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Abstract

In the fair cost facility location game, players control terminals and must open and connect each terminal to
a facility, while paying connection costs and equally sharing the opening costs associated with the facilities
it connects to. In most of the literature, it is assumed that each player control a single terminal. We explore
a more general version of the game where each player may control multiple terminals. We prove that this
game does not always possess pure Nash equilibria, and deciding whether an instance has equilibria is
NP-Hard, even in metric instances. Furthermore, we present results regarding the efficiency of equilibria,
showing that the price of stability of this game is equal to the price of anarchy, in both uncapacitated and
capacitated settings.

Keywords: price of stability, facility location, algorithmic game theory

1 Introduction

Facility location problems covers a broad range of optimization problems, with

practical applications in many different areas such as public policy, urban planning,

telecommunications and computer networking. In the general sense, the facility

location problem can be stated as follows. Let F be a set of facilities, T a set of

terminals, with opening costs cf for each facility f ∈ F and connection costs dtf
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for connecting terminal t ∈ T to facility f ∈ F . The problem is to find a subset of

facilities to open and establish connections from terminals to this subset such that

the sum of all costs are minimized.

Consider a scenario where multiple supermarket or stores share big warehouses

that stockpile supplies for them. Each store is located some distance away from

a warehouse and they pay the costs associated with maintaining its products in

the warehouse and the transportation costs to its specific location. Such scenario

can be seen as a facility location problem, where each store is a terminal and each

warehouse location is a possible facility. In the classical optimization version, the

view point of the warehouse company is given priority, and each terminal can be

seen as being controlled by a central authority in order to minimize opening and

connection costs globally. When we consider the fact that each supermarket is

competing with each other, this approach of global optimization is not possible to

be adopted anymore. In order to analyze such scenarios, we can use game theory.

A non–cooperative game is a decision scenario where an agent or player selfishly

and without coordination other players, chooses a strategy in order to maximize

its own utility (or minimize its own cost), which in turn depends on the strategies

chosen by the other players. We say that a game is in a pure Nash equilibrium

(PNE) if no player has any incentive to unilaterally change its own strategy. In

order to compare the social cost of pure equilibria and the social optimum, we use

the standard measures found in the literature: the price of anarchy (PoA) and the

price of stability (PoS). The PoA of a game is defined as the ratio between the

PNE with worst social cost and the social optimal cost, while the PoS is the ratio

between the PNE with the best social cost and the social optimum.

In our example scenario, each store is traditionally viewed as a player choosing

a facility (warehouses) to connect, such that its own cost is minimized. Each store

would then share equally the costs associated with storing the goods in the ware-

house they are connected to, as well as individually paying for the connection to

such warehouse. This scenario exemplifies the singleton fair cost facility location

game, where each store is controlled by a single player. This scenario however fails

to accommodate the common case when multiple supermarket or stores are part of

the same chain.

When stores are part of the same larger group, each store behaviour cannot

be said to be independent and uncoordinated, however one whole group does not

coordinate with other competitor stores or chains and therefore it makes sense to

analyze this scenario by allowing players to control multiple stores or terminals.

In the fair cost facility location games we analyze, each player controls multiple

terminals, and can move them simultaneously to minimize their own costs. For

singleton games, terminals sharing opening costs evenly means the same as players

sharing these costs evenly, since players and terminals are effectively the same in

these scenarios. However when players control multiple terminals, the same is not

true. In our paper we use the term fair cost to mean that in any strategy profile

each facility has its opening cost shared evenly among all terminals that connect to

it, i.e. if in a certain strategy profile a player a has two terminals connected to a
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facility f and a different player b has a single terminal connected to it, player a will

pay for two thirds of the opening cost of f , while player b pays only a third of the

opening cost.

In this work we study how hard it is to find pure Nash equilibria in these fair

cost facility location games, as well as how efficient these equilibria can be when

compared with the social optimal cost. Finally, we extend our results to weighted

and capacitated versions of these games.

2 Related Work and Organization

There have been multiple works examining facility location problems from the out-

look of game theory. The class of valid utility games [12, 14, 18] can be viewed as

facility games when both facilities and players are controlled by singleton players.

There is a whole area in game theory focused in cooperative games, and Goemans

and Skutella [8] studied cooperative facility location games.

Facility location has also been extensively studied from the mechanism design

perspective, with multiple relevant work in strategy-proof mechanisms for variants

of facility location problems [5, 13, 15].

We study in this paper the non-cooperative facility location game where players

control terminals, and each terminal t share the opening cost of its chosen facility f

equally among all terminals connected to f . These games share great similarities to

connection and network design games, and thus multiple results from these games

are valid for fair cost facility location games.

For the singleton fair cost facility location game, the results from network de-

sign [1] extend to facility location, with a bound of k for the PoA and Hk = Θ(log k)

for the PoS [17]. For the metric version, where each connection obeys the triangle

inequality, Hansen and Telelis [9] proved constant bounds both for the PoS and the

strong PoA. Furthermore, when there are weights associated with terminals deter-

mining how much of the opening cost is paid by each terminal, they show that there

is always an e-approximate equilibrium and that the PoS can be in Θ(logW ), where

W is the sum of all terminal weights. In [3], Chen and Roughgarden prove that

there are instances of the weighted network design game where there are no possible

PNE, however it is still an open question whether the same applies to weighted fair

cost facility location games, even for the non-singleton version.

For facility location games where players do not posses any limitations on how to

share opening costs, the price of anarchy and the price of stability have been proven

to be in Θ(k) by Cardinal and Hoefer [2, 11], where k is the number of players in

the game. Furthermore, for non-singleton games it is NP-hard to decide whether

an instance has a PNE [2].

The capacitated version of the game was considered by Rodrigues and

Xavier [16]. They show that for the metric singleton fair cost facility location

game, the PoA can be unbounded, while the PoS is Hk, where k is the number of

players. Furthermore, they show that it is NP-hard to decide whether there is PNE

in singleton capacitated facility location games with arbitrary opening cost sharing.
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For a sequential version of facility location, they show that the metric version has

bounded PoA and PoS.

In this paper we extend the results from Cardinal and Hoefer [2] to fair cost

facility location, proving that it is NP-hard to decide whether there is a PNE in

this game, even in the metric case, as long as players are allowed to control multiple

terminals. For this, we prove that there are fair cost facility location game instances

with no PNE. We base this proof in the instances without PNE in weighted network

design games used by Chen and Roughgarden in [3]. Finally, we prove that the PoS

of this game can be as inefficient as the PoA for both the uncapacitated metric case

and the general capacitated case.

In Section 3, we present the formal definitions needed to understand our paper

and define our game. In Section 4, we provide instances with no PNE and prove the

NP-hardness of PNE existence, as well as link these instances to weighted games.

In Section 5, we prove that the price of stability is as poor as the price of anarchy in

both the uncapacitated and capacitated versions of fair cost facility location games.

Finally, in Section 6 we present our final remarks and discuss future work.

3 Preliminaries

First we define a few key concepts from non–cooperative game theory.

In game theory, a non–cooperative game is a scenario where players choose strate-

gies independently trying to either minimize their costs or maximize their utility.

For each player i, there is a set Ai of actions that it can choose to play. A pure

strategy Si consists of one action from Ai, while a mixed strategy corresponds to

a probability distribution over Ai. In a pure game each player choses one action

to play, while in a mixed game each player randomizes its action according to the

probability distribution. In this paper we assume pure strategies games unless men-

tioned otherwise.

A set of strategies S = (S1, S2, . . . , Sn) consisting of one strategy for each player,

is denominated a strategy profile. Let S = A1×A2×. . .×An be the set of all possible

strategy profiles and let c : S → R
n be a cost function that attributes a cost ci(S)

for each player i given a strategy profile S. Define S−i = (S1, . . . , Si−1, Si+1, . . . , Sn)

a strategy profile S without i’s strategy, so that we can write S = (Si, S−i). If all

players other than i decide to play S−i, then player i is faced with the problem of

determining a best response to S−i. A strategy S∗i from a player i is a best response

to S−i, if there is no other strategy which could yield a better outcome for the

player, i.e.

ci(S
∗
i , S−i) ≤ ci(Si, S−i) , ∀Si ∈ Ai.

A strategy profile is in a pure Nash equilibrium (PNE) if no player can reduce its

cost by choosing a different strategy, i.e. for each player, its strategy in the strategy

profile is a best response.

The social welfare or social cost is a function mapping a strategy profile to a

real number, indicating a measure of the total cost or payoff of a game. Two of the

most important concepts for efficiency analysis are the Price of Anarchy (PoA) and
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the Price of Stability (PoS). The PoA is the ratio between a Nash equilibrium with

worst possible social cost and the strategy profile with optimal social cost, while the

PoS is the ratio between the best possible Nash equilibrium to the social optimum.

With these ideas formalized, we define the Facility Location Game with Fair

Cost Sharing (FLG-FC).

Definition 3.1 Let G = (T ∪ F, T × F ) be a bipartite graph, with vertex sets F

of n facilities and T of m terminals. Each facility f ∈ F has an opening cost cf ,

and connection costs dtf for each terminal t ∈ T . Let K = {1, . . . , k} be the set of

players.

Each player i controls a subset of terminals Ti ⊆ T (also forming a partition

of T ), and each terminal must be connected to exactly one opened facility. When

a player controls only a single terminal, it is denominated a singleton player. A

player i chooses a strategy Si ⊆ Ti × F .

Let S = (S1, . . . , Sk) be a strategy profile. We abuse notation and use the

expression f ∈ S to represent any facility f connected to a terminal in a strategy

profile S and (t, f) ∈ S to represent any pair of terminal and facility that are

connected in S, while f ∈ Si represents any facility f player i uses to connect one

of its terminals in strategy Si. Each player tries to minimize its own payment

pi(S) =
∑

(t,f)∈Si

cf
xf (S)

+
∑

(t,f)∈Si

dtf ,

where xf (S) = |{(tj , f) ∈ Si | 1 ≤ i ≤ k ∧ 1 ≤ j ≤ m}| is the number of terminals

connected to facility f in strategy profile S.

The social welfare cost for a strategy S is defined as the sum of all player

payments, i.e.,

C(S) =
∑
i∈K

pi(S) =
∑
f∈S

cf +
∑

(t,f)∈S
dtf .

In games with general connection costs, some connections (t, f) should be

avoided in any solution, because they do not exist for example. In this case we

assume they have a prohibitively large constant cost Ud. For general costs, if a

connection is not shown, it is assumed that it has a cost equal to Ud, unless men-

tioned otherwise. For metric connection costs, where connection costs must obey

the triangle inequality, it is assumed that any connection (t, f) not shown has a cost

equal to the shortest cost path from t to f in the undirected graph formed from the

explicitly shown connections.

When dealing with capacitated FLG-FC, we extend this definition to include

a capacity for each facility, as well as ways to enforce players to propose valid

solutions.

Definition 3.2 Let G = (T ∪F, T ×F ) be a bipartite graph, with vertex sets F of

n facilities and T of m terminals. Each facility f ∈ F has an opening cost cf and

a capacity uf indicating how many terminals can be connected to f at any given

time. Furthermore, there are connection costs dtf for each pair (t, f) where t ∈ T

and f ∈ F .
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Given a strategy profile S, for Capacitated Facility Location Games with Fair

Cost Sharing (CFLG-FC), the definitions of players i payment, pi(S), and social

cost, C(S), are the same as before for the uncapacitated game. However, to ensure

that capacity restrictions are respected, if a player i in the solution S has one of

its terminals connected to f where xf (S) > uf , then a prohibitively large constant

cost Uc is added to the payment of player i, i.e., it pays pi(S) + Uc.

4 On the Existence of Pure Equilibria

Pure Nash equilibria is one of the most well known solution concepts in game theory.

While it is not guaranteed to exist in all games, in several practical scenarios it

reflects to a greater degree the behaviour of players. The singleton version of FLG-

FC is a potential game, and therefore there always exists a PNE [17]. We show that

this does not extend to every fair cost facility location game, by showing instances

with no PNE when players control multiple terminals and the opening cost sharing

happens in relation to terminals. We construct these instances loosely based on

an example used to prove the non-existence of PNE in weighted network design

games [3]. We first prove this result for weighted fair cost facility location games

and then extend this result for unweighted metric games.

4.1 Equilibria Existence in Weighted Games

In the classic facility location game, each terminal is assumed to demand or require

the same amount of goods from a facility, and therefore the “fair” way to share

costs is to evenly divide opening costs of an opened facility between terminals that

connect to it. However this is not always the case. In several practical scenarios

some terminals might require more from a facility, and an egalitarian sharing might

not reflect fairness.

In the weighted fair cost facility location game, each terminal t has an associated

positive integer weight wt ≥ 1, and each player i pays in a strategy profile S,

pi(S) =
∑

(t,f)∈Si

dtf +
∑

(t,f)∈Si

wtcf
Wf,S

,

where Wf,S is the sum of the weights of all terminals connected to f in the strategy

profile S.

Here we provide a partial answer to an open question regarding whether there

are instances with no PNE for weighted FLG-FC. We provide an instance with no

PNE when players are allowed to control more than a single terminal. It remains

open whether there are singleton weighted instances with no equilibria.

Theorem 4.1 There exists a 3-player metric instance for the weighted FLG-FC

game with only six terminals where there is no PNE.

Proof.
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Consider the instance in Figure 1, denominated here as I. Let w > 1 be a

parameter of this instance, and ε be a constant much smaller than 1
w3 . Let player

A control terminals t2 and t5, player B control terminals t1 and t3, and player C

control terminals t4 and t6. Allow every terminal controlled by player A to have

the same weight wA = w2, every terminal that B controls to have unitary weight

wB = 1 and every terminal that player C controls to have weight wC = w.

cf5 = 1

cf1 = w3

w2+w+1 − ε

t5

t2

t3

t4

f5 t6

f3 f4

t1 f2

Pa
Pc

Pb

dt1,f1 = 1 + 3ε
f1

dt1,f2 = 1

cf2 = w3

w2+w+1 + ε

cf3 = w3+w2

w2+w+1−
cf4 = w3+w

w2+w+1+

ε(2w+1
2w+2 )

ε(2w
2+1

2w2+2 )

Fig. 1. Game instance of the weighted FLG-FC without PNE. All edges except dt1,f1 have cost equal to
zero.

For player Pa, there are only two feasible strategies: either all terminals connect

to f3, or t2 connects to f1 and t5 connects to f5. The same happens for player

Pc: either all terminals connect to f4, or t4 connects to f2 and t6 connects to f5.

For player Pb terminal t1 has to choose between f1 and f2, while terminal t3 will

always connect to f5 in any PNE. The proof is based on players Pa and Pc having

different facility preferences when presented with mirrored choices from player Pb.

To achieve this, we use the fact that player Pa has squared times the weight than

Pc does, as well as carefully constructed opening costs.

Note that all direct connection costs are equal for Pa and for Pc, and thus do not

interfere in their choices. They only ensure that it is not beneficial for neither Pa nor

Pc to connect their terminals to facilities without a direct connection available. For

Pb, the only influence that connection costs have is in choosing whether to connect

to f1 or f2.

Since the terminals from player Pa have weight w2, player A will always pay for

the majority of the cost of any facility it helps open. With this in mind, we can sort

the five possible scenarios for player Pa by the cost incurred from each in increasing

order: (i) player Pa shares f1 with Pb and f5 with all players, (ii) it connects to f1
alone and shares f5 with all players, (iii) it connects to f3 alone, (iv) it shares f1
with Pb and shares f5 with Pb only and (v) it connects to f1 alone and shares f5
with Pb only. The following inequalities show why this is the case:
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w2

w2 + 1
cf1 +

w2

w2 + w + 1
cf5 ≤ (1)

cf1 +
w2

w2 + w + 1
cf5 ≤ (2)

w3 + w2

w2 + w + 1
− ε

(
2w2 + 1

2w2 + 2

)
= cf3 ≤ (3)

w2

w2 + 1

(
w3

w2 + w + 1
− ε

)
+

w2

w2 + 1
=

w2

w2 + 1
cf1 +

w2

w2 + 1
cf5 ≤ cf1 +

w2

w2 + 1
cf5 .

(4)

From this we gather that, for player Pa, the preferred scenario is where player

Pc connects to f5, even if player Pb does not connect to f1. For player Pc, we do

the same, observing that now the facility which dictates its strategy is f2, as even

if player Pa does not connect to f5, if player Pb does connect to f2, the cheapest for

Pc is to connect to f2 and f5. Player Pc can, going from least to most expensive,

(i) share f2 with Pb and f5 with all players, (ii) share f2 and f5 with Pb only, (iii)

connect to f4 alone, (iv) connect to f2 alone and share f5 with all players and finally

(v) connect alone to f2 and share f5 with Pb only. The inequalities that show this

is the case for player Pc are:

w

w + 1
cf2 +

w

w2 + w + 1
cf5 ≤ (5)

w

w + 1
cf2 +

w

w + 1
cf5 =

w3 + w

w2 + w + 1
+ ε

w

w + 1
≤ (6)

w3 + w

w2 + w + 1
+ ε

(
2w + 1

2w + 2

)
= cf4 ≤ (7)

w3

w2 + w + 1
+ ε+

w

w2 + w + 1
= cf2 +

w

w2 + w + 1
cf5 ≤ (8)

cf2 +
w

w + 1
cf5 . (9)

Now we prove the theorem by contradiction. Suppose that there exists a PNE

for this instance. Terminal t1 can be connected to either f1 or f2. First assume t1
is connected to f1. Then, player Pc has no incentive to connect to either f2 or f5,

as shown by (7) and (8), and connects all its terminals to f4. Since player Pc does

not connect to f5, player Pa also does not have enough incentive to connect to f1
and f5, as shown by (3) and (4), and connects all its terminals to f3. With this,

player Pb is paying alone for f1, and since f2 is cheaper to connect, it is not in a

PNE, and thus t1 cannot connect to f1 in any PNE.

Now assume t1 is connected to f2. Player Pc now will connect to f2 with t4,

with t6 connecting to f5, as the inequalities in (6) and (7) show. Since player Pc

connects to f5, now player Pa will also opt to connect to f5 and therefore will also

open f1, as shown by (2) and (3). Since f1 has player Pa connected to it, player
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Pb now has enough incentive to connect t1 to f1 instead of f2, and therefore our

assumption is not true.

Since connecting t1 to neither f1 nor f2 results in a PNE, there is a contradiction

with our claim that there exists a PNE for this instance, and thus we have proven

that there is no pure equilibrium. �

4.2 Equilibria Existence in FLG-FC

Now we extend the results from Theorem 4.1 for the unweighted case. To accomplish

this we first make the key observation that for any weighted fair cost facility location

game instance G withm terminals, there is a fair cost facility location game instance

G′ with W terminals with equivalent PNE, where W is the total sum of weights

w1 + · · · + wm. This is the case since for each terminal t controlled by a player i

with weight wt > 1, we can add in G′ terminals tj , for j ∈ [2, wt], all controlled by

i with the same connections and costs as t. Since they are equal in every way in

regards to cost calculation, player i has no reason to split strategies when choosing

which facility to connect t and the added terminals tj .

Theorem 4.2 There exists a metric 3-player instance for the FLG-FC game where

there is no PNE.

Proof. Consider the instance I depicted in Figure 2. Let w > 1 be a parameter on

this graph, and ε be a constant much smaller than 1
w3 , such that player Pa controls

terminals t12, . . . , t
w2

2 and t15, . . . , t
w2

5 , for a total of 2w2 terminals. Player Pb controls

two terminals, t1 and t3, while player Pc controls terminals t14, . . . , t
w
4 and t16, . . . , t

w
6 ,

for a total of 2w terminals. All connection costs are unitary, with the exception of

dt1,f1 , which has cost 1 + 3ε. All opening costs are as shown in Figure 2.

cf5 = 1

cf1 =
w3

w2+w+1 − ε

tw
2

5

tw
2

2

t3

t14

f5 t16

f3 f4

t1 f2

Pb

dt1,f1 = 1 + 3ε

f1

dt1,f2 = 1

cf2 =
w3

w2+w+1 + ε

cf3 =
w3+w2

w2+w+1 − ε(2w
2+1

2w2+2)
cf4 =

w3+w
w2+w+1 + ε(2w+1

2w+2)

tw6� � �{

tw4

w

t15 � � �{

w2

� � �t12
Pa � � � Pc

Fig. 2. Game instance of the FLG-FC without a PNE. All edges except dt1,f1 have cost equal to one. Any
edge (t, f) not drawn has cost equal to the shortest path cost from t to f .

We prove the theorem by showing that the instance seen in Theorem 4.1, here

denominated I0, can be transformed to instance I, seen in Figure 2 without changes

to the players overall strategies, and thus the proof for Theorem 4.1 applies for in-

stance I. Start by changing I0 to I ′ so that we add terminals t′2 and t′5 connected

to the same facilities (and the corresponding connection costs) as t2 and t5, respec-

tively, while changing the weight wA of all terminals of player A to w2

2 . In any pure
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equilibria for this instance, if we connect any terminal to facility f3, all terminals

from A will connect to it, since A will pay the full cost of f3. Thus, if t2 connects to

f3, terminal t′2 will also connect to f3, and if t2 connects to f1, t
′
2 will do the same.

The same is true for t′5 in relation to t5. Since this is the case, if player A connects

to f1 or f5, it will still pay exactly the same share w2

W (f,S) of the opening cost of

facility f as in I, where W (f, S) is the sum of weights of all terminals connected to

f in the strategy profile S. Instance I ′ thus incurs the same decisions from players

as instance I0. The same can be done to player C and its terminals t4 and t6.

Therefore, in order to transform I0 into instance I while preserving the same

possible equilibria, it suffices to incrementally add terminals with the same connec-

tions for players A and C, while dividing the weight of these players by the number

of added terminals until the number of terminals A controls is 2w2 (w2 of “t2”

terminals and w2 of “t5”) and they all have weight wA = 1, while player C will

control 2w terminals (w of “t4” terminals and w of “t6”), all with weight wC = 1.

Thus, Theorem 4.1 applies to the unweighted metric instance I, and there exists a

3-player weighted instance I without any equilibria. �

Using a version of this instance where w = 2 as a gadget, we can prove that

deciding whether an instance of FLG-FC has a PNE is NP-Hard.

Theorem 4.3 It is NP-hard to determine if an instance of the Metric FLG-FC has

a PNE or not.

Proof. First notice that it is NP-hard to verify whether a given solution S to an

instance of the FLG-FC is a PNE or not when players control multiple facilities,

since for each player we need to solve an optimization facility location problem on

the instance restricted to this player alone. To verify that a strategy of a player is

a best response, we have to fix all other players strategies, and check if the solution

restricted to this player is minimum, which is an NP-hard problem.

In order to prove NP-hardness for the existence of a PNE, we make a reduction

from the 3-SAT problem to the problem of deciding whether an instance of the

metric FLG-FC game has a PNE or not.

Let I be an instance from 3-SAT, with clauses C1, . . . , Cq, where each clause Cj

consists of a triple of literals from the set of decision variables x1, . . . , xp in clausal

normal form, so that each literal in a clause can assume form xi or xi for a decision

variable xi. Then, we form the fair cost facility location instance G as follows: for

each decision variable xi, we create a terminal ti, controlled by a single player, and

facilities fxi and fxi and link ti to them, as Figure 3a shows. The opening cost

of each facility fxi and fxi is equal to the number of terminals that can directly

connect to them times 1 + ε. We use the term directly here to discern from the

connections not shown, which are assumed to cost the shortest path from a terminal

to the facility.

We create for each clause Cj two gadgets: one with no equilibria unless stabilized

by the second gadget, which in turn links to the decision gadget, as exemplified in

Figure 3b. For the bottom gadget, note that it is exactly the same example as

the one used in Theorem 4.2, with parameter w = 2. We have three players in
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ti

fxi

cfxi
= 3(1 + ε)cfxi

= 4(1 + ε)

fxi

Clause gadgets
containing xi

Clause gadgets
containing xi

(a) A decision gadget for xi in an in-
stance with three clauses containing
xi and two containing xi.

cfj
5
= 1

cfj
1
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tj5,4

tj2,4

tj3

tj4,1
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5
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f j
3 f j

4

tj1 f j
2

P j
a

P j
b

dtj1,f
j
1
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1
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2
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10ε
cfj
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= 10
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tj2,1
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c

tj5,2 tj5,3
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f j
a2

tja2

f j
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�

�

�
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�

�
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cf j
a1
= 2 cf j

a2
= 2 cf j

a3
= 2

dtja1 ,f
j
a1
= ε

dtjb1 ,f
j
2
= 2

dtja2 ,f
j
a2
= ε dtja3 ,f

j
a3
= ε

dtjb2 ,f
j
2
= 2 dtjb3 ,f

j
2
= 2

Decision gadget
for x3

Decision gadget
for x2

Decision gadget
for x1

(b) Clause gadget for Cj = (x1 ∨ x2 ∨ x3).

Fig. 3. A decision (a) and a clause (b) gadget. Drawn edges without explicit costs have connection cost
one, any edge (t, f) not drawn has cost equal to the shortest path cost from t to f .

this gadget for each clause Cj , where player P j
a controls terminals tj2,1, . . . , t

j
2,4 and

tj5,1, . . . , t
j
5,4, player P

j
b controls terminals tj1 and tj3 and player P j

c control terminals

tj4,1, t
j
4,2, t

j
6,1, t

j
6,2. The opening and connection costs of this gadget follow the same

costs presented in Theorem 4.2, when parameter w equals to two.

For the link gadget, each player controls a single terminal, and for each literal

xi or xi in Cj there is a terminal tjai with possible direct connection to both the

facility in the decision gadget for xi (either fxi or fxi), with connection cost one,

and central facility f j
ai, with connection cost ε and opening cost 2. Furthermore, we

create another terminal tbi which can connect directly to either the central facility

f j
ai, with connection cost one, or to facility f j

2 with connection cost 2. Now we add

connections from every terminal t to every facility f obeying the triangle inequality

by setting cost dtf to the shortest cost path from t to f in the undirected network

formed by the connections between terminals and facilities.

Suppose there is a truth assignment for I. Then we can build the following PNE

for instance G: if decision variable xi = 1, assign ti to fxi , and otherwise assign ti
to fxi . Now for each clause gadget Cj where literal xi appears connect tjai to fxi

if xi = 1, or to f j
ai if xi = 0. Furthermore, connect tjbi to f j

2 if xi = 1, or to f j
ai if

xi = 0. Do the same for clauses where literal xi appears.

Finally, connect the rest of the terminals in Cj as follows: player P j
a connects

its terminals to f j
1 and f j

5 , player P
j
b connects to f j

2 and f j
5 and player P j

c connects

to f j
2 and f j

5 .

F.C. Rodrigues et al. / Electronic Notes in Theoretical Computer Science 342 (2019) 21–38 31



First, note that if xi = 1, then fxi is open and connected with all terminals

that can directly connect to it, meaning that each terminal pays 1 + ε opening

cost. At the same time, in each clause where xi appears, f j
ai is not opened, and

thus the cheapest alternative for terminal tjai costs 2 + ε, the same amount it pays

for connecting to fxi . Alternatively, if xi = 0, facility fxi is not open and tjai is

connected to its cheapest possible facility.

Since I has an satisfying assignment, at least one terminal tjbi will be connected

to f j
2 , paying at most 2+ 2

7 +
ε
4 and stabilizing the game induced by players P j

a , P
j
b

and P j
c . Furthermore, when xi = 1, terminal tjbi is in equilibrium connected to f j

2 ,

since the alternative facility f j
ai would require tjbi to pay 3 in opening and connection

costs. Alternatively, if xi = 0, terminal tjbi is also in equilibrium by connecting to f j
ai,

since in this case it shares the opening cost with tjai, paying a total of 2. Therefore,

we have a PNE for G given a satisfying assignment for I.

Now suppose there exists a PNE in G. For any clause Cj , at least one terminal

tjbi must be connected to f j
2 , since otherwise players P j

a , P
j
b and P j

c would not be in

equilibrium. Then, for each terminal tjbi connected to f j
2 , terminal tjai must connect

to fxi (or fxi , if representing literal xi). This is the case because if tjai were to

connect to f j
ai, terminal tjbi would not be in equilibrium connecting to f j

2 .

Note that for terminal tjai in clause Cj connected to facility fxi , even when

all terminals with a direct possible connection apart from ti are connected to it,

terminal tjai still is not in equilibrium, since it would be cheaper for it to open f j
ai

paying ε connection cost and 2 opening cost than paying 1 as connection cost and
l

l−1(1+ε) opening cost, where l is the number of terminals that can connect directly

to fxi . Terminal ti in any PNE therefore must connect to either fxi or fxi .

This shows that in any PNE in G, at least one literal of each clause is set to

true in the corresponding assignment in I. Furthermore, it also shows that there

can be no decision variable xi with xi = 1 and xi = 1. If a decision variable xi is

set as both xi = 0 and xi = 0, then it must be irrelevant to the truth assignment of

I, since G is in equilibrium, and therefore we can assign either xi or xi to 1. Thus,

any PNE in G is consistent and can be used to build a satisfying assignment for

I. �

Note that while we use several players in our proof, it is possible to reduce the

total number of players to only six.

Corollary 4.4 It is NP-hard to determine if a metric FLG-FC has a PNE, even

for games with 6 players.

Proof. First note that in the instance G in Theorem 4.3, there are three players

which control multiple terminals for each clause Cj , as well as six singleton players.

Furthermore, for each decision gadget there is one additional player. We form a new

instance G′ with the same terminals, facilities and costs as G, but only six players.

We remark that each clause gadget is “de facto” isolated from each other in G,

since the connection cost necessary for a terminal in a clause gadget Cj to connect to

a facility in either a different clause gadget Cj+1 or in a decision gadget not directly
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connected to Cj is greater than opening any possible facility it can directly connect.

Thus, we can form players Pa, Pb and Pc in instance G′ that control terminals

controlled by players P j
a , P

j
b and P j

c in any clause Cj . Furthermore, we can make

players Pa1, Pa2, Pa3 and Pb1, Pb2, Pb3 in G′ to control every terminal tja1, t
j
a2, t

j
a3 and

tjb1, t
j
b2, t

j
b3 in any clause gadget Cj .

Similarly, we can join all players from the decision gadgets into a single player

Px in G′, which controls any terminal ti in any decision gadget xi. Now the total

number of players in this instance is reduced to ten. To achieve the number of

six players, we remark that player Pa1 has no direct connection to facilities that

Pb2 can directly connect, and thus can be safely merged into a single player Pa1b2.

Similarly, player Pa2 can be safely merged with Pb3 and Pa3 can be merged with

Pb1, resulting in players Pa2b3 and Pa3b1 in G′. Finally, note that player Pa has

no direct connection to f j
2 in any clause gadget Cj , and therefore can safely merge

with either Pa1b2, Pa2b3 or Pa3b1. Thus, we have one player controlling all decision

gadgets and five players controlling the clause gadgets, resulting in a total of six

players in instance G′ while maintaining the same features and possible PNE as

instance G. �

5 Efficiency of Equilibria in Non-singleton Fair Cost Fa-
cility Location Games

In this section we turn our analysis towards loss of efficiency due to player behaviour.

The most well known measures of efficiency for non-cooperative games are the PoA

and the PoS. The price of anarchy in several games can be high and sometimes

unrealistic, due to comparing only the worst possible equilibrium in terms of social

cost or welfare to the optimal social welfare or cost. For facility location games, we

can show that the price of anarchy is at least k, where k is the number of players of

the game. To see that this is the case, see Figure 4. In this example, the strategy

where all players are connected to the facility to the right is a PNE, and has social

cost k, while in the optimal social solution all players are connected to the facility

to the left, with total cost equal to 1 (connection costs are zero).

�

�

�

t1

t2

t3

tk

f1 f2cf1 = 1 cf2 = k

Fig. 4. A game instance of the FLG-FC with PoA equal to k.

In [1], Anshelevich et al. argue that the concept of PoS, formalized in the same

paper, better captures the efficiency loss in network design games and consequently

singleton fair cost facility location games. They show a bound for the PoS of
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Hk = 1 + 1
2 + · · · + 1

k = Θ(log k) for these network design games, where k is the

number of players in the game, which can be extended for singleton fair cost facility

location games [17].

In this paper we show that the same is not true for fair cost facility location

games where players can control multiple terminals, even when connection costs

obey the triangle inequality. We prove that there are instances where the PoS is

Θ(k), where k is the number of players, the same as the PoA.

Theorem 5.1 There are instances of the metric FLG-FC which admit PNE but

have price of stability in Θ(k), where k is the number of players.

Proof.

Consider the instance shown in Figure 5. Let ε be a constant number much

smaller than 1
8 . Each player Pi, for i ∈ [1, k], controls terminal t′i . Player Pa

controls terminals t12 to t42 and t15 to t45, player Pb controls terminals t1 and t3, while

player Pc controls terminals t14, t
2
4, t

1
6 and t26. The full black lines have connection

cost one, while the dashed lines have connection cost ε, with the exception of dt1b ,f
1
b

with cost 3ε2 + ε.

cf5 = ε

cf1 = ε(87 − ε)

t45

t42
t3

t14

f5 t16

f3 f4

t1 f2

Pa
Pb

dt1,f1 = 3ε2 + ε

f1

dt1,f2 = ε

cf2 = ε(87 + ε)

cf3 = ε(127 − 9
10ε) cf4 = ε(107 + 5

6ε)

t26

t24

t15

t12
Pc

t25 t35

t22 t32

t′1t′2

t′3

t′k

P1
P2

P3

fs

f ′
2

f ′
3

f ′
k

t′4

f ′
4

� � �

cfs = 1

Pk

cf ′
2
= ε

cf ′
3
= ε

cf ′
k
= ε

P4

cf ′
4
= ε

Fig. 5. An instance of metric FLG-FC with PoS in Θ(k). Dashed lines have connection cost ε (except for
dt1,f1 , which has cost 3ε2 + ε), full black lines have cost 1. Labels next to terminals indicate which player
controls the terminal.

Notice that the subgame composed only by the players P2 to Pk and their connec-

tions, on the left side of Figure 5, has two pure equilibria: either everyone connects

to the central facility fs or each player Pi connects its terminal to facility f ′i . The

F.C. Rodrigues et al. / Electronic Notes in Theoretical Computer Science 342 (2019) 21–3834



subgame composed by players Pa, Pb and Pc and their connections, on the other

hand, is equal to the instance used in Theorem 4.2 when w = 2 with the costs

scaled by ε, and therefore it has no equilibria unless the game is altered to allow

some other player to stabilize it.

Player P1 is the one in this instance that can stabilize these two subgames.

Recall from Theorem 4.2 that, as long as some terminal is connected to f2, player

Pc will connect to f2 and f5. Since there are multiple terminals in f5, player Pa

will want to connect to f1 and f5 as well. This then means that player Pb will want

to connect to f2 and f5. Therefore in any PNE, P1 must connect to f2. For this

to be the best possible move for P1, no player can open the central facility fs, and

therefore the only possible PNE is the one where each Pi connects to f ′i , while Pa,

Pb and Pc play as seen above. Note that players Pa, Pb and Pc can be merged with

any players Pi, Pj and Pr, for all i 
= j 
= r ∈ [2, k], since they have disjoint strategy

sets. Therefore, we can assume that there are k players in this instance.

The cost of the optimal strategy is the following. In the left side, players P1 to

Pk connect to the central facility fs, for a cost of 1 + kε. In the right side, players

Pb and Pc connect to f2 and f5, while player Pa connects to f1 and f5, paying also

a connection cost of ε for each terminal, for a total cost of

1 + kε+ ε

(
8

7
− ε+ 1 +

8

7
+ ε+ 14

)
= 1+ kε+

16

7
ε+ 15ε = 1+ ε

(
k + 15 +

16

7

)
.

In the unique PNE, players P2 to Pk connect to their single facilities f ′2 to f ′k
and player P1 connects to f2, while players Pa, Pb and Pc connect to facilities f2,

f5 and f1 (with Pb using connection dt1,f1 which costs 3ε2+ ε). Thus, the total cost

for the PNE is

k + (k − 1)ε+ ε

(
8

7
− ε+ 1 +

8

7
+ ε+ 3ε+ 14

)
= k + kε− ε+

16

7
ε+ 15ε+ 3ε2

= k + ε

(
k + 14 +

16

7
+ 3ε

)
.

The PoS of this instance is therefore

k + ε(k + 14 + 16
7 + 3ε)

1 + ε(k + 15 + 16
7 )

= Θ(k) .

Since the PoA of FLG-FC is Θ(k) (and therefore the PoS is O(k)), this instance

makes the bound for PoS for FLG-FC asymptotically tight, and thus the PoS for

metric FLG-FC is Θ(k). �

5.1 Price of Stability in Capacitated Facility Location Games

Until now we have only considered scenarios where there are no limits on the number

of terminals that a facility can supply. However this is not always the case in

practice. In [16], Rodrigues and Xavier show that even metric facility location

games have unbounded PoA, unless sequentiality is considered. Furthermore, they
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show that metric singleton capacitated fair cost facility location games have a PoS

of at least Θ(log k), in comparison to the constant bounds of the uncapacitated

metric version [9].

In this section we prove that for capacitated games where players are allowed

to control more than a single terminal, there are instances with unbounded PoS.

Note that, contrary to most results in this paper, we consider for this result that

connection costs do not obey the triangle inequality, and thus any connections not

shown in our construction have prohibitively large (and unbounded) cost Ud.

Theorem 5.2 There are 3-player instances of the capacitated FLG-FC that admit

a PNE but have PoS that is unbounded.

Proof.

Assume that we are restricted to instances where there is a PNE and players

are allowed to control multiple terminals. We combine the instance described in

Theorem 4.2 into an instance with unbounded PoA [16] to force that the only

possible PNE in the game opens facilities with unbounded opening costs.

Consider the game in Figure 6. Note that the subgraph induced by the terminals

that players Pa, Pb, Pc control is the same as in Theorem 4.2 when parameter w = 2.

Thus, the only way for them to be in a PNE is if terminal ta connects to f2. For

this to happen in an equilibrium, terminal tb must not connect to fa. If this was

the case, then it would be cheaper for ta to also connect to fa, as it would pay

only 1/4 which is less than the amount it pays to connect to f2. Since f2 must be

occupied by ta in a PNE, terminal tc in any equilibrium will connect to fc, paying

the connection cost of U which can be arbitrarily large, and thus the only possible

equilibrium in this game is unbounded. Consequently, the PoS is also unbounded.

cf5 = 1

cf1 = 8
7 − ε

t45

t42
t3

t14

f5 t16

f3 f4

t1 f2

Pa
Pb

dt1,f1 = 3ε
f1

dt1,f2 = 0
cf2 = 8

7 + ε

cf3 = 12
7 − 9

10ε
cf4 = 10

7 + 5
6ε

t26

t24

t15

t12
Pc

t25 t35

t22 t32

tb tc

Pb Pc

fa fb fc

cfa =
1
2

cfb =
1
2 cfc = U

ufa = 2 ufb = 1 ufc = 1

ta

Pa

Fig. 6. An instance of capacitated FLG-FC with unbounded PoS. All connections have zero cost (except
dt1

b
,f1

b
, which has cost 3ε). Any facility f without a capacity restriction indicated is unlimited, i.e., uf ≥ 8.

Labels next to terminals indicate which player controls the terminal.

�

6 Conclusions and Future work

In this paper we have studied a general version of the fair cost facility location game.

In this model, the opened facilities have their opening costs shared evenly among
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all terminals that connect to them, and players are allowed to control multiple

terminals. We prove that there are instances for these games with no pure Nash

equilibrium, and that deciding whether an instance of the game has a PNE or

not is NP-hard, even when connection costs are metric. Furthermore, we provide

a negative partial answer to an open question whether weighted fair cost facility

location games always posses PNE, by showing the connections of these weighted

games to scenarios where players control multiple terminals. Finally, we prove

negative efficiency bounds related to the price of stability in both uncapacitated

and capacitated games, showing that the price of stability is as inefficient as the

price of anarchy in this generalized version of fair cost facility location game.

There are several possible directions on future work that relates to our paper.

For weighted games, it remains an open problem to find whether there is an instance

with no PNE for the singleton case. While our instance with no PNE has only a

few terminals, the effect that cooperation between terminals can have on the PNE

is crucial for there to be no PNE in this instance. It is not clear whether there

is a possible way to adapt this instance for the singleton case. When we consider

strong equilibria [6] for the singleton case, where terminals might cooperate to

choose a better strategy when it is beneficial to every player in a coalition, a few

similarities appear with this general version of fair cost facility location game. It

might be possible to extend some results from strong equilibria for singleton fair

cost facility location games to our setting, such as the existence of e-approximate

strong equilibria in singleton fair cost facility location games [10]. Alternatively,

it might as well be possible to adapt some of our results to strong PNE in more

restricted settings.

In [2], Cardinal and Hoefer prove a two parameter (α, β) constant approximation

to facility location games with arbitrary cost sharing rules, where each player can

reduce its cost by unilateral deviation by at most a factor of α, while the social

cost of this α-approximated PNE is at most β times from the optimal social cost.

An interesting question is whether it is possible to find a similar two parameter

approximation for our setting, or if the limited fair cost aspect of our scenario

causes one of the parameters to be too large.

Finally, in many practical scenarios there is a central authority with some ca-

pacity for interference in the game which has a goal of minimizing the social cost

globally. Thus it is important to model in what circumstances this intervention can

improve efficiency. The use of stackelberg strategies [7], where a central authority

control a few terminals that can play before the other players, might guarantee that

a PNE is always possible to find, as well as using tolls [4] in either connections or

facilities to ensure only “good” equilibria are chosen by players.
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