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Abstract. We investigate the effectiveness of tolls to reduce the ineffi-
ciency of Nash equilibria in the classical fair cost facility location game.
In this game, every terminal corresponds to a selfish player who wants
to connect to some facility at minimum cost. The cost of a player is
determined by the connection cost to the chosen facility plus an equal
share of its opening cost. We are interested in the problem of imposing
tolls on the connections to induce a socially optimal Nash equilibrium
such that the total amount of tolls is minimized. It turns out that this
problem is challenging to solve even for simple special cases. We provide
polynomial-time algorithms for (i) instances with two facilities, and (ii)
instances with a constant number of facilities arranged as a star. Our
algorithm for (ii) exploits a relation between our tolling problem and a
novel bipartite matching problem without crossings, which we prove to be
NP-hard.

1 Introduction

Facility location problems are one of the fundamental classes of problems in
computer science, with practical applications in many fields of industry and
services. A common version of the facility location problem can be stated as
follows: We are given a set F of facilities that can be opened and a set T of
terminals (or clients) that need to be connected to the facilities. Each facility
f ∈ F has a non-negative opening cost cf that is incurred if it is opened. Further,
the cost of connecting terminal t ∈ T to facility f ∈ F is given by a non-negative
connection cost dtf . The goal is to choose a subset F ′ ⊆ F of the facilities which
are opened and to connect each terminal t ∈ T to an open facility in F ′. The
objective is to find a solution that minimizes the total opening cost of all facilities
in F ′ and the connection costs of the terminals to their respective facilities.

The facility location problem has been studied extensively in the literature.
However, in most studies a centralized optimization perspective is adopted, i.e.,
it is assumed that there is a central authority, controlling all facilities and termi-
nals, whose goal is to determine a solution of minimum cost. This assumption is
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2 Effectiveness of Connection Tolls in Facility Location Games

not justified in settings where several agents are involved who want to minimize
the costs of their own facilities or terminals.

In this paper, we study a game-theoretic variant of the facility location prob-
lem, which is also known as the Fair Cost Facility Location Game (FCFLG).
Here each terminal t ∈ T corresponds to an independent player (or agent) who
wants to connect to some facility. Each player t ∈ T selfishly chooses a facility
in F to which his terminal is assigned to. The opening cost of a facility is shared
equally between the players that have chosen it and the connection costs are
paid individually by the players. Each player attempts to minimize his individ-
ual cost. The social cost objective that we consider throughout this paper is the
sum of the individual player costs.

This game is known to suffer from a high inefficiency. In particular, it is not
hard to construct instances that show that the social cost ratio between a pure
Nash equilibrium and a social optimum can be as large as the number of players.
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For example, consider the instance with two
facilities f1 and f2 and an even number of n ≥ 4
terminals as depicted in Figure 1. In the social
optimum, terminals t1 to tn/2 connect to f1 and
terminals tn/2+1 to tn connect to f2, yielding a
social cost of 4. Suppose all terminals connect
to facility f1. Then the first n

2 terminals pay 2
n

and the second n
2 terminals pay 1+ 2

n each. This
is a Nash equilibrium because every player who
deviates to facility f2 needs to pay at least the
opening cost of 2 > 1+ 2

n . Note that this equilib-
rium is highly inefficient: its social cost is 2 + n

2 ,
which is Ω(n) times larger than the optimal so-
cial cost.

In light of this, it is imperative to seek efficient means to deal with this in-
efficiency. The idea of designing efficient algorithms, also known as coordination
mechanisms, to reduce the inefficiency caused by selfish behavior has recently
attracted a lot of attention in the algorithmic game theory literature. For ex-
ample, in the context of network routing games the use of tolling schemes was
shown to be an effective way to steer selfish players into more favorable equilib-
rium outcomes. However, relatively little work has been done considering facility
location games.

Suppose that in our facility location game there is a central authority that,
while not being able to control the terminals directly, is capable to increase the
perceived costs of the players through some form of external costs, such as tolls.
This authority is interested to induce Nash equilibria which have optimal social
cost, while altering the game as little as possible. Immediately, two possibilities
for the placement of tolls come to one’s mind: either on the opening costs of the
facilities or on the connection costs between terminals and facilities.

When tolling facilities, it quickly becomes clear that there are instances where
no tolling scheme can avoid highly suboptimal Nash equilibria, even if the con-
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nection costs constitute a metric. To see this, reconsider the example given above.
Suppose we want to avoid inefficient equilibria by imposing non-negative tolls
τ1 and τ2 on facilities f1 and f2, respectively. Assume that τ1 ≤ τ2. Then all
terminals connecting to facility f1 still constitutes a Nash equilibrium. To see
this, note that the first n

2 terminals pay 2+τ1
n and the second n

2 terminals pay

1 + 2+τ1
n . If a player deviates to facility f2 he needs to pay at least the opening

cost of 2+τ2 > 1+ 2+τ1
n . If τ1 > τ2 then by using symmetric arguments it follows

that all terminals connecting to facility f2 is a Nash equilibrium. In either case
a pure Nash equilibrium remains whose social cost is at least Ω(n) times larger
than the optimal social cost. We conclude that for this instance there is no way
to avoid Nash equilibria of high inefficiency merely by tolling the facilities.

Given the above observations, we focus on tolling the connections in this
paper. Clearly, it is possible to enforce an arbitrary optimal solution as a Nash
equilibrium simply by increasing the costs of all connections which are not part of
the solution to infinity. However, an intriguing question that arises is: How large
would the tolls need to be in the worst case to ensure that an optimal solution is
realized as a Nash equilibrium? And: Can we efficiently compute minimum cost
tolls that induce a social optimum as a Nash equilibrium?

Our Contributions. In this paper, we study a model for tolling the connection
costs of fair cost facility location games with the objective to steer the players
to some desirable strategy profile (e.g., social optimum). We assume that the
players start from an arbitrarily given strategy profile and play best response
moves sequentially, one player at a time, according to some order (see below for
further justification of this assumption).

The main contributions presented in this paper are as follows:

1. We show that if a predefined player order is given, finding optimal tolls which
induce a given strategy profile can be solved in polynomial-time (Section 2).

The problem becomes inherently more difficult if the order of the players is not
fixed, but can be determined by the central authority. Even for simple special
cases, this problem turns out to be very challenging to solve.

2. We identify some properties that optimal tolling schemes have to satisfy for
certain restricted types of instances (Section 2).

3. We exploit these properties to derive polynomial-time algorithms for the
following two special cases (Sections 3 and 4, respectively):

(i) instances with two facilities, and
(ii) instances with a constant number of facilities arranged as a star.

Our algorithm for (ii) is based on a reduction of our tolling problem to a bipartite
matching problem without crossings: Given an edge-weighted bipartite graph
whose nodes on one side are partitioned into consecutive clusters, find a minimum
weight perfect matching such that no two edges incident to the same cluster cross.
To the best of our knowledge, this problem has not been studied before and is
of independent interest.
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4. We provide a dynamic programming algorithm for the bipartite matching
problem without crossings, which is polynomial if the number of clusters
is constant. Further, we prove that this matching problem is NP-hard in
general (Section 4).

We conjecture that the tolling problem is NP-hard in general. While we do not
have a proof for this yet, we feel that our NP-hardness result for the related
bipartite matching problem without crossings lends some support to this.

Related Work. Different versions of facility location games have been studied
in the literature. Cardinal and Hoefer [4] consider a non-cooperative facility
location game where n players control all terminals, and players do not have
rules on how to share the opening costs. They show that in general pure Nash
equilibria may not exist. When restricting to instances that admit a pure Nash
equilibrium, both the price of anarchy and the price of stability are Θ(n). The
variant of the game with fair cost sharing rules can be reduced to the network
design game with fair cost allocation introduced by Anshelevich et al. [1]. It can
be shown that the price of anarchy is n, while the price of stability is Hn.

For the metric facility location game, Hansen and Telelis [10] show that
constant bounds are possible for the price of stability and the strong price of
anarchy. For capacitated facility location games, Rodrigues and Xavier [12] show
that the price of anarchy is unbounded even for metric variants, while the price
of anarchy becomes bounded when considering a sequential version of the game.

The use of tolling schemes was intensively studied in the context of network
routing games. Beckman, McGuire and Winsten [2] prove that marginal cost tolls
induce an optimal Nash flow in selfish routing games with non-atomic, homoge-
neous players. Several works extended this result, for example, to heterogeneous
players (see, e.g., [6]) and multi-commodity networks (see, e.g., [9]).

To the best of our knowledge, we are the first to investigate the effectiveness
of tolls in facility location games. On the other hand, for the more general net-
work design game with fair cost allocation, there are several works that focus on
improving the price of anarchy. Fanelli et al. [8] derive efficient Stackelberg strate-
gies to improve equilibria. Chen et al. [5] study optimal cost sharing protocols
for different variants of network design games, such as directed and undirected
networks. For cost sharing games in a set cover setting, Buchbinder et al. [3]
use a taxation model which offers subsidies to certain sets in order to improve
equilibria when using best response dynamics.

Regarding the matching problem we describe in Section 4, the most relevant
work is due to Darmann et al. [7], where they prove NP-hardness for a similar
maximum matching problem under disjunctive constraints, where each pair of
edges has a constraint saying whether they can exist in the same solution or not.

2 Preliminaries

We first formally define the Fair Cost Facility Location Game (FCFLG) that we
consider in this paper: Let G = (T ∪ F, T × F ) be a complete bipartite graph,
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where F is the set of facilities and T is the set of terminals. We use m = |F |
and n = |T | to refer to the number of facilities and terminals, respectively. Each
facility f ∈ F has a non-negative opening cost cf and each terminal-facility pair
(t, f) ∈ T ×F has a non-negative connection cost dtf . Each terminal t is a selfish
player who chooses to connect to a facility such that t is connected to exactly
one opened facility. We use the terms player and terminal interchangeably.

Suppose that player t ∈ T chooses facility St ∈ F . We use S = (S1, . . . , Sn)
to refer to a strategy profile of all players. We write f ∈ S to denote that facility
f is opened in strategy profile S. Each player t ∈ T wants to minimize his own
payment (or cost) which is defined as pt(S) = cft/xft(S) + dtft , where ft = St
is the facility he chose and xft(S) = |{i ∈ T : Si = ft}| is the number of players
using facility ft in strategy profile S.

Given a strategy profile S = (S1, . . . , Sn), a change for player i from
a strategy Si to a different strategy S′i is called a move. Let S−i =
(S1, . . . , Si−1, Si+1, . . . , Sn) be the strategy profile resulting from S if we re-
move i’s strategy. We say that Si is a best response of player i with respect
to S if pi(Si, S−i) ≤ pi(S

′
i, S−i) for all S′i ∈ F . A strategy profile S is a

pure Nash equilibrium (PNE) if for every player i ∈ T , Si is a best response
with respect to S. The social cost is a measure of the overall quality of a
particular strategy profile. For facility location games, the social cost for a
strategy profile S is defined as the sum of all payments of the players, i.e.
C(S) =

∑
t∈T pt(S) =

∑
f∈S cf +

∑
t∈T dtft . In order to analyze the ineffi-

ciency of equilibria the Price of Anarchy (PoA) [11] and the Price of Stability
(PoS) [1] are the standard measures used in the literature.

We next define the modified toll game that we consider. Let G = (G, c, d)
be an instance of FCFLG. We assume that a central authority can alter G by
placing some tolls τ : T × F → R≥0 on every connection. We assume that the
players perceive a modified cost function which includes the tolls, while these
tolls are excluded from the social cost objective (i.e., tolls are refundable). More
formally, define the modified toll game Ḡ = Ḡ(τ) = (G, c, d+ τ) with respect to
tolls τ , where every player i perceives a cost of p̄i(S) = pi(S) + τifi with fi = Si
being the facility that i chooses under S. The social cost C(S) of S in Ḡ is the
same as the social cost of S in G.

We say that a strategy profile S is inducible if there exist tolls τ such that
S is a pure Nash equilibrium in the modified toll game Ḡ. Given a desirable
strategy profile S∗, the central authority ideally would like to impose tolls τ
such that S∗ is inducible. However, the problem with this is that even though
the tolls τ imposed on the connections might be sufficient to impose S∗ as a
Nash equilibrium, S∗ might not be reachable because there are multiple Nash
equilibria in the modified toll game Ḡ(τ). In fact, even if we start from a fixed
strategy profile S there is no guarantee that S∗ is reached if the players simply
play best response. As a result, we may end up in a PNE whose social cost is
significantly higher than the social cost C(S∗) of the desired outcome S∗. On
the other hand, enforcing that S∗ is the unique PNE is also not desirable, since
the amount of tolls needed for this can be very large.
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In order to circumvent these problems, conceptually we adopt the following
viewpoint: In a first phase, all players arbitrarily play best responses in the
(unmodified) facility location game until they reach a pure Nash equilibrium,
say S. In a second phase, we then impose tolls τ on the connections such that
S∗ is reached from S if we let the players play one additional round of best
responses according to some order γ. Our goal is to determine tolls τ and an
ordering γ such that the total amount of tolls is minimized.

We formalize the above idea. Let S be a pure Nash equilibrium and S∗ be an
arbitrary strategy profile of G. Let γ : T → [1, . . . , n] be an order according to
which the players play best response in the game Ḡ, where the interpretation is
that player i is the γ(i)-th player to move. If, starting at S and playing according
to the order γ, there is a best response for every player such that S∗ is reachable,
then we say that S∗ is reachable from S through γ. The Minimum Toll Problem
(MTP) considered in this paper is defined as follows:

Minimum Toll Problem (MTP):
Given: FCFLG instance G = (G, c, d), pure Nash equilibrium S, arbitrary

strategy profile S∗

Goal: Determine tolls τ : T ×F → R≥0 and an ordering γ : T → [1, . . . , n]
such that S∗ is reachable from S through γ and the total amount
of tolls T =

∑
(t,f)∈T×F τtf is minimized.

The theorem below shows that if the order of the players is fixed, then deter-
mining the optimal tolls is easy. Due to lack of space, several proofs are omitted
from this extended abstract and will be given in the full version of the paper.

Theorem 1. Given an order γ, a starting strategy profile S and a final strategy
profile S∗, there is a polynomial-time algorithm that finds the minimum tolls
such that S∗ is reachable from S through γ.

Below we establish some useful properties for instances of MTP where the
set of facilities used under S and S∗ are disjoint.

We say that two terminals t, t′ ∈ T are similar if (i) St = St′ , (ii) S∗t = S∗t′ ,
and (iii) t and t′ do not have any other possible connections other than to St
and S∗t . Further, we say that A ⊆ T is a similar set if for all terminals t, t′ ∈ A,
t and t′ are similar.

Lemma 1 (Monotonicity). Let T be partitioned into similar sets T1, . . . , Tp.
Let τt(x, y) be the toll that is needed to move terminal t ∈ Tj, when it is the x-th
terminal to move to facility S∗t and the y-th terminal to move from facility St.
Then, τt(x, y) is monotonically decreasing in x and y.

Using this, we can infer an optimal terminal order for each similar set. For a
terminal t ∈ T , let ∆d(t) = dtf∗ − dtf be the difference in connection costs
between St = f and S∗t = f∗.

Lemma 2 (Sorting similar sets). Let T be partitioned into similar sets
T1, . . . , Tp. Then there is an ordering γ that induces minimum toll costs, where
for every two terminals t, t′ ∈ Tj: if ∆d(t) < ∆d(t

′), then γ(t) < γ(t′).
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3 MTP with two facilities

We derive an algorithm for the special case of MTP with two facilities only.

Theorem 2 (2-MTP). When restricted to two facilities, there is a polynomial-
time algorithm to solve MTP.

Proof. Let F = {f1, f2}. Consider a terminal t and suppose S∗t = f1 (the case
S∗t = f2 follows similarly). Because t should not have an incentive to deviate
under S∗, it must hold that τtf2 +dtf2 +

cf2
xf2

(S∗)+1 ≥ dtf1 +
cf1

xf1
(S∗) . This imposes

a restriction on the toll τtf2 which must be satisfied in any feasible solution and
we can (implicitly) add this minimum toll to the connection cost dtf2 . We can
thus assume that S∗ is a PNE with respect to d.

Let A and B be the sets of all terminals connected to f1 and f2 in S, re-
spectively, and define a = |A| and b = |B|. Note that all terminals t ∈ A with
St = S∗t = f1 and t ∈ B with St = S∗t = f2 do not require any tolls on their
connections because S∗ is a PNE. We can thus let them be the last terminals in
the order γ.

Let Ai and Bi be the sets of terminals that are connected to f1 and f2,
respectively, after the i-th terminal has moved to its facility in S∗. Let ai = |Ai|
and bi = |Bi|. In particular, an (resp. bn) is the number of terminals in A (in
B) at the final strategy S∗. Note also that aj + bj = ai + bi, for any i, j ∈ [1, n].
Among the terminals in A (resp. B) we denote by A′ (resp. B′) the terminals
that have to move to the other facility, i.e, each ta ∈ A′ (resp. tb ∈ B′) is such
that Sta = f1 and S∗ta = f2 (resp. Stb = f2 and S∗tb = f1).

Suppose we are considering the first terminal to move and suppose that
a1 > an (then b1 < bn). Since a1 > an and b1 < bn, moving any terminal t ∈ B′
from f2 to S∗t = f1 does not require tolls currently since at turn 1 we have
cf1
a1+1 + dtf1 ≤

cf1
an

+ dtf1 and
cf2
bn

+ dtf2 <
cf2
b1

+ dtf2 . Since S∗ is a PNE we must

have
cf1
an

+ dtf1 ≤
cf2
bn+1 + dtf2 , which results in

cf1
a1 + 1

+ dtf1 ≤
cf1
an

+ dtf1 ≤
cf2

bn + 1
+ dtf2 <

cf2
b1

+ dtf2 . (1)

So at turn 1 terminal t ∈ B′ has an incentive to move from f2 to f1 and no tolls
are required. Suppose we move terminals t ∈ A′ from f1 to f2 until a turn j
such that aj = an + 1 > an and bj = bn − 1 < bn. It is not hard to see that for
all these turns equation (1) remains valid and for any terminal t ∈ B′ no tolls
would be required to move it to f1.

The algorithm constructs an order where first we move terminals t ∈ A′ from
f1 to S∗t = f2 until a time j where we have aj = an and bj = an. All these moves
require positive tolls, but after we reach the point where aj = an and bj = an,
we will show that no tolls are required to move the remaining terminals t ∈ A′ or
t ∈ B′. In particular, for the terminals in B′ no tolls are required. The optimal
solution necessarily moves first terminals from A′ until aj = an and bj = an. To
see this, note that moving terminals from B′ first would only increase the total
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cost of moving terminals of A′ later, since the terminals in B′ have always toll
cost equal to zero.

Until a turn j where aj = an and bj = an, only terminals from A′ move from
f1 to f2 and it is not difficult to prove a result similar to Lemma 2 showing that
the optimal order among terminals in A′ is to move them in decreasing order of
∆d(t).

Now suppose we are at turn j where aj = an and bj = an. At this point we
can move a terminal t ∈ B′ from f2 to f1 with tolls cost equal to zero. To see
this, note that

cf2
bj

+ dtf2 =
cf2
bn

+ dtf2 >
cf2
bn+1 + dtf2 ≥

cf1
an

+ dtf1 >
cf1
aj+1 + dtf1 ,

where the third inequality (≥) is valid since S∗ is a PNE. So at this point t has
an incentive to move from f2 to f1 and no tolls are required.

In the next turn j + 1 we have aj+1 = an + 1 and bj+1 = bn − 1, and to
move a terminal t ∈ A′ no tolls are required either, since S∗ is a PNE and
cf2

bj+1+1 + dtf2 =
cf2
bn

+ dtf2 ≤
cf1
an+1 + dtf1 =

cf1
bj+1

+ dtf1 . So the amount t is

paying for being connected to f1 is greater than or equal to the amount paid
to be connected to f2. So the order follows a move from a terminal in B′ and
a terminal in A′ until all terminals have moved. The cases where b1 > bn or
b1 = bn are similar to the case a1 > an discussed above. ut

4 Star-MTP

We consider a special case of MTP which we term the Star Minimum Toll Prob-
lem (Star-MTP): In an instance (G, S, S∗) of Star-MTP all terminals have the
same starting facility fc in strategy profile S and can be partitioned into m sim-
ilar sets T1, . . . , Tm such that every terminal t ∈ Ti has target facility S∗t = fi.
Furthermore, no terminal in Ti can connect to any facility other than fc and
fi. We show that Star-MTP admits a polynomial-time algorithm for a constant
number of facilities. To this aim, we first reduce the problem to a new matching
problem and then present a dynamic programming algorithm for it.

Reduction to Bipartite Matching Without Crossing Edges. We can think of Star-
MTP as a bipartite matching problem, where the set of terminals corresponds
to the set of nodes on one side of the bipartition and the other side contains the
integers 1, 2, . . . , n (n being the number of terminals). These integers represent
the order in which each terminal moves from fc to its final facility. For terminals
belonging to the same set Ti, we know from Lemma 2 that they must move
according to the order of non-decreasing differences in connection cost between
fc and fi, denoted by ∆d. The partition containing the terminals is organized in
such a way that we list the vertices from top to bottom grouped by similar sets,
and vertices in the same similar set are sorted from top to bottom in increasing
order of ∆d value. For each terminal t and integer q ∈ [1, n], the edge (t, q) in this
bipartite graph has cost equal to the tolls required when t is the q-th terminal
to move to its final facility.

For terminals t, t′ ∈ Ti belonging to the same similar set, if ∆d(t) < ∆d(t
′)

then t must move before t′. We impose this restriction by requiring that in the
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Fig. 2. Example of reduction from Star-MTP to PMC. For simplicity costs are omitted.

matching there are no crossing edges between vertices of the same similar set.
The problem reduces to finding a perfect matching of minimum cost without
crossings.

Definition 1 (Perfect Matching Without Crossing Edges (PMC)).
Given a bipartite graph G = (A = ∪i∈[m]Ai, B;E), let A be a set of n inte-
gers from t1 to tn, partitioned into subsets Ai, i = 1, . . . ,m, and let B be an-
other set of integers from 1 to n. For each pair tr ∈ A, j ∈ B there is an edge
e = (tr, j) ∈ E with cost wtrj ∈ R. For vertices tr, ts ∈ Ai where tr < ts, edges
(tr, q) and (ts, p) are crossing if p < q. The problem is to find a minimum cost
perfect matching without crossing edges.

Now we present a reduction from Star-MTP to the PMC. Given an instance
of the Star-MTP, first sort terminals in each similar set Ti in decreasing order
of ∆d value: if ∆d(t) < ∆d(t

′) then t < t′, for any t, t′ ∈ Ti. Each similar set
Ti becomes a set Ai in the PMC instance, and we assume that all t ∈ Ai have
a smaller value then t′ ∈ Aj if i < j, i.e, t < t′. So in the PMC instance the
terminal vertices are sorted from top to bottom from A1 to Am, and inside each
set Ai, terminals are sorted by ∆d value. The partition B of the PMC instance
just contains the numbers 1 to n, where n is the number of terminals.

Let qi = |Ai| for i = 1, . . . ,m and let Ai = {ti1, . . . , tiqi}, with terminals sorted
from t1 to tqi in the order they must move considering just terminals from Ai.
For each tix ∈ Ai and y ∈ [x, n] we create an edge (tix, y) with cost

wtix,y = max

(
0,
cfi
x

+ dtix,fi − dtix,fc −
cfc

n− y + 1

)
which is equivalent to the toll cost required if tix is the y-th overall terminal to
leave fc, and the x-th to move to fi among terminals in Ai. An example of the
reduction is presented in Figure 2.

A perfect matching of minimum cost to the reduced instance corresponds
to an optimal tolling for the MTP instance. To see this, note that no crossing
edges are allowed in the matching, so for each Ti, i = 1, . . . ,m, terminals move
according to the optimal order defined by Lemma 2. Since the costs of any edge
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(t, y) represents the toll cost required when t is the y-th overall terminal to move,
a minimum perfect matching corresponds to a minimum tolling.

Dynamic Program. We now present a dynamic program algorithm to the PMC
problem. Let G = (A = ∪i∈[m]Ai, B;E) be an instance of PMC, with qi = |Ai|
for i = 1, . . . ,m, and n = q1 + · · · + qm. Let DP (q1, q2, . . . , qm) be the cost of
a minimum cost perfect matching without crossings for that instance. Define
DP (q1, . . . , qm) = 0 if q1 = · · · = qm = 0 and

DP (q1, . . . , qm) = min
i = 1, . . . ,m

such that qi > 0

(
DP (q1, . . . , qi − 1, . . . , qm) + w(tiqi

,y)

)
(2)

where y in w(tiqi
,y) is equal to y =

∑m
i=1 qi.

Theorem 3. The recurrence relation above correctly computes the optimal so-
lution DP (q1, q2, . . . , qm) for an instance of the PMC.

It is not hard to construct a dynamic program algorithm to solve PMC, since the
algorithm only needs to create an m-dimensional table of size q1×q2× . . .×qm =
Θ(nm) and compute the value of each cell in Θ(m) time following the recurrence
(2). The overall time of the algorithm is then Θ(mnm) which is polynomial if m
is a constant.

Hardness. We show that given an instance of PMC, it is NP-hard to decide
whether it admits a perfect matching without crossings.

Theorem 4. The problem of deciding whether a given instance of PMC admits
a perfect matching without crossings is NP-hard.

Proof. Let I be an instance of the 3-SAT with m clauses and n variables. We
construct an instance of PMC as follows: for each variable xi we build vertices
aTi < aFi in A and bTi < bi < bFi in B, with edges (aTi , b

T
i ), (aTi , bi), (aFi , bi) and

(aFi , b
F
i ). For any occurrence of the literal xi or xi in a clause Cj , we add vertices

a
Cj

i to A and vertices b
Cjxi

i , b
Cjxi

i to B, with edges (a
Cj

i , b
Cjxi

i ) and (a
Cj

i , b
Cjxi

i ),

such that aTi < a
Cj

i < aFi and bTi < b
Cjxi

i < bi < b
Cjxi

i < bFi . We call this
gadget Xi. All vertices a from a gadget Xi form a subset Ai, so it is forbidden to
have crossing edges in this gadget. Note that each vertex a ∈ Ai can connect to
exactly two vertices in B, where the one with smaller value is denoted by S(a),
and the one with greater value G(a).

For each clause Cj , we also construct a vertex cj ∈ A which connects to each

b
Cj li
i ∈ B for each literal li occurring in Cj , i.e., if literal xi (resp. xi) appears

in Cj we include edge (cj , b
Cjxi

i ) (resp. (cj , b
Cjxi

i )). Each vertex cj belongs to its
own partition Acj = {cj}. See Fig. 3 for an example of this construction.

Finally, note that each variable xi gives rise to two vertices in A (aTi , a
F
i )

and three in B (bTi , bi, b
F
i ). Each clause Cj adds four vertices to A (one in the

clause gadget (cj) plus one for each literal (a
Cj

i )) and six in B (two for each
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X1

C1

aT1 aF1

bT1 bF1b1

aC1
1

bC1x1
1 bC1x1

1bC2x1
1 bC2x1

1

c1 c2

bC1x1
1

bC1x2
2

bC1x3
3aC2

1

c1

A1

Ac1

Fig. 3. Example of the reduction where C1 = (x1 ∨x2 ∨x3), literal x1 appears only on
C2 and x1 appears only on C1.

literal (b
Cjxi

i , b
Cjxi

i )), resulting in a total of 2n+ 4m vertices in A and 3n+ 6m
in B. We add n + 2m dummy vertices all belonging to the same partition Ak
which can connect to any vertex in B except the vertices bi, for i ∈ [1, n], where
k = n+m+ 1 is the number of partitions.

Suppose there is a feasible assignment to the instance I of 3-SAT. We con-
struct a perfect matching as follows: for each variable xi which is true, we assign
each vertex a ∈ Ai to its vertex S(a) ∈ B. All b vertices of Xi larger than bi are
unassigned, and therefore for any clause Cj which contains xi, its vertex cj can

be assigned to b
Cjxi

i . Similarly the opposite is done if xi is false, i.e., assign each
vertex a ∈ Ai to its vertex G(a) ∈ B, allowing each vertex cj , from a clause Cj

containing xi, to connect to b
Cjxi

i . With this, all vertices from set A which belong
to variable and clause gadgets are matched. To complete the perfect matching,
just assign the vertices from subset Ak, from smallest to greatest, in this order
to the smallest to greatest vertices in B which are still not matched.

Now assume there is a perfect matching with no crossing edges for the graph
G. First notice that for each gadget Xi either aTi or aFi is assigned to bi. If aTi
is assigned to bi, then all a vertices of Xi are assigned to their greater vertices
G(a) since no crossing edges are allowed, and if aFi is assigned to bi then all a
vertices are assigned to their S(a) vertices.

We construct an assignment for the 3-SAT instance by setting xi to true if
all a ∈ Ai are assigned their smaller vertices S(a) ∈ B, and to false otherwise.
Now we show that each clause Cj is satisfiable. Let cj ∈ A be the corresponding
vertex of a clause Cj . Since we have a perfect matching, cj must be connected

to some b
Cj li
i corresponding to one of its literals li, which is either xi of xi. If

li = xi then we know that all a vertices of Xi must be connected to their smaller
vertices S(a) and so xi is true and Cj is satisfiable. Similarly, if li = xi then all
a vertices of Xi must be connected to their greater vertices G(a), so xi is false
and Cj is satisfiable. ut

5 Conclusions

The most natural open problem that our work suggests is to prove that the
minimum toll problem is in fact NP-hard. While the NP-hardness result for
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the perfect matching problem without crossings provides some support to this,
its proof does not translate directly to the more restricted scenario of choosing
optimal tolls. Besides this, there are also different possibilities of consideration
for the tolling model, such as allowing simultaneous moves or enforcing that
the unique possible equilibrium is one with optimal social cost. However for
these scenarios, finding optimal tolls often includes finding possible equilibria,
which implies that these tolling problems might be even harder than the ones we
consider here. Finally, an interesting consideration is to allow for negative tolls
on either the connection or opening costs to encourage players to play a specific
strategy profile.
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