162 research outputs found

    On the approximability and exact algorithms for vector domination and related problems in graphs

    Get PDF
    We consider two graph optimization problems called vector domination and total vector domination. In vector domination one seeks a small subset S of vertices of a graph such that any vertex outside S has a prescribed number of neighbors in S. In total vector domination, the requirement is extended to all vertices of the graph. We prove that these problems (and several variants thereof) cannot be approximated to within a factor of clnn, where c is a suitable constant and n is the number of the vertices, unless P = NP. We also show that two natural greedy strategies have approximation factors ln D+O(1), where D is the maximum degree of the input graph. We also provide exact polynomial time algorithms for several classes of graphs. Our results extend, improve, and unify several results previously known in the literature.Comment: In the version published in DAM, weaker lower bounds for vector domination and total vector domination were stated. Being these problems generalization of domination and total domination, the lower bounds of 0.2267 ln n and (1-epsilon) ln n clearly hold for both problems, unless P = NP or NP \subseteq DTIME(n^{O(log log n)}), respectively. The claims are corrected in the present versio

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Graph Algorithms and Applications

    Get PDF
    The mixture of data in real-life exhibits structure or connection property in nature. Typical data include biological data, communication network data, image data, etc. Graphs provide a natural way to represent and analyze these types of data and their relationships. Unfortunately, the related algorithms usually suffer from high computational complexity, since some of these problems are NP-hard. Therefore, in recent years, many graph models and optimization algorithms have been proposed to achieve a better balance between efficacy and efficiency. This book contains some papers reporting recent achievements regarding graph models, algorithms, and applications to problems in the real world, with some focus on optimization and computational complexity

    Revisiting Area Convexity: Faster Box-Simplex Games and Spectrahedral Generalizations

    Full text link
    We investigate different aspects of area convexity [Sherman '17], a mysterious tool introduced to tackle optimization problems under the challenging \ell_\infty geometry. We develop a deeper understanding of its relationship with more conventional analyses of extragradient methods [Nemirovski '04, Nesterov '07]. We also give improved solvers for the subproblems required by variants of the [Sherman '17] algorithm, designed through the lens of relative smoothness [Bauschke-Bolte-Teboulle '17, Lu-Freund-Nesterov '18]. Leveraging these new tools, we give a state-of-the-art first-order algorithm for solving box-simplex games (a primal-dual formulation of \ell_\infty regression) in a d×nd \times n matrix with bounded rows, using O(logdϵ1)O(\log d \cdot \epsilon^{-1}) matrix-vector queries. As a consequence, we obtain improved complexities for approximate maximum flow, optimal transport, min-mean-cycle, and other basic combinatorial optimization problems. We also develop a near-linear time algorithm for a matrix generalization of box-simplex games, capturing a family of problems closely related to semidefinite programs recently used as subroutines in robust statistics and numerical linear algebra
    corecore