlying stream diffusion algorithm is based on a tree-construction technique that dynamically distributes the load of forwarding stream packets among processes, based on their respective available bandwidths. Simulations show that this approach pays off when compared to traditional gossiping, when the latter faces identical bandwidth constraint
    • …
    corecore