
SPARSE OPTICAL FLOW REGULARIZATION FOR REAL-TIME VISUAL TRACKING

Vincent Spruyt1,2, Alessandro Ledda1 and Wilfried Philips2

1Dept. of Applied Engineering: Electronics-ICT,
Artesis University College Antwerp

Paardenmarkt 92, 2000 Antwerpen, Belgium

2Ghent University-TELIN-IPI-IMINDS
St. Pietersnieuwstraat 41, 9000 Gent, Belgium

v.spruyt@ieee.org

ABSTRACT

Optical flow can greatly improve the robustness of visual tracking
algorithms. While dense optical flow algorithms have various ap-
plications, they can not be used for real-time solutions without re-
sorting to GPU calculations. Furthermore, most optical flow algo-
rithms fail in challenging lighting environments due to the violation
of the brightness constraint. We propose a simple but effective iter-
ative regularisation scheme for real-time, sparse optical flow algo-
rithms, that is shown to be robust to sudden illumination changes
and can handle large displacements. The algorithm proves to out-
perform well known techniques in real life video sequences, while
being much faster to calculate. Our solution increases the robustness
of a real-time particle filter based tracking application, consuming
only a fraction of the available CPU power. Furthermore, a new and
realistic optical flow dataset with annotated ground truth is created
and made freely available for research purposes.

Index Terms— Optical Flow, Particle filter, Object Tracking

1. INTRODUCTION

Optical flow is defined as a 2D vector field describing the apparent
velocities of objects in a 3D scene, projected onto the image plane.
Most techniques to calculate such flow fields rely on so called bright-
ness constancy, assuming that the intensity of a small region remains
constant between two frames, despite its movement.

A widely used algorithm based on this assumption is the pyrami-
dal Lucas-Kanade optical flow algorithm which tries to analytically
solve the optical flow equations simultaneously for all pixels within
a small region. Due to the well known aperture problem, the Lucas-
Kanade algorithm is mostly used to calculate optical flow only at
corner points, where the flow equations are well defined. The re-
sulting flow field is then sparse, and algorithms computing such flow
field are called sparse optical flow algorithms.

To overcome the aperture problem, variational techniques which
introduce a smoothness constraint have been introduced. The well
known Horn and Schunck method defines a global smoothness con-
straint which effectively regularizes the flow field, allowing the cal-
culation of flow vectors at each image point. These methods are thus
called dense optical flow algorithms. The main disadvantage of their
approach however, is that flow vectors at motion discontinuities are
unstable because of the global regularization term.

Recently, several interesting results have been obtained using
variational techniques such as the Motion-Detail-Preserving-Flow
(MDP-Flow) algorithm proposed by Li Xu et al. [1]. Their imple-
mentation is currently top-ranked at the widely referred Middlebury
optical flow evaluation [2] and is able to maintain fine object bound-
aries while calculating a dense flow field. Dense optical flow algo-
rithms however, usually need seconds up to minutes of calculation
per video frame on current hardware, before obtaining the resulting
flow field and are therefore not suited for real-time applications.

Research funded by a PhD grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen)

Furthermore, several important real-time applications such as
object tracking do not directly benefit from a dense optical flow cal-
culation. In these applications, optical flow calculations should only
consume a small portion of the available computational resources
and is allowed to be sparse.

Because of their real-time constraints, these applications often
fall back to the Lucas-Kanade optical flow algorithm as calculation
speed of the obtained flow vectors is more important than the density
and correctness of the flow field. Kodama et al. [3] use a Lucas-
Kanade based optical flow estimate to enhance the state transition
model in a probabilistic tracking framework. Lucena et al. [4] en-
hance the observation model of a particle filter by incorporating the
Lucas-Kanade flow. Kristan et al. [5] obtain Lucas-Kanade esti-
mates to locally adapt the observation model for each tracked object.

A major disadvantage of this approach, however, is that the re-
sulting flow field will be of poor quality in case of sudden illumi-
nation changes while exactly at those moments, the robustness of
the obtained flow field is of great importance to the object tracker
when trying to re-initialize its observation models. Also, sparse op-
tical flow algorithms do not incorporate a regularization term and are
thus more susceptible to noise than dense optical flow solutions.

Schikora et al. [6] employ a more advanced and robust dense
optical flow algorithm based on Total Variation to improve a finit set
theory based particle filter. They achieve near real-time performance
by implementing the optical flow algorithm on the GPU. However,
many other, more important algorithms used in a complete tracking
solution, such as particle filtering, active contour optimization and
segmentation, can benefit from GPU implementation. Therefore one
has to carefully select the tracking phase to devote the GPU to.

In this paper, we propose a real-time, sparse optical flow al-
gorithm which is robust to sudden illumination changes and large
displacements, and consumes only a fraction of the processor time
without resorting to GPU calculations. Furthermore, a local regu-
larization term is included in the optimization function, yielding a
smooth flow field while preserving motion boundaries. The algo-
rithm runs faster than the pyramidal Lucas-Kanade algorithm, and
outperforms more advanced algorithms in accuracy. The proposed
solution can therefore replace sparse optical flow algorithms used in
real-time applications in order to improve their robustness without
negatively impacting their performance.

2. FEATURE DETECTION AND DESCRIPTION

In order to avoid the aperture problem, sparse optical flow is only
calculated for corners, which are regions containing both large hor-
izontal and large vertical gradients. A widely used corner detector
is the Harris corner detector which relies on the magnitude of the
eigenvalues of a structure tensor matrix describing the local change
in brightness. This solution however is rather slow and consumes a
large portion of the resources available to the optical flow algorithm.

E. Rosten et al. introduced a machine learning based corner
detector named FAST [7]. The learned decision tree yielded an ex-
tremely fast corner detector. Furthermore, the authors showed that
their detector has great repeatability under various aspect changes.

A disadvantage of the FAST detector, however, is its reliance on
a threshold which eliminates corners with a low score. In the original
implementation, a fixed single threshold is used. However, this ap-
proach means that in certain lighting conditions more corners will be
found than in others. Simply dynamically adapting the threshold in
order to maintain an approximately constant number of corner detec-
tions in subsequent frames, does not completely solve this problem
because using a single threshold will then return corners on highly
textured areas, while completely ignoring less textured regions.

We propose a simple and efficient change to the original FAST
detector allowing it to detect corners that are more uniformly dis-
tributed over the image while automatically adapting to changing en-
vironments and illumination conditions. Instead of defining a single
threshold, the image is divided into square regions of size N × N ,
and a threshold is calculated for each of these regions. Once such
threshold is obtained, bilinear interpolation is used to determine a
threshold for each pixel location in the image. To obtain a threshold
for eachN ×N block, a simple iterative procedure is used. Initially,
the threshold is set to the threshold used in the previous frame. Next,
corners are detected after which the thresholds are decremented if
less than a certain number of corners is found in the block, while
they are incremented if more than a maximally allowable number of
corners is found. The minimum threshold is then limited in order
to avoid detecting noisy corners in untextured regions of constant
brightness. This procedure is repeated until the desired number of
corners is detected or a maximum number of iterations has passed.

This procedure ensures that approximately the same number of
corners is found in subsequent video frames, even under extreme
lighting changes. For each corner, an illumination invariant descrip-
tor is then built which allows it to be matched to a corner in the
previous frame. A well known illumination independent primitive
used in texture classification, are Local Binary Patterns (LBP) [8],
in which the sign of the difference between a center pixel and each
of its neighboring pixels in a 3× 3 neighborhood is multiplied with
a binomial factor in order to obtain a binary number between 0 and
28 − 1 = 255. This number then represents the texture in that area.
Since only simple addition and subtraction is needed and multiplica-
tion by a power of two which can be implemented efficiently using
shifting operators, calculating an LBP is extremely fast. The his-
togram of the LBPs computed over a region can then be used as a
texture descriptor.

However, the classical LBP operator yields very long histograms
of 256 bins, many of which would be empty. Furthermore, compar-
ing two such histograms would be too slow for our application. M.
Heikkilä et al. [9] defined a modified operator which they call the
Center-Symmetric LBP (CS-LBP), in which the sign of the differ-
ence between center-symmetric pairs of pixels is used instead of the
difference between each pixel and the central pixel, as illustrated
by (1). In a 3 × 3 neighborhood this results in a CS-LBP number
between 0 and 24 − 1 = 15 which greatly reduces the number of
histogram bins. The authors showed that CS-LBP based descriptors
exhibit superior performance when compared to classical LBP.

CS-LBP (x, y) =
3∑

i=0

2i 1Z+(ni − ni+4) (1)

where 1Z+ is an indicator function. In this paper, CS-LBP descrip-
tors are calculated for a 18×18 region centered on a detected corner.
In order to incorporate spatial information into the descriptor, this re-
gion is divided into 9 cells of size 6 × 6, and a CS-LBP histogram
is calculated for each cell. The histograms are then concatenated to
obtain the final spatially enhanced CS-LBP based feature vector of
size 16× 9 = 144.

3. SPATIAL CLUSTERING

We propose a local regularization scheme that can be used to reg-
ularize sparse optical flow algorithms while still being able to cope

with discontinuities. Although we use FAST corners and CS-LBP
histograms to obtain the initial sparse flow field in real-time, our
regularization scheme can be combined with other, more advanced
feature detectors and descriptors such as SURF.

Global regularization of the optical flow field, such as used by
the Horn and Schunck method, would assume a globally smooth
vector field and thus cannot handle motion discontinuities at object
boundaries. Instead, the optical flow field should only be regular-
ized locally. Therefore, a method is needed to define a local neigh-
borhood for each detected corner in an illumination invariant man-
ner. The solution should have low complexity and should resemble
a rough segmentation of the objects in an image.

Instead of segmenting the image based on its lighting dependent
color distribution, we propose to segment it based on its corner dis-
tribution. This means that image regions containing high spatial fre-
quencies such as textures will be separated from regions containing
only low spatial frequencies such as smoothly varying background.

An efficient method to obtain such a segmentation is to spatially
cluster the detected corner points. However, corner locations often
exhibit clear patterns and can be almost co-linear if they are part
of an edge, which means that fast traditional clustering algorithms
such as k-means clustering, which tries to find spherical clusters, are
not suited for this goal. Instead, a Minimum Spanning Tree (MST)
based clustering is used as such solutions are known to be capable
of detecting clusters with irregular boundaries [10] and do not need
to know the number of clusters in advance.

In order to efficiently determine the MST, a Delaunay triangula-
tion is calculated for the detected corners which can be implemented
very efficiently for Euclidean point sets by using a radial sweep-hull
scan [11]. From the resulting triangulation, when considered as a
Euclidean graph, the minimum spanning tree is obtained by means
of the Kruskal algorithm.

To obtain a clustering, inconsistent edges are removed from the
MST. An edge is regarded inconsistent if one of following conditions
holds: {

‖N1 −N2‖ > µN1 + c σN1

‖N1 −N2‖ > µN2 + c σN2

(2)

where ‖N1 − N2‖ is de Euclidean length of the edge and µN1 and
µN2 are respectively the average length of nearby edges at the side
of node N1 and the average length at the side of node N2. σN1

and σN2 are the standard deviations of the edge lengths at both sides
of the edge N1N2. In our implementation, c was set to c = 1.5,
and two nodes are considered ‘nearby’ if their geodesic distance is
not larger than three. Figure 1 illustrates the result of this clustering
approach on the detected corners of a scene in two video frames. In
the second video frame, illumination has changed and objects have
moved compared to the first frame.

Fig. 1. Spatial corner clustering in subsequent video frames

4. FEATURE MATCHING

In order to obtain the optical flow field, corners from the current
frame are matched with corners from the previous frame, based on
their descriptors. As discussed in section 2, each corner is described
by a 144 bin histogram. Thus, finding correspondences simply

means searching for a corresponding corner such that a cost func-
tion between both corner descriptors, LBP1 and LBP0, is mini-
mized. Well known distance measures for comparing histograms are
the Chi-Square distance or the Bhattacharyya distance. However,
for performance reasons, we chose to use the L1 norm which yields
similar results while being much faster to calculate.

Matches from a corner c1i in the current frame to a corner c0j
in the previous frame are searched for within a certain radius r sur-
rounding c1i. In this paper, the radius was set to r = 30, using a
frame resolution of 320×240, thereby allowing large displacements
between subsequent frames. However, while such large displace-
ments are allowed, they are highly unlikely to occur in real video.
Assuming this likelihood drops linearly with the displacement dis-
tance, the Euclidean distance between corner c1i and a candidate
corner c0j is added to the cost function to be minimized. The addi-
tion of this term makes sure that large displacements are penalized
more than small flow vectors.

Finally, a regularization term λ(i) is added to steer the search
process such that the obtained flow field is locally smooth. While
corner matching itself does not take the previously defined clusters
into account, the regularization term does, as will be discussed in the
following section. The cost function is thus defined as follows:

C(c1i, c0j) = |LBP1 − LBP0|+ α‖c1i − c0j‖+ βλ(i) (3)

where α and β are weighting factors indicating the importance of the
regularization terms. In our experiments, α = 1 and β = 100.

Initially, the regularization term is defined λ(i) = 0. The match-
ing process is then an iterative process, where in the first iteration the
non-regularized optical flow is obtained. Based on this flow field,
the regularization term for the next iteration is calculated, and the
process is repeated until convergence or the maximum number of
iterations has been reached.

5. REGULARIZATION TERM

To enforce local smoothness, local regularization is based on
weighted vector median filtering. Vector median filters are known
to be able to smooth estimated velocity fields while maintaining mo-
tion discontinuities or edges. L. Alparone et al. [12] showed that
the application of a weighted vector median filter after dense optical
flow calculation improves the smoothness and accuracy of the result.
The disadvantage of such approach however, is that the median filter
is only used as a non-linear postprocessing filter to reduce noise in
a non-regularized flow field instead of incorporating the smoothness
constraint directly into the search process itself.

Furthermore, while it is clear how to apply a filter on a dense op-
tical flow field on a regular grid, it is less obvious how to use a similar
technique on a sparse flow field in a non-regular grid. This section
discusses how vector weighted median filtering can efficiently be
used on a non-regular grid to directly incorporate the smoothness
constraint as a regularization term in the cost function.

The vector median filter is basically just a median filter applied
to each component of the vectors. In order to regularize the optical
flow search process, we define the optimal flow vector for a corner
c1i as the vector obtained in that point after weighted vector median
filtering of the flow field obtained in a previous iteration, and then
minimize the difference between a candidate flow vector and the op-
timal flow vector by means of a well chosen regularization term λ.

In order to obtain the median vector within a neighborhood of
a corner c1i, the concept of neighborhood must be defined for a
sparse, non-regular grid. We propose to adopt the concept of natu-
ral neighbors as used in Voronoi interpolation schemes. The natural
neighbors of a corner c1i are those corners whose Voronoi cell in a
Voronoi tessellation are adjacent to the Voronoi cell of corner c1i.
Furthermore, only corners belonging to the same cluster as corner
c1i are considered which effectively allows us to perform regulariza-
tion locally and to deal with motion discontinuities. Calculating the
Voronoi tessellation incurs almost no extra cost, since a Delaunay

triangulation was obtained already in the clustering stage, and the
Voronoi diagram is nothing more than the dual graph of this Delau-
nay triangulation.

For each corner c1i, the weighted median flow vector can then
be calculated based on its valid neighbors, which are those neighbor-
ing corners that are natural neighbors and belong to the same cluster
as corner c1i. A weighted median filter replicates each element sev-
eral times, based on its weight, before finding the median value. The
weighting factor for a certain vector should depend on both the re-
liability of the estimated flow vector in the previous iteration, and a
distance measure indicating how close the neighbor is to corner c1i.

The reliability of the estimated flow vector is obtained directly
from the cost C(c1i, c0j) associated with the match. For the dis-
tance measure, we propose to use the weighting factor as used in the
non-Sibsonian Voronoi interpolant for non-regular grids, described
by Belikov et al. [13], as this weighting factor effectively uses the
natural neighbor concept by defining the weight as the quotient of
the distance between the centroids of the cells ‖Hkl‖ and the length
of the edge Skl that is shared by the two Voronoi cells. This is illus-
trated more clearly in figure 2.

‖S
k
l ‖

‖Hkl‖
L

K

Fig. 2. Definitions for the non-Sibsonian interpolant weight

For each neighboring corner l, the weight wl, used by the
weighted vector median algorithm, is then defined by:

wl = C(c1i, c0j)
‖Hkl‖
‖Skl‖

(4)

Each neighboring element is then replicated Rl times, after which
the median is found in the resulting vector of elements.

Rl =
max(w) + 1

wl + 1
(5)

The optimal flow vector oi for a corner point c1i is the vector ob-
tained after weighted median filtering the u and v components of the
neighbors of this corner. In the next iteration, the difference between
a possible candidate vector and this optimal vector is minimized in
order to obtain a smooth flow field. Minimization of this difference
is achieved by defining a regularization term λ(i) in the cost function
as follows:

λ(i) = | ‖oi‖ − ‖fi‖ | arccos
[〈oi, fi〉
‖oi‖‖fi‖

]2
(6)

where fi is a candidate flow vector.
Adding the regularization term to the cost function makes sure

that the difference in magnitude between the optimal vector oi and
the candidate vector fi is minimized, together with the squared angle
between both vectors. By squaring the angle, a change in direction
is penalized more than a change in length.

The final flow field obtained is either the result of the last iter-
ation, or the result of the last median calculation. In the latter case,
which is what was used in our experiments, this corresponds to ap-
plying a final weighted median filter as a postprocessing step to the
already regularized optical flow field.

6. EVALUATION

Evaluating optical flow algorithms is a tedious and difficult task,
mainly because of the lack of ground truth data. The most widely
used dataset of ground truth optical flow vectors is the Middlebury
optical flow database [2]. However, the Middlebury dataset was
created for typical optical flow algorithms based on the constant
brightness assumption and therefore does not contain sequences with
changing illumination. Furthermore, the available test sequences are
synthetically generated and often do not resemble real video very
well as the video frames contain very fine grained details, a lot of
similarity in texture, and frame to frame displacements are rather
small. Also the sequences lack motion blur and realistic illumina-
tion, resulting in unfair comparison between algorithms that can deal
with noisy observations, and algorithms that assume perfect data.

This led us to the creation of a real-video dataset which is made
publicly available together with its carefully annotated ground truth1.
However, even though the algorithm described in this paper was de-
signed with changing lighting conditions and fast motion in mind,
it might still be interesting to see how it performs on artificial data.
Therefore, in the next sections, the algorithm is evaluated both on
the Middlebury dataset, and on a dataset with changing illumination
and fast motion for which ground truth data was manually created.

In our experiments, the image size was 320 × 240, the search
radius was 30 and three iterations were used for regularization.

For each sequence in the dataset, optical flow fields are calcu-
lated by our proposed algorithm, indicated as LBP-flow, by the pyra-
midal Lucas- Kanade algorithm, by the Total Variation based MDP-
flow algorithm [1], and by SURF descriptor based matching. While
Lucas-Kanade represents the most widely used motion estimation
technique in real-time object tracking, MDP-flow is currently the
top-ranking algorithm when evaluated on the Middlebury dataset.
SURF descriptor based matching is often used for point tracking and
is considered one of the most robust descriptors currently available.

For the pyramidal Lucas Kanade algorithm, a window size of
10 × 10 and a 2-level pyramid was used, resulting in a maximally
allowed displacement of (22−1)×10 = 30 pixels which is the same
as the search radius used by our algorithm and the SURF algorithm.
Changing these parameters did not affect the results much. For the
SURF algorithm, it is important to note that only SURF descriptors
were used to describe and match the FAST feature points, and that
the SURF detector itself was not used. The reason for this is that the
SURF detector returns Determinant of Hessian (DoH) based features
which can not be fairly compared with corners.

Figure 3 shows the resulting angular deviation as described in
[2] from the given ground truths for each of the algorithms tested
on the Middlebury sequences. Figure 4 shows the resulting endpoint
deviation for these same sequences and algorithms. Endpoint errors
simply correspond to the difference in vector length between the es-
timated flow and the given ground truth. These results indicate that
the proposed algorithm, LBP-flow, outperforms both Lucas-Kanade
and the SURF matching algorithm. For each of the test sequences,
except for the Grove2 sequence, a lower average angular error is
obtained, accompanied by a lower endpoint-error. While SURF de-
scriptors are much more descriptive than our CS-LBP descriptor and
are rotation invariant, our proposed regularization scheme allows the
use of much simpler feature descriptors resulting in faster execution.

The results also show that the offline MDF-flow algorithm seems
to be much more robust than the proposed real-time algorithm. How-
ever, it is important to note that the Middlebury dataset does not try to
mimic real-life, low-quality video sequences. Real video data tends

1http://telin.ugent.be/ vspruyt/ICME2013/

0

10

20

30

40

50

D
im

et
ro

don

G
ro

ve2

G
ro

ve3

H
ydra

ngea

Rubber
w

hal
e

U
rb

an
2

U
rb

an
3

V
en

us

A
n
g
u
la

r
e
rr

o
r

(
d
e
g
re

e
s
)

Lucas−Kanade

SURF

LBP−flow

MDP−flow

Fig. 3. Middlebury Dataset evaluation (angular error)

0

0.6

1.2

1.8

2.4

3

D
im

et
ro

don

G
ro

ve2

G
ro

ve3

H
ydra

ngea

Rubber
w

hal
e

U
rb

an
2

U
rb

an
3

V
en

us

E
n
d
p
o
in

t
E

rr
o
r

Lucas−Kanade

SURF

LBP−flow

MDP−flow

Fig. 4. Middlebury Dataset evaluation (endpoint error)

to lack sharp textures and edges, contains large and irregular dis-
placements, and a minimal amount of spatial self-similarity. There-
fore, algorithms performing well on this dataset might not perform
well on real video data and vice versa.

Table 1 shows the angular errors and table 2 shows the endpoint
errors obtained by each algorithm on the real-life video sequences
we created and made public for the research community.

These sequences contain large and irregular displacements up
to 30 pixels, webcam artifacts such as vignetting, noise and motion
blur, and sudden changes in lighting conditions.

Table 1. Proposed Dataset evaluation (angular error)
Sequence Algorithm Angular error

Median Avg. Std. Dev.

Desk

LBP-Flow 1.9 2.0 2.9
Lucas-Kanade 87.6 87.9 65.0
MDP-Flow 12.9 44.6 48.8
SURF 2.0 2.5 3.0

Drinks

LBP-Flow 1.1 3.8 4.2
Lucas-Kanade 84.7 75.1 62.0
MDP-Flow 79.7 91.4 75.2
SURF 7.4 15.9 31.5

Office

LBP-Flow 3.3 3.5 2.3
Lucas-Kanade 7.2 41.5 54.5
MDP-Flow 11.2 16.2 17.5
SURF 8.7 27.4 41.8

Classroom

LBP-Flow 5.2 4.8 3.9
Lucas-Kanade 6.6 21.5 37.5
MDP-Flow 8.0 23.1 38.8
SURF 5.4 22.0 43.4

Table 2. Proposed Dataset evaluation (endpoint error)
Sequence Algorithm Endpoint error

Median Avg. Std. Dev.

Desk

LBP-Flow 1.0 2.2 3.0
Lucas-Kanade 46.2 44.4 27.0
MDP-Flow 26.0 32.0 26.8
SURF 2.1 2.8 3.3

Drinks

LBP-Flow 1.4 1.8 1.5
Lucas-Kanade 18.4 23.3 25.3
MDP-Flow 17.9 32.0 29.6
SURF 4.0 12.0 26.1

Office

LBP-Flow 1.0 1.1 0.6
Lucas-Kanade 2.2 8.6 10.1
MDP-Flow 3.9 5.5 4.3
SURF 2.0 8.3 15.8

Classroom

LBP-Flow 1.4 1.3 0.7
Lucas-Kanade 1.8 5.1 11.1
MDP-Flow 3.5 7.7 11.7
SURF 1.4 10.9 22.8

The results illustrate the robustness of the proposed approach
for real-life video. The bad performance of Lucas-Kanade is easily
explained by the violation of the brightness constraint. While the
MDP-Flow algorithm performs reasonably well when compared to
the Lucas-Kanade algorithm, it also fails when lighting conditions
change. The best result for the MDP-Flow was obtained with the
Office sequence, which contains the least amount of lighting change.

For these challenging sequences, which represent typical scenar-
ios in object tracking applications, point matching algorithms such
as the SURF method or the proposed CS-LBP based method, out-
perform most optical flow approaches. Furthermore, these results
clearly show the advantage of our regularization scheme in combina-
tion with a simple feature descriptor as opposed to a more advanced
feature descriptor without regularization constrains.

Table 3 lists the average execution times for each algorithm
when the flow is calculated for 300 positions. Timings were mea-
sured on an Intel 2.4 Ghz dual core CPU. The proposed algorithm
is extremely fast thanks to the simple LBP based feature descriptors
used, and can thus be used in real-time tracking applications.

Table 3. Average execution time per video frame
Algorithm Execution time (ms) # corners
LBP-Flow 6.6 300
Lucas-Kanade 8.4 300
MDP-Flow 618.4 300
SURF 20.3 300

Figure 5 shows both the average execution time and the average
angular error as a function of the number of regularization iterations.
As indicated by the dotted line, the complexity of the proposed regu-
larization scheme is linear in the number of iterations. Furthermore,
the error clearly reduces after the first few iterations, illustrating the
benefit of local regularization.

1 2 3 4 5 6 7

2
3
4
5
6
7
8
9

10

Iteration

(a) Execution time (ms)

1 2 3 4 5 6 7

2
3
4
5
6
7
8
9

10

Iteration

(b) Angular error (degrees)

Fig. 5. Execution times and error measurements

If only a single iteration is used, no regularization is performed,
and the angular error would be larger than the error obtained by more

advanced point matching algorithms such as SURF. However, after
a few regularization iterations, the error becomes much lower than
the error obtained by other, non-regularized, methods. Generally, the
algorithm converges after 3 or 4 iterations which corresponds to an
execution time of about 7 milliseconds on our current hardware. The
small increase in error after the fourth iteration can be explained by
imperfect clustering, causing local over-smoothing of the flow field.

Figure 6 shows the video frames and corresponding flow field for
each of the sequences used for evaluation. These sequences, together
with their ground truth, are made freely available for the research
community.

Fig. 6. Proposed video dataset with annotated ground truth flow

The proposed algorithm is used to improve the motion model of
a particle filter based hand tracker. We incorporated the optical flow
estimation in the state-of-the-art object tracker proposed by Spruyt
et al. [14] and compared the tracking accuracy with the same tracker
using a constant velocity motion model, which is a widely used ap-
proach in object tracking. The algorithms were evaluated using the
publicly available dataset that was also used by Spruyt et al.

Figure 7 shows the widely used VOC error measure for each of
the 8 video sequences used for evaluation. These results show that
the error is lower for each of the sequences if optical flow is used to
steer the motion model. Especially for sequence 4, which contains
fast motion, camera movement and changing lighting, optical flow
incorporation greatly improves the tracking performance.

Figure 8 shows several frames of sequence 4, used for evalua-

(a) Particle filter tracking with constant velocity motion model (sequence 4)

(b) Particle filter tracking with optical flow based motion model (sequence 4)

Fig. 8. Motion model evaluation for particle filter tracking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Seq
. 1

Seq
. 2

Seq
. 3

Seq
. 4

Seq
. 5

Seq
. 6

Seq
. 7

Seq
. 8

P
a
s
c
a
l
V

O
C

 s
c
o
re

Constant velocity motion model

LBP−flow motion model

Fig. 7. Motion model evaluation for particle filter tracking

tion. The top row illustrates the results obtained using a constant
velocity motion model, while the bottom rows shows the results ob-
tained using our proposed optical flow solution.

7. CONCLUSION

A fast algorithm was proposed to calculate a sparse optical flow
field. Regularization is performed iteratively, based on median fil-
tering and concepts as used in Voronoi interpolation. The resulting
method is illumination invariant and able to handle large displace-
ments making it a perfect candidate for incorporation into real-time
applications for uncontrolled environments such as object tracking.

The method was evaluated thoroughly, and appears to be much
more robust than a pyramidal Lucas Kanade implementation while
yielding similar or better results then a SURF-descriptor based
tracker. Furthermore, the algorithm outperforms the state-of-the-art
in Variational optical flow calculation, on a real-life video dataset.

Finally, we showed that the incorporation of our optical flow
method into a state-of-the-art tracker greatly improves its robustness.

Our optical flow dataset is made publicly available together with
its carefully annotated ground truth.

8. REFERENCES

[1] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving
optical flow estimation,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 34, no. 9, pp. 1744 –1757,
sept. 2012.

[2] S. Baker, S. Roth, D. Scharstein, M. J. Black, J. P. Lewis, and
R. Szeliski, “A Database and Evaluation Methodology for Op-
tical Flow,” 2007, pp. 1–8.

[3] T. Kodama, T. Yamaguchi, and H. Harada, “A method of ob-
ject tracking based on particle filter and optical flow to avoid
degeneration problem,” in SICE Annual Conference 2010, Pro-
ceedings of, 2010, pp. 1529 –1533.

[4] M. J. Lucena, J. M. Fuertes, N. Perez de la Blanca, and A. Gar-
rido, “Using optical flow as evidence for probabilistic track-
ing,” in Proceedings of the 13th Scandinavian conference on
Image analysis, 2003, SCIA’03, pp. 1044–1059.

[5] M. Kristan, J. Perš, S. Kovačič, and A. Leonardis, “A local-
motion-based probabilistic model for visual tracking,” Pattern
Recognition, vol. 42, no. 9, pp. 2160–2168, 2009.

[6] M. Schikora, W. Koch, and D. Cremers, “Multi-object track-
ing via high accuracy optical flowand finite set statistics,”
in Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, may 2011, pp. 1409 –1412.

[7] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A
machine learning approach to corner detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 32, pp. 105–
119, 2010.

[8] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution
gray-scale and rotation invariant texture classification with lo-
cal binary patterns,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 24, no. 7, pp. 971–987,
2002.

[9] Marko Heikkilä, Matti Pietikäinen, and Cordelia Schmid, “De-
scription of interest regions with local binary patterns,” Pattern
Recognition, vol. 42, pp. 425–436, March 2009.

[10] O. Grygorash, Y. Zhou, and Z. Jorgensen, “Minimum spanning
tree based clustering algorithms,” Tools with Artificial Intelli-
gence, IEEE International Conference on, vol. 0, pp. 73–81,
2006.

[11] D. A. Sinclair, “S-hull: a fast radial sweep-hull routine for
delaunay triangulation,” July 2010.

[12] L. Alparone, M. Barni, F. Bartolini, and R. Caldelli, “Regu-
larization of optic flow estimates by means of weighted vector
median filtering,” Image Processing, IEEE Transactions on,
vol. 8, no. 10, pp. 1462 –1467, Oct. 1999.

[13] V. V. Belikov, V. D. Ivanov, V. K. Kontorovich, S. A. Kory-
tnik, and A. Y. Semenov, “The non-sibsonian interpolation :
A new method of interpolation of the values of a function on
an arbitrary set of points,” Computational mathematics and
mathematical physics, vol. 37, pp. 9–15, 1997.

[14] V. Spruyt, A. Ledda, and W. Philips, “Real-Time Hand Track-
ing by Invariant Hough Forest Detection,” in Proceedings
of the IEEE International Conference on Image Processing
ICIP’12., 2012, pp. 149–152.

