5 research outputs found

    On the effectiveness of connection tolls in fair cost facility location games

    Get PDF
    We investigate the effectiveness of tolls to reduce the inefficiency of Nash equilibria in the classical fair cost facility location game. In this game, every terminal corresponds to a selfish player who wants to connect to some facility at minimum cost. The cost of a player is determined by the connection cost to the chosen facility plus an equal share of its opening cost. We are interested in the problem of imposing tolls on the connections to induce a socially optimal Nash equilibrium such that the total amount of tolls is minimized. It turns out that this problem is challenging to solve even for simple special cases. We provide polynomial-time algorithms for (i) instances with two facilities, and (ii) instances with a constant number of facilities arranged as a star. Our algorithm for (ii) exploits a relation between our tolling problem and a novel bipartite matching problem without crossings, which we prove to be NP-hard

    On fair cost facility location games with non-singleton players

    Get PDF
    In the fair cost facility location game, players control terminals and must open and connect each terminal to a facility, while paying connection costs and equally sharing the opening costs associated with the facilities it connects to. In most of the literature, it is assumed that each player control a single terminal. We explore a more general version of the game where each player may control multiple terminals. We prove that this game does not always possess pure Nash equilibria, and deciding whether an instance has equilibria is NP-Hard, even in metric instances. Furthermore, we present results regarding the efficiency of equilibria, showing that the price of stability of this game is equal to the price of anarchy, in both uncapacitated and capacitated settings

    Non-Cooperative Facility Location Games: a Survey

    Get PDF
    The Facility Location problem is a well-know NP-Hard combinatorial optimization problem. It models a diverse set of situations where one aims to provide a set of goods or services via a set of facilities F to a set of clients T, also called terminals. There are opening costs for each facility in F and connection costs for each pair of facility and client, if such facility attends this client. A central authority wants to determine the solution with minimum cost, considering both opening and connection costs, in such a way that all clients are attended by one facility. In this survey we are interested in the non-cooperative game version of this problem, where instead of having a central authority, each client is a player and decides where to con- nect himself. In doing so, he aims to minimize his own costs, given by the connection costs and opening costs of the facility, which may be shared among clients using the same facility. This problem has several applications as well, specially in distributed scenarios where a central authority is too expensive or even infeasible to exist. In this paper we present a survey describing different variants of this problem and reviewing several results about it, as well as adapting results from existing literature concerning the existence of equilibria, Price of Anarchy and Price of Stability. We also point out open problems that remain to be addressed.

    Packing, Scheduling and Covering Problems in a Game-Theoretic Perspective

    Full text link
    Many packing, scheduling and covering problems that were previously considered by computer science literature in the context of various transportation and production problems, appear also suitable for describing and modeling various fundamental aspects in networks optimization such as routing, resource allocation, congestion control, etc. Various combinatorial problems were already studied from the game theoretic standpoint, and we attempt to complement to this body of research. Specifically, we consider the bin packing problem both in the classic and parametric versions, the job scheduling problem and the machine covering problem in various machine models. We suggest new interpretations of such problems in the context of modern networks and study these problems from a game theoretic perspective by modeling them as games, and then concerning various game theoretic concepts in these games by combining tools from game theory and the traditional combinatorial optimization. In the framework of this research we introduce and study models that were not considered before, and also improve upon previously known results.Comment: PhD thesi

    Jogos de localização de instalações não cooperativos e percepção de custos

    Get PDF
    Orientadores: Eduardo Candido Xavier, Guido SchäferTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Esta tese de doutorado cobre a interseção entre problemas de localização de instalações e teoria dos jogos algorítmica não cooperativa, com ênfase em alterações da percepção de custos de cada jogador e seu efeito na qualidade de equilíbrios. O problema de localização de instalações é um dos problemas fundamentais em otimização combinatória. Em sua versão clássica, existe um conjunto de terminais e um conjunto de instalações, e cada terminal necessita ser conectado a uma instalação, para que esta providencie bens ou serviços. O objetivo é minimizar o total dos custos associados à abertura das instalações e à conexão dos terminais a essas instalações. Na prática, existem diversos cenários onde é inviável ou não é desejável que uma autoridade central única decida como clientes devem escolher as instalações às quais se conectam. Dessa forma, é importante estudar como a independência desses terminais pode afetar a eficiência social e a complexidade computacional para esses cenários. A teoria dos jogos algorítmica pode ser útil para tais cenários, em particular sua parte não cooperativa. A teoria dos jogos algorítmica preenche uma lacuna entre a ciência da computação teórica e a teoria dos jogos, e está interessada em questões como a complexidade computacional de se encontrar equilíbrios, o quanto o bem-estar social pode ser perdido devido ao egoísmo de jogadores e como desenvolver mecanismos para garantir que o melhor interesse dos jogadores se alinhe com o ótimo social. Nesta tese, estudamos jogos de localização de instalações não cooperativos e algumas de suas variantes. Focamos em responder questões relativas à existência de equilíbrios de Nash puros e sobre as principais medidas de perda de eficiência, o preço da anarquia e preço da estabilidade. Apresentamos uma revisão das descobertas mais importantes para as variantes básicas, com novos resultados nos casos onde nenhum era conhecido. Para a versão capacitada desses jogos, mostramos que, enquanto a simultaneidade pode levar a uma perda de eficiência ilimitada, quando se admite a sequencialidade de jogadores, é possível mostrar que a perda de eficiência tem limites. Também investigamos como mudanças na percepção de custo podem afetar a qualidade de equilíbrios de duas maneiras: através de jogadores altruístas e de esquemas de taxação. No primeiro, adaptamos resultados de jogos de compartilhamento justo de custos e apresentamos novos resultados sobre uma versão sem regras de compartilhamento. No último, propomos um modelo de mudança na percepção de custos, onde os jogadores consideram um pedágio adicional em suas conexões ao calcular seus custos. Apresentamos limitantes para o custo total das taxas no problema de pedágios mínimos, onde o objetivo é encontrar o valor mínimo de pedágio necessário para garantir que um determinado perfil de estratégia socialmente ótimo seja escolhido pelos jogadores. Mostramos algoritmos para encontrar pedágios ótimos para tal problema em casos especiais e relacionamos esse problema a um problema de emparelhamento NP-difícilAbstract: This Ph.D. thesis covers the intersection between facility location problems and non-cooperative algorithmic game theory, with emphasis on possible changes in cost perception and its effects in regards to quality of equilibria. The facility location problem is one of the fundamental problems in the combinatorial optimization field of study. In its classic version, there exists a set of terminals and a set of facilities, and each terminal must be connected to a facility, in order for goods or services to be provided. The objective is to minimize the total costs associated with opening the facilities and connecting all the terminals to these facilities. In practice, there are multiple scenarios where it is either infeasible or not desirable for a single central authority to decide which facilities terminals connect to. Thus, it is important to study how the independence of these terminals may affect social efficiency and computational complexity in these scenarios. For this analysis algorithmic game theory can be of use, in particular its non-cooperative part. Algorithmic game theory bridges a gap between theoretical computer science and game theory, and is interested in questions such as how hard it is computationally to find equilibria, how much social welfare can be lost due to player selfishness and how to develop mechanisms to ensure that players' best interest align with the social optimum. In this thesis we study non-cooperative facility location games and several of its variants. We focus on answering the questions concerning the existence of pure Nash equilibria and the main measures of efficiency loss, the price of anarchy and the price of stability. We present a review of the most important findings for the basic variants and show new results where none were known. For the capacitated version of these games, we show that while simultaneity may lead to unbounded loss of efficiency, when sequentiality is allowed, it is possible to bound the efficiency loss. We also investigate how changes in players' perception of cost can affect the efficiency loss of these games in two ways: through altruistic players and through tolling schemes. In the former we adapt results from fair cost sharing games and present new results concerning a version with no cost sharing rules. In the latter, we propose a model for change in cost perception where players consider an additional toll in their connections when calculating their best responses. We present bounds for total toll cost in the minimum toll problem, where the objective is to find the minimum amount of tolls needed to ensure that a certain socially optimal strategy profile will be chosen by players. We show algorithms for finding optimal tolls for the minimum toll problem in special cases and provide some insight into this problem by connecting it to a matching problem which we prove is NP-hardDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação147141/2016-8CAPESCNP
    corecore