
© The Author 2009. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on May 9, 2009 doi:10.1093/comjnl/bxp041

Resource-Aware Multimedia Content
Delivery: A Gambling Approach

Mouna Allani
1
, Benoît Garbinato

1
and Fernando Pedone

2,∗

1Information Systems Institute (ISI), University of Lausanne, University of Lausanne (UNIL), CH-1015
Lausanne, Switzerland

2Faculty of Informatics, University of Lugano, University of Lugano (USI), CH-6900 Lugano, Switzerland
∗Corresponding author: fernando.pedone@unisi.ch

In this paper, we propose a resource-aware solution to achieving reliable and scalable stream diffusion
in a probabilistic model, i.e. where communication links and processes are subject to message losses
and crashes, respectively. Our solution is resource-aware in the sense that it limits the memory
consumption, by strictly scoping the knowledge each process has about the system, and the bandwidth
available to each process, by assigning a fixed quota of messages to each process. We describe our
approach as gambling in the sense that it consists in accepting to give up on a few processes sometimes,
in the hope of better serving all processes most of the time. That is, our solution deliberately takes
the risk not to reach some processes in some executions, in order to reach every process in most
executions. The underlying stream diffusion algorithm is based on a tree-construction technique
that dynamically distributes the load of forwarding stream packets among processes, based on their
respective available bandwidths. Simulations show that this approach pays off when compared to

traditional gossiping, when the latter faces identical bandwidth constraints.

Keywords: large-scale systems, reliable streaming, resource awareness

Received 10 October 2008; revised 27 February 2009
Handling editor: Franco Zambonelli

1. INTRODUCTION

Reliable stream diffusion under constrained environment
conditions is a fundamental problem in large-scale multimedia
content delivery. In this context, the efficiency of a given
content delivery solution directly depends on the performance
of its underlying multicast protocol. Environment conditions are
typically constrained by the reliability and the capacity, usually
limited, of its components. Nodes and communication links
can fail, unexpectedly ceasing their operation and dropping
messages, respectively. Moreover, real-world deployment does
not offer nodes and links infinite memory and infinite
bandwidth. Therefore, realistic solutions should use local
storage and inter-node communication sparingly, and account
for node crashes and message losses.

In this paper, we investigate the problem of reliable stream
diffusion in unreliable and constrained environments from
a novel angle. Our approach is probabilistic: with high
probability, all consumers will be reached and all information
addressed to them delivered; however, there is no guarantee
that this will happen. Different from previous probabilistic
algorithms found in the literature, we resort to a ‘gambling

approach,’which deliberately penalizes a few consumers in rare
cases, in order to benefit most consumers in common cases.
We show experimentally that the approach pays off in that it
outperforms traditional gossip-based algorithms (GBA) when
subject to similar environment constraints.

The key idea of our solution is to stream multimedia
content according to a global propagation graph. This graph
approximates a global tree aiming at the maximum reachability
and efficient use of the available bandwidth. The approach is
completely decentralized: nodes build propagation trees, which
we call maximum probability trees (MPTs), autonomously.
Several MPTs are dynamically composed to achieve a global
graph reaching most (hopefully all) consumer nodes. This
solution is scalable and based on a composition of local
optimums, i.e. each MPT ensures the maximum probability
of reaching all processes in its subgraph when subject to
bandwidth constraints. MPTs are composed in a manner that
respects bandwidth constraints, and the MPT construction is
fully parameterized. Nodes are free to define the scope of
their local knowledge, from direct neighborhood to the entire
network. The scope of each process can be defined according

The Computer Journal, Vol. 53 No. 2, 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/85211904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resource-Aware Multimedia Content Delivery: A Gambling Approach 235

to its local constraints (e.g. processing power, memory
capacity).

Besides discussing a new reliable stream diffusion algorithm,
we also show that it can be implemented in a very modular
way, lending itself to real deployment. Our solution consists
in decomposing the problem of reliable stream diffusion into
sub-problems. This separation of concerns gives rise to an
architecture composed of five layers.

The remainder of this paper is organized as follows. In
Section 2 we introduce the system model and define the problem
that motivates this work. Section 3 describes our reliable
streaming solution based on a tree-construction technique.
Section 4 describes a performance evaluation of our approach,
including an analysis of the costs and benefits of gambling.
We discuss related work in Section 5. Finally, in Section 6 we
summarize our findings and conclude with some final remarks.

2. SCALABLE RESOURCE-AWARE STREAMING

Stream diffusion is a typical 3-step scenario: (1) the
producer breaks the outgoing stream into elemental messages
(stream packets) and multicasts them to interested consumers,
(2) intermediate nodes route these messages to the consumers
and (3) each consumer recomposes the received messages into
a coherent incoming stream. This is depicted in Fig. 1. In
a resource-constrained environment, the main challenge then
consists in routing stream messages in a way that efficiently
uses available resources.

2.1. Basic system model

We consider an asynchronous distributed system composed of
processes (nodes) that communicate by message passing. Our

model is probabilistic in the sense that processes can crash
and links can lose messages with a certain probability. More
formally, we model the system’s topology as a connected graph
G = (�, �), where � = {p1, p2, . . . , pn} is a set of processes
of size n and � = {l1, l2, . . .} ⊆ �×� is a set of bidirectional
communication links. Process crash probabilities and message
loss probabilities are modeled as failure configuration C =
(P1, P2, . . . , Pn, L1, L2, . . . , L|�|), where Pi is the probability
that process pi crashes during one computation step and Lj

is the probability that link lj loses a message during one
communication step.

2.2. Problem statement

Intuitively, the main question addressed in this paper is the
following: how can we make stream messages reach all
consumers with a high probability, in spite of unreliable
processes and links, and of the limited resources (e.g.
bandwidth) available to each process?

Formally, the limited resources constraint is modeled as
Q = (q1, q2, . . . , qn), the set of quotas associated to processes
in the system. Each individual quota of messages qi represents
the number of messages process pi is able to send in order to
forward a single stream packet. A quota may represent a set of
physical constraints related to the limited hardware resources
or a dedicated percentage of these resources fixed by the peer
itself. This percentage captures the fact that the user behind a
peer can voluntarily limit the resources dedicated to the P2P
streaming service. In other words, a quota is a translation of
both the percentage of hardware resources a peer is willing to
dedicate to forward a stream packet and the upload limit of the
ISP of the peer, which might be further limited by the percentage
of that bandwidth the peer is willing to dedicate to the streaming

FIGURE 1. Multimedia content delivery—stream diffusion scenario.

The Computer Journal, Vol. 53 No. 2, 2010

236 M. Allani et al.

service. By extending the basic system model presented earlier,
we then can say that the tuple S = (�, �, C, Q) completely
defines the system considered in this paper.

In order to take into account processing and memory
constraints, we further assume that each process has only a
partial view of the system, meaning that its routing decisions
can only be based on incomplete knowledge. Formally, the
limited knowledge of process pi is modeled with distance di ,
which defines the maximum number of links in the shortest
path separating pi from any other node in its known subgraph.
Distance di implicitly defines the partial knowledge of pi

as scope si = (�i, �i, Ci, Qi), with �i ⊆ �, �i ⊆ �,
Ci ⊆ C and Qi ⊆ Q. In the remainder of this paper, any
graph comprised of processes and links should be understood
as also including the corresponding configuration and quota
information.

Based on the above definitions, we can now restate the
problem we address in this paper more succinctly: given its
limited scope si , how should process pi use its quota qi in order
to contribute to reach all consumers with a high probability?

3. A GAMBLING APPROACH

In the absence of any constraints on resources, making
stream messages reach all processes with a high probability
is quite easy, typically via some generous gossiping (or
even flooding) algorithm. In a large-scale resource-constrained
system, however, such a solution is not realistic.

3.1. Diffusion trees as starting point

The starting point of our approach can be found in [1], where
we proposed an algorithm to efficiently diffuse messages
in a probabilistically unreliable environment. Intuitively, the
solution consists in building a spanning tree that contains
the most reliable paths connecting all processes, using a
modified version of Prim’s algorithm [2]. The algorithm is
also somehow resource-aware in that it tries to minimize the
number of messages necessary to reach all processes with a
given probability.

This algorithm, however, does not limit the bandwidth: when
asking the algorithm to diffuse a message with a high probability
in a very unreliable environment, the number of messages tends
to explode. Furthermore, this solution does not limit memory
consumption either: in order to achieve optimality, it requires a
complete knowledge of the system topology and of the failure
probabilities associated to links and processes. Informally, the
approach presented hereafter consists in building a diffusion
graph that exhibits properties similar to that of [1], while taking
into account strict constraints on resources (bandwidth, memory
etc). As presented in Section 2, these constraints are modeled
via qi and si , respectively, the limited quota and the limited
scope available at each process pi .

As soon as we face resource constraints, we have to make
difficult decisions. In the context of this paper, this observation
translates into deciding how high the risk is which we are
willing to take, in order to increase our chances to reach all
consumers. More specifically, the question we ask ourselves is
the following: does it pay off to take the risk to sacrifice a few
consumer processes in some executions, in order to reach every
process in most executions? As we shall see in Section 4, when
comparing the performance of our solution to that of a typical
gossiping approach, the answer is clearly yes.

Intuitively, our approach consists in having processes
make bold decisions, in spite of their limited view of the
system (scope), in the hope to better use the available
resources (quota). That is, along the paths from the producer
to the consumers, a process pi may decide to build a local
propagation tree based on its limited scope si in order to
maximize the probability of reaching everybody in si .1 In
building its local propagation tree, pi also decides how
processes in si should use their quotas. Since these decisions
can be made concurrently, process pi has no guarantee that
processes in si will actually follow its decisions. As we shall
see in Section 4, this approach can lead to some (fairly
rare) executions in which some processes are never reached.
Experiments show however that the benefits of taking such a
risk pays off in most executions.

3.2. Solution overview

Our solution is based on the five-layer architecture pictured in
Fig. 2. The top layer represents a standard stream fragmentation
layer. It executes the scalable streaming algorithm (SSA) and is
responsible for breaking the outgoing stream into a sequence
of messages on the producer side and for assembling these
messages back into an incoming stream on the consumer side.
Roughly speaking, this layer corresponds to the Transport
layer in the OSI model [3]. The SSA layer then relies on
the packet routing algorithm (PRA), which is responsible
for routing stream messages through a propagation graph
covering the whole system; this layer corresponds to the
Network layer in the OSI model. This propagation graph results
from the spontaneous aggregation of various propagation trees
concurrently computed by some intermediate routing processes
defined as responsible for this task. As suggested by Fig. 2,
producers and consumers execute both the SSA and PRA
layers, while pure routing processes only execute the PRA
layer. The responsibility for building propagation trees is
delegated to the propagation tree algorithm (PTA), which in
turn relies on the partial view delivered by the environment
modeling layer (EML). The latter relies on Bayesian inference
to approximate the environment within distance di of each
process pi . Explaining how the environment modeling actually

1The actual criteria that determines whether pi will make such a decision
or not is explained later.

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 237

FIGURE 2. A layered architecture: (a) producer and router, (b) pure router and (c) consumer and router.

works falls beyond the scope of this paper and can be found
in [1]. Finally, the unreliable link layer (ULL) allows each
process pi to send messages to its direct neighbors in a
probabilistically unreliable manner. This layer corresponds to
the Data Link layer of the OSI model.

3.3. Scalable streaming algorithm

The scalable streaming solution, presented in Algorithm 1, is
fairly straightforward. On the producer side, as long as some
data is available from the outgoing stream (line 6), the algorithm
reads that data, builds up a message containing it and multicasts
the message using the multicast() primitive of the PRA layer
(lines 7–10). On the consumer side, upon receiving a message
from PRA (line 11), the algorithm writes the data contained in
that message to the incoming stream, provided that the message
is not out of sequence (lines 12–14). Because of the probabilistic

Algorithm 1 Scalable streaming algorithm at pi .
1: uses: PRA
2: initialization:
3: nextSeq ← 1
4: lastSeq ← 0

5: To multicast some outgoingStream to a set of consumers:
6: while not outgoingStream.eof () do
7: m.data ← outgoingStream.read()

8: m.seq ← nextSeq

9: nextSeq ← nextSeq + 1
10: PRA.multicast(m, consumers)

11: upon PRA.deliver(m) do
12: if m.seq > lastSeq then
13: incomingStream.write(m.data)

14: lastSeq ← m.seq

nature of our environment, messages can indeed be received
out of sequence, in which case they are simply dropped. This
is the standard way to handle out-of-sequence packets when
streaming real-time data, such as audio or video streams. Note
that this strategy can be easily improved by a simple local
buffering mechanism in order to deal with jitter and out-of-order
messages.

3.4. Packet routing algorithm

The packet routing solution, presented in Algorithm 2,
CONSISTS in disseminating stream messages through a
propagation graph generated in a fully decentralized manner.
This propagation graph actually results from the spontaneous
aggregation of several propagation trees. Each propagation tree
is in turn the result of an incremental building process carried
out along the paths from the producer to the consumers. It
is important to note however that the aggregated propagation
graph itself might well not be a tree.

3.4.1. On the producer
The routing process starts with producer pi calling the
multicast() primitive (line 4). As a first step, pi asks the
PTA layer to build a first propagation tree pt , using the
incrementPT () primitive (line 5). This primitive is responsible
for incrementing the propagation tree passed as argument, using
the scope of the process executing it (here pi). Since pi is
the producer, the initial propagation tree passed as argument is
simply composed of pi and its associated information (failure
probability Pi and quota qi). As discussed in Section 3.5,
the returned propagation tree pt maximizes the probability
of reaching everybody in scope si , based on available quotas.
Process pi then calls the optimize() primitive, passing it pt

The Computer Journal, Vol. 53 No. 2, 2010

238 M. Allani et al.

Algorithm 2 Packet routing algorithm at pi .
1: uses: PTA, ULL, EML
2: initialization:
3: r ← ...

4: procedure multicast (m)

5: pt ← PTA.incrementPT(({pi}, ∅, {Pi}, {qi}))

6: �m ← optimize(pt)

7: propagate(m, pt, pi , �m)

8: upon ULL.receive(m, pk, pt, �m) do
9: if EML.distance(pk, pi) ≥ r then

10: pt ← PTA. incrementPT(pt)

11: �m ← optimize(pt)

12: propagate(m, pt, pi , �m)

13: else
14: propagate(m, pt, pk, �m)

15: if pi is interested in m then
16: SSA.deliver(m)

17: procedure propagate(m, pt, pk, �m)

18: for all pj such that link (pi, pj) ∈ E(pt) do
19: repeat �m[j] times :
20: ULL.send(m, pk, pt, �m) to pj

(line 6). This primitive is discussed in detail in Section 3.7. At
this point, all we need to know is that it returns a propagation
vector �m indicating, for each link in pt , the number of messages
that should be sent through that link in order to maximize the
probability of reaching everybody in scope si . Finally, pi calls
the propagate() primitive (line 7), which simply follows
the forwarding instructions computed by optimize(). That is,
it sends stream message m, together with some additional
information, to pi’s children in pt . As we shall see below, this
additional information is used throughout the routing process
to build up the propagation graph.

3.4.2. On the consumer
When a consumer pi receives message m, together with
the aforementioned information (line 8), it has to first
decide whether to increment pt before further propagating m

(lines 10–12), or to simply follow the propagation tree pt

it just received (line 14). The propagation tree pt should be
incremented if and only if the distance that separates pi from pk ,
the process that last incremented pt , is equal to r ≤ dk , the
increment rate. In such a case, pi is said to be an incrementing
node.

Intuitively, r defines how often a propagation tree should
be incremented as it travels through the propagation graph.
The latter then spontaneously results from the concurrent and
uncoordinated increments of propagation trees finding their way
to the consumers. Finally, process pi delivers message m to
the SSA layer only if it is interested in it (lines 15 and 16). If
this is not the case, process pi is merely a router node.

Algorithm 3 Propagation tree algorithm at pi .
1: uses: EML
2: initialization:
3: lpti ← ∅
4: pti ← ∅
5: si ← ∅

6: function incrementPT (pt)

7: s ← EML.getScope()
8: if pti
= pt ∨ si
= s then
9: pti ← pt

10: si ← s

11: myMpt ← mpt(si , pti)

12: lpti ← subtree of myMpt with pi as root
13: return pt ∪ lpti

3.5. Propagation tree algorithm

The solution to increment propagation trees is encapsulated
in the incrementPT() primitive, presented in Algorithm 3.
This primitive takes a propagation tree pt as argument and
increments it if needed, i.e. if something changed in the
environment of pi or if pt is different from the propagation tree
that was last incremented (line 8). The conditional nature of this
increment is motivated by performance and resource concerns:
during stable periods of the system, propagation trees remain
unchanged, cutting down the processing load of incrementing
nodes. To get an up-to-date view of its surrounding environment,
pi calls the getScope() primitive provided by EML (line 7).

To build the local tree lpti , process pi first builds a MPT, using
the mpt() primitive (line 11). Details about the notion of MPT,
and primitive mpt(), are provided in Section 3.7. Briefly, MPT
maximizes the probability of reaching every process within
a given scope, by taking into account not only the intrinsic
reliability of processes and links in scope si , but also the
individual quotas available to processes in si . Note that primitive
mpt() increments pt as a whole (see discussion below), whereas
Algorithm 3 is in fact only interested in the subtree rooted at pi

(line 12). This subtree is precisely the local tree lpti .

3.6. The gambling effect

Intuitively, the approach taken by the mpt() primitive consists in
augmenting pt with the best branches in scope si , even if some
of these branches are not downstream from pi . These latter
branches are said to be concurrent branches. This approach
somehow consists in taking the risk to exclude some consumers
from the propagation graph by accident. Process pi has indeed
no way to inform processes located along concurrent branches
about its incremental decisions, and has no guarantee that
incremental decisions will be taken coherently with respect to
each other. In order to partially mitigate this risk, Algorithm 3
merges the local tree with the original propagation tree passed as
argument (line 13), rather than directly returning the maximum
reliability tree (MRT).

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 239

FIGURE 3. Propagation tree increment: (a) before the return statement and (b) returned propagation tree.

3.6.1. Execution example
Figure 3 illustrates the incrementing of the propagation tree on a
simple example. In this scenario, the distance defining the scope
and the increment rate r are the same for all processes and equal
to 2. Process p1, the producer, builds a first propagation tree pt1
covering its scope s1; this tree is pictured in Fig. 3a using bold
links. All nodes in pt1 that are at a distance r = 2 from p1 are
incrementing nodes, which means they have to increment pt1
when they receive it. Process p3 being such a node, it calls the
mpt() function, passing it pt1 and its scope s3. This function
adds the dashed links pictured in Fig. 3a to pt1 and returns
the resulting MPT; this MPT contains the local propagation
tree rooted at p3, i.e. lpt3. The latter is then extracted from
the MPT, merged with the initial propagation tree pt1 and
returned. Figure 3b pictures the new propagation tree resulting
from the above increment process.

3.7. Maximum probability tree

The concept of MPT is at the heart of our approach, as
it materializes the risk taken during the construction of
the propagation graph. Intuitively, an MPT maximizes the
probability of reaching all processes within a given scope by
optimally using the quotas of these processes. Before describing
how the mpt() function given in Algorithm 4 builds up an
MPT, we first recall the notions of reachability probability and
reachability function.

3.7.1. Reachability probability
The reachability function, denoted R(), computes the
probability of reaching all processes in some propagation
tree T with configuration C(T), given a vector �m defining
the number of messages that should transit through each link
of T . We then define the probability returned by R() as T ’s
reachability probability. Equation (1) proposes a simplified
version of the reachability function borrowed from [1]—this
version assumes that only links can fail by losing messages

Algorithm 4 MPT | building process.
1: function mpt(S, T)

2: while V (S)
⊆ V (T) do
3: O ← {lj,k | lj,k ∈ E(S) ∧ pj ∈ V (T) ∧ pk ∈

V (S) − V (T)}
4: let lu,v ∈ O such that ∀lr,s ∈ O :
5: maxR(T ∪ lu,v) ≥ maxR(T ∪ lr,s)

6: T ← T ∪ lu,v

7: return T

8: function maxR(T)

9: �m ← optimize(T)

10: return R(T , �m)

11: function optimize(T)

12: let �m : ∀lj ∈ E(T), �m[j] is the number of messages to be
sent through link lj

13: �m ← (1, 1, · · · , 1)

14: for all ps ∈ V (T) do
15: let �s ⊂ E(T) : lk ∈ �s ⇒ (ps, pk) ∈ E(T)

16: if | �s | > qs then
17: return (0, 0, · · · , 0)

18: while
∑

lk∈�s
�m[k] < qs do

19: let �mu : (lu ∈ �s) ∧ (∀t
=u �mu[t] = �m[t]) ∧ (�mu[u] =
�m[u] + 1) ∧ (R(T , �mu) − R(T , �m) is max)

20: �m ← �mu

21: return �m

with a given probability, whereas processes are assumed to be
reliable.2

R(T , �m) =
| �m|∏

j=1

1 − L
m[j]
j , where Lj ∈ C(T). (1)

Using R(), we then define the maxR() function presented
in Algorithm 4 (lines 8–10), which returns the maximum
reachability probability for T . To achieve this, maxR() first
calls the optimize() function in order to obtain a vector �m

2Note that this simplification causes no loss of generality; see [1] for details.

The Computer Journal, Vol. 53 No. 2, 2010

240 M. Allani et al.

that optimally uses the quotas available to processes in T . It
then passes this vector, together with T , to R() and returns the
corresponding reachability probability.

The optimize() function iterates through each process ps

in T and divides individual quota qs in a way that maximizes
the probability of reaching direct children of ps (lines 14–
20). For this, the function optimize() allots messages of qs

one by one, until all messages have been allocated (lines 18–
20). That is, in each iteration step it chooses the outgoing
link lu from ps that maximizes the gain in the probability
of reaching all ps’s children in T , when sending one more
message through lu (line 19). When all individual quotas have
been allocated, optimize() returns a vector �m that provides the
maximum reachability probability when associated with T .

3.7.2. MPT building process
We now have all the elements needed to present the MPT
building process carried out by mpt(), given a scope S and an
initial propagation tree T . This function simply iterates until
all processes in S but not in T have been linked to T , i.e.
it only stops when T covers the whole scope S (lines 2–6).
In each iteration step, the mpt() function then adds the link
that produces a new tree exhibiting the maximum reachability
probability (line 5).

3.7.3. Execution example.
Figures 4–6 illustrate the MPT building process based on a
simple example. In this example, the initial tree T is composed
of only process p1 and S is the scope of p1, i.e. S = s1. During

FIGURE 4. Resulting tree after the first iteration step.

FIGURE 6. Final MPT.

the first iteration step, the algorithm simply chooses the most
reliable link, i.e. link l1,2 with failure probability L1,2 = 0.2.
At this point, it means that the entirety of p1’s quota has been
allocated to reach p2. In this example, the quota is identical for
all processes and equal to 3, i.e. ∀pi : qi = 3.

At the beginning of the second step, the algorithm faces two
alternatives: either adding the link l1,3 and splitting the quota
of p1 between links l1,2 and l1,3, or adding the link l2,4 and using
the entirety of q2, the quota of p2, to reach p4. These two alter-
natives are pictured in Fig. 5 as trees T ′ and T ′′, respectively.

Based on the result of the function maxR(), the algorithm
chooses to keep T ′′, since it is the tree that offers the maximum
probability of reaching everybody. Note however that this
decision implies adding the link l2,4 rather than the link l1,3,
although the latter is more reliable. Figure 6 pictures the final
MPT returned by function mpt().

4. PERFORMANCE EVALUATION

The performance of our scalable algorithm was evaluated
through a simulation model. For simplicity, we only considered
link failures, while assuming that processes are reliable, i.e.
∀pi : Pi = 0. As mentioned in Section 3.7, this does not
compromise the generality of our approach. We performed
experiments with processes organized in various topologies:
we started from a ring where each process had two neighbors
and then incrementally augmented the number of neighbors
until reaching a connectivity of 20 neighbors per process. This
provided a spectrum of possibilities for the evaluations, starting

FIGURE 5. Alternative trees during the second iteration step.

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 241

with a worst-case topology with respect to process distances
(i.e. the ring), and gradually reducing the mean distance between
processes in the system by adding more links. Unless mentioned
otherwise, we assumed topologies with 100 processes.

To facilitate the evaluation, we set the scope to be the same
for all processes during the execution, i.e. ∀pi : di = d. To
avoid regular network configurations, we then defined 20% of
processes to be hubs. A hub has twice the quota of a normal
process and is connected to its neighbors through highly reliable
links, i.e. we set the message loss probability of these links
to 10−4. Our performance evaluation consists in measuring
the success rate of 1000 distinct executions. We consider an
execution to be a success when the multicasted stream packet
reaches all nodes in the system, i.e. the success rate is precisely
what the notion of reachability probability tries to capture.

4.1. Benefits of gambling

Multicast protocols fall into two categories, those based
on structured information dissemination such as our SSA,
and those based on unstructured information dissemination,
typically the case of gossip-based protocols. To measure the
benefit of our gambling approach, we compare the SSA with a
typical GBA, modified to implement the notion of individual
quota: to propagate an incoming message m, the algorithm
repeats the following two steps until exhausting its quota:
(1) randomly choose a neighbor among those that did not yet
acknowledge m and (2) send m to those neighbors. For the
comparison, we then set the quota to 5 and the failure probability
of each link3 to a random value within [0.05, 0.55]. As for
specific parameters of SSA, we set the scope to 5 and the
increment rate to 2.

Figure 7 shows the evolution of the success rate of SSA
and GBA, respectively, when varying the network connectivity.
As we can see, the success rate of GBA decreases as the
connectivity increases. This is due to the fact that each process
randomly uses its quota of messages, without taking into
account the reliability of links. Indeed, as the connectivity
increases, it becomes more and more important to maximize the
impact of each message on the overall reachability probability.

In contrast, for SSA, the success rate tends to increase with
the network connectivity because SSA has a larger choice of
links when computing local MPTs, and thus more chances to
build a global propagation graph with a favorable reachability
probability. Furthermore, even if some processes have a number
of neighbors that exceeds their quota, our approach still tries to
maximize the overall reachability probability by adapting the
number of children of each process to its quota. As shown in
Fig. 7, this has a significant impact on the actual success rate.
For a connectivity of 20 for example, which is four times higher
than the quota used in our experiments, the success rate is close
to 100. In this figure, however, we can also see a drop in the

3To be more precise: each link that is not attached to a hub.

FIGURE 7. SSA vs. GBA with quotas—success rate.

success rate for connectivities between 10 and 16. As discussed
hereafter, this drop constitutes the costs of gambling.

4.2. Cost of gambling

To evaluate the cost of our gambling approach, we introduce
the notion of a missed execution of our algorithm. Such an
execution, also simply called a miss, is one where at least one
node in the system never received the multicast packet. We can
further categorize such misses as either probabilistic misses or
gambling misses. Probabilistic misses are caused by unreliable
links sometimes losing messages, i.e. they are due to the
probabilistic nature of the model we consider. Gambling misses
on the other hand happen when the effective propagation graph
does not cover the whole system.An effective propagation graph
results from the aggregation of effectively followed propagation
trees.

FIGURE 8. Influence of probabilistic misses and gambling misses on
SSA’s success rate.

The Computer Journal, Vol. 53 No. 2, 2010

242 M. Allani et al.

FIGURE 9. Conflicts causing gambling misses: (a) cyclic conflict (detected) and (b) mutual delegation conflict (not detected).

In Fig. 8, we show how probabilistic misses and
gambling misses influence the success rate of our algorithm,
i.e. the two curves presented in this figure result from
the decomposition of the SSA curve presented in Fig. 7.
Considering probabilistic misses, we can observe that as
the connectivity increases, the probability of reaching all
nodes also increases. This is not surprising, because as the
connectivity increases, the number of links increases and the
algorithm has a larger choice of links when computing MPT

and thus more chances to get an MPT with a favorable
reachability probability. In contrast, for gambling misses, as
the connectivity increases, misses due to the structure of the
effective propagation graph become more frequent because the
algorithm has a larger choice of links, which induces a higher
risk of making contradictory decisions when building distinct
propagation trees. However, when reaching a high connectivity
(12 links or more in our example), gambling misses become
less frequent because the scope of each process becomes close
to the whole system.4

Gambling cost mitigation The good news is that many cases
of gambling misses are detectable and can be mitigated
via a simple countermeasure, which leads to a few nodes
exceeding their quotas. As discussed in Section 2.2, we
assume that a quota of a node is not defined as the whole
node propagation capacity. It can represent either a part
of its capacity or the percentage of resources the peer
allocated to the streaming service. As we have just seen, a
gambling miss occurs when the resulting effective propagation
graph does not cover the whole system. Such misses can

4When the scope covers the whole system, the propagation graph
corresponds to the MPT built by the producer and covering the whole system.
In this case there is no gambling involved.

be caused by two types of conflicting situations, pictured
in Fig. 9.

A cyclic conflict, illustrated in Fig. 9a, is caused by the
inclusion of some node c into two distinct propagation trees.
When c receives a propagation tree, it uses its quota to propagate
the packet in that tree, not knowing that a second tree will reach
it.Thus, when the second propagation tree reaches c, the absence
of the remaining quota can cause some descendants of c in the
second tree to never be reached. In Fig. 9a, node c receives two
conflicting propagation trees, first one computed by node a and
another computed by node b. As a consequence, nodes below c

in the tree computed by b might never be reached. It is easy to
see that upon reception of the second tree, c is able to detect the
conflict and to apply the countermeasure described hereafter.

A mutual delegation conflict, illustrated in Fig. 9b, is caused
by contradictory decisions about how to include a given
node, when incrementing two distinct propagation trees. In
Fig. 9b, node a decides to delegate the task of reaching
node x to node b, while b decides to delegate the task of
reaching x to a. As a consequence, node x will never be
reached. As incrementing nodes do not inform each other about
their respective incrementing decisions, the mutual delegation
conflict is not detected.

4.2.1. Cyclic conflict countermeasure
As already suggested, we can mitigate cyclic conflicts by
occasionally having some nodes exceed their quotas. It is
interesting to note, however, that the detection of a cyclic
conflict by some node c does necessarily imply that some
nodes might not be reached. More precisely, there exists two
independent cases that require node c to exceed its quota. The
first case is straightforward and occurs when a descendant node
of c in the second propagation tree is not in the first propagation
tree. This case is formalized by Condition 2. The second case,

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 243

FIGURE 10. Two conflicting propagation trees received by c: (a)
propagation tree T1 (received first) and (b) propagation tree T2
(received later).

formalized by Condition 3, is more complex and explained by
the example of Fig. 10.

∃y ∈ T2.children(c) − T1 (2)

∃y ∈ (T2.children(c) ∩ T1))

∧ (x ∈ T2 | c ∈ T2.children(x) ∧ (y ∈ T1.children(x)))

(3)

In Fig. 10, node c first receives tree T1 and later T2. When
receiving T2 from node x, c detects that node y might not be
reached. Indeed, in both trees T1 and T2, y is a descendant
of c. However, x is a descendant of c in T1 and an ancestor
of c in T2. Therefore, when c receives T2 from x, it deduces
that x was either not reached in T1 or reached but decided to
re-transmit through T2. In both cases, c should re-transmit, and
hence exceed it quota, in order to reach y or in order to reach
the node for which x decided to re-transmit.

4.2.2. Countermeasure evaluation
When evaluating the effectiveness of our solution to mitigate
gambling costs, we compared the final success rate of
experiments implementing the proposed countermeasure with
experiments that do not. In doing so, we varied the network
connectivity c, while fixing the incrementing rate r to 2, the
scope d defining the known subgraph of each process to 5, the
range of loss probability Li to [0.05, 0.55] and the quota of
messages qi to 5.

Fig. 11a shows the success rate of executions implementing
our countermeasure by varying the network connectivity, while
Fig. 11b shows the corresponding average number of exceeded
quotas based on 1000 distinct executions. When comparing
the curves of Fig. 11a and Fig. 8 that show the success rate
considering the gambling misses,5 we can see that our counter-
measure significantly improves the final result. Furthermore,
as shown in Fig. 11b, the average number of exceeded quotas
is negligible, i.e. less than one for 1000 distinct executions.

5Executions corresponding to these two curves have the same parameters.

4.3. Benefits of combined adaptiveness

This section discusses the advantage of combining both resource
and unreliability awareness when building the propagation tree,
that is, it shows the benefit of our MPT-construction technique.
We compare our MPT with two relevant solutions. The first
solution is inspired by the tree defined in Overcast [4]. Overcast
is targeted at bandwidth-intensive applications. It defines a tree
overlay that aims to maximize the bandwidth by placing nodes
as far as possible from the root (the source) without sacrificing
bandwidth. The available bandwidth resource in Overcast is
modeled as weights assigned to links. In order to adapt the
Overcast tree-construction technique to our model, we consider
the link weight as the number of messages assigned to the link,
calculated by dividing the node quota by the number of its
outgoing links in the tree. Thus, when building the Overcast
tree in our model, at each iteration we add the link through
which we can assign the maximum number of messages.

The second protocol is part of our previous work defined in [1]
defining a reliable broadcast taking into account nodes’ failure
probabilities (Pi) and links’ message loss probabilities (Li).
This broadcast solution is also based on a tree overlay named
the MRT. This tree defines the most reliable tree of a known
subgraph through which a message will be propagated. To avoid
compromising this protocol, we assume for this comparison that
each node will be able to send at least one message to each of
its children in a tree. Thus, as shown in Fig. 12a, each node’s
quota of messages is equal to the number of direct neighbors,
i.e. ∀qi , qi = c, the network connectivity.

When it comes to the limited knowledge each node has
about the system, we assume that, in both our strategy and the
compared protocols, nodes have only a partial view. Based on
this knowledge, we use our gambling increment strategy in order
to build a propagation graph covering the whole system while
using the different tree building criteria. Then, we apply our
countermeasure to mitigate the gambling misses and focus our
comparison in probabilistic misses. For a fair comparison, we
also apply our Optimize() function both to the Overcast tree
and the MRT. Thus, once our comparison trees are built, all the
nodes’quotas are distributed in a way to maximize the advantage
of this resource.

In this comparison, we vary the network connectivity c, while
fixing the incrementing rate r to 2, the scope d defining the
known subgraph of each process to 5 and the range of loss
probability Li to [0.05, 0.55]. As shown in Fig. 12, the success
rate of our approach is higher when using MPT than when
using the Overcast tree and the MRT. When the quota is equal
to the network connectivity c (Fig. 12a), the success rate of
our approach and its comparison protocols increases as the c

increases and thus as qi increases. This reflects the capacity of
available resources to hide the environment unreliability. When
the quota qi is fixed to five messages (Fig. 12b), our approach
provides a higher reliability when using MPT than when using
the Overcast tree. In addition, our approach has a different

The Computer Journal, Vol. 53 No. 2, 2010

244 M. Allani et al.

FIGURE 11. SSA with countermeasure, Li ∈ [0.05, 0.55] and qi = 5 messages: (a) success rate and (b) average number of exceeded quotas.

FIGURE 12. SSA reliability and bandwidth adaptiveness advantage: (a) qi = c and (b) qi = 5.

behavior than when using the Overcast tree while varying
the network connectivity. Indeed, as the connectivity increases
more links in the system are created offering a larger choice
of links to the MPT-construction technique. While the MPT
takes advantage to include more reliable links, the Overcast tree
moves away from the line structure that imposes more leaves
and thus more lost quotas. These latter quotas would contribute
to hide the environment unreliability if not lost.

4.4. Scalability

In order to evaluate the scalability of our algorithm, we
performed several experiments with our simulation model, by
drastically augmenting the number of processes in the system.

In doing so, we considered all links to have the same loss
probability L � 0.05, and we fixed the scope d to 50, the
incrementing rate r to 40 and the network connectivity c to 4.
We also considered all individual quotas qi to be the same
and equal to the network connectivity, i.e. ∀qi , qi = 4. Our
scalability evaluation is pictured in Figs 13a and 14a, which
show the rate of executions that succeeded to reach all nodes
(100% of nodes), 99% of nodes and 98% of nodes. In Fig. 13a
the number of nodes in the system is varied in a linear way while
in Fig. 14a it is varied in an exponential way. Figs 13b and 14b
then show the corresponding countermeasure price, in terms of
the average of exceeded quotas needed to handle detectable
gambling misses. Based on these figures, we can conclude
that our strategy provides a scalable streaming solution, with

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 245

FIGURE 13. Scalability of SSA with linear growth of nodes, L � 0.05 and qi = 4 messages: (a) success rate, (b) average number of exceeded
quotas and (c) system diameter and built tree depth.

a graceful linear decrease as the number of processes in the
system increases. We also notice that our solution requires
a very small number of exceeded quotas to correct cyclic
conflicts.

In each execution we have measured (1) the system diameter,
computed as the number of links in the shortest path separating
the most distant nodes; (2) the average tree depth, which
represents the average distance, in terms of number of links,
separating the source node to all the leaves in the resulting
propagation graph; and (3) the tree depth in the propagation
graph (i.e. maximum distance between the source node and the
leaves). These measurements are shown in Figs 13c and 14c.
Note that the average tree depth is lower than the system
diameter. This shows that while our tree-construction technique
aims at using the maximum of available resources, the resulting
propagation graph is not a line, although a line is the topology
that maximizes the use of quotas. Indeed, when enough quotas
are available at some nodes (e.g. at hubs) our MPT-construction

algorithm assigns more than one child to those nodes, making
the global tree shorter.

5. RELATED WORK

Several peer-to-peer streaming solutions have been proposed
recently. Mainly, we can classify them into two classes:
structured [4–11] and unstructured [12–18]. The unstructured
approach usually relies on a gossiping protocol, which consists
in having each peer forward the data it receives to a set
of randomly chosen neighbors. As a consequence, the path
followed by the disseminated data is not deterministic. In
contrast, the structured approach consists in first organizing
the network peers into some overlay network and in routing
disseminated data through this virtual topology.

These two approaches focus on different goals. Initially the
structured strategy was devised to adapt to the underlying

The Computer Journal, Vol. 53 No. 2, 2010

246 M. Allani et al.

FIGURE 14. Scalability of SSA with exponential growth of nodes, L � 0.05 and qi = 4 messages: (a) success rate, (b) average number of
exceeded quotas and (c) system diameter and built tree depth.

network characteristics, whereas the unstructured strategy,
known as network agnostic, was devised for scalability. To
ensure the same reliability, a structured dissemination uses
fewer messages than an unstructured one. It however assumes
that nodes have some knowledge about the network and imposes
a computation overhead, which hinders the scalability of these
approaches.

Recently several researches worked to reduce the gap
between the structured and the unstructured approaches.
In the unstructured side, several approaches proposes a
more deterministic forward decision in order to adapt some
environment constraints or to avoid wasting resources by
sending a duplicated message. Along this line, [12, 19, 20]
propose gossip-based strategies to ensure either an optimal
reliability or an optimal delay by tuning the forward decision
based on information about the neighbors received packets. That
is, in order to reach some delay or rate targets, each node tries
to answer the following question: which stream packets should
be forwarded to which neighbor? Similar to our approach, [19]

addresses the network links’ capacity limitations, however, it
does not consider these components’ unreliability.

In the structured side, several approaches propose an overlay
construction mechanism to approach the scalability of the
unstructured strategies. Our solution is part of this category.
Along this line, several solutions based on a tree have been
proposed in the literature [4, 7, 8, 21]. Some of them define
a multicast tree that aims at optimizing the bandwidth use
[4, 7, 22]. Others also deal with scalability by limiting
the knowledge each process has about the system [8, 21];
yet other systems aim at increasing robustness with respect
to packet loss [23–25]. Our approach differs from these
systems in that it targets the three goals simultaneously. Our
propagation structure is built collaboratively by distributed
processes using their respective partial views of the system.
Reliability is accounted for by each process when building
its local tree. Finally, bandwidth constraints are considered
when defining how to forward packets along the propagation
graph.

The Computer Journal, Vol. 53 No. 2, 2010

Resource-Aware Multimedia Content Delivery: A Gambling Approach 247

Narada [7] builds an adaptive mesh that includes group
members with low degrees and with the shortest path delay
between any pair of members. Then, a standard routing protocol
is run on the overlay mesh. This work differs from ours by
considering latency as the main cost related to links. While
using the probing to change links in order to optimize the
mesh, Narada does not take into account the loss probability of
added or retrieved links. Furthermore, Narada nodes maintain a
global knowledge about all group participants. In comparison,
we take the process and link failure probabilities into account
and maintain local information only.

Regarding the forwarding load distribution, the work closest
related to ours is Overcast [4], which leads to deep distribution
trees. Such a tree would be our MPT in reliable environments,
that is, if links do not lose messages.

Reducing the number of gossip messages exchanged between
processes by taking the network topology into account is
discussed in [26, 27]. Processes communicate according to a
pre-determined graph with minimal connectivity to attain a
desired level of reliability. Similar to our approach, the idea is to
define a directed spanning tree on the processes. Different from
ours, process and link reliabilities are not taken into account to
build such trees.

Our strategy shares some design goals with broadcast
protocols such as [1]. Both rely on the definition of criteria for
selecting the multicasting graph. In our strategy, however, we
strive to both decrease packet loss and balance the forwarding
load. The notion of reachability probability of a tree is presented
in [1] to define the MRT. In our work, we define the reachability
probability of the streaming differently, by considering local
knowledge only. These approaches illustrate a trade-off in
stream diffusion algorithms: while the protocol in [1] can lead
to the optimum propagation tree, it requires global topology
knowledge; our current algorithm relies on local knowledge but
may not result in the optimal propagation tree.

When it comes to dealing with loops, which naturally
appear in decentralized tree-based streaming solutions, several
streaming solutions propose tree-computation techniques that
consist in dividing multicast members into groups. In such
approaches, each group has a leader who is responsible for
organizing group members in a subtree, while leaders are in
turn also organized in a tree [6, 28]. While this strategy prevent
loops in the resulting overlay, it however penalizes the efficiency
since all optimization are done locally to each group, i.e. nodes
in different groups are unable to form overlay links.

Another set of tree-based solutions avoid loop problems by
taking advantage of logical-address techniques, traditionally
dedicated to routing solutions, in order to build a tree overlay.
An example of such solutions is SplitStream [8], which builds
several trees based on Scribe [5] and Pastry [29]. This approach
ensures scalability since no computation is needed to define
the tree. The routing is done implicitly by following the logical
addresses assigned to members. The drawback of this approach
is the absence of a match between the overlay and the underlying

physical network. That is, no efficiency guarantee can be
ensured with this approach.

Our approach to detect loops, when building efficient tree
overlays, differs from previous ones in that it ensures a resulting
global tree close to the one built in a centralized manner, i.e.
the tree we would obtain if we had a global knowledge about
the system. In [30], we presented an overview of our solution
focusing on the tree-building technique, while providing no
detail on our loop detection mechanism nor on its handling.

6. CONCLUSION

This paper introduces a probabilistic algorithm for reliable
stream diffusion in unreliable and constrained environments.
Different from more traditional approaches, we resort to
a “gambling approach,” which deliberately penalizes a few
consumers in rare cases, in order to benefit most consumers
in common cases. Experimental evaluation has shown that
our protocol outperforms GBAs when subject to similar
environment constraints. We believe that this may open up new
directions for future work on large-scale data dissemination
protocols.

FUNDING

This research is funded by the Swiss National Science
Foundation, in the context of Project number 200020-120188.

REFERENCES

[1] Garbinato, B., Pedone, F. and Schmidt, R. (2004) An Adaptive
Algorithm for Efficient Message Diffusion in Unreliable
Environments. Proc. DSN’04, Florence, Italy, pp. 507–516. IEEE

[2] Aho, A.V., Hopcroft, J.E. and Ullman, J. (1987) Data Structures
and Algorithms, Addison-Wesley.

[3] Tanenbaum,A.S. (2002) Computer Networks. Prentice-Hall PTR,
NJ, USA.

[4] Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek M.F. and
O’Toole, Jr. J.W. (2000) Overcast: Reliable Multicasting with
an Overlay Network. Proc. OSDI’00, San Diego, CA, USA,
pp. 197–212. USENIX

[5] Castro, M., Druschel, P., Kermarrec, A.M. and Rowstron, A.I.T.
(2002) Scribe: a large-scale and decentralized application-level
multicast infrastructure. IEEE J. Sel. Areas Commun., 20,
1489–1499.

[6] Banerjee, S., Bhattacharjee, B. and Kommareddy, C. (2000)
ScalableApplication Layer Multicast. Proc. SIGCOMM’02; New
York, NY, USA, pp. 205–217.

[7] Chu, Y., Rao, S. and Zhang, H. (2000) A Case for End System
Multicast. Proc. SIGMETRICS’00, Santa Clara, CA, USA,
pp. 1–12. ACM

[8] Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A.,
Rowstron,A. and Singh,A. (2003) SplitStream: High-Bandwidth
Multicast in Cooperative Environments. Proc. SOP’03, Bolton
Landing, NY, USA, pp. 298–313. ACM

The Computer Journal, Vol. 53 No. 2, 2010

248 M. Allani et al.

[9] Francis, P. (2000) Yoid: Extending the Internet Multicast Archi-
tecture. AT&T Center for Internet Research at ICSI (ACIRI).

[10] Mathy, L., Canonico, R. and Hutchison, D. (2001) An Overlay
Tree Building Control Protocol. Proc. NGC’01, London, UK,
pp. 76–87. Springer.

[11] Tran, D.A., Hua, K.A. and Do, T. (2003) ZIGZAG: An Efficient
Peer-to-Peer Scheme for Media Streaming. Proc. INFOCOM’03,
San Francisco, CA, USA, pp. 1283–1292. IEEE.

[12] Bonald, T., Massoulié, L., Mathieu, F., Perino, D. and Twigg,
A. (2008) Epidemic Live Streaming: Optimal Performance
Trade-offs. Proc. SIGMETRICS’08, Annapolis, MD, USA,
pp. 325–336. ACM.

[13] Sopcast, http://www.sopcast.com/ (accessed May 1, 2006).
[14] Hei, X., Liang, C., Liang, J., Liu, Y. and Ross, K.W. (2006)

Insights into PPLive: A Measurement Study of a Large-Scale
P2P IPTV System. Proc. IPTV Workshop’06, Edinburgh, UK.

[15] Zhang, X., Liu, J., Li, B. and Yum, Y.S.P. (2005) CoolStreaming/
DONet: A Data-driven Overlay Network For Peer-to-Peer Live
Media Streaming. Proc. INFOCOM’05, Miami, FL, USA,
pp. 2102–2111. IEEE

[16] Kermarrec, A.M., Massoulie, L. and Ganesh, A.J. (2001)
Probabilistic Reliable Dissemination in Large-scale Systems.
Microsoft Research, Cambridge, UK.

[17] Eugster, P., Guerraoui, R., Handurukande, S., Kermarrec, A.-M.
and Kouznetsov, P. (2001) Lightweight Probabilistic Broadcast.
Proc. DSN’01, Gothenburg, Sweden, pp. 443–452. IEEE.

[18] Coolstreaming, http://www.coolstreaming.us (accessed May 30,
2004).

[19] Massoulié, L., Twigg,A., Gkantsidis, C. and Rodriguez, P. (2007)
Randomized Decentralized Broadcasting Algorithms. Proc.
INFOCOM’07, Anchorage, AK, USA, pp. 1073–1081. IEEE

[20] Sanghavi, S., Hajek, B. and Massoulié, L. (2007) Gossiping
with Multiple Messages. Proc. INFOCOM’07, Anchorage, AK,
USA, pp. 2135–2143. IEEE

[21] Kostic, D., Rodriguez, A., Albrecht, J., Bhirud, A. and Vahdat, A.
(2003) Using Random Subsets to build Scalable Network
Services. USITS’03, Seattle, WA, USA. USENIX.

[22] Zheng, X., Cho, C. and Xia, Y. (2008) Optimal Peer-to-Peer
Technique for Massive Content Distribution. Proc. INFOCOM
08, Phoenix, AZ, USA, pp. 151–155. IEEE

[23] Apostolopoulos, J.G. (2001) Reliable Video Communication
Over Lossy Packet Networks Using Multiple State Encoding and
Path Diversity. Proc. VCIP’01, San Jose, CA, USA, pp. 392–409.
SPIE

[24] Apostolopoulos, J.G. and Wee, S.J. (2001) Unbalanced Multiple
Description Video Communication Using Path Diversity. Proc.
ICIP’01, Thessaloniki, Greece, pp. 966–969. IEEE

[25] Nguyen, T. and Zakhor, A. (2002) Distributed Video Streaming
with Forward Error Correction. Int. Packet Video Workshop’02,
Pittsburgh PA, USA.

[26] Lin, M.-J. and Marzullo, K. (1999) Directional Gossip: Gossip
in a Wide Area Network. University of California, San Diego,
CA, USA.

[27] Lin, M.-J., Marzullo, K. and Masini, S. (1990) Gossip Versus
Deterministic Flooding: Low Message Overhead and High
Reliability for Broadcasting on Small Networks. University of
California, San Diego, CA, USA.

[28] Chawathe, Y., McCanne, S. and Brewer E.A. (2000) RMX:
Reliable Multicast for Heterogeneous Networks. Proc. INFO-
COM’00, Tel Aviv, Israel, pp. 795–804. IEEE

[29] Rowstron, A. and Druschel, P. (2001) Pastry: Scalable,
Distributed Object Location and Routing for Large-scale Peer-
to-Peer Systems. Proc. Middleware’01, Heidelberg, Germany,
pp. 329–350. Springer, Berlin.

[30] Allani, M., Garbinato, B., Pedone, F. and Stamenkovic, M.
(2007) Scalable and Reliable Stream Diffusion: A Gambling
Resource-Aware Approach. Proc. SRDS’07, Beijing, China,
pp. 288–300. IEEE.

The Computer Journal, Vol. 53 No. 2, 2010

	1 Introduction
	2 Scalable Resource-Aware Streaming
	2.1 Basic system model
	2.2 Problem statement

	3 A Gambling Approach
	3.1 Diffusion trees as starting point
	3.2 Solution overview
	3.3 Scalable streaming algorithm
	3.4 Packet routing algorithm
	3.5 Propagation tree algorithm
	3.6 The gambling effect
	3.7 Maximum probability tree

	4 Performance evaluation
	4.1 Benefits of gambling
	4.2 Cost of gambling
	4.3 Benefits of combined adaptiveness
	4.4 Scalability

	5 Related Work
	6 Conclusion

