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ABSTRACT 
 

Evaluation of Machine Vision Techniques 
for use within Flight Control Systems 

 
Marco Mammarella 

 
In this thesis, two of the main technical limitations for a massive deployment of 

Unmanned Aerial Vehicle (UAV) have been considered.  
The Aerial Refueling problem is analyzed in the first section. A solution based on 

the integration of ‘conventional’ GPS/INS and Machine Vision sensor is proposed with 
the purpose of measuring the relative distance between a refueling tanker and UAV. In 
this effort, comparisons between Point Matching (PM) algorithms and Pose Estimation 
(PE) algorithms have been developed in order to improve the performance of the 
Machine Vision sensor. A method of integration based on Extended Kalman Filter (EKF) 
between GPS/INS and Machine Vision system is also developed with the goal of 
reducing the tracking error in the ‘pre-contact’ to contact and refueling phases.  

In the second section of the thesis the issue of Collision Identification (CI) is 
addressed. A proposed solution consists on the use of Optical Flow (OF) algorithms for 
the detection of possible collisions in the range of vision of a single camera. The effort 
includes a study of the performance of different Optical Flow algorithms in different 
scenarios as well as a method to compute the ideal optical flow with the aim of evaluating 
the algorithms. An analysis on the suitability for a future real time implementation is also 
performed for all the analyzed algorithms. 

Results of the tests show that the Machine Vision technology can be used to 
improve the performance in the Aerial Refueling problem. In the Collision Identification 
problem, the Machine Vision has to be integrated with standard sensors in order to be 
used inside the Flight Control System.  
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1 INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have been referred to in many ways: RPVs 

(Remotely Piloted Vehicles), drones, robot planes, and “pilot-less” aircraft are a few such 

names. Most often called UAVs, they are defined by the Department of Defense (DOD) 

as powered, aerial vehicles that do not carry a human operator, use aerodynamic forces to 

provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or 

recoverable, and can carry a lethal or non-lethal payload [1]. Ballistic or semi-ballistic 

vehicles, cruise missiles, and artillery projectiles are not considered UAVs by the DOD 

definition. UAVs differ from RPVs in that some UAVs can fly autonomously. UAVs are 

either described as a single air vehicle (with associated surveillance sensors) or a UAV 

system [2], which usually consists of three to six air vehicles, a ground control station, 

and support equipment. UAVs are thought to offer two main advantages over manned 

aircraft; they are arguably cheaper to produce, and they eliminate the risk to a pilot’s life. 

Furthermore, for those certain missions that require a very small aircraft, only a UAV can 

be deployed because there is no equivalent manned system small enough for the job [1]. 

Recently, UAVs have achieved a wide consideration thanks to recent technology 

improvements. For example advanced video surveillance and sensing systems can now be 

placed on UAVs, something that was unthinkable instead just a few years ago. 

UAVs range from the size of an insect to that of a commercial airliner. DOD 

currently possesses five major UAVs: the Air Force’s Predator and Global Hawk [3] the 

Navy and Marine Corps’s Pioneer [4], and the Army’s Hunter and Shadow [5].  
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Figure 1: Predator UAV (left) and Pioneer UAV (right)  

The non-military use of UAVs is expected to increase in the future as 

technologies evolve that allow the safe, reliable flight of UAVs over populated areas. 

One emerging application is the use of less sophisticated UAVs as aerial camera 

platforms for the movie making and entertainment industries [6]. A similar market is 

growing rapidly in the television news reporting. As demand in these markets grows, 

aircraft such as the Individual Unmanned Air Scouts (IUAS) [7] will become a more 

desirable aerial platform than less-capable hobbyist aircraft, as safety, reliability, ease-of-

use, and rapid deployment become important priorities. Additional roles for UAVs in the 

near future will include homeland security and medical re-supply. For Example the Coast 

Guard and Border Patrol – parts of the newly formed Department of Homeland Security – 

already have plans to deploy UAVs to watch coastal waters, patrol the nation’s borders, 

and protect major oil and gas pipelines. Congressional support, currently, exists for using 

UAVs for border security [8]. During a Senate Armed Services Committee hearing on 

homeland defense, it was stated that although it would not be appropriate or 

constitutional for the military to patrol the border, domestic agencies using UAVs could 

carry out this mission. On the medical side, UAVs such as the Army’s Shadow have been 

studied as delivery vehicles for critical medical supplies needed on the battlefield [5]. Not 
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all of these new applications have been approved. In fact, UAV advocates state that in 

order for UAVs to take an active role in homeland security, Federal Aviation 

Administration (FAA) regulations concerning the use of UAVs will have to change. The 

Coast Guard will most likely take the lead in resolving UAV airspace issues with the 

FAA. The National Aeronautics and Space Administration (NASA) and the UAV 

industry will also be working with the FAA on the issue, as they are joining forces in an 

initiative to achieve routine UAV operations in the national airspace within a few years 

[9]. 

Despite the increasing exploits of UAVs in specific missions, the use of these 

particular systems is limited to low-medium range operations and to “collisions – free” 

scenarios. Normally, UAVs are smaller then manned aircraft and this characteristic limits 

the fuel capacity and payload. In addiction, UAVs needs more sensors and complicated 

on-board computers in order to perform a specific task. For these reasons, detailed studies 

are needed to improve the capabilities of the systems[10][11] [13][15][33][43].  

In this thesis, two of the major technological limitations preventing a larger scale 

UAV deployment have been addressed. In order to solve the Aerial Refueling problem 

for UAVs a highly accurate sensor is needed when the refueling tanker and the UAV are 

in proximity. The solution proposed by Junkins and Schaub [69] called VisNav is a 

sensor able to generate highly accurate measurements with an update rate of up to 100 Hz 

makes it a sensor that can be used for autonomous refueling operations. VisNav is 

capable of producing six degree of freedom relative navigation information. VisNav 

calculates line of sight vectors to each beacon using voltage measurements from a light 

sensitive diode. A controller on the receiver coordinates the sequence and timing of the 
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active beacon array through a wireless data link. This guarantees correspondence between 

each measurement and the known position of the beacon on the target. The VisNav 

sensor in combination with Inertial Navigation System (INS) and Differential Global 

Position System (DGPS) were used in the research proposed by Valasek and his research 

group [11], [70], [71] in order to achieve the solution of the Aerial Refueling problem.  

The U.S Air Force Research Laboratory (AFRL) is actually starting the second 

phase of its Automated Aerial Refueling (AAR) program to demonstrate the capability to 

refuel unmanned aircraft in flight [81]. AAR Phase II is scheduled to run from late fiscal 

2008-2012, at an estimated cost of $49 million, the program will build on Phase I, which 

demonstrated a proof-of-concept AAR capability using a single-channel relative 

navigation system based on the Precision Global Positioning System (PGPS). In Phase I, 

a Calspan-operated Learjet acting as a surrogate UAV demonstrated the entire refueling 

operation, but did not make contact with the boom of the KC-135 tanker. Phase II will 

culminate in a wet contact between the tanker and a manned surrogate. Phase II will 

involve two spirals. In Spiral 1, according to AFRL pre-solicitation documents [3], the 

selected integrator will take the government-furnished, single-channel AAR system from 

Phase I and develop a multi-channel PGPS relative navigation system and automated 

flight control system (FCS). The Spiral 1 system will use dual-redundant Tactical 

Targeting Network Technology wideband data-links to connect the PGPS systems in the 

tanker and receiver. Using outputs from the relative navigation system, the redundant 

FCS will control the receiver aircraft during aerial refueling, including rendezvous with 

the tanker, station-keeping, repositioning, separation and contingencies. A version of the 

Spiral 1 system will be installed in a receptacle-equipped military aircraft, likely an F-16, 
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that will act as the surrogate UAV for flight-tests in fiscal 2010 and 2011. Under Spiral 2, 

meanwhile, the Phase II integrator will study a “sensor-augmented” AAR relative 

navigation system able to operate in environments where GPS is degraded or denied [3] 

[81]. 

In this thesis, the Aerial Refueling problem will be analyzed in the first section. A 

solution based on the integration of ‘conventional’ GPS/INS and Machine Vision sensor 

is proposed with the purpose of measuring the relative distance between a refueling 

tanker and UAV [12][26][32][40][55]. A set of control laws for the guidance between the 

“pre-contact” to “contact” and refueling phases was previously developed at WVU.  

A first contribution of this section of the thesis is achieve desirable accuracy for 

the Machine Vision sensor through comparisons between two different Point Matching 

(PM) algorithms and two different Pose Estimation (PE). A second specific contribution 

is the development of new method of integration based on Extended Kalman Filter (EKF) 

[18] between GPS/INS and Machine Vision system. The EKF is introduced with the goal 

of reducing the tracking error in the ‘pre-contact’ to contact and refueling phases. 

The Collision Avoidance problem is instead a more common problem that can be 

applied to all the type of vehicles and robotic applications. In the available literature 

many different scenarios have been analyzed. [72] proposed a scheme for collision 

avoidance for robotic arms based on infrared proximity sensor. In this case the slow 

relative motion and the possibility to arrive very close – compared with the distance 

between aerial vehicles - to the object that the robotic arm has to avoid encourage the 

development of many type of sensors able to recognize the proximity of the object. 

Examples of sensors that can be used in robotic applications for collision avoidance 
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purpose are ultrasonic sensors with a range up to 2.5 m, radar proximity sensors with a 

range from 4 cm to 5.5 m, inductive proximity sensors with a range up to 35 mm, and 

capacitive proximity sensors with a range up to 10 mm. 

Many applications of collision avoidance have been developed for Automatic 

Ground Vehicle (AGV). [73] proposed an embedded multi sensors collision avoidance 

system for automotive application. The system includes sensors like video camera, 

ultrasonic sensors, a PC hardware computer, a CAN network and a dedicated software for 

signal and image processing, data fusion and AI expert system. In [74] the author tries to 

summarize the sensors used in automotive industries (Figure 2) and sensors used in 

aeronautic applications.  

 

Figure 2: The Honda ASV-3 uses cameras and radar to detect obstacles and approaching vehicles 
and assists in steering and braking  

 

The sensors analyzed are: SkyWatch HP and Proteus. SkyWatch HP is an active 

surveillance traffic advisory system. It interrogates the transponders of aircraft in the 

vicinity, calculates their distance, bearing, relative altitude and speed of closure. Proteus 

developed at NASA Dryden Flight Research Center where the autopilot and satellite 
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communications systems on the aircraft allowed ground-based staff to control it “over the 

horizon”. 

In 2002, a plane was equipped with Skywatch HP to detect other aircraft with 

transponders so that the ground pilot could change the aircraft’s direction or altitude to 

avoid collision, and in 2003 a small 35 Ghz radar system and an infrared optical sensor 

were added to detect aircraft without transponders. The optical system detects a potential 

colliding object and the radar measures its range and closing speed. [75] presented a new 

radar sensor for collision avoidance purpose. The receiver front-end module is based on a 

six-port phase/frequency discriminator and it can measure the relative velocity and 

position of the identified object. The radar is able to identify possible collision up to 75 

m. In [76] a second radar with lower frequency and bigger rang (6.4 km) is presented and 

tested for low altitude UAVs.  

[78] presented a collision avoidance method based on the Traffic alert and 

Collision Avoidance System II (TCAS II) for UAVs. The TCAS is a method based on a 

transponder used in civil aviation in order to avoid midair collision. Anyway, the system 

does not have any information about terrain or building and it presents high costs 

($25,000 – $150,000). Being based on transponder, the TCAS only works with 

cooperative aircraft; the authors propose the augmentation of the sensors with radar, lidar 

(laser radar) and optical sensors for non-cooperative aircraft. 

[45],[77] presented a collision avoidance method based on a combination of 

sensors. The implementation required a Ka-band pulsed radar as the main sensor, and 

four electro-optical cameras – two in the visible spectrum and two in the infrared 

spectrum- as aiding sensors. Real time sensors fusion merges all the information provided 
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by the sensors. The cameras implement Optical Flow techniques in order to find possible 

collisions. Specifically, in [77] the Lucas-Kanade [48] and Horn and Schunck’s [49] 

methods were tested. The Lucas-Kanade method was considered more suitable for 

implementation but after some analysis was observed that the limitations of an Optical 

Flow-only based approach made it not adequate to replace the main system architecture 

of the anti-collision system that includes a radar. 

[79] described a Miniature Aerial Vehicle (MAV) equipped with obstacle and 

terrain avoidance system. Figure 3 shows the MAV and the sensors used, the round hole 

on the right and the large hole on the belly are the optic-flow sensors. The square hole in 

the center is the laser range, and the other two round holes are for electro-optical 

cameras. 

 

Figure 3: MAV developed at BYU with collision avoidance system 
 

The optical flow sensors are implemented through a lens to an Agilent ADNS-

2610 optical mouse sensor. The ADNS-2610 has a small form factor, measuring only 10 

mm by 12.5 mm and runs at 1,500 frames/s. It requires a light intensity of at least 80 
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mW/m2 at a wavelength of 639 nm or 100 mW/m2 at a wavelength of 875 nm. The 

ADNS-2610 measures the flow of features across an 18 × 18 pixel complementary metal-

oxide semiconductor (CMOS) imager. The range on which the sensor is able to detect a 

motion is not provided but the velocity - on which the aircraft was tested (V=13 m/s) - 

permits to perform an anti-collision maneuver even if the object is close.  

In the second section of this thesis the problem of Collision Identification (CI) is 

analyzed. The proposed solution consists on the use of Optical Flow (OF) [47], [48], [49], 

[50], [51], [52], [53], [57] algorithms for the detection of possible collisions in the range 

of vision of a single camera.  

The main contribution of this section is the development of performance metrics 

for the comparison of the Optical Flow algorithms. Particularly, a formula able to 

compute the Ideal Flow in simple and complex scenarios permits to define a standard 

approach for the direct comparison of the velocity vector field. On the other hand, the 

inversion of the formula permits to extract linear and angular velocities in order to 

compare the Optical Flow algorithms using an indirect approach. 

Another original contribution of this work is a quantitative comparison 9 different 

OF algorithms using image sequences from different real-world experiments involving 

composed (i.e. translational and rotational) 3D motion of rigid objects. In particular the 

last experiment relied on a flight test experiment involving an autonomous F-22 aircraft 

model designed, built and instrumented by the flight control group of the Mechanical and 

Aerospace Department at West Virginia University (WVU). 

The thesis reports a complete study of the performance of the different Optical 

Flow algorithms in different scenarios as well as a method to compute the ideal optical 
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flow useful in order to test the Optical Flow algorithms. An analysis on the suitability for 

a future real time implementation is also performed for all the analyzed algorithms. The 

problem of extracting the information from the Optical Flow algorithms, the problem of 

estimating of the “no-flight zones” and the relative commands that have to be provided to 

the flight control system will not be considered in this effort.  
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2 THE MACHINE VISION BASED AERIAL REFUELING 

PROBLEM AND SIMULATION  

One of the biggest current limitations of Unmanned Aerial Vehicles (UAVs) is 

their lack of aerial refueling (AR) capabilities. There are currently two hardware 

configurations used for aerial refueling for manned aircraft. The first configuration is 

used by the US Air Force and features a refueling boom maneuvered by a boom operator 

to connect with the fuel receptacle of the aircraft to be refueled. The second configuration 

is used by the US Navy and features a flexible hose with an aerodynamically stabilized 

perforated cone - known as the ‘Probe and Drogue’ system. The effort described in this 

thesis is relative to the US Air Force refueling boom system with the general goal of 

extending the use of this system to the refueling of UAV’s. For this purpose, a key issue 

is represented by the need of accurate measurement of the ‘tanker-UAV’ relative position 

and orientation from the ‘pre-contact’ to the ‘contact’ position and during the refueling. 

Although sensors based on laser, infrared radar, and GPS technologies are suitable for 

autonomous docking [10], there might be limitations associated with their use. For 

example, the use of UAV GPS signals might not always be possible since the GPS 

signals may be distorted by the tanker airframe. Therefore, the use of Machine Vision 

(MV) technology has been proposed in addition - or as an alternative - to these 

technologies [11][12][33]. A MV-based system has been investigated for close proximity 

operations of aerospace vehicles [13] and for the navigation of UAV’s [14]. 

The control objective is to guide the UAV within a defined 3D Window (3DW) 

below the tanker where the boom operator can then manually proceed to the docking of 
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the refueling boom followed by the refueling phase. A MV approach assumes the 

availability of a digital camera installed on the UAV providing the images of the target 

(that is, the refueling tanker), which are then processed to solve a pose estimation 

problem, leading to the real-time estimates of the relative position and orientation 

vectors. These vectors are used for the purpose of guiding the UAV from a “pre-contact” 

to a “contact” position. Once the UAV reaches the contact position, the boom operator 

takes over and manually proceeds to the refueling operation. 

A simulation environment for the UAV Aerial Refueling has been developed and 

will be summarized in this effort. This environment features detailed mathematical 

models for the tanker, the UAV, the refueling boom, the wake effects, the atmospheric 

turbulence, and the sensors noise. The simulation interacts with a Virtual Reality (VR) 

environment by moving visual 3D models of the aircraft in a virtual world and by 

acquiring a stream of images from the environment. Images are then processed by a MV 

sensor block, which includes algorithms for Feature Extraction (FE), Point Matching 

(PM), and Pose Estimation (PE). The position and orientation information coming from 

the MV and GPS sensors are then fused in order to be used by the UAV control laws to 

guide the aircraft during the docking maneuver and to maintain the UAV within the 3D 

window during the refueling phase. The general block diagram of the MV scheme is 

shown in Figure 4. 
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Figure 4– Block diagram of the proposed MV scheme for UAV AR 
 

The AR problem is formally described in the next section. Next, the modeling of 

the tanker, UAV, boom, wake effects and turbulence are summarized. The following 

sections are dedicated to the description of the main components of the Machine Vision 

system, respectively the Feature Extraction (FE), the Point Matching (PM), and the Pose 

Estimation (PE) algorithms. A basic sensor fusion and the path generation methods, as 

well as the tracking and docking control laws are then considered in the subsequent 

sections. Finally, the results are presented with the purpose of improving the existing 

simulation. Particularly, detailed analyses of two PM and two PE algorithms are 

provided. The analyses are useful in order to find a final arrangement in order to reduce 

the error for the Machine Vision system A new sensor fusion that combine GPS/INS and 

Machine Vision system based on EKF has been developed and compared with the 

previous sensor fusion technique.  
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2.1 The MV-based AR Problem 

A block diagram of the MV-based AR problem is shown in Figure 5 

 
Figure 5– Reference Frames for the AR Problem 

 

2.1.1 Reference frames and Notation 

The study of the AR problem requires the definition of the following Reference 

Frames (RFs): 

• ERF, or E: earth-fixed reference frame. 

• PRF, or P: earth-fixed reference frame having the x axis aligned with the planar 

component of the tanker velocity vector. 

• TRF or T: body-fixed tanker reference frame located at the tanker center of 

gravity (CG). 

• URF or U: body-fixed UAV reference frame located at the UAV CG. 
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• CRF or C: body-fixed UAV camera reference frame. 

Within this study geometric points are expressed using homogeneous (4D) 

coordinates and are indicated with a capital letter and a left superscript denoting the 

associated reference frame.  For example, a point P expressed in the F reference frame 

has coordinates FP = [x,y,z,1]T, where the right ‘T’ superscript indicates transposition.  

Vectors are defined as difference between points; therefore their 4th coordinate is always 

‘0’. Also, vectors are denoted by two uppercase letters, indicating the two points at the 

extremes of the vector. For example, EBR = EB - ER is the vector from the point R to the 

point B expressed in the Earth Reference Frame.  The transformation matrices are (4 x 4) 

matrices relating points and vectors expressed in an initial reference frame to points and 

vectors expressed in a final reference frame. They are denoted with a capital T with a 

right subscript indicating the “initial” reference frame and a left superscript indicating the 

“final” reference frame. For example, the matrix  represents the homogeneous 

transformation matrix that transforms a vector/point expressed in TRF to a vector/point 

expressed in ERF.  

E
TT

 

2.1.2 Geometric Formulation of the AR Problem 

The objective is to guide the UAV such that its fuel receptacle (point R in Figure 

5) is “transferred” to the center of a 3-dimensional window (3DW, also called “Refueling 

Box”) under the tanker (point B in Figure 5). It is assumed that the boom operator can 

take control of the refueling operations once the UAV fuel receptacle reaches and 

remains within this 3DW. It should be emphasized that point B is fixed within the TRF; 

also, the dimensions of the 3DW , ,x y zδ δ δ  are known design parameters. It is 
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additionally assumed that the tanker and the UAV can share a short-range data 

communication link during the docking maneuver. Furthermore, the UAV is assumed to 

be equipped with a digital camera along with an on-board computer hosting the MV 

algorithms acquiring the images of the tanker. Finally, the 2-D image plane of the MV is 

defined as the ‘y-z’ plane of the CRF.  

 

2.1.3 Receptacle-3DW-center vector 

The reliability of the AR docking maneuver is strongly dependent on the accuracy 

of the measurement of the vector PBR, that is the distance vector between the UAV fuel 

receptacle and the center of the 3D refueling window, expressed within the PRF:  

P P T P U P T P T C U
T U T T C UBR T B T R T B T T T R= − = −  (1) 

In the above relationships both UR and TB are known and constant parameters 

since the fuel receptacle (point R) and the 3DW center (point B) are located at fixed and 

known positions with respect to the UAV and tanker frames respectively. The 

transformation matrix CTU represents the position and orientation of the CRF with respect 

to the URF; therefore, it is also known and assumed to be constant. The transformation 

matrix PTT represents the position and orientation of the tanker respect to PRF, which are 

measured on the tanker and broadcasted to the UAV through the data communication 

link. In particular, if the sideslip angle β of the tanker is negligible then PTT only depends 

on the tanker roll and pitch angles. Finally, TTC, is the inverse of CTT, which can be 

evaluated either “directly”- that is using the relative position and orientation information 

provided by the MV system- or “indirectly”- that is by using the formula 

, where the matrices ETU and ET( ) T
E

U
E

U
C

T
C TTTT 1−

= T can be evaluated using 
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information from the position (GPS) and orientation (gyros) sensors of the tanker and 

UAV respectively. 

 

2.2 Aircraft, Boom and Turbulence modeling 

2.2.1 Modeling of the tanker and UAV aircraft 

The non-linear aircraft models of the UAV and tanker have been developed using 

the conventional modeling procedures and conventions outlined in [15][16]. Specifically, 

a non-linear model of a Boeing 747 aircraft with linearized aerodynamics was used for 

the modeling of the tanker. A similar non-linear model was used for the modeling of the 

UAV. The selected UAV dynamics is relative to a concept aircraft – represented in 

Figure 6 – known as “ICE-101” [17]. A conventional state variable modeling procedure 

was used for both aircraft, leading to the state vector:  

[ ], , , , , , , , , , , TV p q r x y zα β ψ θ ϕ   (2) 

where , ,α βV  represent the aircraft velocity in the stability axes; , ,p q r  are the 

components of the angular velocity in the body reference frame while , , , , ,ψ θ ϕ x y z  

represent the aircraft orientation and position with respect to ERF [16].  
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Figure 6: ICE 101 model 
 

First order responses have been used for the modeling of the actuators of the 

different control surfaces. The ICE101 features 10 control surfaces [17]: 

1 5 THROTTLE AMT_R AMT_L TEE_R TEE_L, , , ,
T

U δ δ δ δ δ− ⎡= ⎣ ⎤⎦  (3) 

6 10 LEF_L LEF_R PF SSD_L SSD_R, , , ,
T

U δ δ δ δ δ− ⎡= ⎣ ⎤⎦  (4) 

where AMT stands for All Moving Tip, LEF for Leading Edge Flap, PF for Pitch 

Flap, SSD for Spoiler Slot Deflector and TEE for Trailing Edge Elevon, and they are 

represented in Figure 6. Steady state rectilinear conditions (Mach = 0.65, H = 6,000 m) 

are assumed for the refueling. The tanker autopilot system is designed using LQR-based 

control laws [18]. The design of the UAV control laws is outlined in one of the following 

sections. 
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2.2.2 Modeling of the boom 

A detailed mathematical model of the boom was developed to provide a realistic 

simulation from the boom operator point of view. A joystick block for boom 

maneuvering was also added to the simulation environment. 

The dynamic model of the boom has been derived using the Lagrange method 

[19],[20]: 

( ) ( ), ,
, 1,...,

∂ ∂
− = =

∂ ∂

� �
� i

i i

L q q L q qd F i n
dt q q

  (5) 

where ( ) ( ) ( ), ,= −� �L q q T q q U q  is the Lagrangian, that is the difference between 

the boom kinetic and potential energy, and q is the vector of Lagrangian coordinates, 

defining the position and orientation of the boom elements. Since the inertial and 

gravitational forces are included in the left-hand side of (5), Fi only represents the active 

forces (wind and control forces) acting on the boom. The boom was modeled as a system 

consisting of two rigid elements, as shown in Figure 7. The first element is connected to 

the tanker point EP by two revolute joints allowing vertical and lateral relative rotations 

(θ4 and θ5). The second element is connected to the first by a prismatic allowing the 

extension d6. Thus, the boom has 6 degrees of freedom, that is, the first three components 

of [ ]1 2 3, , ,1 TEP d d d= , the rotations θ4 and θ5, and the extension d6, leading to 

[ ]1 2 3 4 5 6, , , , , Tq d d d dθ θ= . Note that the point EP can be expressed as EP = ETT TP where 

TP is known and constant. The consequent Denavit - Hartenberg parameter table for the 

boom system is obtained and shown in Table 1. The Denavit – Hartenberg table permits 

to easily define the transformation matrix from the tanker to the end-effector of the boom 

going through all the joints of the robotic arm. Knowing the height ai, the azimuth angle 
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αi, the distance di and the twist θi of all the joints, it is possible find the transformation 

matrix from the joint n to the joint n-1. Multiplying the rotation matrix on the axis z with 

variable θn:, the translation matrix on the axis –z in the variable an, the translation matrix 

on the axis – x in the variable dn and the rotation matrix on the axis – x on the variable αn 

it can be obtained the matrix nTn-1.  Multiplying all the matrix for each joint of the robotic 

arm it is possible to extract the kinematics equations of the arm.  

TANKER 
JOINT Fwx1Fwy1 

θ4 

θ5 

TANKER 
C.o.M. 

T 

P 

d1 
d2 d3 

d6

Fwz1

Fwx2 
Fwy2

Fwz2

1st element: lenght 6.1 m, mass 180 kg. 
2nd element: lenght 4.6 m, mass 140 kg. 

 

Figure 7–Model of the “Refueling Boom” 
 

 ai αi di θi 

1 0 2π  d1 0 
2 0 2π  d2 2π
3 0 2π  d3 0 
4 0 2π− 0 4θ  
5 0 2π− 0 5θ  
6 0 2π  d6 2π

Table 1: Denavit-Hartenberg parameter for the Boom system 
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2.2.3 Modeling of the atmospheric turbulence and wake effects 

The atmospheric turbulence on the probe system and on both tanker and the UAV 

aircraft has been modeled using the Dryden wind turbulence model [21] at light/moderate 

conditions. The wake effects of the tanker on the UAV have been modeled through the 

interpolation from a large amount of experimental data [22],[23] as perturbations to the 

aerodynamic coefficients , , , , ,D L m Y lC C C C C Cn  for the UAV aerodynamic forces and 

moments.  

 

2.3 Virtual Reality Scenery and Image Acquisition 

The simulation outputs were linked to a Virtual Reality Toolbox® (VRT) [24] 

interface to provide typical scenarios associated with the refueling maneuvers. Such 

interface allows the positions of the UAV, tanker, and boom within the simulation to 

drive the position and orientation of the associated objects in the Virtual World (VW). 

The VW consisted in a VRML file [25] including visual models of the landscape, tanker, 

UAV, and boom. Several objects including the tanker, the landscape and different parts 

of the boom were originally modeled using 3D Studio and later exported to VRML. 

Every object was scaled according to its real dimensions. A B747 model was re-scaled to 

match the size of a KC-135 tanker – as shown in Figure 8 - while a B2 model was 

rescaled to match the size of the ICE 101 aircraft. Eight different viewpoints were made 

available to the user, including the view from the UAV camera and the view from the 

boom operator. The latter allows the simulator to be used as a boom station simulator if 

so desired. The simulation main scheme also features a number of graphic user interface 

(GUI) menus allowing the user to set a number of simulation parameters including: 
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• initial conditions of the AR maneuver; 

• level of atmospheric turbulence; 

• location of the camera on the UAV and its orientation within the UAV body 

frame; 

• location of the fuel receptacle on the UAV; 

From the VW, images of the tanker as seen from the UAV camera are 

continuously acquired and processed during the simulation. Specifically, after the images 

are acquired, they are scaled and processed by a corner detection algorithm. The corner 

detection algorithm finds the 2D coordinates on the image plane of the points associated 

with specific physical corners and/or features of the tanker. 

 

Figure 8– Graphic Model of the tanker 
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2.4 The Feature Extraction algorithm 

The performances of two specific feature extraction algorithms for the detection 

of corners in the image were compared in a previous effort [26]. The Harris corner 

detector [27],[28] was selected for this study. This method is based on the analysis of the 

matrix of the intensity derivatives, also known as “Plessey operator” [27], which is 

defined as follows:  

2

2
X XY

YX Y

I I
M

I I

⎡ ⎤
= ⎢

⎢ ⎥⎣ ⎦
⎥

M

  (6) 

where I is the gray level intensity of the image while IX, IY, IXY, IYX are its 

directional derivatives. The directional derivatives are determined by convolving the 

image by a kernel of the correspondent derivative of a Gaussian. If at a certain point the 

eigenvalues of the matrix M take on large values, then a small change in any direction 

will cause a substantial change in the gray level. This indicates that the point is a corner. 

A “cornerness” value C for each pixel of the image is calculated using: 

( ) ( )det – *C M k Tr=   (7) 

If the value of C exceeds a certain threshold, the associated pixel is declared a 

corner. The sensitiveness of the detector is proportional to the value of k. The generally 

used value of k is 0.04 [27]. The main drawback of the method is that the parameter k 

needs to be tuned manually. This drawback was overcome by a modified version of the 

Harris “cornerness” function proposed by Noble [28]: 

ε+
=

)(
)det(

MTr
MC   (8) 
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The small constant ε  is used to avoid a singular denominator in case of a rank 

zero auto-correlation matrix (M). In both Harris detector method [27] and its variation by 

Noble [19] a local maxima search is performed as a final step of the algorithm with the 

goal of maximizing the value of C for the selected corners. 

 

2.5 Point Matching Problem 

The subset ˆ ˆ[ , ]j ju v  is the 2D projection in the camera plane of the corners P(j) 

using the standard “pin-hole” projection model [29]. Once the subset ˆ ˆ[ , ]j ju v  is available, 

the problem of relating the points extracted from the camera measurements to the actual 

features on the tanker can be formalized in terms of matching the set of points 

{ }1 2, ,..., mp p p - where [ , ]j j jp u v=  is the generic ‘to be matched’ point from the camera 

- to the set of points { }1 2ˆ ˆ ˆ, ,..., np p p , where ˆ ˆ ˆ[ , ]j j jp u v=  is the generic point obtained 

through projecting the known nominal corners in the camera plane. Since the two data 

sets represents the 2D projections of the same points on the same plane - at the previous 

time instant - a high degree of correlation between the two sets is expected.  However, 

due to the relative motion between camera and tanker, as well as to the presence of 

different sources of system and measurement noise, a certain level of difference between 

the two point sets is always observed. Thus, a matching problem has to be defined and 

solved. In fact, simulation studies show that when the previous position estimation is 

used as an approximation of the current relative position, and the sampling rate of the 

MV system is set to 10 Hz. The relative movement between camera and tanker during 

one image and the next - together with the effect of measurement and system noise - 
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normally causes a 2D corner displacement on the image plane within 3% of the 

horizontal image range. While the spacing among the projected corners that have to be 

matched is usually greater than 10% of the horizontal image range. This minimizes the 

possibility that the PM algorithm could mistakenly assign a certain projected corner to 

the wrong detected corner. 

A detailed technical literature describes a number of robust matching techniques 

between point sets [30]. The degree of similarity between two data sets is typically 

defined in terms of a cost function or a distance function derived on general principles as 

geometric proximity, rigidity, and exclusion [34]. The best matching is then evaluated as 

the result of on optimization process exploring the space of the potential solutions. Often, 

the problem can be set as a classical assignment problem, and therefore is solved using 

standard polynomial Network Flow algorithms. A definition of the point-matching 

problem as an assignment problem along with an extensive analysis of different matching 

algorithms was performed in [31]. In the current effort, two different matching algorithms 

are implemented; both algorithms solve the matching problem using a heuristic procedure 

[32]. The algorithms are reviewed in the sections below. 

 

2.5.1 Point Matching Algorithm  # 1 - Mutual Nearest Point (MNP) 

This algorithm features a “mutual nearest point” technique to perform a point 

matching and then arranges the vector of matched corner coordinates in the format 

[ ]1 1, ,PMG u v u v= … n n . If the kth corner is not matched then an overflow value is entered 

in the position 2*k and 2*k+1. Let { }1 2
ˆ ˆ ˆ ˆ, ,..., nP p p p=  denote the set of the n projected 
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corners, and let { }1 2, ,..., mP p p p=  denote the set of m detected corners. Each point jp  

has the 4 coordinates [ ]j j j j jp u v a h= , where ju  and jv are the coordinates of the 

corner j as described above, ja is the “area” of the corner j, and jh is the mean hue value 

[35] of the surrounding of the corner j. The hue value was calculated using the specific 

Matlab function ‘rgb2hsv’ which converts an image from the RGB format to the HSV 

(Hue, Saturation, and Value) format. Similarly, for the point ˆ jp  the 4 coordinates 

ˆˆ ˆ ˆ ˆ[ ]j j j j jp u v a h=  are defined; however, in this case the values ˆ ja and ˆ
jh – 

representing the area and the hue value – are constants. 

The area is essentially an intrinsic geometric property of the object, and it is 

evaluated by analyzing a 5 x 5 matrix of pixels around the corner. In this matrix, the 

maximum and the minimum values are selected. The matrix is then converted to a logic 

form (zeros and ones) using as a threshold the half of the average distance between 

maximum and minimum. The area of the corner is then defined as the number of “ones”.  

The hue value, that is the mean value of the hue in a 5 x 5 matrix around the corner, is 

instead a “color” information about the object which does not vary with the lightness. A 

detailed study showed that the range of variation of both the “area” and the hue value for 

a specified corner is limited and only dependent on the specific types of corner and 

image.   

The point matching function creates a matrix Err (Table 2) of dimension n x m, 

whose entries are all the Euclidian distance between  and P. The function allows the 

definition of a maximum range of variation for each dimension; these ranges define a 

hypercube around each corner of the set . The distance actually is computed only if the 

P̂

P̂
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four-dimensional point pj lies into one of the hyper-cubes defined around each point of 

the set ; otherwise, it is automatically set to infinity. A normalization is then performed 

for comparing different values among the four dimensions during the evaluation of the 

distance.  

P̂

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3

ˆ ˆ ˆ        ( , )          ( , )         ( , )          ( , )
ˆ ˆ ˆ ˆ           ( , )          ( , )         ( , )         ( , )
ˆ ˆ ˆ        ( , )          ( , )         ( , )  

d p p d p p d p p d p p
Err d p p d p p d p p d p p

d p p d p p d p p
=

[ ]
[ ]

3 4

1 2 2

1 2 3

1

1

1

ˆ      ( , )

ˆ ˆ ˆ ˆmin ( , ) min ( , ) min ( , ) min ( , )

     ( )      ( )      ( )      ( )

ˆmin ( , )
ˆmin ( , )
ˆmin ( , )

x x x x x x x x

x x

x x

x x

d p p

ˆ

2

4

MinC d p p d p p d p p d p p

Index idx MinC idx MinC idx MinC idx MinC

d p p
MinR d p p

d p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

=

⎡ ⎤
⎢= ⎢
⎢⎣ ⎦

⎥
⎥
⎥

 

Table 2 - Data structure used in the matching function 
 

Next, the four dimensions have to be weighted before calculating the Euclidian 

distance between  and P. A detailed study showed that the best results are obtained 

when only the u and v components are equally weighted, while the weights for the area 

and hue parameter are set to zero. In other words, the area and hue dimensions are only 

used to define the hypercube around the corners of the set  but do not explicitly 

influence the distances in 

P̂

P̂

Table 2. In the table, the three vectors MinR, MinC and Index - 

with dimensions n, m and m respectively - are created (as shown in Table 2).   

 The minimum element of every column of Err is stored in the row vector MinC 

while the index of the row in which the function finds the minimum is stored in another 

row vector Index. The minimum element of every row of Err is instead stored in the 

column vector MinR. The position of the detected corner ‘j’ in P is deemed “valid” if: 
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[ ] [ ]MinC j MinR Index j⎡== ⎣ ⎤⎦  (9) 

The detected corners satisfying the validity condition are assigned to their nearest 

projected corners. On the other side, the detected corners that do not satisfy the validity 

condition are discarded. In other words, the validity condition ensures that only one 

detected corner - among the set of detected corners that are closer to a certain projected 

corner than to other projected corners - is assigned to that projected corner. The other 

detected corners in the same set are not assigned to any other projected corners. The 

resulting algorithm has a computational complexity proportional of O(m*n); the method 

avoids the typical problems associated with a matching function that simply assigns the 

detected corners P to the nearest corners in  P̂ [32]. 

 

2.5.2 Point Matching Algorithm # 2 - Maximum Clique Detection 

(MCD) 

In this approach, the matching problem is based on the criteria of ‘Exclusion, 

Proximity, and Rigidity’ [34]. In other words, the distance between corresponding points 

of the same set is considered in addition to the information derived from the distances 

between the corresponding points of the two matching sets. These concepts can be 

applied using a graph in which vertexes represent couples of potential matching and 

edges represent the compatibility between the couples of potential matches. The matching 

problem is then reduced to a Maximum Clique Detection (MCD) algorithm. The 

algorithm is explained with more details below. 
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2.5.2.1 Graph definition  

The first step of the algorithm consists in the construction of the graph G={V,E} 

associated to the point matching problem, where: 

V is the set of vertexes of G and represents the set of potential matching between 

one element P and one element of . P̂

E is the set of edges of G and represents the compatibility between the couple of 

potential matching. 

Proximity Principle: The vertexes V are determined based on the proximity 

principle. The association ˆ( , )ij i jp pα =  is a vertex of G if and only if the distance 

between  e ip ˆ jp  is less than a defined threshold TP.  

Exclusion and Rigidity Principle: The set of edges E is determined based on the 

exclusion and rigidity principle. According to the exclusion principle in the graph G, 

couples of edges 
, ( , )ij ik ij ike α α=  and 

, ( ,ji ki ji kie )α α=  cannot exist. Namely, one element 

of P cannot be associated to more than one of the elements of  and vice versa. 

According to the rigidity principle 

P̂

, ,(ij hk ij hke )α α=  is an edge of G if and only if: 

ˆ ˆ( , ) ( , )i h j k Rd p p d p p T− <   (10) 

where TR is pre-defined threshold. Namely, the distances between points in P 

have to be similar to the distances between the corresponding points of . P̂

The computational complexity for the construction of the graph G connected to 

the point matching problem is 2 2(O m n )⋅ where m is the number of points in the set P and 

n is the number of points of the set . P̂

 

 29  



 

2.5.2.2 Maximum Clique Detection Algorithm 

After the construction of the graph G has been performed, the feature matching is 

determined through the evaluation of the “maximum clique” of the graph [34]. The MC of 

a graph G is defined as the largest sub-graph where all the vertexes are connected with a 

single edge of G. In this study, the MC of G represents the maximum set of compatible 

associations between elements of P and elements of . Unfortunately, from the theory of 

computational complexity, the determination of the MC of G is known to be an NP-

complete (Non-deterministic Polynomial time) problem. This means that its solution can 

be verified in polynomial time. Therefore, for large graphs, the algorithm is likely to be 

incompatible with the real-time constraint imposed by the AR problem. As generally 

happens, NP-complete problems are addressed by using heuristic algorithms in practice. 

The heuristic rule outlined in 

P̂

Table 3 has been implemented for the identification of a 

sub-optimal problem. This algorithm provides desirable computational performance 

when the graph is sparse.  

 

 

Table 3 - Heuristic for determining a sub-optimal solution in the Maximum Clique Detection 
Algorithm 
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2.6 Pose estimation algorithms 

Following the solution of the PM problem, the information in the set of points 

{ }1 2, ,..., mp p p  must be used to derive the rigid transformation relating the CRF to the 

TRF. The literature offers a wide range of alternatives to solve this typical 2D to 3D 

correspondence problem. Many of the available methods are sensitive to parameters like 

the number of detected point or the length of the image sequence. Algorithms that rely on 

the estimation of the kinematics and structure of the rigid object for solving a recursive 

pose estimation problem have been presented in [36] and [37]. Within this study, two 

algorithms to solve the more specific problem of estimating relative position and 

orientation from a set of 2D to 3D point correspondences within a single image were 

implemented and compared. 

 

2.6.1  The GLSDC algorithm  

The Gaussian Least Squares Differential Correlation (GLSDC) algorithm [38] is 

based on the application of the Gauss-Newton method for the minimization of a non-

linear cost function expressing the difference between estimated and detected corners 

positions. This algorithm was selected because it represents a class of algorithms that is 

still very widely used in photogrammetry. The GLSDC algorithm has a simple structure; 

additionally, it has already been used to solve pose estimation problems within simulation 

study for an autonomous aerial refueling setting, as described in [40]. Furthermore, its 

simple structure allows a straightforward real time implementation. Within the GLSDC 
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algorithm, at every sample time k, the matrix CTT is expressed as a function of an estimate 

( )X k  of the unknown vector X(k): 

( ) [ , , , , , ]C C C C C C

T T T T T T

TX k x y z ψ θ ϕ=  (11) 

Using ( )X k to project of the corner ‘j’ in the camera plane yields the following 

2D coordinates: 

(,
( )

,,

, ( ( ))
C

CC

j p j C T
T

j p jp j

u yf )jg f T X k P
v zx

⎡ ⎤⎡ ⎤
= = ⋅⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 (12) 

By rearranging the coordinates of all the projected corners, the following vector is 

obtained 

[ ]1 1( ( )) , ,....., ,m mG X k u v u v=  (13) 

At this point, the following MV estimation error can be defined at the time k: 

( ) ( ) ( ( ))PMG k G k G X kΔ = −  (14) 

where GPM(k) contains the coordinates of the points provided by the PM 

algorithm extracted from the camera: 

[ ]1 1( ) , ,....., ,PMG k u v u v= m m  (15) 

the GLSDC algorithm iteratively refines the initial value of ( )X k  by repeating 

the following steps for a number of iterations (with index i): 

1
1( ) ( ) ( ) ( ) ( ) ( )T

i i i i iX k X k R k A k W k G k−
+ = + Δ  (16) 

where 

( ) ( ) ( ) ( )T
i i iR k A k W k A k=  (17) 
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( )( )
( )

i
i

i

G kA k
X

X X k

∂
=

∂
=

 (18) 

and W(k) is usually set to the (2m x 2m) covariance matrix of the estimation error. 

The initial guess 0 ( )X k  at k is the final estimation at the previous sample time  

k-1. The basic algorithm outlined in Eqs. (16)-(18) was designed to work with a fixed 

number of m corners. Simple modifications have been introduced for dealing with a time-

varying number of corners. Specifically, at each time step, the nominal corners that are 

not visible are removed from the estimation process. This implies that at each time step, 

(13) is modified such that it includes only the appropriate number of rows. Thus, the 

dimensions and the values of A and W in (16)-(18) are adjusted accordingly. 

 

2.6.2 The LHM algorithm  

Lu, Hager and Mjolsness (LHM) [39] proposed an algorithm based on the 

minimization of an object-space collinearity error. Specifically, the ‘observed, detected, 

and matched’ point ‘j’ [ , ]j ju v  corresponds to ( )( ) ( )( )C C T
j TP T X k P= j . This is the known 

point ( )
T

jP  reported in CRF using the homogeneous transformation matrix  at 

the time instant k. 

( )( )C
TT X k

Let hj(k) be: 

( ) 1
T

j j jh k u v⎡= ⎣ ⎤⎦  (19) 
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Similarly, let  represent the projection on the image plane of the 

point 

ˆ ˆ ˆ( ) 1
T

j j jh k u v⎡= ⎣ ⎤⎦

( ) ( )
ˆ ( ( ))C C T

j T jP T X k P=  where ( )X k  is the estimation of ( )X k  internal to the Pose 

Estimation algorithm – as defined in (11).  

Then, the ‘object-space collinearity error’ vector ej, at the time instant k, can be 

defined as follows: 

( ) ( )( ) ( ) ( ( ))C T
j j Te k I V k T X k P= − j  (20) 

where 

( ) ( )
0

( ) ( )( )
0 1

T

T

j j

j jj

h k h k
h k h kV k

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

⎥
⎥  (21) 

which is the line of sight projection matrix that, when applied to a scene point, projects 

the point orthogonally to the line of sight defined by the image point  ( )jh k [39]. In other 

words, the object space collinearity error represents the difference between the point 

( )
ˆC

jP  and its projection on the line joining the origin of the camera frame and the point 

. ( )jh k

The pose estimation problem is then formulated as the problem of minimizing the 

sum of the squared errors: 

2

1
( ( )) ( )

m

j
j

E X k e k
=

= ∑  (22) 
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The algorithm operates by iteratively improving an estimate of the rotation portion of the 

pose. Next, the algorithm estimates the associated translation only when a satisfactory 

estimate of the rotation is found. [39] shows that the LHM algorithm is globally 

convergent in the sense that it always converges to the rotation matrix that minimizes the 

collinearity error for any set of observed point and any initial rotation matrix. 

Furthermore, empirical results suggest that the algorithm is also very efficient and usually 

converges within 5 to 10 iterations starting from any range of initial conditions.  

 

2.7 The Sensor Fusion system 

Due to typical limitations of cameras performance, the MV system can provide 

reliable results only within a certain limited distance form the tanker. On the other hand, 

the GPS signal received by the UAV may be shadowed or distorted by the tanker 

airframe when the UAV is near or below the tanker. This could lead to losses in accuracy 

and reliability of the GPS-based UAV position measurement. 

The purpose of the fusion filter is to ensure that at large UAV-tanker distances 

only the GPSs-based distance measurement is used for navigation and 

control purposes. On the other hand, as the UAV-tanker distance decreases, the GPS-

based measurements are gradually replaced by the more accurate and reliable 

([ , , ]C C C

T T T GPSx y z )

( )[ , , ]C C C

T T T MVx y z  distance measurements. Specifically, the distance measurement vector 

 that is used at any time for tracking and docking purposes is a bounded 

linear combination of  and 

( )[ , , ]C C C

T T T Fx y z

([ , , ]C C C

T T T GPSx y z ) ( )[ , , ]C C C

T T T MVx y z  using the following 

relationships in terms of the relative distance d between the UAV and the tanker:  
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Large distances (GPS only): 

1

( ) ( )

,

C C

C C

C C

T T

T T

T TF G

x x
if d d y y

z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥> =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ PS

 (23) 

where d1 is a user-defined constant. In the simulation d1 has been set to 40m. 

Note that the MV system should start yielding accurate measurements whenever 

the UAV–tanker relative distance is somewhat greater than d1. 

Intermediate distance (GPS to MV transition): 

1 1
1 2

2 1 2 1
( ) ( ) ( )

, 1

C C

C C

C C

T T

T T

T TF GPS

x x
d d d dif d d d y y y
d d d d

z z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥≥ > = − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C

C

C

T

T

T MV

x

z
 (24) 

where d2 (d2<d1) is another user-defined constant. In the simulation d2 has been 

set to 23m. 

Small distance (MV only): 

2

( ) ( )

,

C C

C C

C C

T T

T T

T TF M

x x
if d d y y

z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≤ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ V

 (25) 

For simplicity purposes, and without any loss of generality, the relative distance d 

governing the transition has been considered coincident with the relative distance 

calculated from the GPS measurements: 

( )([ , , ] )C C C

T T T GPSd norm x y z=  (26) 

This corresponds to the assumption that the accuracy of the GPS measurement 

may not be enough to allow a smooth refueling maneuver; it is however, appropriate to 

determine whether the UAV is sufficiently near to the tanker for the MV measurements 

to be used. The resulting vector  is then used along with the relative ( )[ , , ]C C C

T T T Fx y z
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orientation information from the attitude sensors of the tanker and UAV respectively to 

calculate the relative distance PBR between the fuel receptacle on the UAV and the center 

of the 3D window, as shown in eq.(1). 

 

2.8 UAV Docking Control Laws 

The receptacle position in PRF, that is PR, and the UAV center of mass in ERF, 

that is EU are two equivalent ways to represent the UAV position information, since the 

following relationship applies: 

0( ) ( , , , )P P E E U
E UR T T Uψ ψ θ ϕ= R   (27) 

and since UR, the UAV Euler angles, and the tanker heading angle Ψ0 are all 

known.  

To include this additional information, an augmented state space model - with 

respect to the model outlined in (2) - was selected for the UAV: 

0
, , , , , , , , , ,

TP t P
tZ V p q r R R dtα β ψ θ ϕ⎡= ⎣ ⎤∫ ⎦  (28) 

In the above vector the last six states represent respectively the three components 

of the PR point (that is the UAV receptacle) in PRF, and their integral over time. The last 

3 states were added to facilitate the synthesis of a controller capable of zero steady state 

tracking error. 

As outlined in previous section, the ICE101 features 10 control surfaces [17]. 

Assuming that the tanker is flying at a straight and level flight conditions with a known 

velocity V0 and heading angle Ψ0, the center of the refueling window PB(t) is subjected to 

a rectilinear uniform motion, described by: 
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1 0 0 0( ) ( ) ( ) 0 0
TP PB t B t V t t⎡ ⎤= + −⎣ ⎦   (29) 

where PB1(t0) is a known initial condition.  

The following trajectory in the UAV state space: 

00 0 0 0( ) , ,0,0,0,0, , ,0, ( ), ( )
TP t P

ref tZ t V B t B t dtα ψ θ⎡= ⎣ ⎤∫ ⎦

)dt

 (30) 

represents a trim point for the first 9 UAV states. The reference input Uref 

corresponding to the above reference trajectory was calculated using a Simulink trim 

utility. Since the objective of the UAV control laws is to guide the UAV so that PR (the 

fuel receptacle) is eventually “transferred” to the point PB, it is reasonable to assume 

small perturbations from the flight condition in (30) during the refueling maneuver. 

Under this assumption, the UAV dynamics can be modeled as the linear system resulting 

from the linearization of the UAV equations about the reference trajectory in (30): 

0
,

TP t P
t

Z AZ BU

Y CZ RB RB dt

= +

⎡ ⎤= = ∫⎣ ⎦

�� � �

� �
 (31) 

where the “~” denotes deviation from the reference trajectory, the state space 

matrices A and B describe the dynamics of the resulting linear system, and C defines a 

“performance” output vector containing PRB and its integral over time. 

The design of the UAV docking control laws was then performed using a Linear 

Quadratic Regulator (LQR) approach [18]. The resulting cost function is expressed as: 

(
0

T TJ Y QY U RU
∞

= +∫ � � � �  (32) 

where the selected weighting matrices are given by: 

([10,10,10,0.1,0.001,0.1])
([0.1,1000,1000,1,1000,1000,1000,1000,0.1,0.1])

=
=

Q diag
R diag

 (33) 
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Accordingly, the LQR control law is given by: 

U K= − ⋅� Z�

t

) t

 (34) 
where the LQR matrix K is obtained by solving an Algebraic Riccati Equation 

[18]. Following the structure of the state vector, equation (34) can be decomposed into 

the following terms: 

01 9
P t P

d p i tU K Z K BR K BR d−= − ⋅ + + ∫� �  (35) 

where the derivative term Kd is applied to the first 9 element of the state, and the 

proportional and integral terms Kp and Ki are applied respectively to PBR (which is 

obtained as discussed in the previous sections) and its integral over time. 

 

2.9 The Reference Path generation system 

Once the AR “tracking & docking” scheme is activated, the UAV control system 

is tasked to generate a suitable sequence of feasible commands leading to a precise 

docking within a defined time. This cannot be achieved by directly using the control law 

in (35), which can only be used under the assumption of small deviations from the 

reference trajectory. In fact, when the PBR vector takes on large values (as it happens 

when the UAV is at the pre-contact position and the control system is activated) the 

proportional term in (35) will typically generate a large command, which can potentially 

drive the system outside the validity range of the small perturbation assumption.   

To avoid the above problem, the control law in (35) was modified to include a 

desired trajectory PBRdes(t): 

01 9 ( ) (P P t P P
d p des i t desU K Z K BR BR K BR BR d−= − ⋅ + − + ∫ −� �  (36) 
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where PBRdes(t), is generated when the tracking and docking control system is 

activated.  

Let tf be the desired duration of the docking phase and let PBR(0) denote the 

distance between the 3DW and the UAV receptacle at the pre-contact position. The 

relative velocity between the UAV and the tanker is designed to start from zero, to reach 

its maximum value at tf /2, and to return to zero at ft t= . That is when the UAV reaches 

the contact position at the center of the 3D refueling window. Thus, the desired trajectory 

can be defined through the following relationship: 

3 2
, ( ) , , ,P

des i i i i iBR t a t b t c t d i x y= + + + = z  (37) 

The coefficients in the above polynomial are evaluated through imposing the 

boundary conditions on the initial and final positions: 

, ,(0) (0), ( ) 0, , ,P P P
des i i des i fBR BR BR t i x= = y z=  (38) 

and the initial and final velocities: 

, ,(0) 0, ( ) 0, , ,T T
des i des i fBR BR t i= =� � x y z=  (39) 

The resulting reference trajectory is defined by: 

( ) ( )3 2

, ,( ) (0) 2 3 1 , 0P P
des i des i f f fBR t BR t t t t t t⎡ ⎤= − +⎢ ⎥⎣ ⎦

≤ ≤  (40) 

Dividing the vertical and lateral components of the reference trajectory by the 

longitudinal component will yield the following constants: 

, , ,

, , ,

( ) (0) ( ) (0)
;

( ) (0) ( ) (0)

P P P P
des z des z des y des y

P P P P
des x des x des x des x

BR t BR BR t BR
BR t BR BR t BR

= = ,

,

 (41) 
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which in turn means that the reference trajectory is a straight line, because the 

lateral and vertical components are a linear function of the longitudinal one. 

Finally, the maximum values of the velocity and acceleration along the trajectory 

are found to be: 

, ,
max, max, 2

3 (0) 6 (0)
,

2

P P
des i des i

i i
f f

BR BR
V Acc

t t
⋅ ⋅

= − = ± =, , ,i x y z  (42) 

As required, the UAV docking from the “pre-contact” to the “contact” position is 

performed with the UAV perfectly aligned with the tanker longitudinal axis, resulting in 

the initial condition , (0) 0P
des yBR = . 

 

2.10  Comparative Study between Point Matching Algorithms 

This section discusses the results of a study focused on evaluating the 

performance of the matching algorithms through four specific tests. These tests were 

developed with the goal of evaluating the suitability of the algorithms. 

2.10.1  Computational effort 

The computational effort test has the purpose of evaluating the CPU time required 

by each algorithm for providing the correct point matching result. This study aims at 

providing some empirical results about the computational requirements and the total 

complexity of the implementation of the proposed algorithms.  

The study includes two parts. The first part consists in measuring the 

computational effort of the two matching functions when the number of the corners m in 

the set P (detected) is varied while the number of the corners n in the set  (projected) is 

kept constant to 10. The second part is instead relative to the case when n is varied and m 

P̂
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is kept constant to 100. A Pentium 4, 3.2 GHz of clock speed and 1 Gbyte of RAM was 

used for this analysis. The speed performance was measured with the Simulink® 

“profiler” tool, which provides the running time in seconds for each called function and 

sub-function. The simulation lasted 35 seconds with the MV system featuring a sampling 

time of 0.1 sec. Table 4 shows clearly that MNP has a linear trend, while MCD has a 

parabolic trend in both sets of data. This trend was expected since the computational 

complexity of MNP is O(m*n) while the computational complexity for the construction 

of the graph of MCD is O(m2*n2). Therefore, the sub-optimal solution of the Maximum 

Clique Detection Algorithm does not seem to provide specific problems increasing the 

level of complexity in MCD, which seems mostly due to its “graph construction” part. 

Figure 9 shows that the MNP algorithm is more than three orders of magnitude faster 

than MCD.  

 

m MNP(sec) MCD(sec) n MNP(sec)MCD(sec) 
100 4.55*10-5 0.01 10 1.33*10-4 0.011 
200 9.09*10-5 0.043 20 8.81*10-5 0.047 
300 1.45*10-4 0.14 30 1.31*10-4 0.15 
400 3.10*10-4 0.38 40 2.22*10-4 0.42 
500 5.74*10-4 0.98 50 4.43*10-4 0.88 

Table 4: Computational effort varying the number of m and n corners 
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Figure 9: Computational effort varying the number of detected and projected corners in a 
logarithmic scale 

 

2.10.2  Virtual Image analysis  

The images from the closed loop WVU VRT–based simulation were used for the 

purpose of comparing the two matching algorithms. The test consisted on the analysis of 

the allocation of the points of the set P when the points of the set  change. These points 

were selected using different images that gradually diverge from the analyzed image. 

Specifically, the set of the points  was provided extracting the corners from the image 

at time (t*-i) while the points of the set P are always extracted from the image at time t*. 

Therefore, the points in  gradually became more distant from the points in P; thus, the 

performance of both algorithms was expected to decrease as the number increased. The 

parameters of the two algorithms were empirically tuned so that they could provide their 

P̂

P̂

P̂
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best performance. MNP was set to create a hypercube around each corner of the set  

with sizes equal to 5% of the screen size for the (u – v) dimensions, 5 for the area 

dimension and 0.1 for the hue dimension. All the points outside these hyper-cubes were 

discarded and did not play a role in the evaluation of the distance. MCD features instead 

two thresholds; TP is defined as the Proximity Principle parameter and it was set to 5% of 

the norm of the screen size; TR is defined as the Exclusion and Rigidity Principle 

threshold and it was set to be 0.5*10-3. In the test, the number of points in the set  

(projected points) was selected to be 10 while the number of points in set P (detected 

points) was less than 150. Ten different images, with i ranging from 0 to 1 sec at 0.1 sec, 

intervals were supplied to the corner detection and point matching algorithms. 

P̂

P̂

Additionally, to better evaluate the performance of the algorithms within real-

world situations, one point of the set  (the uppermost point in P̂ Figure 10) was purposely 

placed in a position that did not exactly correspond to any physical corner, although 

being close to some points that the FE algorithm recognized as corners. Ideally, this 

corner should not be assigned to any detected corner. In fact, Figure 10 shows that both 

algorithms did not recognize this corner in this particular image. However, as also shown 

in Table 4 in the column CNIC (Correctly Not Identified Corners) MNP statistically 

performed better than MCD. The results of this analysis are summarized in Table 5. The 

column INIC (Incorrectly Not Identified Corners) counts the number of detected corners 

that are either not identified or matched to the wrong projected corner. Figure 11, instead, 

shows the behavior of the two algorithms when the points of the set  are at the 

maximum distance from the points of the set P. Summarizing, the average of the column 

P̂
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CNIC should be as closed as possible to the value 1 and the average of the column INIC 

should be as small as possible.  

 

 
Figure 10: Matched points in the “Virtual Image Analysis” from MNP (left) and MCD (right) with 
distance between the image i=0.1. The points of the set are represented using the symbol +, the 

points of the set P are represented using the symbol
P̂

Ο , the points selected by the matching algorithm 
are represented using the symbol∗ . 

 

Figure 11: Matched points in the “Virtual Image Analysis” from MNP (left) and MCD (right) with 
distance between the image i=1.0. The points of the set are represented using the symbol +, the 

points of the set P are represented using the symbol
P̂

Ο , the points selected by the matching algorithm 
are represented using the symbol∗  
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 MNP MCD 
i (sec) CNIC INIC CNIC INIC

0.1 1 0 1 1 
0.2 1 0 1 1 
0.3 0 1 0 2 
0.4 0 1 0 3 
0.5 1 0 0 2 
0.6 1 0 0 3 
0.7 1 0 0 3 
0.8 1 0 0 2 
0.9 0 3 0 2 
1 1 8 1 5 

Avg 0.7 1.3 0.3 2.4 
Table 5: Summary of the virtual image analysis data 

 

2.10.3  Real Image Analysis  

A similar analysis was performed using images from a video acquired with a 

digital camera in lieu of virtual images. The video featured a static Boeing 747-400 

model – with a 25” wingspan – hanging from the ceiling of our MAE laboratory. The 

digital camera recorded the image simulating an approach maneuver from pre-contact to 

contact. The Harris Corner Detection method – used for feature extraction purposes – was 

tuned through selection of the thresholds, to provide a reasonable number of corners. The 

set  contains 11 corners that the matching algorithms were supposed to recognize.  P̂

The parameters of the two algorithms were set as follows. MNP was set to create 

its hypercube around each corner of the set  with dimensions P̂ [ ]10% 10% 10 0.3 , 

where 10% are related of the screen size for u (horizontal) and v (vertical) dimensions, 

while 10 and 0.3 are related to the area and hue dimensions. MCD had the parameter TP = 

10% of the screen diagonal, and TR = 5*10-3. The associated results are shown in Figure 

12 - Figure 14 and Table 6. An analysis of the results reveals that the MNP performs 
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better when the set of the points  is at larger distances from the set of point P while 

MCD recognizes more corners when points in  are closer to the points in P. 

P̂

P̂

 

Figure 12: Matched points in the “Real Image Analysis” from MNP (left) and MCD (right) with 
distance between the image i=0.1. The points of the set are represented using the symbol +, the 

points of the set P are represented using the symbol
P̂

Ο , the points selected by the matching algorithm 
are represented using the symbol∗ . 

 

Figure 13: Matched points in the “Real Image Analysis” from MNP (left) and MCD (right) with 
distance between the image i=0.4. The points of the set are represented using the symbol +, the 

points of the set P are represented using the symbol
P̂

Ο , the points selected by the matching algorithm 
are represented using the symbol∗ . 
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Figure 14: Matched points in the “Real Image Analysis” from MNP (left) and MCD (right) with 
distance between the image i=0.9. The points of the set are represented using the symbol +, the 

points of the set P are represented using the symbol
P̂

Ο , the points selected by the matching algorithm 
are represented using the symbol∗ . 

 

 MNP MCD
i (sec) INIC INIC

0.1 1 0 
0.2 2 0 
0.3 2 1 
0.4 4 4 
0.5 3 4 
0.6 3 5 
0.7 4 5 
0.8 3 9 
0.9 3 9 
1 4 9 

Avg 2.9 4.6 
Table 6: Real Image analysis data varying the points of the set using different images P̂

 

2.10.4 LHM Estimation Errors  

This study was conducted with the objective of evaluating the performance of the 

LHM algorithm when each matching algorithm is used. Since the two matching 

algorithms will provide different points to the LHM, it is expected that the PE algorithm 

will provide different estimates on the tanker-UAV relative position and orientation.  

Furthermore, it is important to emphasize that a minimum of 5 ‘matched’ points have to 
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be supplied by the PM algorithm to the LHM algorithm in order for the latter to produce 

an updated estimate; otherwise, the estimate at the previous time step is returned by the 

LHM. 

The estimation error is defined as the difference between the position and 

orientation values provided by the LHM and the “real” position and orientation values 

(which are of course available only in simulation).  The results are summarized in Table 7 

and Figure 15. Specifically, Figure 15 shows the norm of the position estimation error. It 

can be seen from the x axis of Figure 15 that the LHM is executed about 450 times and 

530 times depending on whether it is interfaced with MNP or MCD respectively. 

This implies that MNP supplies the minimum required 5 matched points less often 

than MCD. On the other hand, MNP provides a more accurate overall matching in terms 

of the final estimation error. This means that MNP is less likely to mismatch corners than 

MCD.  

Table 6 shows the statistical results of the different components of the relative 

position errors in terms of mean and standard deviation. The results indicate that the 

MCD outperforms MNP for the estimation of the relative angles while the results are 

very similar for the estimation of the relative position.  
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Figure 15: Position estimation error vs. number of times the LHM is executed 
 

ex σx ey σy ez σz edist σdist 

MNP 0.1033 0.1039 -0.0413 0.0567 0.1067 0.0912 0.1939 0.0919 
MCD  0.0844 0.2817 -0.0433 0.0480 0.1318 0.0761 0.2805 0.1871 

eRoll σRoll ePitch σPitch eYaw σYaw eang σang 

MNP 0.0080 0.1459 0.0095 0.0378 8.5*10-4 0.0129 0.0224 0.1501 
MCD 0.0016 0.0059 0.0113 0.0086 0.0034 0.0089 0.0163 0.0080 

Table 7: Estimation error between LHM and exact measurement 
 

2.11 Comparative Study between Pose Estimation Algorithms 

The following performance criteria were introduced for a detailed comparison 

between the GLSDC and LHM pose estimation algorithms: 

1. Speed 

2. Accuracy 
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3. Robustness 

4. Tracking error 

 

2.11.1 Speed performance 

A Pentium 4, 2.53 GHz laptop with 448 Mbytes of RAM was again used for this 

analysis. The speed performance was measured with the Simulink® “profiler” tool, which 

provides the running time in seconds for each called function and sub-function. The 

simulation lasted 40 seconds. The MV system was used with a sampling time of 0.1 sec. 

On average, the GLSDC and LHM algorithms required 5.3*10-3 sec and 20.1*10-3 sec per 

simulation step, respectively. Thus, the LHM algorithm is approximately 4 times slower 

than the GLSDC. 

 

2.11.2 Accuracy (Difference between true and estimated CT  values) T

For the purpose of this analysis, “true values” are defined as the distance and 

orientation of the tanker in camera frame read at each simulation step from the linear and 

angular position (simulated) sensors. The “estimated values” are instead the distances and 

orientations of the tanker in camera frame provided directly by the two pose estimation 

algorithms. . It should be emphasized that both the true and estimated values are slightly 

dependent on the particular UAV trajectory, which is in turn dependent on the linear and 

angular position estimations provided by the particular PE algorithm that is being used 

within the control loop.  

An analysis of the results highlights that the LHM needs a minimum of 5 corners 

while the GLSDC requires at least 4 corners. However, the GLSDC performance strongly 
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depends on the accuracy of the initial conditions. Table 8 shows the results from t1 = 15 

sec until t2 = 50 sec. Overall, it appears that the GLSDC and LHM algorithms provide 

similar levels of accuracy. Figure 16 to Figure 19 show the linear and angular position 

estimations from the two algorithms. 

 
 X Y Z Roll Pitch Yaw 

GLSDC 0.3254 0.0962 0.1679 0.0090 0.0150 0.0098 
LHM 0.3364 0.0963 0.1367 0.0109 0.0125 0.0104 

Table 8: RMS values of the error for the GLSDC and LHM algorithms between t1=15 sec and t2=50 
sec 

 

 
Figure 16: ‘Real’ x y z vs.  x y z estimates from the GLSDC algorithm 
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Figure 17 - ‘Real’ x y z vs. x y z estimates from the LHM algorithm 

 

 
Figure 18: ‘Real’ yaw angle vs. estimate from the GLSDC algorithm   
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Figure 19: ‘Real’ yaw angle vs. estimate from the LHM algorithm  
 

2.11.3 Robustness 

This analysis was performed in terms of robustness with respect to the following 

parameters: 

• noise addition in the corners position (with correct point matching). 

• incorrect performance of the point matching algorithm. 

• errors in initial conditions. 

• input noise. 

2.11.3.1 Noise addition in the corners position with correct point matching 

This analysis was performed with the MV algorithms in open-loop mode, that is, 

the docking control laws used values from sensors and GPS to perform the docking 
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maneuver. Different levels of noise were added to the correctly point matched 2D corners 

positions. Specifically, the selected noise was a band limited white noise with correlation 

time tc=0.05 sec, the value of the Power Spectral Density (PSD) in the bandwidth of 

interest was entered trough the “Noise Power” parameter. Different values of the PSD 

were evaluated, starting form 0 to 5*10-9 m2 with an interval of 1*10-9 m2.  Up to a value 

of 4*10-9 m2, both algorithms performed reasonably well. For a PSD of 5*10-9 m2 the 

LHM performance started to deteriorate, as shown in Figure 20. However, in order for 

this performance degradation to take place, the input noise has to act in a situation in 

which the number of detected corners is limited. In fact, better performance can promptly 

be recovered whenever the number of detected corners increases and/or the noise power 

levels decrease. Conversely, it was observed that for a PSD of 5*10-9 m2 the GLSDC 

performance tend to degrade abruptly, leading the algorithm outside of its stability 

region, as shown in Figure 21.  In this event, the algorithm is not able to recover an 

acceptable performance, independently on the number of detected corners.  On the other 

hand, whenever the number of detected corners is greater than 5, both algorithms provide 

similar desirable performance. 
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Figure 20: LHM behavior with 5*10-9 noise power 

 

 
Figure 21: GLDSC behavior with 5*10-9 noise power 
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2.11.3.2 Robustness to point matching errors 

In this study, incorrect performance of the point matching algorithms were 

simulated by inverting the point matching of two corners at two simulation steps, 

specifically for t = 20 sec and t = 20.1 sec.  During these time instants, the corners #8 and 

#7 were exchanged and provided as inputs to the PE algorithms.  The analysis shows that 

the GLSDC is substantially more sensitive to point matching errors than the LHM 

algorithm. For example, the x estimated by the GLSDC drops from 42.8 m to 12.6 m 

against the 33.5 m provided by the LHM; a similar behavior was observed for the other 

estimated variables. An even more important conclusion is that the GLSDC algorithm 

requires a considerably longer time to return to the “nominal” performance than the LHM 

algorithm. This conclusion is consistent with the previous results on the noise robustness 

of the two algorithms.  

2.11.3.3 Robustness to errors in initial conditions 

The purpose of this study was to evaluate the performance of the GLSDC and 

LHM algorithms under a broad range of errors in the initial linear and angular position of 

the tanker in camera frame. To perform the test, the number of detected corners was held 

constant at 5 for both algorithms; a larger convergence area is of course expected 

whenever additional visible corners are detected.  The exact initial conditions were set to 

be xo= [x, y, z, ψ, θ, ϕ] = [60.5 20 -2.5 0 0.467 0].  The results, which are summarized in 

Table 9, show that the GLSDC algorithm has a limited convergence area while the LHM 

algorithm performs very well for any range of erroneous initial conditions. Furthermore, 

within its convergence area, the GLSDC shows a larger settling time before providing 
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reasonably accurate estimates. On the other side, while outside its convergence area, the 

GLSDC algorithm either diverges or provides inaccurate estimates. 

 

Translation vector Yaw angle (psi)  
GLSDC 

interval from exact 
initial condition 

LHM 
interval from exact 

initial condition 

GLSDC 
interval from exact 

initial condition 

LHM 
interval from exact 

initial condition 
[-44.7 65.4] [-∞ +∞] [-1.74 3.06] rad = 

[-100 175] ° 
[0 2π] 

Table 9: Convergence region for the initial condition 
 

2.11.3.4 Error propagation analysis  

In this study, the noise propagation behavior of the two algorithms was 

investigated. Specifically, a white Gaussian noise (WGN) was added to the position (x, y) 

of one single corner. This noise propagates through the pose estimation algorithm, 

resulting in a noisy output. At this point it is interesting to investigate in whether the MV 

system acts as a linear system as far as noise propagation, between an input (on the 

corner position) and the output (on the translation vector), is concerned. The system was 

considered composed by one input and three outputs as if they were three systems with 

one input and one output. The sub-systems were called GLSDCX, GLSDCY and GLSDCZ 

for the GLSDC algorithm and LHMX, LHMY and LHMZ for the LHM algorithm. In 

addition, the estimated PSD with the periodogram method is defined: 

2

1

2( )
n

j l
l

l

PSD f x e
n

ωπ −

=

= ∑  (43) 

where n is the number of element of the noise data and xl is the position l of the 

vector. From the signal theory we know: 
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where PSDout represent the output noise PSD, PSDin represent the input noise PSD, H(f) 

is the frequency response of the system. If the ratio between PSDout and PSDin is almost 

equal among the various powers of input noise, then for what concerns noise propagation, 

we can approximate the systems with a linear one. The linearity is a sufficient condition 

for the preservation of the Gaussian distribution. Figure 22 - Figure 24 represent the 

square of the frequency response for the sub-systems called GLSDCX, GLSDCY and 

GLSDCZ. Figure 25 - Figure 27 show the square of the frequency response of the sub-

systems called LHMX, LHMY and LHMZ. It is clearly visible that the behavior of 6 

systems is exactly linear since the line for different power noise exactly overlap in all the 

6 plots. Once the linearity is verified, it is possible to state that the output noise is 

Gaussian with mean equal to 0 since the input noise has mean value equal to 0 and the 

following relationship is valid: 

(0)out inHη η=  (45) 

where ηin is the input mean value, ηout the output mean value, and H(0) is the static gain 

of the system. The output error has variance equal to the second order moment because 

the error has mean equal to 0, and the second order moment is provided by the 

relationship: 

( ){ } ( )2

0
2 outE X t PSD f df

∞
= ∫  (46) 

where PSDout is the power spectral density of the output noise.  

From the above considerations is it possible model the noise; if the input noise is 

white and gaussian, the output noise will also be white and gaussian. Additionally, the 
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Machine Vision system behaves as a linear system if it is considered the relation between 

the position of the detected corners and the measurement of the relative distance between 

camera and tanker. 

 
Figure 22: verification of linearity propriety for GLSDCX system 
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Figure 23: verification of linearity propriety for GLSDCY system 

 

 
Figure 24: verification of linearity propriety for GLSDCZ system 
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Figure 25: verification of linearity propriety for LHMX system 

 

 
Figure 26: verification of linearity propriety for LHMY system 
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Figure 27: verification of linearity propriety for LHMZ system 

 
 

At this point, it is possible compare the output noise between the three sub-

systems that compose the GLSDC algorithm and the three sub-systems that compose the 

LHM algorithm in order to understand which algorithm amplifies more the noise. Figure 

28 - Figure 30 show a direct comparison between the PSD of the systems GLSDCX and 

LHMX, GLSDCY and LHMY, GLSDCZ and LHMZ. In Figure 28 and Figure 29, the lines 

are overlapped which means that the GLSDC and LHM algorithms propagate the errors 

in the same way. In Figure 30, the GLSDC algorithm amplifies the noise more than LHM 

algorithm as it concerns the variable z. 
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Figure 28: PSD of GLSDCX  and LHMX with noise 1*10-9 

 

 
Figure 29: PSD of GLSDCY and LHMY with noise 1*10-9 
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Figure 30: PSD of GLSDCZ and LHMZ with noise 1*10-9 

 

 

Summarizing, it was observed that the output noise retains the same properties of 

the input noise, that is, Gaussian with zero mean, and with a PSD proportional to the 

power of the input noise. It is interesting to note that, while the GLSDC and LHM 

algorithms propagated the errors in a similar manner for the variables x and y, the 

GLSDC algorithm amplified the input noise more than the LHM algorithm along the z 

channel, as shown in Figure 30. The properties of the output noise suggest that a Kalman-

Filter based approach could be highly effective in handling the measurements provided 

by the MV system.  
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2.11.4 Tracking error analysis 

As a final study, the closed-loop tracking error (that is the difference between the 

actual docking path and the nominal docking path) has been evaluated for both LHM and 

GLSDC algorithms. Since the level of accuracy for the two algorithms is comparable, it 

was not expected for the tracking error to be influenced by the performance of the pose 

estimation algorithm. Figure 31 shows the tracking error along the 3 axes (in the LHM 

case) while Table 10shows the mean of the tracking error for the two algorithms. 

 

 
Figure 31: Tracking Error (Using the LHM algorithm) 
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 GLSDC 
(meter) 

LHM 
(meter) 

x 1.3831*10-2 1.4180*10-2 
y 1.0154*10-2 0.9996*10-2 
z 1.2835*10-2 1.3674*10-2 

Table 10: Mean tracking error with GLSDC and LHM  
 

2.12 Sensor Fusion system based on Extended Kalman Filter 

2.12.1 Sensor modeling 

2.12.1.1 Modeling of the MV Sensor 

The MV system can be considered as a smart sensor providing the relative 

distance between a known object and the camera. Therefore, a detailed description of the 

characteristics of its output signals is critical for the use of this sensor. Since a zero mean 

Gaussian noise can be only considered in theory for infinite number of samples the 

measurements provided by the MV will be affected by a Gaussian White Noise with non-

zero mean [80]. A summary of the output characteristics is provided in Table 11. Being 

the noises white and Gaussian, only the means (μ) and the standard deviations (σ) of the 

errors in the CRF directions (x, y, z) are required for their complete statistical 

descriptions. 

x (meter) y (meter) z (meter) 
μ  -0.090 0.015 -0.069 
σ 0.056 0.060 0.065 

Table 11: Statistical Parameters of the MV-Based Position Sensor 

 

2.12.1.2 Modeling of the INS Sensor 

Both aircraft are assumed to be equipped with Inertial Navigation Systems (INS), 

which are capable of providing the velocities and attitudes of the aircraft by measuring its 
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linear accelerations and angular rates. Within the developed simulation environment, 

‘realistic’ INS outputs are simulated by adding a white gaussian noise (WGN) to the 

corresponding entries of the aircraft state vector. To validate this type of modeling, the 

noise within the signals acquired by the INS has been analyzed using the normal 

probability analysis and the Power Spectral Density (PSD). This allowed assessing 

whether such noise could be modeled as white and Gaussian.  

The flight data used to validate the modeling of the INS noise were taken from a 

recent experimental project involving the flight testing of multiple YF-22 research 

aircraft models [56]. The analysis was performed with a sampling time of 10 Hz for all 

the aircraft sensors. The results for the pitch rate q are shown Figure 32.  

The upper portion of Figure 32 shows the normal probability plot – plotted using 

the Matlab “normplot” command - of the simulated noise and of the noise provided by 

the real sensor. The purpose of this plot is to assess whether the data could come from a 

normal distribution. In such a case, the plot is perfectly linear. For the noise related to the 

pitch rate channel, the part of the noise close to zero follows a linear trend, implying a 

normal distribution. Note that due some outliers, the tails of the curve corresponding to 

the real sensor do not follow this trend. However, the fact that the trend is followed 

within the central part of the plot – which represents the majority of the data - validates 

that this noise can be modeled as a Gaussian process in a certain neighborhood of zero. 

 68  



 

 
Figure 32 - The normal probability and PSD in the pitch rate (q) in Real and Simulated INS 

 
A PSD analysis also confirms the hypothesis of white noise. In fact, the lower 

portion of Figure 32 shows that the spectrum of the noise from the real sensor, although 

not as flat as the spectrum of the simulated noise (shown as a dotted line), is still fairly 

well distributed throughout the frequency range. Thus, both the normal probability and 

PSD analysis confirm that the noise on the IMU q channel measurement can be modeled 

as a white Gaussian random vector. Similar conclusions can be achieved for the p and r 

IMU channels. 

 

2.12.1.3 Modeling of the Pressure, Nose probe, Gyro, and Heading Sensors 

An air-data nose probe - for measuring flow angles and pressure data - was installed 

on the UAV. This sensor provides the measurements of the velocity (V), the angle-of-

attack (α), and the sideslip angle (β), while the vertical gyro provides measurements for 
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the aircraft pitch and roll angles (θ and φ). Within this analysis the heading was 

approximated with the angle of the planar velocity in ERF, that is ψ = atan2(Vy,Vx), 

where atan2 is the 4 quadrant arctangent function and the velocity are supplied by the 

GPS unit and are based on carrier-phase wave information. However, the heading can 

also be calculated by gyros, magnetic sensors, or by a filtered combination of all the 

above methods.  

Following a similar analysis to the one performed for the INS, the noise on the 

measurements from the above sensors was modeled as white and gaussian noise (WGN). 

Table 12 summarizes the results in terms of noise variances for the different aircraft 

dynamic variables.  

 

 V 
(m/s)2 

α 
(rad)2 

β 
(rad)2 

p 
(rad/s)2

q 
(rad/s)2 

r 
(rad/s)2 

ψ 
(rad)2 

θ 
(rad)2 

φ 
(rad)2 

σ2 2e-1 2e-3 2e-3 2e-2 2e-2 2e-2 2e-3 2e-3 2e-3 
Table 12: Variance of the Noise of the Sensors 

 

2.12.1.4 Modeling of the GPS Position Sensor 

The GPS sensor provides its position (x, y, z) with respect to the ERF. A 

composition of four different Band Limited White Noises was used to simulate the GPS 

noise. Specifically, the four noises have different power and sample times. Three of these 

noise signals are added and filtered with a low-pass filter and the resulting signal is added 

to the fourth noise and sampled with a zero-order-hold. In fact, GPS measurements –in 

case that more than 4 satellite signals are received - normally exhibit a “short term” noise 

with amplitude within 2 to 3 meters, as well as “long term” trend deviations and “jumps” 

due to satellites motion and occlusions. Therefore, while the first “short term” noise has 
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been modeled as a White Gaussian Noise, the trend deviations and jumps have been 

modeled using the other 3 lower-frequency, filtered, noises. 

 

Figure 33 - Comparison between Real and Simulated GPS signals  
 

Figure 33 shows both the signal from a real GPS receiver (Novatel-OEM4), and 

the simulated GPS signal. 

 

2.12.2 Sensors Fusion Using EKF 

2.12.2.1 EKF Background Theory 

The main purpose of the Kalman filter algorithm [18] is to provide optimal 

estimates of the system dynamics through available measurements assuming ‘a priori’ 

known statistical models for the system and measurement noises.  

The Discrete-Time Kalman Filter [18] involves two basic steps. The first step 

consists in using the system dynamic model to predict the evolution of the state between 
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consecutive measurements instances. The second step consists in the use of the 

measurements along with the system dynamic model for evaluating the optimal (Newton-

like) correction of the estimated values at the time of the measurements. The filter 

characterizes the stochastic disturbance input through its spectral density matrix and 

through the measurement error by its covariance.  

In many applications the measurement model, the system dynamics, or both are 

potentially non-linear. In these cases, the KF may not be an optimal estimator. Non-linear 

estimation methods are discussed in [61][62]. The Extended Kalman Filter retains the KF 

calculations of the covariance and gain matrices, and it updates the state estimate using a 

linear function of the filter residual [18]. However, it uses the original non linear 

equations of the system dynamics for state propagation and output vector calculation. The 

EKF equations are briefly reviewed below. 

Given a generic discrete dynamic system: 

1 ( , , )

( , )
k k k

k k k

kx f x u w

y h x v
+ =

=
        (47) 

where uk, xk, and yk are respectively the input, state, and output vectors of the 

dynamic system. wk and vk are white and Gaussian noises with the following statistical 

properties: 
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Furthermore, the initial state 0x  is a random variable with the following mean 

value and covariance matrix: 

[ ]0 0

0 0 0 0

ˆ

ˆ ˆ( )( )T

E x x

E x x x x P

=

⎡ ⎤− − =⎣ ⎦ 0

       (49) 

Assuming that f and h are locally differentiable, the following Jacobian matrices 

are calculated: 

( ) ( ),                       
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     (50) 

Under these assumptions, an EKF can be implemented using the following 

equations: 

State Estimate Propagation 

1ˆ ˆ( , ,0)k k kx f x u−
+ =         (51) 

Covariance Estimate Propagation 

1 1
T

k k k k kP F P F W−
+ −= +         (52) 

Filter Gain Computation 

1(T T
k k k k k k kK P H H P H V− − −= +

))−

) k

      (53) 

State Estimate Update 

ˆ ˆ ˆ( ( ,0k k k k kx x K y h x−= + −        (54) 

Covariance Estimate Update 

(k k kP I K H P−= −         (55) 

Note that the EKF does not preserve the optimality properties of the Linear 

Kalman Filter (LKF). However, its simplicity and robustness are very appealing.   
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2.12.2.2 Sensors fusion using EKF 

The use of EKF for sensor fusion is well documented in robotics applications for 

the fusion of inertial, GPS, and odometer sensors as described in [63][64][65][66]. 

Within this effort, emphasis was placed on the fusion between data from a MV-based 

sensor system and data from the INS/GPS system. In general, sensor fusion applications 

require the output function ( , )k k ky h x v=  of the dynamic system to be adapted to the 

number of sensors that the filter has to combine.  

In this case, the output function contains the following variables: 

[ ]k GPS GPS GPS MV MV MVy V p q r x y z x yα β ψ θ ϕ= z  (56) 

where the subscript GPS indicates measurements from the GPS system while the 

subscript MV indicates measurements from the MV system.  

The EKF formulation assumes that the measurements are affected by a white and 

Gaussian noise (16). Therefore, the noise affecting the variables xGPS, yGPS, and zGPS, were 

considered to be white and gaussian with variances of 0.014 m2, 0.013 m2, and 0.022 m2 

respectively. These values were calculated using the MATLAB “var” command on a 

large set of data from the GPS sensor, simulated as described in previous section. The 

MATLAB “mean” command applied on the same set of data, provided results under 2% 

of the range, which validated the zero-mean assumption. Similarly, for the MV-based 

position sensor, Table 11 indicates that the mean values of the MV position 

measurements can be approximated to be zero. 

The EKF scheme requires 3 specific inputs. The first input is the UAV command 

vector uk containing the throttle level and the deflections of the control surfaces. The 
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second input is the complete system output vector defined in (24), which includes data 

from the INS/GPS and the MV sensors. The third and last input is the number of corners 

used by the PE algorithm, which is critical since the MV system provides reliable 

estimates of the relative position vector only if a sufficient number of corners (greater 

than 6) are properly detected by the ‘Mutual Nearest Point’ algorithm. Specifically, the 

entries of Vk relative to the MV position measurements are multiplied by a factor of 1000 

when the number of detected corners is lower than the required amount.  Essentially this 

causes the exclusion of the MV information from the sensor fusion process. 

The output of the EKF is the estimate ˆkx  of the system’s state vector xk, which 

contains the 12 aircraft state variables. Specifically, the last 3 variables of the EKF output 

are the estimates of the aircraft position in the ERF. The values of these variables are the 

results of the sensor fusion between the data supplied by the two different position sensor 

systems. 

According to the selected state and output variables, the matrix Hk in (18) 

becomes a matrix with dimension 15×12 containing the derivatives of the outputs with 

respect to the states. Similarly, the matrix Vkx is a matrix of dimensions 15×15, containing 

all the noise covariances, including the ones from the GPS and the MV systems.  
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Figure 34 - Scheme of EKF for sensors fusion 

 

Figure 34 shows the general Simulink Scheme of the EKF, including its different 

components blocks such as the “Linearization” block - which performs the calculations in 

Eq..(18) - the “Gain Computation” block - which calculates Eq. (20), (21), and (23) - and 

the “Output Update”, which calculates Eq. (22). The tuning of the EKF is performed as 

follows. First, the initial state of the filter is set equal to the state of the UAV system at 

the time instant when the EKF is switched on (Table 13 shows typical values of such 

initial state). The matrix P0 is then set to zero. Next, the matrix Wk is kept constant and 

equal to the identity matrix with dimensions 12*12. As previously mentioned, the matrix 

Vk, varies as a function of the corners detected by the MV system. Specifically, if the 

number of corners is greater than 6 the matrix Vk, is a diagonal matrix containing the 9 

values provided in Table 2, the 3 variances of the GPS measurements: 0.014 m2, 0.013 

m2, and 0.022 m2 for x y and z directions respectively, and the 3 variances related to the 

distances measured by the MV system, provided in Table 11. Whenever the number of 

detected corners is less than 6 then the 3 variances related to the MV system are 

multiplied by 1000 so that these measurements are practically discarded. 
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Variable  V α β p q r ψ θ φ xe ye H 
Value  205 0.077 0 0 0 0 0 0.077 0 -58.8 0 6068 

Table 13: Typical Initial State Vector 
 

2.12.3 Performance Analysis 

The analysis of the closed loop simulations was performed to validate the 

performance of the EKF. In this study, the UAV acquires data from all its onboard 

sensors (modeled as described in previous sections) and receives data from the tanker, 

which are pre-filtered for noise reduction purposes. The EKF output - that is the result of 

the sensor fusion between the MV and GPS data - is used in the docking control laws for 

guiding the UAV from the ‘pre-contact’ position to the ‘contact’ position and for holding 

position in the defined 3DW once the contact position has been reached.  

Without any loss of generality, the ‘pre-contact’ position was assumed to be 

located 50 m behind and 10 m below the tanker aircraft, while the ‘contact’ position, i.e. 

the 3DW position, was assumed to be right below the tanker, within the reach of the 

telescopic portion of the refueling boom.  
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Figure 35 - Comparison of errors along the x-axis between EKF, GPS and MV system  
 

Due to finite camera resolution and due to the fact that objects appear smaller at 

larger distances, a MV-based system cannot provide reliable results when the tanker-

UAV distance is too large [12][59][29]. Thus, MV-based results are fairly inaccurate 

until approx. 30 sec. in the simulation.   

In Figure 35 - Figure 37 the logarithm of the EKF error - defined as the absolute 

value of the difference between the actual position and the EKF-based position - is 

compared with the MV and GPS noises, for the x, y, and z axes respectively. It can be 

noted that the error of the EKF output is approximately two orders of magnitude smaller 

than the noises of both the GPS and MV systems.  
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Figure 36 - Comparison of errors along the y-axis between EKF, GPS and MV system 

 

 
Figure 37 - Comparison of errors along the z-axis between EKF, GPS and MV system 
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The accuracy of the EKF-based estimations is particularly evident in Figure 38, 

which shows the components of the EKF error along the 3 axes. 

 
Figure 38 - Errors in the data using EKF 

 

In the following figures, the performance of the EKF based sensor fusion scheme 

is compared with the performance of another ‘baseline’ sensor fusion scheme described 

in previous section and in [60], [31], [55]. Specifically, the old ‘baseline’ sensor fusion 

scheme consisted in using a linear interpolation between the distances supplied by the 

GPS and the MV systems when the relative aircraft distance was between two pre-

defined values d2 and d1. Particularly, within the baseline scheme the GPS measurements 

were used when the distance was greater than d2, while the MV distance estimation was 

used when the distance was lower than d1.  
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Figure 39 - Comparison in the tracking error between EKF sensors fusion method and sensors linear 
interpolation method 

 

 

Figure 40 - Errors in the components of the tracking error  
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The motivation behind the ‘baseline’ sensor fusion scheme is that for distances 

larger than d1 the MV system does not provide the necessary level of accuracy in the 

estimations; therefore, only GPS data were used. On the other side, for distances lower 

than d2, the tanker itself could act a shield leading to potentially inaccurate GPS 

measurements; thus, only data from the MV system could be used. Without any loss of 

generality the values of 40 m and 23 m were used for the distances d1 and d2 respectively 

in the previous studies.  

Figure 39 and Figure 40 show the UAV tracking error during the approach and 

docking phases. It can be seen that the EKF based sensor fusion scheme provides a 

substantial improvement in terms of tracking performance during the UAV docking 

phase. 

 

2.12.4 Robustness Analysis 

A robustness study was performed for assessing the robustness of the filter to 

perturbations such as biases in the θ and ϕ signals from the gyro, variations of the initial 

UAV position x0, y0, z0, and variations in the entries of the V matrix associated with the 

MV and GPS sensors systems. Specifically, for each of the above conditions, a 

simulation was performed in which the parameter was changed, while all the other 

parameters retained their values.  
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Parameter  Variation Avg x axis 
Error (m)  

Avg y axis 
Error (m)  

Avg z axis 
Error (m)  

Avg Mag. 
Error (m) 

None None  -2.93*10-5 -1.67*10-4 -2.28*10-3 2.42*10-3 
θ 1.77*10-4 rad -2.91*10-3 -1.58*10-4 1.82 1.82 
ϕ 2.1*10-3 rad -5.10*10-6 -1.65 -2.51*10-2 1.65 
x0 2 m 5.6*10-2 1.31*10-2 1.24*10-1 2.21*10-1 
y0 2 m 4.11*10-2 3.51*10-2 1.24*10-1 2.19*10-1 
z0 2 m 4.11*10-2 1.31*10-2 1.46*10-1 2.25*10-1 
Var (GPS) 100% 3.06*10-5 -1.71*10-4 -2.30*10-3 2.44*10-3 
Var (MV) 100% 3.24*10-5 -1.75*10-4 2.32*10-3 2.47*10-3 

Table 14: Robustness Results 
 

The average errors for the EKF position output – for each coordinate as well as in 

magnitude - are reported in Table 14 for each simulation. Note that the first row 

represents the baseline case in which no parameter was changed, while the last two rows 

represent the cases in which the 3 tuning variances for the MV and GPS sensors were 

doubled. 

Overall, the table indicates that the EKF features desirable robustness 

characteristics with respect to both limited biases and variation in some of the tuning 

parameters. 
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3 THE COLLISION IDENTIFICATION PROBLEM AND 

SIMULATION 

The second biggest current limitation of UAVs is their lack of collision 

identification (CI) and avoidance capabilities. Clearly, this problem does not have a 

unique solution, since in-flight collisions could be infinite and they can be avoided with a 

large set of escaping maneuvers. For example, other aircraft or birds, high mountains or 

large buildings are possible cause of collision. 

A system able to identify collision is becoming a central research issue not only 

for the scientific relevance of the problem but also for the importance of the application. 

Current FAA regulations for UAVs require: 

“… a method that provides an equivalent level of safety, comparable to the see-

and-avoid requirements of manned aircraft”  

[U.S. FAA Order 7106.4 Chapter 12, Section 9] 

Much research is underway to address this issue [41][42]. From the first analysis, 

scientists understood that technologies as Traffic alert and Collision Avoidance System 

(TCAS) could not be used in UAVs because of the necessity to be “invisible” during 

most of the missions. Many developed Collision Avoidance system uses active systems 

like Laser [43] or Ka-band radar [44] or a fusion between active and passive system, 

cameras with different spectrum (IR, panchromatic and color), and radar [45]. These 

sensors are usually detectable and too heavy to be installed in small UAVs. For example, 

in [45] an apparatus consisting of four cameras, one radar, and two computers was 
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required; size and weight of this equipment clearly exceeds the limit payload for small 

UAVs.  

The lack of a sensor able to register all the possible collision risks led scientists to 

imitate the most actually efficient sensor, that is the human vision system. Being 

impossible –with the current technology- to reproduce such a complicate system, 

scientists have observed that many animals –such as bugs – with simpler vision system 

and brain are still able to avoid collisions even within complex scenarios. Bugs are been 

analyzed for many years from biologist; one of the most efficient approaches used by 

bugs to avoid collisions is Optical Flow. The Optical Flow (OF) [46], [47] is the velocity 

vector field on the image plane generated by the relative motion with respect to the 

objects in the field of view. Using similar techniques some animals can perform quick 

and highly accurate navigation maneuvers. 

In this effort, the goal is use a single camera and a single computer for the 

development of a Collision Identification system able of recognizing risks derived from 

other aircraft or object with a dynamic slower than UAVs. Considering the limitations of 

the problem, the possible risk of collision could only be identified only in the direction on 

which the camera is pointing and in a space that depends on the field of view of the 

camera. The collision identification system will use Optical Flow algorithms in order to 

identify a possible collision; this information will then be used into the aircraft controller 

for the generation of the “collision free” trajectory for the navigation of the UAV. The 

problem of extracting collision information from the Optical Flow algorithms; the 

estimation of the “no-flight zones” and the generation of commands to avoid such areas 

are not considered in this thesis.  
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A general flow chart of the Collision Identification problem is shown in Figure 

41. In order to test the results an ‘ad hoc’ simulation was developed using the Matlab 

Virtual Reality Toolbox (VRT). In the document a general description of the simulation 

is provided, other details are addressed to the description of the Optical Flow algorithms 

and the methodology used to identify the possible collisions. 

  

Figure 41: steps for Collision Identification 
 

3.1  Collision Identification Simulation 

A Collision Identification simulation was used as test-bed for the problem, 

considering the delicateness of the problem an accurate work of simulation is needed 

before a real hardware implementation. The problem requires that simulation was as 

much as possible accurate and close to the reality.  

Into the VR environment, two UAVs performing different and pre-defined 

trajectories are implemented. Into the simulation, the UAVs are implemented with a 

mathematical model of an “ICE-101” which was described in previous section. The 
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trajectory of the UAVs can be predefined using 4D waypoints. A waypoint is composed 

by a 3D coordinate (x, y, z) and the crossing time (t). The reach time of a given waypoint 

can be respected only if the dynamic constraints due to the saturation of the throttle can 

be satisfied. The predefinition of the trajectory allows the UAVs trajectories to cross each 

other and consequently a UAV can enter into the camera field of view of the second 

UAV.  

3.1.1 The Virtual Reality Environment  

The Virtual Reality Environment is defined using the Matlab Virtual Reality 

Toolbox. Many objects were added with the intention of providing a realistic simulation.  

An image from Google Earth was captured to create a realistic representation of 

the ground. The image selected was relative to a location close to the WVU Jackson’s 

Mill Airstrip. Highways with static cars were added to the environment and some 

buildings were placed on the ground. In order to simulate obstacles during the flight, two 

aerostatic balloons can be placed by the user in predefined positions. Generally, into the 

simulation, the balloons and the other UAV represent the obstacles that a selected UAV 

has to identify; the buildings do not represent obstacles because of the UAV’s altitude.  

The trajectory of the UAVs can be defined by the user using a GUI. The user has 

to select the number of waypoints representing the trajectory of the UAVs; each waypoint 

is composed by a 4D coordinate, that is position x, y and altitude and the time that the 

waypoint has to be crossed. Figure 42 shows the GUI that permits to select the 4D 

coordinate for the waypoint #2 and the UAV #1 in the left and the corresponding 

trajectory in the right, the line in blue is the trajectory of UAV #1 and the line in green is 

the trajectory of UAV #2. 
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Figure 42: GUI used to choose the trajectory and the corresponding trajectory plotted  
 

Finally, the GUI allows the user to select the position of the static balloons. Figure 

43 shows typical scenarios of the VRE, Particularly, in the left part it is visible the static 

balloon and one building, the right part shows the UAV #2 crossing the trajectory of the 

UAV #1 and a highway.  

 

Figure 43: examples of the VRE, in the left balloons and building are visible, in the right the UAV #2 
cross the trajectory of UAV #1. 

 

3.2 The Optical Flow 

The approach used for identifying the potential collisions is based on the use of 

the Optical Flow. According to Horn and Schunck [49]: “The optical flow is a velocity 
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field in the image that transforms one image into the next image in a sequence. As such it 

is not uniquely determined; the motion field, on the other hand, is a purely geometric 

concept, without any ambiguity – it is the projection into the image of three-dimensional 

motion vectors”. In general, the OF calculation relies on three fundamental assumptions: 

Brightness Constancy: the local changes in image intensity are caused only by the 

motion of a certain object with respect to the camera. 

Spatial Coherence: the motion is uniform over a small patch of pixels  

Temporal Persistence: the image motion of a surface patch changes gradually 

over time.  

Analytically, if I(u,v,t) is the intensity (i.e. brightness) of a pixel – having 

horizontal and vertical image plane coordinates u,v – representing a feature that moves of 

δu, δv during the time δt, then, under the three assumptions mentioned above, I(u,v,t) = 

I(u+δu, v+δv, t+δt). A derivation with respect to time leads to the following conservation 

equation: 

0u v tI u I v I+ + =� �  (57) 

where Iu and Iv are the spatial derivatives of the image along the u and v image 

dimensions, calculated at a given pixel location, It is the temporal derivative of the image 

at that location, and the terms u and  represent the “optical flow” vector at that point 

and time.  

� v�

In general, OF algorithms can be classified within the following broad classes: 

- “Gradient” methods; 

- “Phase” methods; 

- “Matching” methods; 
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- “Feature-based” methods. 

 

3.2.1 “Gradient” Methods 

Generally speaking, gradient methods rely on the solution of equation (57) for 

calculating the unknowns  and . However, it can be noticed that for each pixel there is 

one corresponding scalar equation (with known values of Iu, Iv and It) while there are two 

scalar unknowns  and . This leads to an analytically under-determined algebraic 

system, also known as the “aperture problem”. The methods belonging to the “Gradient” 

class typically tackle this problem by including some constraints – usually based on some 

form of spatial or temporal coherence - in the algebraic system of equations to be solved. 

Within this effort, 4 algorithms belonging to this category have been analyzed:  

u� v�

u� v�

- “Gradient” method [47],  

- “Lucas-Kanade” method [48],  

- “Horn and Shunck” [49] method, 

- “Proesmans” [50] method.   

The “Gradient” algorithm – which was developed as a Matlab function at WVU - 

calculates the OF for each pixel belonging to a predefined grid assuming that u  and  

are constant within a certain spatial and temporal neighborhood of the pixel. Therefore, 

an over-determined system of equations is assembled and solved – in the minimum 

square sense – for each pixel.  Specifically, the system is solved only if its eigenvalues 

are greater than a given set of thresholds. This allows discarding image areas where 

derivatives are too close to zero or too similar to each other – e.g. due to a lack of motion 

or because there are no distinguishable features – and, at the same time, increasing 

� v�
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computational efficiency by avoiding unnecessary calculations. The “Lucas-Kanade” and 

“Horn and Shunck” implementations are available in recent Matlab versions as Simulink 

blocks.  

The “Lucas-Kanade” is fairly similar to the “Gradient” implementation with the 

main difference being the assignment of numerical weights to give different weights to 

the neighborhoods as function of their distances from the center.  

The “Horn and Schunck” algorithm combines equation (57) with a global 

smoothness term λ with the goal of constraining the estimated velocity. This algorithm 

also features an iterative procedure that is halted when the maximum number of iterations 

is reached.  

The “Proesmans” method is in its concept similar to the “Horn and Schunck” 

method since it requires the minimization of a global energy functional, the main 

difference is it takes into account the bias in the direction of motion due to correlations in 

the finite difference approximation [50]. The algorithm was originally developed in C++ 

at the University of Otago, New Zealand, and it was later revised and adapted. 

Specifically, all the sub-functions were included within a single C++ file and an interface 

that allowed the algorithm to be called from Matlab was added. 

The classic advantage of this class of algorithms is their computational speed. 

Their main disadvantages are that they need to cope with the aperture problem; 

additionally, the calculation of the spatial and temporal derivatives is usually very prone 

to errors due to the presence of a number of noises from different sources. 

 

 91  



 

3.2.2 Phase Methods 

Phase techniques are based on the idea that 2D image velocity can be modeled as 

the phase behavior of a band-pass filter output [53]. The idea of using phase information 

for OF calculation purposes was originally developed by Fleet and Jepson [51]. The 

resulting Matlab-coded algorithm used within this effort is available from the Matlab 

Central file exchange site [52]. As outlined in [53], the algorithm calculates the OF 

estimation using the following three sequential steps. First, a spatial filtering is obtained 

using the Gabor Filter and the temporal phase gradient is calculated using the estimation 

of the velocity components. Next, a component velocity is rejected if the corresponding 

filter pair’s phase information is not linear over a given time span. Finally, an 

interpolation is used to combine the partial velocities obtained using Gabor Filters in 

order to achieve the optical flow in the u and v directions. 

 

3.2.3 Matching techniques 

For methods belonging to the “Matching” class, the optical flow vector [u , v ] is 

calculated for a given pixel by finding the displacement of a template around the pixel 

between two consecutive frames. The template matching between two consecutive 

frames is usually performed by minimizing a predefined function of the differences 

between the two templates. Within this effort, the “Difference” and the “Correlation” 

methods have been considered and implemented. The “Difference” algorithm uses the 

Sum of the Absolute Differences (SAD) among templates belonging to consecutive 

frames to find the best matching templates 

� �

[47]. The “Correlation” algorithm instead 

calculates the correlation among templates to perform the matching. Both algorithms 

 92  



 

were developed at WVU and coded in Matlab. It should be emphasized that algorithms 

belonging to this category have shown to be computationally more demanding than the 

algorithms belonging to the “Gradient” category. 

 

3.2.4 Feature-based methods 

These methods calculate  and  by measuring of the displacements of certain 

image features – as detected by a feature detection algorithm and later associated by a 

feature matching algorithm - between two consecutive frames. Therefore, they implicitly 

rely on the assumption that the same image features can consistently be detected and 

associated over different image frames.  It should be emphasized that such methods 

provide OF results for image points that not only do not belong to an evenly spaced grid 

– as for the OF provided by previously mentioned classes – but are typically located at 

different image points for different image frames. 

u� v�

In this effort two different feature based methods – named directly after their 

internal feature detection algorithms - have been considered, that is the Harris [27] and 

the SIFT [54] methods. Specifically, the Harris algorithm – coded in Matlab using the 

description in [55] - is a corner detection algorithm that allows extracting the position of 

specific corners with some robustness to real world conditions such as, for example, 

changes in the illumination. Next, a point-matching algorithm has to be used to match the 

corners detected within to consecutive frames of an image sequence. In this effort, an 

algorithm previously developed at WVU and coded in C [55] has been used to perform 

the point-matching task following the corner detection performed by the Harris 

algorithm. 
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The other feature detection algorithm is known as SIFT (Scale Invariant Feature 

Transform). SIFT has been developed with the goal of detecting and associating the same 

features between different images. Specifically, features are detected using a filtering 

approach that identifies stable points in the scale space, and are then associated using a 

descriptor-based approach [54]. Empirical experience has shown that the accuracy of the 

OF methods belonging to this class strongly depends on the performance of the 

associated matching algorithm. The version used within this effort was an executable file 

called from Matlab. 

 

3.3 Derivation of the Ideal Optical Flow 

The comparison between the different Optical Flow algorithms is based on the 

calculation of the “Ideal” Optical Flow (or Ideal Flow) generated by the motion of an 

object in space. Given any point on the image plane, the ideal flow can be calculated 

from the position and the velocity - with respect to the camera - of the point in the field of 

view that generates - by projection - the optical flow.  

Specifically, a ‘pin-hole’ mathematical model of the camera [57] is assumed: 

c

cc

yu f
zv x

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (58) 

where f is the camera focal length, u and v are – as previously described - the 

horizontal and vertical coordinates of a point in the image plane resulting from the 

projection of the point CP=[xc, yc, zc]T on such plane. 
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Figure 44: Pinhole model 
 

Note that the left superscript “C” in CP indicates that the point is expressed with 

respect to a camera-fixed reference frame, which is centered in the camera plane and has 

its x-axis pointing in the direction of view, and its y and z-axis pointing respectively in 

the directions of u and v of the image plane. Assuming that CP is part of a rigid body 

centered in COB and moving with respect to the camera reference frame with a linear 

velocity CVB/C and angular velocity CωB/C, differentiating (58) with respect to time, and 

using standard kinematics relationships to express the derivative of CP yields: 
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⎣ ⎦

�
� )O ⎤− ⎦  (59) 

where  and  represent the ideal optical flow (at the image coordinates u and v) 

generated by the motion of CP and 

u� v�

⊗  indicates the three-dimensional cross product. 
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3.3.1 Calculation of the points relative to the ground 

Applying (59) to calculate the “ideal” OF generated by the relative motion 

between the camera and a generic terrain point P, requires the calculation of the 

coordinates of the point P with respect to the camera, that is CP.  

Assuming that the terrain is flat with a constant altitude ze
*, the homogeneous 

coordinates [82] of the point P with respect to the earth reference frame are  

EP = [xe, ye, ze
*, 1]T. The homogeneous coordinates of P in camera reference frame are 

given by CP = CTE(ψ,θ,ϕ,EOC)EP, where CTE(ψ,θ,ϕ,EOC), is the 4 by 4 matrix 

transforming earth-frame coordinates in camera-frame coordinates, the Euler angles ψ, θ, 

and ϕ, express the orientation of the camera reference frame with respect to the earth 

reference frame, and the vector EOC = [xo, yo, zo, 1]T, express the position of the origin of 

the camera reference frame with respect to the earth reference frame.  

The coordinates xe, and ye can then be found by setting the projection on the 

image plane of the point CP = CTE(ψ,θ,ϕ,EOC)EP to the current image point [u, v] from 

which the OF vector originates. Specifically, the MATLAB® Symbolic Toolbox [58] was 

used to obtain a formula yielding the earth frame coordinates xe and ye of a generic terrain 

point EP, as a function of the image plane coordinates u, v, as well as ψ, θ, and ϕ, and 

EOC. In this process, the image points that did not correspond to physical points 

belonging to the terrain (such as for example points above the horizon) were 

automatically discarded. 

Once the coordinates xe and ye were found as a function of the variables 

f,u,v,ψ,θ,ϕ,EOC, the point CP was calculated using the formula CP = 

CTE(ψ,θ,ϕ,EOC)EP(f,u,v,ψ,θ,ϕ,EOC), resulting in: 
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where the letters “c” and “s” denote respectively the cosine and sine functions of 

the Euler angle indicated as a subscript. 

The first three coordinates of CP were then used within (59) - along with the 

known translational and rotational velocity of the camera with respect to the terrain - to 

calculate the “ideal” OF at the point [u, v]. 

 

3.4 Optical Flow Comparison in Simple Motion  

Three specific sets of experiments were developed with the objective of 

comparing the difference of the OF algorithms listed above. Specifically, the 1st set of 

experiments investigated the OF produced by a rotating disk, while the 2nd set of 

experiments investigated the OF produced by attaching the disk to a cart sliding in the 

horizontal image direction (u direction). The 3rd set of experiments was designed for the 

analysis of the OF produced by a forward translation of the disk toward the camera.  

Within each experiment, 3 different videos were recorded and analyzed. The videos were 

recorded using a “Qware EasyCam WB-001” along with its data acquisition software – 

with a focal length of 864.2 pixels, horizontal and vertical sizes respectively of 320 and 

240 pixels and a frame rate of 10 frames per second. Each video of the same set differs 

from the other from the picture glued to the wooden disk. In fact, in the first video of 

each set of experiment, the glued picture is a chessboard having 0.64 cm wide black-and-

white squares. In the second video of each experiment, the glued picture features a 
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picture having a white background and 1.27 cm wide squares each with different gray 

intensity. In the third video of each experiment, the glued picture features an image of the 

Jackson’s Mill (WV) airstrip taken in flight from a camera mounted on the WVU-YF22 

UAV aircraft model [56]. The nine recorded videos (three for each experiment) were 

selected to represent the different types of motion that an object can typically undergo in 

a 3D space. The results are summarized in tables; in each table, the algorithms providing 

the best performance are marked in bold. 

 

3.4.1 Rotating Disk experiments 

For this set of experiments, a given picture was glued to a wooden disk, which 

was in turn attached to a DC motor. Different rotational velocities and different pictures 

were selected for each video. A section of 120 frames was then selected from each video 

for performing the analysis. Two different criteria were selected for comparing the results 

from the OF algorithms, that is the overall angular velocity error, angular and magnitude 

errors with respect to the ‘ideal’ flow. The criteria are briefly discussed below. 

3.4.1.1 Overall Angular Velocity Error: 

An estimate of the disk angular velocity was calculated using the OF vectors 

supplied by each of the algorithms. Specifically, for each OF vector the point CP was 

calculated using the coordinates of the center of the disk – which was also set to be the 

center of rotation - and the initial position of the optical flow vector. Then, for each OF 

vector, a corresponding estimated disk angular velocity was calculated by setting to zero 

the last two components of the vector ωB/C and the three components of the vector VB/C in 
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(59) and pseudo-inverting the formula. Specifically, zeroing out  and the last two 

components of ωB/C in 

/
C

B CV

(59) yields: 
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where ( /
C

B C x
ω  is the unknown, and ( )C C

B y
P O−  and ( )C C

B z
P O−  are the second and 

the third component of the vector ( )C C
BP O− . Multiplying the terms in (61) yields: 
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At this point, it is possible to solve for ( )/
C

B C x
ω  in two different ways, that is, by using 

the first equation in (62) (in the  component only) or by using the second equation in u�

(62) (in the v  component only). In this study, both approaches were pursued and the final 

value for the angular velocity for a given optical flow vector was obtained by averaging 

the two outcomes: 
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 (63) 

 

The total angular velocity was then calculated by averaging the estimated velocities over 

the whole image frame and over all the video frames, and compared with the known 

(recorded) disk angular velocity. This yielded the first evaluation criteria for the OF 

algorithms. 

 99  



 

 

3.4.1.2 Angular and Magnitude Errors w.r.t the Ideal Flow: 

For each frame of the video, the “ideal” OF was calculated for each image point 

by substituting the known disk angular velocity and the point position in (59). Both the 

“ideal” flow vector and the flow vector detected from the OF algorithms were then 

expressed in polar coordinates, resulting in a magnitude and an angle value – with respect 

to the u axis - for each vector. Finally, the errors in the magnitude and the angle were 

calculated as the differences between the “ideal” and the “detected” values.  

3.4.1.3 Results of the test 

Examples of the OF field obtained for the rotating disk experiment - using the 

nine algorithms and the video #1 - are shown in Figure 45.  

 
Correlation OF Difference OF 
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Figure 45: A frame of the video #1 with the OF derived from the nine algorithms 

The results of the analysis are reported in the following Table 15 - Table 17. Specifically, 

each table reports the results obtained by all the nine algorithms when applied to a given 

video. 

 ωreal ωcalc Std Err % Angerr Magerr 
Correlation -0.112 -0.057 0.015 49.6 25.8 1.65 
Difference  -0.112 -0.044 0.009 60.8 56.4 4.10 
Gradient -0.112 -0.012 0.001 89.3 41.7 5.26 
Harris -0.112 -0.084 0.062 25.0 50.5 2.14 
SIFT -0.112 -0.109 0.004 2.9 5.9 0.51 
Phase -0.112 -0.035 0.004 69.0 50.4 3.72 
Proessmans -0.112 -0.061 0.009 45.3 28.2 2.78 
Lucas- Kanade -0.112 -0.017 0.002 85.2 68.1 4.13 
Horn -Schunck -0.112 -0.037 0.006 67.0 73.7 5.45 

Table 15: Video #1 (rotating disk experiment) 

 

 ωreal ωcalc Std Err% Angerr Magerr 
Correlation 0.0357 0.0325 0.003 9.0 11.0 0.45 
Difference  0.0357 0.0343 0.005 3.8 29.4 1.75 
Gradient 0.0357 0.0129 0.001 64.0 12.0 1.18 
Harris 0.0357 0.0353 0.010 1.1 30.8 0.83 
SIFT 0.0357 0.0322 0.022 9.8 11.7 1.27 
Phase 0.0357 0.0224 0.003 37.2 20.5 0.67 
Proessmans 0.0357 0.0136 0.002 62.0 14.7 1.20 
Lucas- Kanade 0.0357 0.0104 0.002 70.8 54.7 1.23 
Horn -Schunck 0.0357 0.0077 0.001 78.6 60.2 1.53 

Table 16: Video #2 (rotating disk experiment) 
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 ωreal ωcalc Std Err 
% 

Angerr Magerr 

Correlation 0.0503 0.0381 0.003 24.1 16.4 0.84 
Difference  0.0503 0.0417 0.005 17.1 28.5 1.62 
Gradient 0.0503 0.0121 0.002 76.0 24.4 2.08 
Harris 0.0503 0.045 0.015 10.5 25.6 1.05 
SIFT 0.0503 0.0495 0.023 1.5 10.1 0.44 
Phase 0.0503 0.0282 0.003 43.9 26.9 1.13 
Proessmans 0.0503 0.0197 0.003 60.8 21.5 1.64 
Lucas- Kanade 0.0503 0.0132 0.002 73.7 52.9 1.65 
Horn -Schunck 0.0503 0.0163 0.002 67.5 51.5 1.80 

Table 17: Video #3 (rotating disk experiment) 

In the above tables, ωreal is the ’true’ rotational velocity of the disk calculated off-

line in radiant per frame. ωcalc is instead the average value over 120 frames of the 

rotational velocity which calculated from the OF field provided by each algorithm. The 

standard deviation (Std) and percentage error between the ‘true’ and the calculated 

velocity are also shown in the table. The columns Angerr and Magerr contain the average 

angular and magnitude errors - measured respectively in degrees and pixels - for each 

algorithm. 

 

3.4.2 Sliding Cart Experiments 

This set of experiments consisted in attaching the same pictures of the previous 

experiment to a toy train which was used as a moving cart. Since the camera was 

positioned on the train side, a pure translational motion of the picture on the v axis was 

recorded. Each video featured a different picture while the train velocity was kept 

constant among the different videos. Only a subset of the video frames, specifically the 

15 frames in which the train was within the camera field of view, was used for this 

analysis. As for the previous experiment, the overall velocity error and the angular and 

magnitude errors with respect to the ‘ideal’ flow were used as performance metrics: 
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3.4.2.1 Overall Velocity Error: 

An estimate of the train velocity was calculated using the OF vectors supplied by each 

algorithm. Specifically, for each optical flow vector, a corresponding estimated train 

velocity is calculated by setting to zero both ωB/C and the first component of VB/C in (59) 

and inverting the formula. Specifically, zeroing-out /
C

B Cω  and the first component of 

 yields: /
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B CV
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For each axis, the total velocity is then calculated by averaging the estimated velocities 

over the whole image frame and over all the video frames. Comparing the total velocity 

with the known recorded train velocity, yields the first evaluation criteria for the OF 

algorithms. 

 

3.4.2.2 Angular and Magnitude Errors w.r.t the Ideal Flow: 

For each video frame, the “ideal” OF was calculated in each image point using 

(59) along with the known train velocity. Both the “ideal” flow vector and the flow vector 

detected from the algorithms were then expressed in polar coordinates, resulting in a 

magnitude and an angle value, measured respectively in pixels and degrees. Finally, the 

errors in magnitude and angle were calculated as the difference between the “ideal” and 

the “detected” values, and averaged over all the OF vectors belonging to all the used 

video frames, yielding the second evaluation criteria for the considered OF algorithm 
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3.4.2.3 Results of the test 

Examples of the OF field obtained for the sliding cart experiment in the video #3- 

using the nine algorithms - are shown in Figure 46, while Table 18 - Table 20report the 

results obtained from all the nine algorithms for each of the 3 videos. 

Correlation OF Difference OF 

Gradient OF Harris OF 

SIFT OF Phase OF 
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Proesmans OF Lucas-Kanade 

 
Horn and Shunk OF 

Figure 46: A frame of the video #3 with the OF derived from the nine algorithms  
 

 Vz Real Vy Vy Stdy Angerr Magerr 
Correlation 0.73 14.55 5.15 1.05 70.48 11.13 
Difference  0.34 14.55 6.18 2.10 55.41 10.03 
Gradient 0.41 14.55 -0.53 0.11 135.57 15.08 
Harris 0.76 14.55 4.59 2.10 64.98 11.52 
SIFT 0.14 14.55 15.44 0.46 0.93 1.14 
Phase 1.21 14.55 -0.95 0.23 123.44 15.57 
Proessmans 2.11 14.55 0.87 1.89 100.72 14.26 
Lucas- Kanade 0.55 14.55 -0.95 0.21 130.19 15.56 
Horn -Schunck 0.89 14.55 -0.94 0.18 122.07 15.89 

Table 18: Video #1 (sliding cart experiment) 
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 Vz Real Vy Vy Stdy Angerr Magerr 
Correlation 0.73 14.55 3.72 2.07 78.20 12.06 
Difference  0.02 14.55 10.35 1.93 31.54 5.27 
Gradient 0.24 14.55 -0.15 0.23 117.93 14.72 
Harris 1.38 14.55 -0.17 2.93 113.18 15.33 
SIFT 0.13 14.55 15.33 0.44 1.36 1.32 
Phase 0.58 14.55 -1.28 0.42 125.14 15.87 
Proessmans -0.02 14.55 10.88 2.99 10.14 4.34 
Lucas- Kanade 0.21 14.55 0.019 0.44 90.79 14.83 
Horn -Schunck 0.65 14.55 1.36 0.74 86.31 16.38 

Table 19: Video #2 (sliding cart experiment) 

 

 Vz Real Vy Vy Stdy Angerr Magerr 
Correlation 0.29 14.55 10.51 0.71 10.26 6.57 
Difference  -0.89 14.55 11.84 0.96 17.34 4.24 
Gradient 0.020 14.55 0.35 0.069 37.77 14.21 
Harris 0.38 14.55 7.47 2.87 47.38 8.39 
SIFT 0.12 14.55 14.61 2.89 1.87 1.84 
Phase 0.12 14.55 -0.045 0.12 92.33 14.64 
Proessmans -1.10 14.55 8.70 1.68 9.83 6.15 
Lucas- Kanade 0.033 14.55 0.26 0.13 79.17 14.44 
Horn -Schunck -0.63 14.55 1.52 0.39 71.68 14.13 

Table 20: Video #3 (sliding cart experiment) 

In the above tables, RealVy is the ‘true’ recorded velocity in the y direction. Note 

that the real velocity along the vertical camera axis z, that is RealVz, has been considered 

to be 0. The columns Vz and Vy contain the average –throughout the frames where the 

sliding picture is visible - of the velocities extracted from the OF field in the y and z 

directions, measured in pixels/frame. Finally, Stdy is the standard deviation of the velocity 

in the u direction. 

3.4.3 Forward Translation Experiments 

Within this set of experiments, the pictures were attached in front of the train with 

the camera positioned along the longitudinal direction of the train. Therefore, the images 

of the picture became closer as the train moved forward. A section of 60 frames was 
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selected from each video to perform the analysis. As for the previous experiment, each 

video featured a different picture, while the train velocity was kept constant.  The same 

performance metrics were used to compare the different OF algorithms as in the previous 

two sets of experiments. To calculate the ‘ideal’ OF from the known train position and 

velocity, a pin-hole mathematical model of the camera was used as described in previous 

section. Knowing the center of the disk and the radius it is possible to use (59) in order to 

find the Ideal Optical Flow for the forward translation movement.  

3.4.3.1 Overall Velocity Error: 

An estimate of the train velocity was calculated using the OF vectors supplied by each 

algorithm. Specifically, for each optical flow vector, a corresponding estimated velocity 

was calculated by setting to zero both ωB/C and the third component of VB/C in (59) and 

pseudo-inverting the formula. Specifically, this yields: 
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y uxV
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where the sign †  indicates the pseudo-inverse operation. 

The total velocity was then calculated by averaging the estimated velocities over 

the entire frame and over all the used video frames and compared with the known train 

velocity, yielding the first performance criteria for the comparison of the OF algorithms. 

3.4.3.2 Angular and Magnitude Errors w.r.t the Ideal Flow: 

For each used video frame, the “ideal” OF was calculated at each image point - by 

substituting the true train velocity in (59) - and then expressed in polar coordinates. As 

for the previous experiments, the errors in magnitude and in angle were then calculated as 

the difference between the “ideal” and the “detected” OF magnitudes and angles. 
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3.4.3.3 Results of the test 

Examples of the OF field obtained for the forward translation experiment - using 

the nine algorithms and video #2- are shown in Figure 47. 

Correlation OF Difference OF 

Gradient OF Harris OF 

SIFT OF Phase OF 
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Proesmans OF Lucas-Kanade 

 
Horn and Shunk OF 

Figure 47: The nine algorithms in the forward translation experiment and video #2 

 

Table 21 - Table 23 report the results obtained by the nine OF algorithms for each of the 

three videos.  

 

 Real 
 Vx 

Vx Stdx ERR 
% 

Angerr Mager 

Correlation -0.168 -0.34 1.42 -103 39.8 2.73 
Difference  -0.168 -0.0085 0.48 95.0 75.1 8.50 
Gradient -0.168 -0.077 0.02 54.0 35.8 0.77 
Harris -0.168 -0.164 0.77 2.7 63.8 3.73 
SIFT -0.168 -0.159 0.06 5.4 27.8 0.63 
Phase -0.168 -0.147 0.07 12.6 41.5 0.78 
Proessmans -0.168 -0.135 0.01 19.6 37.7 0.60 
Lucas- Kanade -0.168 -0.103 0.02 38.8 43.7 0.82 
Horn -Schunck -0.168 -0.126 0.04 25.1 57.7 1.43 

Table 21: Video #1 (forward translating experiment) 
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 Real 
 Vx 

Vx Stdx ERR  
% 

Angerr Mager 

Correlation -0.168 0.004 0.75 102 26.0 0.78 
Difference  -0.168 -0.006 0.62 96.3 49.3 3.70 
Gradient -0.168 -0.077 0.01 54.5 33.4 0.65 
Harris -0.168 -0.160 0.32 5.23 54.2 1.29 
SIFT -0.168 -0.105 0.12 37.8 42.0 0.64 
Phase -0.168 -0.143 0.03 15.3 34.3 0.54 
Proessmans -0.168 -0.094 0.01 44.3 41.3 0.66 
Lucas- Kanade -0.168 -0.084 0.02 50.4 53.3 0.84 
Horn -Schunck -0.168 -0.082 0.02 51.1 60.8 1.03 

Table 22: Video #2 (forward translating experiment) 

 

 Real 
 Vx 

Vx Stdx ERR  
% 

Angerr Mager 

Correlation -0.168 -0.231 0.07 -36.9 30.9 0.74 
Difference  -0.168 -0.101 0.23 39.9 52.1 2.91 
Gradient -0.168 -0.072 0.02 57.3 40.6 0.74 
Harris -0.168 -0.113 0.46 32.7 56.0 1.23 
SIFT -0.168 -0.116 0.05 31.1 41.8 0.57 
Phase -0.168 -0.138 0.03 18.0 40.4 0.59 
Proessmans -0.168 -0.056 0.02 66.6 61.3 0.82 
Lucas- Kanade -0.168 -0.059 0.02 65.0 63.0 0.92 
Horn -Schunck -0.168 -0.076 0.05 54.7 62.9 1.09 

Table 23: Video #3 (forward translating experiment) 

 

In the above tables, Real Vx is the ‘true’ recorded velocity in the x direction. Note 

that the real velocity along the axis y and z, that is Real Vy and Real Vz, has been 

considered to be 0 since the cart motion is parallel to the longitudinal depth axis of the 

camera. The column Vx contains the average – over the frames where the forward 

translation is analyzed - of the velocities extracted from the OF field in the x direction, 

measured in meter/second. Finally, Stdx is the standard deviation of the velocity in the x 

direction. The columns Angerr and Magerr contain the average angular and magnitude 

errors - measured respectively in degrees and pixels - for each of the algorithms. 
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3.5 Optical Flow Comparison in Complex Motion  

3.5.1 Virtual Images Analysis 

The algorithms are executed within a simulation environment that is linked to a 

Virtual Reality Toolbox® (VRT) [67] interface. Such interface allows the position and 

orientation of a flying aircraft in the simulation to drive the position and orientation of an 

associated visual model of the aircraft in a “virtual world”, which was described in 

previous section.  

In particular, within this effort, the scenario consisted only of a planar terrain 

situated 700m above the sea level, and featuring a repeated picture of a natural landscape, 

taken from Google Earth ®, the aircraft flies at initial altitude of 100 m above the terrain. 

A window on this virtual scenario - featuring the view from a virtual camera 

placed on the aircraft - was made available to the user. Using functions provided by the 

Virtual Reality Toolbox, images from such camera – with horizontal and vertical sizes 

respectively of 320 and 240 pixels and focal length equals to 289.7 pixels - were 

continuously acquired – at a frame rate of 10 frames per second - and fed to the different 

optical flow algorithms during the simulation. Specifically, as represented in Figure 41, 

the Optical Flow was continuously calculated from each couple of consecutive images, 

using each of the nine available algorithms. The Ideal Flow was also computed using the 

procedure described in previous section. 

3.5.1.1 Overall Velocity Error 

It should be noticed that, contrary to the previous experiments, the (rotational and 

translational) velocity vectors could not be expressed directly – that is by directly 

inverting (59) - as a function of the instantaneous OF field in a single point in the image 
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plane. This happens because in this case there is no additional a-priori information about 

the structure of the motion (e.g. motion constrained along a certain known axis) that 

could be used to compensate for the information lost during the projection.  

However, the overall information of all OF vectors in the image plane can still be 

used to estimate both the translational and rotational velocities in the image. Specifically, 

rearranging (59) by collecting the velocity terms in a 6 by 1 vector yields: 
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where M(f, CP, COB) is the following 2 by 6 matrix: 
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and the rotation center of the object is expressed as COB = [xo, yo, zo, 1]T. 

Collecting - in a columnwise fashion - the optical flow vectors [  ]T generated 

by the considered OF algorithm, along with their corresponding matrices M(f, CPi, COB) 

yields: 
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Pseudo-inverting (68) yields  
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which, assuming N ≥ 6, yields an estimation of the translational and rotational 

velocities of the object (i.e. of the terrain) at a certain time instant. For each time step, the 

velocities were then calculated according to (69) and compared with the velocities 

produced by the simulation, yielding the first performance criteria for the comparison of 

the OF algorithms. 

It should be noticed that, in the considered experiment, form the camera point of 

view, the object (that is the terrain) revolves around the camera, and therefore the first 

three coordinates of the rotation center COB are zero. Finally, to conclude this section, it 

should also be mentioned that the related problem of estimating a sequence of relative 

positions and orientations from the motion of several points in the image is typically 

classified as a “structure from motion” problem [83]. 

3.5.1.2 Angular and Magnitude Errors w.r.t the Ideal Flow 

The first three coordinates of CP were used within (59) - along with the known 

translational and rotational velocity of the camera with respect to the terrain - to calculate 

the “ideal” OF at each point [u, v]. Expressing in polar coordinates both the ideal and the 

detected OF vectors - as for the previous experiments - allowed for the calculation of the 

errors in magnitude and in angle for each detected OF vector. Averaging the errors over 

all the OF vectors calculated during the simulation yielded the second performance 

metric for the evaluation of the different OF algorithms. 
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3.5.1.3 Results of the test 

Samples of the results of the analysis conducted within this effort are shown in 

Figure 48. Figure 48 shows, also, the Ideal Optical Flow calculated as described in the 

previous sections, note that the Ideal OF can be derived only for the ground.  

Correlation OF Difference OF 

Gradient OF Harris OF 

SIFT OF Phase OF 
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Proesmans OF Lucas-Kanade 

Horn and Shunk OF Ideal Optical Flow 
Figure 48: A frame of the complex motion experiment with virtual images with the OF derived from 

the nine algorithms  
 

 Mean  
Angular  
Error 
(deg) 

STD  
Angular 
Error 

Mean  
Magnitude
Error (pix)

STD  
Magnitude 
Error 

Norm of 
Mean 
error 
Velocity 
(m/s)  

Norm of 
Mean 
error 
Angular 
Velocity 
(rad/s) 

Correlation 24.48 17.13 1.65 3.02 9.57 0.62 
Difference 46.04 12.57 3.88 1.27 33.92 7.91 
Gradient 53.599 14.13 3.93 3.14 3.87 3.15 
Harris 61.81 13.82 2.69 1.54 7.31 2.85 
SIFT 21.46 16.13 3.31 5.79 21.09 3.47 
Phase 51.62 15.45 2.58 2.77 10.01 3.21 
Proesmans 30.76 11.18 3.08 2.26 10.22 3.54 
L- K 83.91 11.80 3.54 2.66 3.05 2.94 
H S 54.85 40.46 2.22 2.53 3.21 3.08 

Table 24: Experiment in the VRE 
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In Table 24, the algorithms are compared in terms of the mean and standard deviations of 

the errors, which were obtained by comparing the OF produced by the 9 algorithms with 

the Ideal OF calculated as described in the previous sections. A visual analysis revealed 

that the Difference, SIFT, and Proesman algorithms performed better. However, the 

statistical analysis in Table 24 showed that the Correlation and Proesman algorithms 

provided the best results. 

It should be noticed that, contrary to the experiments regarding the simple motion, 

the velocity vectors could not be expressed directly – that is by directly inverting (59) - as 

a function of the instantaneous OF field in a single point in the image plane. This 

happens because in this case there was no additional a-priori information about the 

structure of the motion (e.g. motion constrained along a certain known axis) that could be 

used to compensate for the information lost during the projection. Estimating the relative 

position and motion from the motion of several points in the image plane can be 

considered as a “structure from motion” problem, which has been extensively 

investigated in the last decade [83]. 
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Figure 49: Comparison between real and extracted linear and angular velocities in the Correlation 
algorithm 

 

Figure 50: Comparison between real and extracted linear and angular velocities in the SIFT 
algorithm 
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Figure 51: Comparison between real and extracted linear and angular velocities in the Proesman 
algorithm 

 

Figure 49 - Figure 51 show comparisons between real and extracted linear and 

angular velocities for the best algorithms of the test. The velocities were extracted using 

the method described in previous section. Particularly the angular velocities in the 

Correlation and in the Sift algorithms seem comparable to the data provided by the 

simulated sensors. 

3.5.2 Real Images Analysis with Data from the Sensors 

In this experiments the algorithms were executed on image frames from a video 

recorded during the one of the flight tests performed for the WVU YF-22 Formation 

Flight Program [56]. A picture of the aircraft in flight is shown in the left part of Figure 

52. The right part of Figure 52 shows the position of the camera. 
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Figure 52: WVU YF-22 in flight conditions (left) and position of the camera in the WVU YF-22 
(right). 

 
The aircraft was equipped with an Inertial Measurement Unit (IMU), which 

allowed for acquiring the acceleration in x, y and z direction and the angular rates p, q, 

and r. The Vertical gyro provided measurements for the aircraft Euler’s angles, and the 

GPS provided the translational position and velocity measurements x, y, z, Vx, Vy, Vz with 

respect to the earth reference frame. Furthermore, the nose probe provided measurements 

for the α, β angles, and absolute and differential pressure sensors were used to provide 

measurements for H and V [56]. The camera – which had a focal length equals to 847.5 

pixels - was placed one meter in front of the aircraft center of gravity, with orientation 

with respect to the aircraft body frame consisting of yaw and pitch angles of  and 

 respectively. 

45− D

14.5− D

To perform the OF experiment, a 25-seconds 320x240 video - acquired at the rate 

of 15 frames per second - was extracted from an original 607-seconds video, and the 9 

OF algorithms were continuously executed for each couple of consecutive images. The 

Ideal Flow was calculated using the method described in previous sections and the 

(translational and rotational) position and velocity data acquired during the flight session.  

 120  



 

3.5.2.1 Overall Velocity Error 

The procedure described in the virtual image analysis can be used in order to 

extract the linear and angular velocities of the aircraft in the real image analysis. It should 

be noticed that (69) provides the velocities in CRF and they cannot be directly compared 

to the data provided from the real sensors. In fact, the sensors provide the linear velocity 

in ERF and the angular velocity in URF. With the purpose of comparing the two 

quantities, the extracted velocities have to be pre-multiplied by the consistent 

transformation matrix. 

3.5.2.2 Angular and Magnitude Errors w.r.t the Ideal Flow 

Expressing in polar coordinates both the ideal and the detected OF vectors - as for 

the previous experiments - allowed for the calculation of the errors in magnitude and in 

angle for each detected OF vector. Averaging the errors over all the OF vectors 

calculated during the simulation yielded the performance metric for the evaluation of the 

different OF algorithms. 

3.5.2.3 Results of the test 

Samples of the results of the analysis conducted within this effort are shown in 

Figure 53. Figure 53 shows, also, the Ideal Optical Flow calculated as described in the 

previous sections, note that the Ideal OF can be derived only for the ground.  
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Proesmans OF Lucas-Kanade 

Horn and Shunk OF 
 

Ideal Optical Flow 
Figure 53: The nine algorithms and Ideal Flow in the complex motion experiment and real images 

 

 Mean  
Ang  
Error  
(deg) 

STD  
Ang  
Error 

Mean  
Mag 
Error 
(pix) 

STD  
Mag  
Error 

Norm 
of 
Mean 
error 
Velocity 
(m/s)  

Norm 
of 
Mean 
error 
Angular 
Velocity 
(rad/s) 

Correlation 35.67 32.66 6.42 4.97 10.72 2.48 
Difference 47.38 25.93 6.40 4.58 16.19 4.19 
Gradient 61.23 20.28 11.86 6.98 15.19 9.28 
Harris 55.48 22.56 6.93 5.10 17.40 6.29 
SIFT 32.58 31.70 6.10 4.73 8.68 2.81 
Phase 78.43 26.81 10.48 7.05 17.01 8.95 
Proesmans 40.07 31.46 9.12 6.30 12.53 7.44 
L- K 82.23 7.37 10.86 6.68 15.01 9.41 
H S 82.62 7.99 6.57 7.46 15.16 9.43 

Table 25: Experiment in the Real Images and Real data from the sensors  
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Table 25 shows the results obtained from a statistical analysis where the 

algorithms were compared - in terms of the mean and standard deviations of the errors in 

angle and magnitude - with the Ideal Flow during a 25 seconds simulation with a 

sampling time of 0.1 seconds. While a visual analysis of the pictures shows that the SIFT, 

and Proesmans algorithms provided the best performance, the statistical analysis in Table 

25 highlights the fact that the Correlation algorithms also performs well in this 

experiment. 

 

Figure 54 Comparison between real and extracted linear and angular velocities in the Correlation 
algorithm 
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Figure 55 Comparison between real and extracted linear and angular velocities in the Sift algorithm 

 

Figure 56 Comparison between real and extracted linear and angular velocities in the Proesman 
algorithm 
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Figure 54 - Figure 56 show comparisons between real and extracted linear and 

angular velocities for the best algorithms of the test. The velocities were extracted using 

the method described in previous section. Particularly the angular velocities in the 

Correlation and in the Sift algorithms seem comparable to the data provided by the real 

sensors. 

 

3.6 Computational Requirements Analysis 

Table 26 summarizes the results of the computational requirements analysis. 

Specifically, for each algorithms, the average computational time in seconds and the 

average number of produced OF vectors for each frame are reported in the first and 

second row respectively. 

Algorithm Corr Diff Grad Harris  Sift Phase Proes L-K H-S 
Time (sec) 9.77 9.36 0.237 0.615 1.45 2.95 1.30 0.122 0.142 
# Points 1872 2240 2745 67.3 31.6 408 3072 3072 3072 

Table 26: Time analysis 

This analysis was performed on a 120-frames video, where each frame has 

dimension 320x240, using a Pentium 4 dual processor 3.4 GHz with 2GB of RAM 

memory. It should be emphasized that in order to minimize the computational overhead 

due to interpreter calls for the algorithms coded in Matlab (that is Correlation, Difference 

and Gradient), a considerable effort was undertaken to avoid explicit for-loops whenever 

possible, to pre-allocate arrays, to store data in column format, and to avoid the 

instantiation of unnecessary variables. Furthermore, the Matlab Profiler® was consistently 

used to locate and optimize bottlenecks in the code. As a result, the majority of the 

execution time for the final Matlab codes was spent within Matlab built-in functions, 

which consist in highly optimized routines stored in pre-compiled dynamic linked 
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libraries (DLLs). As a consequence, the algorithms written in Matlab could be reasonably 

compared with the algorithms written in C or C++. 

As it can be seen from Table 26, algorithms belonging to the same class have 

similar computational requirements. As expected, the “matching” algorithms are the 

slowest ones. A profiling analysis of such algorithms confirmed that almost the totality of 

time was used to perform operations like SAD or Correlation, which are implemented as 

built-in files and, therefore, can be considered to be optimized. 

The Gradient, Lucas-Kanade and Horn-Schunck are faster, which is not surprising 

since they rely only on basic operations on relatively small matrices. The Proesmans 

algorithm is more sophisticated, and, therefore, more computationally intensive. Finally, 

the performance of the algorithms based on feature detection is strictly correlated to the 

operations required to find the features.  For example, corners are computationally easier 

to find than scale-invariant features. Therefore, SIFT required generally more 

computational effort than Harris. 

With the exceptions of the Gradient, Lucas Kanade, and Horn and Shunck 

algorithms, the results of this analysis are not encouraging for the purpose of deploying 

the OF algorithms on currently available embedded computers, which typically have very 

limited computational resources. 

 

3.7 Adaptation of the SIFT algorithm for Real-Time purpose 

The original implementation of the SIFT algorithm is provided by Lowe [54]. The 

algorithm is in executable form that read a file .pgm and computes the Scale Invariant 

Feature Transform descriptor. A Matlab interface is used to write the image into a .pgm 
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file and run the executable file. The algorithm was developed in order to provide a unique 

descriptor for every detected feature. Matching the features found in different images is 

possible recognize the same point in two different images and calculating the difference 

in the position the Optical Flow in the matched features can be computed. 

The executable implementation cannot be placed in on-board computers since it 

cannot be compiled as Matlab S-Function. The implementation provided by Vedaldi [68] 

is, instead, open source and written in Matlab and C languages; therefore can be used 

within Matlab S-Functions and consequently easily converted for Real Time purpose. On 

the other hand, the code written by Vedaldi is slower until it is compiled for Real Time 

application. In Appendix A the description of the SIFT algorithm implementation is 

provided [68].  

 

3.7.1 Comparison between the two SIFT implementations 

Despite of the fact it is possible tune the Vedaldi’s implementation in order to 

obtain the same results of the of the code provided by Lowe, it was observed that the 

Vedaldi’s implementation provide much more versatility and the parameters can be tuned 

in order to achieve better results. As shown in Figure 57, the code provided by Vedaldi 

can be tuned in order to find more features compared by the implementation provided by 

Lowe for the same image.  
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Lowe’s SIFT OF Vedaldi’s SIFT OF 
Figure 57: Comparison of the OF provided by the two SIFT implementations 

 

The computational time required to calculate the OF for both implementations 

and a portion of the video recorded during formation flight program was analyzed. 

Actually, the algorithms runs in a Simulink scheme where at each step the previous and 

the actual image are analyzed in order to extract the features. In a Real –Time 

implementation the algorithms can be optimized analyzing only the actual image for each 

step and recording the features of the previous instant in order to be used in the next 

iteration. This method was already implemented and was actually used in the 

Computational Requirements Analysis, but it cannot run in a Simulink scheme. 

Consequently, the computational time requirements published in Table 27 for the Lowe’s 

SIFT implementation is different from the one provided in Table 26. 

 Lowe’s SIFT Vedaldi’s SIFT 
Time (sec) 1.88 23.10 
# Points 56.4 88.2 

Table 27: Computational Time in the two SIFT implementation 
 

Table 28In  are reported the data relative to the analysis of a portion of the 

Formation Flight video for the two version of the SIFT implementations. It should be 
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noticed that the performance of the two implementations are very similar in terms of 

mean and standard deviation of the angular and the magnitude error. 

 

 Mean 
Ang  
Error 
(deg) 

STD  
Ang  
Error 

Mean 
Mag 
Error 
(pix) 

STD  
Mag  
Error 

Lowe’s SIFT 32.58 31.70 6.10 4.73 
Vedaldi’s SIFT 33.63 30.84 6.22 4.68 

Table 28: Comparison between in term of performance between the two SIFT 
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4 CONCLUSION 

A number of Machine Vision (MV) techniques for specific applications in flight 

controls were evaluated in this effort. Particularly, different MV techniques were 

implemented and tested within simulation environments for the specific problems of the 

MV-based Aerial Refueling (AR) and Collision Identification for Unmanned Aerial 

Vehicles (UAVs). The first section of the document describes the AR problem; within 

these analyses, two different algorithms to solve the Point Matching and the Pose 

Estimation problem were proposed, implemented and evaluated.  

The performances of the two Point Matching algorithms – the Mutual Nearest 

Point (MNP) and the Maximum Clique Detection (MCD) – were compared using 

different tests featuring virtual and real images. The results from this detailed comparison 

showed that the accuracy of the two algorithms is very similar. However, the MCD 

algorithm was able to generally recognize more corners and to provide better matching if 

the projected points were closer to the points detected in the image, and this is especially 

true for real images. On the other hand, the MNP algorithm had provided a more 

consistent overall matching and it generally allowed a smaller pose estimation error, 

while at the same time requiring a lower computational effort. These considerations led to 

the choice of the MNP algorithm within the Machine Vision-based Aerial Refueling. 

In the Pose Estimation analysis, the attention was focused on the analysis of the 

performance of two widely used pose estimation algorithms - the GLSDC and the LHM 

algorithm - in terms of accuracy and robustness. The results from this comparison 

showed that the accuracy of the two algorithms is substantially similar; however, the 

LHM algorithm had provided a substantially higher level of robustness at the expense of 
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a larger required computational effort. Therefore, the LHM was preferred whenever its 

additional computational requirements were not a key issue in this particular problem.  

A statistical analysis of the component of the Machine Vision sensor showed that 

the error could be considered white and gaussian suggesting the use of EKF for sensor 

fusion purpose. Therefore, the sensor fusion system based on the use of Extended 

Kalman Filtering was designed. It provided reliable position information through 

integration of the measurements supplied by the GPS system and the MV system, as well 

as from other aircraft sensors. The sensor fusion system has been described with details. 

A closed-loop simulation study using the simulation environment for the analysis of MV-

based AR problem was performed. Results show that the proposed sensor fusion system 

allowed an improvement of more than one order of magnitude in the precision of the 

position estimates when compared to a previously used interpolation-based sensor fusion 

system. Furthermore, the results from simulations studies performed by changing some 

key tuning parameter suggest that the filter presents desirable robustness characteristics; 

in addiction, more robustness should be reached whether the Euler angles provided by the 

MV system are used into the sensor fusion system. 

In the second section, the Collision Identification problem was analyzed in detail. 

The innovative solution was the use of Optical Flow algorithms for the identification of 

the possible risks collision. Particularly, a novel method to calculate the Ideal Flow 

generated by the motion of a rigid body was developed. This method allows the 

definition of standard approaches for the direct comparison of the velocity vector fields in 

both simple and complex scenarios. Nine of the most used algorithms were analyzed with 

different type of motion. In particular, real experiments on simple motion – rotational, 
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translational and forward translational motion – as well as in complex 6DOF motion – 

using both a virtual simulation environment and real video recorded during the flight 

testing – were developed and studied. An interesting method derived from the inversion 

of the Ideal Flow formula for extract the linear and angular velocities in complex motion 

from the Optical Flow was developed. The extracted velocities present a good level of 

accuracy using the Optical Flow algorithms that provide the better performance 

(Correlation, SIFT and Proessman). In all the tests, the level of accuracy was not enough 

for the development of a Collision Identification system based on Optical Flow. Hence, 

the Machine Vision can help in the identification of possible collision but needs to be 

integrated with more accurate sensor such as radars. In any case, the SIFT algorithm was 

the one that generally provided the best performance. A second version of the SIFT 

algorithm – provided by Vedaldi – was adapted at the desired purpose and compared with 

the original version – provided by Lowe. In the analysis was found that the version 

provided by Vedaldi was able to detect more features reaching the same level of 

accuracy. On the other hand, the version provided by Lowe was much faster than the 

other version. The big difference in the execution time was due to different 

implementation, in fact, the Lowe’s version is a compiled executable file, and the 

Vedaldi’ s version is instead written in Matlab code and need to be compiled in order to 

provide better performance.  
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5 APPENDIX A 

This appendix was provided by Vedaldi and published in [68]. 

5.1.1 Scale Space 

A scale space is a function ( ),F x σ ∈\  of a spatial coordinate  and a scale 

coordinate . Since a scale space 

2x ∈\

σ +∈\ ( ),F σ⋅  typically represents the same information 

at various scales σ ∈\ , its domain is sampled in a particular way in order to reduce the 

redundancy.  

The scale coordinate σ  is discretized in logarithmic steps according to: 

( ), 2 ,      ,  0, , 1o s S
os o o s Sσ σ += ∈ =] … −  (70) 

where o is the octave index, s is the scale index, S ∈`  is the scale resolution 

 and is the base scale offset. Note that it is possible to have octaves of negative 

index. 

oσ +∈\

The spatial coordinate x is sampled on a web with a resolution that is a function of 

the octave. ox  which is the spatial index for octave o. This index is mapped to the 

coordinate x by  

[ ] [ ]2 ,      ,  0, 1 0, 1o
o o ox x o x N M= ∈ ∈ − ×] … … o −  (71) 

where (No; Mo) is the spatial resolution of octave o. If (M0; N0) is the resolution of 

the base octave o = 0, the resolution of the other octaves is obtained as  

0 ,      
2 2o oo

NN M⎢ ⎥ ⎢= =⎢ ⎥ ⎢⎣ ⎦ ⎣
0

o

M ⎥
⎥⎦

 (72) 

It is useful to store some scale levels twice, across different octaves. This is done 

allowing the parameter s to be negative or greater than S. Formally, the range of s is 
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[ ]min max,s s . It can also be denoted the range of the octave index o as [ ]min min, 1o o O+ − , 

where  is the total number of octaves. The SIFT detector makes use of the two 

scale spaces described next.  

O ∈`

5.1.1.1 Gaussian Scale Space  

The Gaussian scale space of an image I(x) is the function  

( ) ( )(,G x g I xσσ ∗� )  (73) 

where the scale 2o s S
oσ σ += is sampled as explained in the previous section and 

the symbol  represents the convolution operation. In practice, it is assumed that the 

image is already pre-smoothed at a nominal level

∗

oσ , so that ( ) ( )( )2 2,
n

G x g I x
σ σ

σ
−

∗� . 

As suggested in [54], the pyramid is computed incrementally from the bottom by 

successive convolutions with small kernels.  

5.1.1.2 Difference of Gaussians Scale Space  

The Difference of Gaussians (DOG) scale space is the scale “derivative” of the 

Gaussian scale space ( ,G x )σ  along the scale coordinate σ . It is given by: 

( )( ) ( )( ) ( )( ), , , 1, , ,D x s o G x s o G x s oσ σ σ+ −�  (74) 

Remark 1 (Lowe's parameters): Lowe's implementation uses the following 

parameters:  

1
0 min0.5,    1.6 2 ,      1,     3S

n oσ σ= = ⋅ = − S =  (75) 

In order to compute the octave o=-1, the image is doubled by bilinear 

interpolation (for the enlarged image 1nσ = ). In order to detect extrema at all scales, the 

Difference of Gaussian scale space has [ ] [ ]min max, 1,s s s S 1∈ = − + . Since the Difference 

of Gaussian scale space is obtained by differentiating the Gaussian scale space, the latter 
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has [ ] [ ]min max, 1,s s s S∈ = − 2+

)

. The parameter O is set to cover all octaves (i.e. as big as 

possible.) 

5.1.2 The Detector 

The SIFT frames (or “keypoints”) are a selection of (sub-pixel interpolated) 

points ( ,x σ  of local extremum of the DOG scale-space ( ),D x σ , together with an 

orientation θ  derived from the spatial derivative of the Gaussian scale-space ( ),G x σ . 

For what concerns the detector (and being in general different for the descriptor), the 

“support” of a keypoint ( ),x σ  is a Gaussian window H(x) of deviation 1.5wσ σ= . In 

practice, the window is truncated at. 4 wx σ≤ .  

The Gaussian and DOG scale spaces are derived as in previous section. In this 

Section, the parameters S; O; , min max,s s min 0,o σ refer to the DOG scale space. The 

Gaussian scale space has exactly the same parameters of the DOG scale space except for 

max
DOGs  which is equal to . The extraction of the keypoints is carried one octave per 

time and articulated in the following steps: 

max 1s −

� Detection: Keypoints are detected as points of local extremum of ( ),D x σ . In the 

implementation, the function extracts such extrema by looking at 9x9x9 

neighborhoods of samples. As the octave is represented by a 3D array, the 

function returns indexes k (in Matlab convetion) that are to be mapped to scale 

space indexes (x1; x2; s) by  

( )2 1 min1 ok x x M s s M− = + + − o oN  (76) 
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Alternatively, another function can be used to map the index k to a 

subscript (i, j; l) and then use 

1 21,     1,     1 minx j x i s l s= − = − = − +  (77) 

Because of the way such maxima are detected, one has always 

. 2 1 o min1 1,  1 N -2  1ox M x s s s≤ ≤ − ≤ ≤ + ≤ ≤ −max 1

)

Since both local maxima and minima are searched, the process is repeated 

for ( ,G x σ− . (If only positive maxima and negative minima are of interest, 

another option is to take the local maxima of ( ),G x σ directly, which is quicker.) 

� Sub-pixel refinement. After being extracted, the index (x1; x2; s) is fitted to the 

local extremum by quadratic interpolation. At the same time, a threshold on the 

“intensity” ( ),D x σ and a test on the “peakedness” of the extremum is applied in 

order to reject weak points or points on edges. The edge rejection step is 

explained in detail in the paper [54]. The sub-pixel refinement is an instance of 

Newton's algorithm.  

� Orientation. The orientation θ  of a keypoint ( ),x σ  is obtained as the 

predominant orientation of the gradient in a window around the keypoint. The 

predominant orientation is obtained as the (quadratic interpolation) maximum of 

the histogram of the gradient orientations ( )1 2, ,xG x σ∠  within a window around 

the keypoint. The histogram is weighted both by the magnitude of the gradient 

)( 1 2, ,xG x σ∇ and a Gaussian window centered on the keypoint and of deviation 

1.5σ  (the Gaussian window defines the region of interest as well). After 

collecting the data in the bins and before computing the maximum, the histogram 
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is smoothed by a moving average filter. In addition to the global maximum, each 

local maximum with a value above 0.8% of the maxium is retained as well. Thus 

for each location and scale multiple SIFT frames might be generated. 

5.1.3 The Descriptor 

The SIFT descriptor of a keypoint ( ),x σ  is a local statistic of the orientations of 

the gradient of the Gaussian scale space ( ),G x σ .  

� Histogram layout. The SIFT descriptor (Figure 58) is a histogram of the image 

gradients orientations and locations (these are tuples ( ) 2,x θ ∈ ×\ \ ] ). The 

histogram bins form a three dimensional lattice with NP = 4 bins for each spatial 

direction and No = 8 bins for the orientation for a total of  

components (these numbers can be changed by setting the appropriate 

parameters). Each spatial bin is square with unitary edge. The window H(x) is 

Gaussian with deviation equal to half the extension of the spatial bin range, that is 

NP=2. 

2 128P oN N =

 

Figure 58: SIFT descriptor layout. The actual size of a spatial bin is mσ where σ is the scale of the 
keypoint and m=3.0 is a nominal factor  
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� Keypoint normalization. In order to achieve invariance, the histogram layout is 

projected on the image domain according to the frame of reference of the 

keypoint. The spatial dimensions are multiplied by mσ where σ is the scale of the 

keypoint and m is a nominal factor (equal to 3.0 by default). The layout is also 

rotated so that the axis x1 is aligned to the direction θ  of the keypoint.  

� Weighting. The histogram is weighted by the gradient modulus and a Gaussian 

windowed and tri-linearly interpolated. More in detail, each sample 

( )( )1 2, , ,x x G x σ∠  is 

o weighted by ( ),G x σ∇ ; 

o weighted by the Gaussian window H(x); 

o projected on the centers of the eight surrounding bins; 

o summed to each of this bins proportionally to its distance from the 

respective center. 

Remark 2. (Lowe's implementation) In order to achieve full compatibility with 

Lowe's original implementation, the users has to pay attention to many little details as the 

memory layout of the descriptor and the convention for the gradient orientations. 
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