33 research outputs found

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    It is well known that every stable matching instance II has a rotation poset R(I)R(I) that can be computed efficiently and the downsets of R(I)R(I) are in one-to-one correspondence with the stable matchings of II. Furthermore, for every poset PP, an instance I(P)I(P) can be constructed efficiently so that the rotation poset of I(P)I(P) is isomorphic to PP. In this case, we say that I(P)I(P) realizes PP. Many researchers exploit the rotation poset of an instance to develop fast algorithms or to establish the hardness of stable matching problems. In order to gain a parameterized understanding of the complexity of sampling stable matchings, Bhatnagar et al. [SODA 2008] introduced stable matching instances whose preference lists are restricted but nevertheless model situations that arise in practice. In this paper, we study four such parameterized restrictions; our goal is to characterize the rotation posets that arise from these models: kk-bounded, kk-attribute, (k1,k2)(k_1, k_2)-list, kk-range. We prove that there is a constant kk so that every rotation poset is realized by some instance in the first three models for some fixed constant kk. We describe efficient algorithms for constructing such instances given the Hasse diagram of a poset. As a consequence, the fundamental problem of counting stable matchings remains #\#BIS-complete even for these restricted instances. For kk-range preferences, we show that a poset PP is realizable if and only if the Hasse diagram of PP has pathwidth bounded by functions of kk. Using this characterization, we show that the following problems are fixed parameter tractable when parametrized by the range of the instance: exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings.Comment: Various updates and improvements in response to reviewer comment

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    In the stable marriage (SM) problem, there are two sets of agents–traditionally referred to as men and women–and each agent has a preference list that ranks (a subset of) agents of the opposite sex. The goal is to find a matching between men and women that is stable in the sense that no man-woman pair mutually prefer each other to their assigned partners. In a seminal work, Gale and Shapley showed that stable matchings always exist, and described an efficient algorithm for finding one. Irving and Leather defined the rotation poset of an SM instance and showed that it determines the structure of the set of stable matchings of the instance. They further showed that every finite poset can be realized as the rotation poset of some SM instance. Consequently, many problems–such as counting stable matchings and finding certain “fair” stable matchings–are computationally intractable (NP-hard) in general. In this paper, we consider SM instances in which certain restrictions are placed on the preference lists. We show that three natural preference models?k-bounded, k-attribute, and (k1, k2)-list–can realize arbitrary rotation posets for constant values of k. Hence even in these highly restricted preference models, many stable matching problems remain intractable. In contrast, we show that for any fixed constant k, the rotation posets of k-range instances are highly restricted. As a consequence, we show that exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings are fixed-parameter tractable when parameterized by the range of the instance. Thus, these problems can be solved in polynomial time on instances of the k-range model for any fixed constant k

    A structural approach to matching problems with preferences

    Get PDF
    This thesis is a study of a number of matching problems that seek to match together pairs or groups of agents subject to the preferences of some or all of the agents. We present a number of new algorithmic results for five specific problem domains. Each of these results is derived with the aid of some structural properties implicitly embedded in the problem. We begin by describing an approximation algorithm for the problem of finding a maximum stable matching for an instance of the stable marriage problem with ties and incomplete lists (MAX-SMTI). Our polynomial time approximation algorithm provides a performance guarantee of 3/2 for the general version of MAX-SMTI, improving upon the previous best approximation algorithm, which gave a performance guarantee of 5/3. Next, we study the sex-equal stable marriage problem (SESM). We show that SESM is W[1]-hard, even if the men's and women's preference lists are both of length at most three. This improves upon the previously known hardness results. We contrast this with an exact, low-order exponential time algorithm. This is the first non-trivial exponential time algorithm known for this problem, or indeed for any hard stable matching problem. Turning our attention to the hospitals / residents problem with couples (HRC), we show that HRC is NP-complete, even if very severe restrictions are placed on the input. By contrast, we give a linear-time algorithm to find a stable matching with couples (or report that none exists) when stability is defined in terms of the classical Gale-Shapley concept. This result represents the most general polynomial time solvable restriction of HRC that we are aware of. We then explore the three dimensional stable matching problem (3DSM), in which we seek to find stable matchings across three sets of agents, rather than two (as in the classical case). We show that under two natural definitions of stability, finding a stable matching for a 3DSM instance is NP-complete. These hardness results resolve some open questions in the literature. Finally, we study the popular matching problem (POP-M) in the context of matching a set of applicants to a set of posts. We provide a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a new structure called the switching graph exploited to yield efficient algorithms for a range of associated problems, extending and improving upon the previously best-known results for this problem

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Subject index volumes 1–92

    Get PDF
    corecore