121,599 research outputs found

    Evaluation of machine vision techniques for use within flight control systems

    Get PDF
    In this thesis, two of the main technical limitations for a massive deployment of Unmanned Aerial Vehicle (UAV) have been considered.;The Aerial Refueling problem is analyzed in the first section. A solution based on the integration of \u27conventional\u27 GPS/INS and Machine Vision sensor is proposed with the purpose of measuring the relative distance between a refueling tanker and UAV. In this effort, comparisons between Point Matching (PM) algorithms and Pose Estimation (PE) algorithms have been developed in order to improve the performance of the Machine Vision sensor. A method of integration based on Extended Kalman Filter (EKF) between GPS/INS and Machine Vision system is also developed with the goal of reducing the tracking error in the \u27pre-contact\u27 to contact and refueling phases.;In the second section of the thesis the issue of Collision Identification (CI) is addressed. A proposed solution consists on the use of Optical Flow (OF) algorithms for the detection of possible collisions in the range of vision of a single camera. The effort includes a study of the performance of different Optical Flow algorithms in different scenarios as well as a method to compute the ideal optical flow with the aim of evaluating the algorithms. An analysis on the suitability for a future real time implementation is also performed for all the analyzed algorithms.;Results of the tests show that the Machine Vision technology can be used to improve the performance in the Aerial Refueling problem. In the Collision Identification problem, the Machine Vision has to be integrated with standard sensors in order to be used inside the Flight Control System

    FPGA-Based Multimodal Embedded Sensor System Integrating Low- and Mid-Level Vision

    Get PDF
    Motion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments) in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms

    Sparse optical flow regularisation for real-time visual tracking

    Get PDF
    Optical flow can greatly improve the robustness of visual tracking algorithms. While dense optical flow algorithms have various applications, they can not be used for real-time solutions without resorting to GPU calculations. Furthermore, most optical flow algorithms fail in challenging lighting environments due to the violation of the brightness constraint. We propose a simple but effective iterative regularisation scheme for real-time, sparse optical flow algorithms, that is shown to be robust to sudden illumination changes and can handle large displacements. The algorithm proves to outperform well known techniques in real life video sequences, while being much faster to calculate. Our solution increases the robustness of a real-time particle filter based tracking application, consuming only a fraction of the available CPU power. Furthermore, a new and realistic optical flow dataset with annotated ground truth is created and made freely available for research purposes

    A Fusion Approach for Multi-Frame Optical Flow Estimation

    Full text link
    To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.Comment: Work accepted at IEEE Winter Conference on Applications of Computer Vision (WACV 2019

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog
    corecore