
On the approximability and exact algorithms for vector
domination and related problems in graphs

Ferdinando Cicalesea, Martin Milaničb,c, Ugo Vaccaroa

aDipartimento di Informatica, University of Salerno, 84084 Fisciano (SA), Italy

bUniversity of Primorska, UP IAM, Muzejski trg 2, SI6000 Koper, Slovenia

cUniversity of Primorska, UP FAMNIT, Glagoljaška 8, SI6000 Koper, Slovenia

Abstract

We consider two graph optimization problems called vector domination and
total vector domination. In vector domination one seeks a small subset S of
vertices of a graph such that any vertex outside S has a prescribed number
of neighbors in S. In total vector domination, the requirement is extended to
all vertices of the graph. We prove that these problems (and several variants
thereof) cannot be approximated to within a factor of c lnn, where c is a suitable
constant and n is the number of the vertices, unless P = NP. We also show that
two natural greedy strategies have approximation factors ln ∆ +O(1), where ∆
is the maximum degree of the input graph. We also provide exact polynomial
time algorithms for several classes of graphs. Our results extend, improve, and
unify several results previously known in the literature.

Keywords: vector domination, total vector domination, α-domination,
k-domination, multiple domination, inapproximability, approximation
algorithm, polynomial time algorithm, trees, threshold graphs, P4-free graphs

1. Introduction

The concept of domination in graphs has been extensively studied, both in
structural and algorithmic graph theory, because of its numerous applications
to a variety of areas. Informally, a set of vertices of a graph is said to dominate a
vertex if it contains a sufficient part of its closed neighborhood, where the exact
definition of “sufficient” depends on the model. Generally, one seeks small sets
that dominate the whole graph. Domination naturally arises in facility location

Email addresses: cicalese@dia.unisa.it (Ferdinando Cicalese),
martin.milanic@upr.si (Martin Milanič), uv@dia.unisa.it (Ugo Vaccaro)

Preprint submitted to Discrete Applied Mathematics September 27, 2012

problems, in problems involving finding sets of representatives, in monitoring
communication or electrical networks, and in land surveying. The two books [21]
[22] discuss the main results and applications of domination in graphs. Many
variants of the basic concepts of domination have appeared in the literature.
Again, we refer to [21] [22] for a survey of the area.

In this paper we provide hardness results, approximation algorithms and
exact polynomial time algorithms for an interesting generalization of the basic
concept of domination, firstly introduced in [19]. Here, a subset of vertices S
is said to dominate a vertex v if either v ∈ S, or there are in S a prescribed
number of neighbors of v (see below for formal definitions). Again, one seeks
small subsets that dominate (in this new sense) the whole vertex set of the
graph.

Main Definitions. For a graph G = (V,E) and a vertex v ∈ V , denote by
N(v) (or NG(v), if the graph is not clear from the context) the set of neighbors
of v (that is, the (open) neighborhood of v), by N [v] := N(v) ∪ {v} (or NG[v])
the closed neighborhood of v, by d(v) = dG(v) the degree of v, and by ∆(G) the
maximum degree of any vertex in G. A dominating set in a graph G = (V,E)
is a subset of the graph’s vertex set such that every vertex not in the set has a
neighbor in the set. A total dominating set in G is a subset S ⊆ V such that
every vertex of the graph has a neighbor in S, that is, for every v ∈ V there
exists a vertex u ∈ S such that uv ∈ E.

The vector domination is the following problem: Given a graph G = (V,E),
and a vector k = (kv : v ∈ V) such that for all v ∈ V , kv ∈ {0, 1, . . . , d(v)},
find a vector dominating set (VDS) of minimum size, that is, a set S ⊆ V
minimizing |S| and such that |S∩N(v)| ≥ kv for all v ∈ V \S. Vector dominating
sets were introduced in [19], have also appeared in the literature under the
name of threshold ordinary dominating sets [18], and were recently studied from
the parameterized complexity point of view [34]. The total vector domination
is the problem of finding a minimum-sized total vector dominating set, that
is, a set S ⊆ V such that |S ∩ N(v)| ≥ kv for all v ∈ V . The minimum
sizes of vector and total vector dominating sets will be denoted by γ(G,k) and
γt(G,k), respectively. If in the definition of total vector domination we replace
open neighborhoods with closed ones, we get the so called multiple domination
problem [27, 28]: Given a graph G = (V,E) and a vector k = (kv : v ∈ V) such
that for all v ∈ V , kv ∈ {0, 1, . . . , d(v) + 1}, find a minimum size set S ⊆ V such
that for all vertices v ∈ V , it holds that |N [v] ∩ S| ≥ kv. We will also consider
the following special cases of vector domination, total vector domination, and
multiple domination:

• For 0 < α ≤ 1, an α-dominating set in G is a subset S ⊆ V such that
every vertex not in the set has at least an α-fraction of its neighbors in
the set, that is, for every v ∈ V \ S, it holds that |N(v) ∩ S| ≥ α|N(v)|.

• For 0 < α ≤ 1, a total α-dominating set in G is a subset S ⊆ V such that

2

every vertex has at least an α-fraction of its neighbors in the set, that is,
for every v ∈ V , it holds that |N(v) ∩ S| ≥ α|N(v)|.

• For 0 < α ≤ 1, an α-rate dominating set in G is a subset S ⊆ V such
that every vertex has at least an α-fraction of the members of its closed
neighborhood in the set, that is, for every v ∈ V , it holds that |N [v]∩S| ≥
α|N [v]|.

By γ(G) (γα(G), γt(G), γtα(G), γ×α(G)) we denote the minimum size of a dom-
inating (α-dominating, total dominating, total α-dominating, α-rate dominat-
ing) set in G. For a fixed 0 < α ≤ 1, the problem of finding in a given
graph a dominating (α-dominating, total dominating, total α-dominating, α-
rate dominating) set of minimum size will be referred to simply as the domina-
tion (α-domination, total domination, total α-domination, α-rate domination).
The notion of α-domination was introduced by Dunbar et al. [11] and studied
further in [6, 7, 15, 16]. The notion of α-rate domination was introduced in 2009
by Gagarin et al. [15, 16]. To the best of our knowledge, the notions of total
vector domination and total α-domination are new, that is, they are introduced
in [3] and in this paper, respectively.

Notice that for every α > 0, every α-dominating set is a dominating set,
every total α-dominating set is a total dominating set, every vertex cover is an
α-dominating set, and every 1-dominating set is a vertex cover. As shown in [11],
for graphs of maximum vertex degree at most 1/α, α-dominating sets coincide
with dominating sets, and it can be shown similarly that for such graphs total
α-dominating sets coincide with total dominating sets. Moreover, for graphs of
maximum vertex degree less than 1/(1 − α) (where α < 1), α-dominating sets
coincide with vertex covers [11]. Clearly, the (total) α-domination corresponds
to the special case of the (total) vector domination, in which kv = dα · d(v)e for
all v ∈ V . In fact, we shall mainly use α-domination for our inapproximability
results, and provide algorithmic results in terms of the more general problem of
vector domination.

In Table 1 we summarize definitions of several domination parameters.1

Our Results. We first provide two natural greedy algorithms for vector dom-
ination and total vector domination in general graphs, having approximation
factors of ln(2∆(G))+ 1 and ln(∆(G))+ 1, respectively. Subsequently, we prove
that the above results are essentially best possible, in the sense that both the α-
domination and its total variant are inapproximable within a factor of c lnn for
a suitable constant c > 0, unless P = NP. We also obtain better inapproxima-
bility bounds under the stronger hypothesis NP * DTIME(nO(log logn)). Notice
that our inapproximability results are provided for any fixed 0 < α < 1, and this
range of values for α is as large as it can be: the 0-domination, 0-total domina-

1The notions of strict α-domination and strict total α-domination were introduced under
different names in [3].

3

Model Neighborhood Total / Partial Inequal. Threshold type
α-domination [11] open partial ≥ fraction = α
α-rate domination [15] closed total ≥ fraction = α
domination [21] closed total ≥ uniform, kv = 1 ∀v
k-domination [13, 14] open partial ≥ uniform, kv = k ∀v
k-tuple domination [20] closed total ≥ uniform, kv = k ∀v
k-tuple total domination [23] open total ≥ uniform, kv = k ∀v
monopoly [33] closed total ≥ fraction = 1/2
multiple domination [27, 28] closed total ≥ non-uniform
partial monopoly [33] open partial > fraction = 1/2
positive influence domination [36] open total ≥ fraction = 1/2
strict α-domination [3] open partial > fraction = α
strict total α-domination [3] open total > fraction = α
total α-domination [this paper] open total ≥ fraction = α
total domination [21] open total ≥ uniform, kv = 1 ∀v
total vector domination [3] open total ≥ non-uniform
vector domination [19] open partial ≥ non-uniform
vertex cover [21] open partial ≥ kv = d(v) ∀v

Table 1: Definitions of different domination models. The neighborhoods can be either open
(N(v)) or closed (N [v]); the domination constraint can be either required for all v ∈ V (total)
or only for v ∈ V \ S (partial); the type of inequality can be either weak (≥) or strict (>);
the threshold can be either uniform (kv = k for all v ∈ V), non-uniform (every v ∈ V has its
own threshold kv) or expressed as a fraction of the size of the (open or closed) neighborhood
(α · Nv , where Nv ∈ {N(v), N [v]}), according to the neighborhood type as specified in the
second column. Notice that some of the models can be defined by more than one choice of
the parameters.

tion, and 1-total domination problems are trivial, and the 1-domination problem
coincides with the 2-approximable vertex cover problem. We also obtain inap-
proximability results for other problems listed in Table 1 (with the exception of
vertex cover), see Section 3 and the summarizing Table 2 in Section 5.

Subsequently, we individuate special classes of graphs for which vector dom-
ination and total vector domination can be optimally solved in polynomial time.
More specifically, we provide polynomial time algorithms for computing mini-
mum size vector domination sets and total vector domination sets for complete
graphs, trees, P4-free graphs and threshold graphs.

Related Work. The papers [6, 11, 15] provide several bounds for the value of
γα(G) in terms of other graph parameters, while [7] gives a characterization of
α-perfect trees. In addition, Dunbar et al. [11] give an NP-completeness result
for α-domination. This result is extended considerably by our inapproximability
results. Conversely, our approximability result for vector domination answers an
open problem posed in [15, 16] where the authors suggest to develop algorithms
approximating α-domination to a certain degree of precision.

The algorithmic aspect of total vector domination in strongly chordal graphs
(a super-class of trees) was studied in [28], where a polynomial time algorithm
for that purpose was given. However, the authors of [28] point out that their
approach cannot be modified to handle the case of vector domination, and that

4

a new approach is needed.

Strictly related to our results is also the paper [30]. The authors study the
hardness of approximating minimum monopolies in graphs [33]. In the language
of Table 1, a monopoly corresponds to a (1/2)-rate dominating set, and a partial
monopoly to a strict (1/2)-dominating set. Therefore, our inapproximability
results for α-rate domination and strict α-domination can be seen as significant
extensions of the results of [30] from the case α = 1/2 to arbitrary α. It is
also worth mentioning a recent paper on the approximability of the majority
monopoly problem [29].

Our findings are also relevant to the new area of influence spread in social
networks [25], specifically, to positive influence dominating sets (PIDS) in social
networks [36]. In our language, PIDS correspond to total α-dominating sets
with α = 1/2. In [36] it is proved that PIDS is APX-hard. Our hardness
results for total α-domination are more general, and also stronger since we
prove inapproximability within a logarithmic factor. In the same area, the
paper [38] introduced the problem of identifying a minimum set of nodes that
could influence a whole network within a time bound d. There, a set of nodes S
influences a new node x in one step (d = 1) if the majority of neighbors of x is in
S. The paper [38] mostly studies hardness results for the case d = 1. It is clear
that our scenario includes that of [38] (in the case d = 1) and corresponds to a
more extensive model of influence among nodes, similar to the one considered
in [32] for a related but different problem.

2. Approximability results

In this section, we show that vector domination and total vector domination
can be approximated in polynomial time by a factor of ln(2∆(G)) + 1 and
ln(∆(G)) + 1, respectively. (We denote by ln the natural logarithm.)

We start with total vector domination and related problems. Our results
are based on the results for the set cover problem. Consider the following
generalization of the set cover problem:

SET MULTICOVER

Instance: A set-system C = (U,F), where U is a finite ground set and F is a
collection of subsets of U ; a non-negative integer requirement req(u) for every
element u of the ground set.

Task: Find a minimum size subcollection F ′ ⊆ F such that every element u
appears in at least req(u) sets in F ′.

The decision version of the SET MULTICOVER problem is NP-complete [17].
Moreover, the greedy algorithm produces a solution that is always within a
factor ln ∆ + 1 of the optimum, where ∆ is the maximum size of a set in F [8].

5

Every instance of any of the “total” domination problems defined in Table 1
(see the third column of the table) can be described as an instance of the SET

MULTICOVER problem. For example, if (G,k) is an instance to the total vector
domination problem, we can take U = V (G), define F to be the collection of
all (open) neighborhoods, and set req(u) = ku for all u ∈ U . It is clear that
a subset S ⊆ V (G) is a total vector dominating set for (G,k) if and only if
the collection (N(v) : v ∈ S) is a feasible solution to the instance (U,F , req)
of the SET MULTICOVER problem. Similar transformations work for the other
“total” domination problems.

We therefore obtain the following results and their corollaries:

Theorem 1. Total vector domination can be approximated in polynomial time
by a factor of ln(∆(G)) + 1.

Corollary 1. Total α-domination, strict total α-domination, k-tuple total dom-
ination, and positive influence domination problems can be approximated in poly-
nomial time by a factor of ln(∆(G)) + 1.

Theorem 2. The multiple domination problem can be approximated in polyno-
mial time by a factor of ln(∆(G) + 1) + 1.

Corollary 2. The α-rate domination, the k-tuple domination problem and
the monopoly problem can be approximated in polynomial time by a factor of
ln(∆(G) + 1) + 1.

The (ln(∆(G)) + 1)-approximability of the positive influence domination
problem and the (ln(∆(G) + 1) + 1)-approximability of the k-tuple domination
problem were proved in [36] and [26], respectively.

The above approach does not seem to be easily applicable to “partial” domi-
nation problems such as vector domination, α-domination, k-domination, partial
monopoly and strict α-domination. Instead, we will show below that these prob-
lems can be recast as a particular case of the well known MINIMUM SUBMODULAR

COVER problem, and apply a classical result due to Wolsey [37].

Theorem 3. Vector domination can be approximated in polynomial time by a
factor of ln(2∆(G)) + 1.

Proof. For a graph G = (V,E) and a vector k = (kv : v ∈ V) s.t. for all

6

v ∈ V , kv ∈ {0, 1, . . . , d(v)}, we define a function f : 2V −→ N, as follows:

for all S ⊆ V , let f(S) =
∑

v∈V
τv(S) , where

τv(S) =

{
min{|S ∩N(v)|, kv}, if v 6∈ S;
kv, if v ∈ S.

(1)

The following properties of f can be verified: (i) f is integer valued; (ii) f(∅) = 0;
(iii) f is non-decreasing; (iv) A set S ⊆ V satisfies f(S) = f(V) if and only if
S is a vector dominating set; (v) f is submodular.

Recall that a function f : 2V −→ N is submodular if for all S ⊆ T ⊆ V and
for all w ∈ V \ T , the inequality f(T ∪ {w})− f(T) ≤ f(S ∪ {w})− f(S) holds.
The only non-trivial property to show is (v), i.e, the submodularity of f . The
proof is given below.

Lemma 1. The function f : 2V −→ N, given by (1), is submodular.

Proof. It suffices to show that all the functions τv(·) are submodular, that is,
that for all S ⊆ T ⊆ V and for all w ∈ V \ T ,

τv(T ∪ {w})− τv(T) ≤ τv(S ∪ {w})− τv(S) . (2)

Observe that τv is non-decreasing.

Suppose first that τv(T) = kv. Then τv(T ∪ {w}) = kv and the left-hand
side of inequality (2) is equal to 0. Hence inequality (2) holds since τv is non-
decreasing.

From now on, we assume that τv(T) < kv, which implies τv(T) = |T ∩
NG(v)|. Since τv is non-decreasing, τv(S) < kv, and hence τv(S) = |S ∩NG(v)|.
Inequality (2) simplifies to

τv(T)− τv(S) = |(T \ S) ∩NG(v)| ≥ τv(T ∪ {w})− τv(S ∪ {w}) . (3)

We may assume that τv(T ∪{w}) > τv(S∪{w}), since otherwise the right-hand
side of (3) equals 0, and inequality (3) holds.

Therefore, τv(S ∪ {w}) < kv, implying τv(S ∪ {w}) = |(S ∪ {w}) ∩NG(v)|.
If also τv(T ∪ {w}) < kv then τv(T ∪ {w}) = |(T ∪ {w}) ∩NG(v)| and equality
holds in (3).

So we may assume that τv(T ∪ {w}) = kv. Note that v does not belong
to T ∪ {w} (since otherwise either τv(T) or τv(S ∪ {w}) would equal to kv).
Suppose that the inequality (3) fails. Then

|(T \ S) ∩NG(v)| < kv − |(S ∪ {w}) ∩NG(v)| ,

7

which implies
|(T ∪ {w}) ∩NG(v)| < kv .

However, together with the fact that v 6∈ T ∪ {w}, this contradicts the assump-
tion that τv(T ∪ {w}) = kv. 2

Back to the proof of Theorem 3, by (iv) we have that an optimal solution to
the vector dominating set is provided by a minimum size S such that f(S) =
f(V). In other words, we have recast vector domination as a particular case of
the MINIMUM SUBMODULAR COVER [37].

Let A denote the natural greedy strategy which starts with S = ∅ and
iteratively adds to S the element v ∈ V \S s.t. f(S ∪ {v})− f(S) is maximum,
until f(S) = f(V) is achieved. By a classical result of Wolsey [37], it follows that
algorithm A is a (ln(maxy∈V f({y})) + 1)-approximation algorithm for vector
domination. For every y ∈ V , we have f({y}) =

∑
v∈V \{y} τv({y}) + τy({y}) ≤

d(y) + ky ≤ 2d(y). Hence maxy∈V f({y}) ≤ 2∆(G) yielding the desired result.
2

Since α-domination, k-domination, partial monopoly and strict α-domination
problems are all special cases of the vector domination problems, Theorem 3 im-
plies the following result:

Corollary 3. α-domination, k-domination, partial monopoly and strict α-
domination problems can be approximated in polynomial time by a factor of
ln(2∆(G)) + 1.

3. Inapproximability results

Recall the following result on the inapproximability of domination and total
domination, which was derived from the analogous result about the set cover
problem due to Feige [12]. Hereafter, n denotes the number of vertices of the
input graph.

Theorem 4. [2] For every ε > 0, there is no polynomial time algorithm ap-
proximating domination (total domination) for graphs without isolated vertices
within a factor of (1− ε) lnn, unless NP ⊆ DTIME(nO(log logn)).

Most of our inapproximability results are given in terms of the variants of the
α-domination problem. In fact, it turns out that α-domination, its total variant,
and the α-rate domination are inapproximable within a c lnn factor (for suitable
constants c) as shown in Theorems 5, 7 and 9 below. A fortiori the same
results hold for the vector domination, total vector domination and multiple
domination problems. Hence, the approximations results of the previous section

8

are essentially best possible. We shall use the following lemma which is an ad
hoc extension of the hardness of approximating domination within (1 − ε) lnn
given in [2].

Lemma 2. For every integer B > 0 and for every ε > 0, there is no polynomial
time algorithm approximating domination on input graphs G without isolated
vertices satisfying γ(G) ≥ B∆(G) within a factor of (1

2 − ε) lnn, unless NP ⊆
DTIME(nO(log logn)).

Proof. Let B be a positive integer and ε ∈ (0, 12). We make a reduction from
domination on graphs without isolated vertices (Theorem 4). Let G be a graph
without isolated vertices with |V (G)| ≥ B1/ε that is an instance to domination.
We transform G into a graph G′ which consists of N = B∆(G) disjoint copies
of G, say G1, . . . , GN . Then clearly γ(G′) = Nγ(G), while ∆(G′) = ∆(G). In
particular, since γ(G) ≥ 1, the graph G′ satisfies γ(G′) ≥ N = B∆(G′).

For brevity, let us write n = |V (G)| and n′ = |V (G′)|. Suppose that
there exists a polynomial time algorithm A′ that computes a (1

2 − ε) lnn′-
approximation to domination in G′. Let S′ be the set computed by A′. Then
|S′| ≤ (1

2 − ε)(lnn′)γ(G′).

For i = 1, . . . , N , let S′i = S′ ∩ V (Gi), and let S = S′i∗ such that |S′i∗ | ≤ |S′i|
for all 1 ≤ i ≤ N . Then S is a dominating set in (the i∗-th copy of) G. Moreover,
we can bound the size of S from above as follows:

|S| ≤ (1/N) · |S′| (by the definition of S)
≤ (1/N) · (1

2 − ε)(lnn′) · γ(G′) (by the assumption on A′)
= (1

2 − ε) ln(B∆(G)n) · γ(G) (by the properties of G′)
≤ (1

2 − ε) ln(n2+ε) · γ(G) (since B ≤ nε and ∆(G) ≤ n)
= (1

2 − ε)(2 + ε)(lnn) · γ(G)
= (1− ε′)(lnn) · γ(G) ,

where ε′ := 3/2ε + ε2 ∈ (0, 1). Therefore, if there exists a polynomial time
algorithm that computes a (1

2−ε) lnn′-approximation to domination in G′, there
exists a polynomial time algorithm that computes a (1− ε′) lnn-approximation
to domination in G, and hence, by Theorem 4, this is only possible if NP ⊆
DTIME(nO(log logn)). 2

Theorem 5. For every α ∈ (0, 1) and every ε > 0, there is no polynomial time
algorithm approximating α-domination within a factor of (1

2 − ε) lnn, unless

NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 < α < 1 and ε ∈ (0, 12). We define N = d α
1−αe and B = dN/εe.

Let G be a graph without isolated vertices, with γ(G) ≥ B∆(G) and such that
|V (G)| ≥ (N + 1)1/ε. We transform G into a graph G′ which consists of G
together with a set K of k = N∆(G) vertices such that K is disjoint from

9

V (G). In addition, every vertex v from G is adjacent to precisely kv vertices in
K, where

kv =

{ ⌈
αdG(v)−1

1−α

⌉
, if dG(v) ≥ 2;

0, if dG(v) = 1.

(This assignment is done in an arbitrary way.) Notice that the kv’s are well
defined, since G has no isolated vertices. Moreover, if dG(v) = 1 then kv = 0 <
k, while for dG(v) ≥ 2 we have

0 ≤ kv =

⌈
αdG(v)− 1

1− α

⌉
<
αdG(v)− 1

1− α + 1 <
α

1− αdG(v) ≤ N∆(G) = k .

Hence it is indeed possible to assign to v precisely kv neighbors in K.

In addition, kv is an integer satisfying

kv
dG(v) + kv

< α ≤ kv + 1

dG(v) + kv
.

These inequalities are instrumental to the following result.

Claim: γ(G) ≤ γα(G′) ≤ γ(G) + k .

Proof. Let S′ be an optimal α-dominating set in G′. Then, the set S :=
S′ ∩ V (G) is a dominating set in G. Indeed, suppose for a contradiction that
there exists a vertex v in G such that S misses the closed neighborhood of v.
Then |NG′(v)∩S′| ≤ kv. The degree of v in G′ is equal to dG′(v) = dG(v) + kv.
Therefore

|NG′(v) ∩ S′|
dG′(v)

≤ kv
dG(v) + kv

< α ,

contrary to the assumption that S′ is α-dominating. Consequently γ(G) ≤
|S′ ∩ V (G)| ≤ |S′| = γα(G′).

Conversely, let S be an optimal dominating set in G. The set S′ := S ∪K
is then an α-dominating set in G′ such that |S′| = γ(G) + k. To see that S′ is
α-dominating in G′, observe that for every v ∈ V (G′) \ S′ = V (G)\S, the set
NG′(v) ∩ S′ is the disjoint union of sets NG(v) ∩ S and NG′(v) ∩K. Hence

|NG′(v)∩S′| = |NG(v)∩S|+|NG′(v)∩K| ≥ 1+kv ≥ α(dG(v)+kv) = α|NG′(v)| ,

where the second inequality holds by the choice of kv. Altogether, this shows
that γα(G′) ≤ |S′| = γ(G) + k and completes the proof of the claim.

Again, let us write n = |V (G)| and n′ = |V (G′)|. Notice that we have
N + 1 ≤ nε and hence

n′ = n+N∆(G) ≤ n+Nn ≤ n1+ε .

Moreover, 1
εk = 1

εN∆(G) ≤ B∆(G) ≤ γ(G), which implies k ≤ εγ(G).

10

Suppose that there exists a polynomial time algorithm A′ which computes
an α-dominating set S′ for G′ such that |S′| ≤ (1

2 − ε)(lnn′)γα(G′). Let S =
S′ ∩ V (G). Like in the proof of the above claim, we see that S is a dominating
set in G. We can bound the size of S from above as follows:

|S| ≤ |S′|
≤ (1

2 − ε)(lnn′) · γα(G′) (by the assumption on A′)
≤ (1

2 − ε)(lnn1+ε) · (γ(G) + k) (by the Claim and n′ ≤ n1+ε)
≤ (1

2 − ε)(1 + ε)(lnn) · (γ(G) + εγ(G)) (since k ≤ εγ(G))
= (1

2 − ε)(1 + ε)2(lnn) · γ(G)
= (1

2 − ε′)(lnn) · γ(G) ,

where ε′ := ε2(ε + 3/2) ∈ (0, 12). Therefore, if there exists a polynomial
time algorithm that computes a (1

2 − ε) lnn′-approximation to α-domination
in G′, there exists a polynomial time algorithm that computes a (1

2 − ε′) lnn-
approximation to domination in G, and hence, by Lemma 2, this is only possible
if NP ⊆ DTIME(nO(log logn)). 2

With minor modifications of the above proof (adapting it for strict in-
equalities, cf. Table 1), one can obtain the analogue of Theorem 5 for strict
α-domination.

Theorem 6. For every α ∈ (0, 1) and every ε > 0, there is no polynomial
time algorithm approximating strict α-domination within a factor of (1

2 − ε) lnn,

unless NP ⊆ DTIME(nO(log logn)).

Theorem 6 is a significant extension of the same result for the case α = 1/2
proved in [30]. See also [3] for a proof of the inapproximability of strict α-
domination within a factor of the form c lnn for some constant c > 0.

By means of a slightly more involved construction, we now prove a similar
result for total α-domination.

Theorem 7. For every α ∈ (0, 1) and every ε > 0, there is no polynomial
time algorithm approximating total α-domination within a factor of (1

3 − ε) lnn,

unless NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 < α < 1 and ε ∈ (0, 13). Let B = d α
1−αe. We make a reduction

from total domination on graphs G with n vertices such that

n ≥ max

{√
1− α
α

, 23/ε, (B + 1)2/ε

}
, (4)

dn1+ε/3e ≤ n1+2ε/3 , (5)

11

n+B ≤ n1+ε/3 . (6)

and

γt(G) ≥ B

ε
. (7)

Clearly, these assumptions are without loss of generality since the inequalities
in (4)–(6) are satisfied for all large enough n, while if the inequality (7) is
violated, we can find an optimal solution in polynomial time by verifying all
subsets of V (G) of size less than B

ε .

Let G be a graph satisfying (4)–(7). Let n = |V (G)| and m := dn1+ε/3e.
We transform G into a graph G′ as follows: G′ consists of mn disjoint copies
of G, say G1, . . . , Gmn, together with a complete graph K on Bmn vertices
such that K is disjoint from the mn copies of G. (See Fig. 1.) To describe
the remaining edges, we first partition the vertex set of K into m equally-sized
parts K1, . . . ,Km. (In particular, |Ki| = Bn for all i = 1, . . . ,m.) Finally, for
every j ∈ {1, . . . ,mn}, we make every vertex v ∈ V (Gj) adjacent to precisely
kv vertices in Kdj/ne where kv is an integer satisfying

kv
dG(v) + kv

< α ≤ 1 + kv
dG(v) + kv

.

Similarly as in the proof of Theorem 5, we can take kv = dαdG(v)−1
1−α e if dG(v) ≥ 2

and kv = 0 if dG(v) = 1. (The graph G, as input to total domination, does
not have any isolated vertices, since otherwise the problem is infeasible.) Also
notice that since kv ≤ Bn, it is indeed possible to assign to every v ∈ V (Gj)
precisely kv neighbors in Kdj/ne. (This assignment is done in an arbitrary way.)

clique K· · ·K1 Km

G(m−1)n+1 GmnGn+1G1 Gn

K2

· · ·
G2n

· · · · · ·
· · ·

nB︷ ︸︸ ︷

Figure 1: The graph G′ in the proof of Theorem 7

Claim: mnγt(G) ≤ γtα(G′) ≤ mnγt(G) +Bmn .

Proof of Claim:

Let S′ be an optimal total α-dominating set in G′, that is, |S′| = γtα(G′).
For every j = 1, . . . ,mn, let S′j = S′ ∩V (Gj) denote the part of S′ that belongs
to to the j-th copy of G in G′. Pick an index j∗ ∈ {1, . . . ,mn} for which the size
of S′j is smallest. We argue that the set S := Sj∗ is a total dominating set in Gj∗

(and thus in G). Indeed, suppose for contradiction that there exists a vertex v

12

in Gj∗ such that S misses the neighborhood of v. Then |NG′(v)∩S′| ≤ kv while
the degree of v in G′ is equal to dG′(v) = dG(v) + kv. Therefore

|NG′(v) ∩ S′|
dG′(v)

≤ kv
dG(v) + kv

< α ,

contrary to the assumption that S′ is total α-dominating. This implies that
γt(G) ≤ |S| and consequently mnγt(G) ≤ mn|S| ≤∑mn

j=1 |S′j | ≤ |S′| = γtα(G′).

Conversely, let S be an optimal total dominating set in G. For j = 1, . . . ,mn,
let Sj denote the copy of S in Gj , and let S′ = K∪⋃mnj=1 Sj . The set S′ ⊆ V (G′)
satisfies |S′| = mnγt(G) + Bnm. Moreover, S′ is a total α-dominating set in
G′:

• For every j = 1, . . . ,mn and for every v ∈ V (Gj), the set NG′(v) ∩ S′ is
the disjoint union of sets NGj

(v) ∩ Sj and NG′(v) ∩K. Hence

|NG′(v) ∩ S′| = |NGj (v) ∩ Sj |+ |NG′(v) ∩K| ≥

≥ 1 + kv ≥ α(dGj (v) + kv) = α|NG′(v)| .
The second inequality holds by the choice of kv.

• Let v ∈ K. By construction of G′, v is adjacent to every other vertex in
K, and to at most n2 remaining vertices. Hence dG′(v) ≤ (|K|−1)+n2 =
Bmn+ n2 − 1. Moreover, |NG′(v)∩S′| ≥ |K| − 1 = Bmn− 1. Therefore,
to show that |NG′(v) ∩ S′| ≥ α|NG′(v)|, it suffices to prove that

Bmn− 1

Bmn+ n2 − 1
≥ α .

This is equivalent to Bmn(1−α) ≥ αn2 −α+ 1 , which (since n2 ≥ 1−α
α)

follows from the inequality Bmn(1− α) ≥ 2αn2 , or, equivalently,

m ≥ 2α

(1− α)B
n ,

which follows from the inequality nε/3 ≥ 2 , which, finally, holds true
by (4).

This shows that γtα(G′) ≤ mnγt(G) + Bmn and completes the proof of the
claim.

Let us write n′ = |V (G′)|. By assumptions (5) and (6) we have

n′ = mn2+Bmn ≤ n3+2ε/3+Bn2+2ε/3 = (n+B)n2+2ε/3 ≤ n1+ε/3n2+2ε/3 = n3+ε .

Suppose that there exists a polynomial time algorithm A′ that computes a
(1
3 − ε) lnn′-approximation to total α-domination in G′. Let S′ be the set

computed by A′. Then |S′| ≤ (1
3 − ε)(lnn′)γtα(G′).

13

Similarly as in the proof of the claim above, let S′j = S′ ∩ V (Gj) and pick
an index j∗ ∈ {1, . . . ,mn} for which the value of |S′j | is smallest. Then, setting
S = S′j∗ results in a total dominating set in Gj (and hence in G).

We can bound the size of S from above as follows:

|S| ≤ 1
mn · |S′| (by the choice of j∗)

≤ 1
mn (1

3 − ε)(lnn′) · γtα(G′) (by the assumption on A′)
≤ 1

mn (1
3 − ε)(ln(n3+ε)) · (mnγt(G) +Bnm) (by the Claim and n′ ≤ n3+ε)

= (1
3 − ε)(3 + ε)(lnn) · (γt(G) +B)

≤ (1
3 − ε)(3 + ε)(1 + ε)(lnn) · γt(G) (by (7))

= (1− ε′)(lnn)γt(G) ,

where ε′ = ε3 + 11ε2/3 + 5ε/3 ∈ (0, 1). Therefore, S approximates the total
domination within a factor of (1− ε′) lnn. By Theorem 4, this shows that there
is no polynomial time algorithm approximating total α-domination within a
factor of (1

3 − ε) lnn, unless NP ⊆ DTIME(nO(log logn)). 2

Again, with obvious modifications of the above proof, one can obtain the
analogue of Theorem 7 for strict total α-domination.

Theorem 8. For every α ∈ (0, 1) and every ε > 0, there is no polynomial time
algorithm approximating strict total α-domination within a factor of (1

3 − ε) lnn,

unless NP ⊆ DTIME(nO(log logn)).

A different minor modification of the above proof (perform a reduction from

domination instead of total domination, and define kv = dαdG(v)+α−1
1−α e for all v ∈

V (G)) can be used to obtain the analogue of Theorem 7 for α-rate domination:

Theorem 9. For every α ∈ (0, 1) and every ε > 0, there is no polynomial
time algorithm approximating α-rate domination within a factor of (1

3 − ε) lnn,

unless NP ⊆ DTIME(nO(log logn)).

A proof of Theorem 9 can be found in the appendix. Theorem 9 is a signif-
icant extension of the result for the case α = 1/2 proved in [30]. At the same
time, this result complements the ln(∆(G) + 1)-approximation algorithm for α-
rate domination outlined in Section 2, providing an almost complete answer to
the question about the approximability of α-rate domination posed by Gagarin
et al. in [15, 16].

We continue with inapproximability results for k-domination and k-tuple
total domination. With a similar approach to the one by Klasing and Lafor-
est showing the inapproximability of k-tuple domination [26], we obtain the
following result.

14

Theorem 10. For every k ≥ 1 and every ε > 0, there is no polynomial time
algorithm approximating k-domination within a factor of (1− ε) lnn, unless
NP ⊆ DTIME(nO(log logn)).

Proof. We make a reduction from domination on graphs G with n vertices
such that

n+ k − 1 ≤ n1+ε (8)

and

γ(G) ≥ (k − 1)(1 + ε)

ε2
. (9)

Clearly, this assumption is without loss of generality since the inequality in (8)
is satisfied for all large enough n, while if the inequality (9) is violated, we can
find an optimal solution in polynomial time by verifying all subsets of V (G) of

size less than (k−1)(1+ε)
ε2 . Notice that inequality (9) is equivalent to the following

inequality:

γ(G) + k − 1 ≤ 1 + ε+ ε2

1 + ε
· γ(G) . (10)

Let G be a graph satisfying (8)–(9). We transform G into a graph G′ by
adding to it a set K of k−1 vertices inducing a complete graph such that V (G)
and K are disjoint, and connecting every vertex in G to every vertex in K. Let
γ(k)(G′) denote the minimum cardinality of a k-dominating set in G′. For every
dominating set S in G, the set S ∪K is a k-dominating set in G′. Hence

γ(k)(G′) ≤ γ(G) + k − 1 . (11)

Let n′ = |V (G′)|, and suppose that there exists a polynomial time algorithm
A′ that computes a (1 − ε) lnn′-approximation to k-domination in G′. Let S′

be the set computed by A′. Then |S′| ≤ (1 − ε)(lnn′)γ(k)(G′). Moreover, the
set S := S′ ∩ V (G) is a dominating set in G.

We can bound the size of S from above as follows:

|S| ≤ |S′|
≤ (1− ε)(lnn′)γ(k)(G′) (by the assumption on A′)
≤ (1− ε)(ln(n+ k − 1))(γ(G) + k − 1) (by (11) and n′ = n+ k − 1)

≤ (1− ε)
(
ln(n1+ε)

) (
1+ε+ε2

1+ε γ(G)
)

(by (8) and (10))

= (1− ε′)(lnn)γ(G) ,

where ε′ = ε3 > 0. Therefore, S approximates domination within a factor
of (1 − ε′) lnn. By Theorem 4, this shows that there is no polynomial time
algorithm approximating k-domination within a factor of (1− ε) lnn, unless
NP ⊆ DTIME(nO(log logn)). 2

A minor modification of the above proof (perform a reduction from total
domination instead of domination) can be used to obtain the analogue of The-
orem 10 for k-tuple total domination.

15

Theorem 11. For every k ≥ 1 and every ε > 0, there is no polynomial time
algorithm approximating k-tuple total domination within a factor of (1− ε) lnn,
unless NP ⊆ DTIME(nO(log logn)).

3.1. Inapproximability under the P 6= NP assumption

Alon et al. proved in [1] that there is no polynomial time algorithm ap-
proximating the set cover problem within a factor of c lnn for some constant
c > 0.2267, unless P = NP. Thus, one could obtain an analogue of Theorem 4
with a weaker inapproximability bound and under the assumption that P 6= NP.

In particular, with a straightforward adaptation of the proofs of the results
in this section (and, for k-tuple domination, of the proof by Klasing and Lafor-
est [26]), we obtain the following result.

Theorem 12. Unless P = NP, the following holds:

• For every problem Π ∈ {domination, k-domination, k-tuple domination,
k-tuple total domination, multiple domination, total domination} (see Ta-
ble 1) there is no polynomial time algorithm approximating Π within a
factor of 0.2267 lnn.

• For every problem Π ∈ {α-domination, partial monopoly, strict α-
domination, vector domination} (see Table 1) there is no polynomial time
algorithm approximating Π within a factor of 0.1133 lnn.

• For every problem Π ∈ {α-rate domination, monopoly, positive influence
domination, strict total α-domination, total α-domination, total vector
domination} (see Table 1) there is no polynomial time algorithm approxi-
mating Π within a factor of 0.0755 lnn.

The following corollary is immediate.

Corollary 4. All the problems listed in Theorem 12 are NP-complete.

To the best of our knowledge, this is the first NP-completeness proof for α-
rate domination, k-tuple total domination, strict α-domination, strict total α-
domination, and total α-domination. For references to NP-completeness proofs
of the remaining problems, see Table 2.

4. Polynomial algorithms for particular graph classes

In this section, we present several polynomial time algorithms for vector
domination and total vector domination in particular graph classes. For no-
tational convenience, we will often replace in this section the vector notation

16

k = (kv : v ∈ V) with the function notation: an instance to the (total) vector
domination problem will be given by a pair (G, k) where G = (V,E) is a graph
and k : V −→ N0 is a function.

We start with complete graphs.

4.1. Complete graphs

Proposition 1. Let G be a complete graph with vertex set V (G) = {v1, . . . , vn}
and assume that n − 1 ≥ k(v1) ≥ · · · ≥ k(vn) ≥ k(vn+1) := 0 with k(v1) > 0.
Then, a minimum vector dominating set for (G, k) is given by D = {v1, . . . , vp}
where p = min{i : 1 ≤ i ≤ n, i ≥ k(vi+1)}.

Proof. Clearly, D = {v1, . . . , vp} as above is a vector dominating set for (G, k)
since every v ∈ V (G) \D is of the form v = vj for some j ≥ p+ 1 and therefore
|N(vj) ∩D| = |D| = p ≥ k(vp+1) ≥ k(vj). Conversely, if D is a set of at most
p − 1 vertices, then there exists a vertex vi ∈ V (G) \ D such that i ≤ p. By
definition of p, we have p− 1 < k(vp). Therefore, |N(vi)∩D| ≤ p− 1 < k(vp) ≤
k(vi), hence D is not a vector dominating set for (G, k). 2

Corollary 5. For complete graphs, the vector domination problem is solvable
in time O(n).

The claimed time bound can be achieved as follows: Since all the k(vi)’s are
less than n, they can be sorted using counting sort in time O(n). Thus, the
value of p = min{i : 1 ≤ i ≤ n, i ≥ k(vi+1)} and with it a minimum vector
dominating set can also be computed within this time bound.

Total vector domination is even simpler and also solvable in O(n) time.

Proposition 2. Let G = (V,E) be a complete graph. Let K = max{k(v) :
v ∈ V (G)} and let M = {v ∈ V : k(v) = K}. If |M | ≤ |V | − K, then a
minimum total vector dominating set for (G, k) is given by any subset of K
vertices contained in V \M . Otherwise, a minimum total vector dominating set
for (G, k) is given by any subset of K + 1 vertices.

Proof. Clearly, every total vector dominating set must contain at least K
vertices. Suppose first that |M | ≤ |V | −K, and let D be a subset of K vertices
contained in V \M . Then, k(v) < M for every v ∈ D, implying that |N(v)∩D| =
|D|−1 = M −1 ≥ k(v). For every v ∈ V \D, we have |N(v)∩D| = |D| = M ≥
k(v).

Suppose now that |M | > |V | − K. In this case, every subset D ⊆ V with
exactly K vertices contains an element from M , say v, therefore |N(v) ∩D| =
|D| − 1 = K − 1 < k(v). It follows that every total vector dominating set must

17

contain at least K + 1 vertices. On the other hand, since G is complete, every
set D with K + 1 vertices will contain at least K neighbors of every vertex. 2

Corollary 6. For complete graphs, the total vector domination problem is solv-
able in time O(n).

The claimed time bound can be achieved as follows: Assuming, as usual,
that comparing two numbers can be done in constant time, computing the
maximum max{k(v) : v ∈ V (G)} and the set M can be done in time O(n).
The rest follows using Proposition 2.

4.2. Trees

Total vector domination and multiple domination problems are solvable in
linear time on trees [27] and also in the larger class of strongly chordal graphs [28,
35]. However, in [28] Liao and Chang mention that their approach cannot be
modified to handle the case of vector domination, and that a new approach is
needed. In this section we describe a linear time algorithm that solves vector
domination in trees.

Given a tree T , we root it at an arbitrary vertex r. For a vertex v of T, we
denote with Tv the subtree of T rooted at v. For each vertex v 6= r we also use
p(v) to denote the parent of v, i.e., the last vertex (v excluded) in the unique
path from the root of T to v, and by C(v) the set of children of v.

Theorem 13. A minimum vector dominating set in a tree can be found in time
O(n).

Proof. We claim that Algorithm 1 computes a minimum vector dominating
set for (T, k). The algorithm traverses the tree bottom up, processing vertices
one at a time in the opposite order as they are encountered by a breadth-first
traversal from the root. If, by the time a node vi 6= r is processed, at most
k(vi) − 2 children of vi have been put in S (line 7) then there is no other way
to satisfy the requirement for S to be a vector dominating set than to add vi to
S, and accordingly the algorithm does so. If k(vi)− 1 children of vi have been
put in S (line 9), then the additional neighbor of vi to include in S is chosen
as vi’s parent p(vi), for obvious reasons. If k(vi) (or more) children of vi have
already been put into S, then there is nothing to do. Line 13 takes care of the
limit case in which vi = r and therefore no parent of vi exists.

For i ∈ {0, 1, . . . , n}, let us denote by Pi and Si the sets P and S, respectively,
after i iterations of the for loop. (In particular, S0 = P0 = ∅.) To show the
correctness of the algorithm, it suffices to prove the following claim:

Claim: For every i ∈ {0, 1, . . . , n}, the following holds:

18

Algorithm 1 Vector domination in trees

Input: A tree T = (V,E), a function k : V −→ N0.
Output: A set S ⊆ V which is a minimum vector dominating set for (T, k).

1: Fix a root r ∈ V (T), and let v1, . . . , vn be the vertices of T listed in reverse
order with respect to the time they are visited by a breadth-first traversal
from r.

2: Set S = P = ∅.
3: for all i = 1, . . . , n do
4: if vi 6∈ P then
5: P ← P ∪ {vi}
6: if i < n (i.e., vi is not the root) then
7: if |C(vi) ∩ S| ≤ k(vi)− 2 then
8: S ← S ∪ {vi}
9: else if |C(vi) ∩ S| = k(vi)− 1 then

10: S ← S ∪ {p(vi)}
11: P ← P ∪ {p(vi)}
12: end if
13: else if |C(vi) ∩ S| < k(vi) then
14: S ← S ∪ {vi}
15: end if
16: end if
17: end for
18: return S

(a) For every v ∈ Pi \ Si, it holds that |N(v) ∩ Si| ≥ k(v).

(b) There exists a minimum vector dominating set Di for (T, k) such that
Di ∩ Pi = Si.

The correctness of the algorithm follows from part (b) of the claim for i = n.

We prove the claim by induction on i. Both statements hold trivially for
i = 0.

For the inductive step, we consider the two statements separately. First we
consider part (a).

Let i ≥ 1 and suppose that the statement in (a) holds for smaller values of i.
If Pi \ Si = Pi−1 \ Si−1, the statement holds by the induction hypothesis, since
Si−1 ⊆ Si. There are only two remaining cases:

(i) Si = Si−1 ∪ {p(vi)} and Pi = Pi−1 ∪ {vi, p(vi)}. This corresponds to
the case when the if statement in line 9 is true. In this case Pi \ Si = (Pi−1 \
Si−1)∪{vi}, and we only need to verify the condition |N(vi)∩Si| ≥ k(vi). This
is indeed the case since by the standing hypothesis, exactly k(vi) − 1 of the
children of vi are in Si−1, and Si contains all of them plus the parent of vi.

19

(ii) Si = Si−1 and Pi = Pi−1∪{vi}. In this case Pi\Si = (Pi−1\Si−1)∪{vi},
and we only need to verify the condition |N(vi) ∩ Si| ≥ k(vi). This case only
happens when none of the conditions in lines 7, 9 and 13 are satisfied, which
means that Si−1 contains at least k(vi) neighbors, in fact, children, of vi. Thus,
the condition holds by the induction hypothesis.

Now we consider part (b). Let i ≥ 1 and suppose that the statement in (b)
holds for smaller values of i.

We may assume that Pi 6= Pi−1 since otherwise we also have Si = Si−1 and
we can take Di = Di−1, applying the inductive hypothesis.

Suppose first that Si = Si−1. Then none of the conditions in lines 7, 9 and
13 are satisfied, which means that Si−1 contains at least k(vi) children of vi.

If vi 6∈ Di−1, then we can take Di = Di−1.

If vi ∈ Di−1, then by the minimality of Di−1, we see that vi 6= r and
p(vi) 6∈ Di−1, for otherwise we could remove vi from Di−1 to obtain a smaller
vector dominating set for (T, k). Let Di = (Di−1 \ {vi}) ∪ {p(vi)}. Clearly,
|Di| = |Di−1| and Di ∩ Pi = Si. Now we argue that Di is a vector dominating
set for (T, k). Notice that Di−1 \ {vi} vector dominates all vertices of T except
possibly p(vi): for vi, this is the case due to the fact that Si−1 is included
in Di−1 \ {vi} (by the induction hypothesis), and Si−1 contains at least k(vi)
children of vi; moreover, Si−1 vector dominates all children of vi by (a); finally,
for every vertex outside Tvi ∪{p(vi)} this is true because it is vector dominated
by Di−1 and it is not a neighbor of vi.

Now suppose that Si 6= Si−1.

If Si = Si−1∪{p(vi)} then the condition in line 9 is true. Since C(vi) ⊆ Pi−1
we have that C(vi) ∩ Di−1 = C(vi) ∩ (Pi−1 ∩ Di−1) = C(vi) ∩ Si−1 where
the last equality follows by the inductive hypothesis. Thus |C(vi) ∩ Di−1| =
|C(vi)∩Si−1| = k(vi)−1. Hence, if Di−1 does not contain vi then it must contain
p(vi). If vi 6∈ Di−1 then it is easy to see that taking Di = Di−1 satisfies the claim.
On the other hand, if vi ∈ Di−1 then we can set Di = (Di−1 \ {vi}) ∪ {p(vi)}.
Clearly, |Di| ≤ |Di−1| and Di ∩ Pi = Si. Notice that Di−1 \ {vi}—hence also
Di—vector dominates all vertices of Tvi−vi by (a) and the induction hypothesis.
Also, because of |Di−1 ∩ C(vi)| = k(vi)− 1, we have that Di vector dominates
vi. Finally, p(vi) is trivially vector dominated by Di, and so is every remaining
vertex v of T because Di ∩N(v) ⊇ Di−1 ∩N(v).

Finally, if Si = Si−1 ∪ {vi} then we can take Di = Di−1. It suffices to argue
that Di−1 contains vi. Again, since C(vi) ⊆ Pi−1 we have that C(vi) ∩Di−1 =
C(vi) ∩ (Pi−1 ∩ Di−1) = C(vi) ∩ Si−1 where the last equality follows by the
inductive hypothesis. By the standing assumption the set C(vi) ∩Di−1 is too
small to allow Di−1 to vector dominate vi, unless vi ∈ Di−1.

This completes the proof of the claim and with it the proof of the correctness

20

of the algorithm.

It remains to analyze the time complexity of the algorithm. A breadth-first
traversal together with computing the parents p(v) can be done in linear time.
It is not hard to see that all the operations performed by the algorithm at
any vertex vi take constant time: the only operation that requires some care is
the computation of the cardinality of set intersection C(vi) ∩ S needed in lines
7, 9, 13. For this, we keep a counter for each vertex, which is originally set to
0; morevoer, every time we include a new vertex into S, we increase by 1 the
counter of its parent (if it exists). Therefore, the algorithm can be implemented
to run in linear time. 2

4.3. P4-free graphs

In this section we give a polynomial time algorithm to solve the vector dom-
ination and total vector domination problems in P4-free graphs. P4-free graphs
(also known as cographs) are graphs without an induced subgraph isomorphic
to a 4-vertex path. A polynomial time algorithm for k-tuple domination in a
class of graphs properly containing the P4-free graphs was recently given in [9].

In this section, we develop a polynomial time algorithm for the vector dom-
ination and total vector domination problems in P4-free graphs. The algo-
rithm will be based on the following well-known characterization of P4-free
graphs [4]: a graph G is P4-free if and only if for every induced subgraph
F of G with at least two vertices, either F or its complement is discon-
nected. A co-component of a graph G = (V,E) is the subgraph of G in-
duced by the vertex set of a connected component of the complementary graph
G = (V, {uv | u, v ∈ V, u 6= v, uv 6∈ E}). The above characterization implies
that every P4-free graph G = (V,E) admits a recursive decomposition into one-
vertex graphs by taking components or co-components. Such a decomposition
can be computed in linear time [5], and a tree representing such a decomposi-
tion is called a cotree. For our purposes, it will be more convenient to assume
that G is represented by a modified cotree, which is obtained from the cotree by
replacing every node representing a decomposition of an induced subgraph F of
G into p ≥ 3 co-components C1, . . . , Cp with p− 1 nodes in sequence, with i-th
node representing the decomposition of Fi := F − (C1 ∪ · · · ∪Ci−1) into Ci and
Fi − Ci.

Proposition 3. Let G, G1, G2 be graphs such that G is obtained from the dis-
joint union of G1 and G2 by adding all edges of the form {uv : u ∈ V (G1), v ∈
V (G2)}. Then,

γ(G, k) = min
0≤i≤|V (G2)|
0≤j≤|V (G1)|

(
max{γ(G1, ki), j}+ max{γ(G2, k

′
j), i}

)

21

γt(G, k) = min
0≤i≤|V (G2)|
0≤j≤|V (G1)|

(
max{γt(G1, ki), j}+ max{γt(G2, k

′
j), i}

)
,

where ki(v) = max{k(v)− i, 0} for all v ∈ V (G1) and k′j(v) = max{k(v)− j, 0}
for all v ∈ V (G2).

Proof. Let m denote the value of the first minimum above. First, we show
that m ≤ γ(G, k). Let D be a minimum vector dominating set for (G, k), that
is, |D| = γ(G, k). Let Di = D ∩ V (Gi), for i = 1, 2, and let i∗ = |D2| and
j∗ = |D1|. Take a vertex v ∈ V (G1) \D1 such that ki∗(v) > 0. Then

|NG1(v) ∩D1| = |NG(v) ∩D| − |D2| = |NG(v) ∩D| − i∗ ≥ k(v)− i∗ = ki∗(v) .

Therefore D1 is a vector dominating set for (G1, ki∗) and consequently
γ(G1, ki∗) ≤ |D1| = j∗. Similarly, we can show that γ(G2, k

′
j∗) ≤ |D2| = i∗. It

follows that

γ(G, k) = |D| = j∗ + i∗ = max{γ(G1, ki∗), j
∗}+ max{γ(G2, k

′
j∗), i

∗} ≥ m.

To see the converse inequality, let (i∗, j∗) be a pair of indices where the value of
m is attained. Let D1 be a vector dominating set for (G1, ki∗) such that |D1| =
max{γ(G1, ki∗), j

∗}. Similarly, let D2 be a vector dominating set for (G2, k
′
j∗)

such that |D2| = max{γ(G2, kj∗), i
∗}. Then, the set D := D1 ∪D2 is a vector

dominating set for (G, k): Let v ∈ V (G) \D. Assuming that v ∈ V (G1) \D1,
we have

|NG(v) ∩D| = |NG1(v) ∩D1|+ |D2| ≥ ki∗(v) + |D2| ≥ k(v)− i∗ + |D2| ≥ k(v) .

We can show similarly that |NG(v)∩D| ≥ k(v) for all v ∈ V (G2)\D2. Therefore,
γ(G, k) ≤ |D| = |D1|+ |D2| = m, which completes the proof.

The proof of the other relation is analogous. 2

Theorem 14. Vector domination problem and total vector domination problem
are solvable in polynomial time on P4-free graphs.

Proof. We claim that Algorithm 2 below computes a minimum vector dom-
inating set for (G, k), where G is a P4-free graph. The following notations
are used: For a non-negative integer r and for an induced subgraph H of G,
we denote by D(H, r) a minimum vector dominating set for (H, kr), where
kr(v) = max{k(v)− r, 0} for all v ∈ V (H).

In lines 1–2, the algorithm computes the set R of required vertices in every
feasible solution, and reduces the problem to a smaller graph. Notice that once
the required vertices have been removed, it holds that k(v) ≤ d(v) for all v. In

22

Algorithm 2 Vector domination in P4-free graphs

Input: A P4-free graph G = (V,E), a function k : V −→ N0.
Output: A minimum vector dominating set for (G, k).

1: Let R = {v ∈ V (G) : k(v) > d(v)}.
2: Set G to G−R and k to k′ : V (G−R) −→ N0, given by k′(v) = max{k(v)−
|N(v) ∩R|, 0} for all v ∈ V (G)−R.

3: Compute a modified cotree T of G.
4: for all leaves ` of T do
5: let v ∈ V (G) be the vertex corresponding to `.
6: for all 0 ≤ r ≤ ∆(G) do

7: set D({v}, r) =

{
∅, if k(v) ≤ r;
{v}, otherwise.

8: end for
9: end for

10: for all internal nodes of T (traversed in a bottom-up manner) do
11: let H be the subgraph of G corresponding to the current node of T .
12: if H is disconnected, with connected components C1, . . . , Cm then
13: for all 0 ≤ r ≤ ∆(G) do
14: set D(H, r) = ∪1≤i≤mD(Ci, r) .
15: end for
16: else
17: let C be a co-component of H and let H2 = H − C.
18: for all 0 ≤ r ≤ ∆(G) do
19: for all 0 ≤ i ≤ |V (H2)| do
20: let Di = D(C,min{r + i,∆(G)}).
21: end for
22: for all 0 ≤ j ≤ |V (C)| do
23: let D′j = D(H2,min{r + j,∆(G)}).
24: end for
25: let (i∗, j∗) be a pair of indices such that max{|Di∗ |, j∗} +

max{|D′j∗ |, i∗} = mini,j
(
max{|Di|, j}+ max{|D′j |, i}

)

26: let D̂1 = Di∗ ∪ J where J ⊆ V (C) \Di∗ such that |J | = max{j∗ −
|Di∗ |, 0}.

27: let D̂2 = D′j∗ ∪ J where J ⊆ V (G2) \D′j∗ such that |J | = max{i∗ −
|D′j∗ |, 0}.

28: set D(H, r) = D̂1 ∪ D̂2.
29: end for
30: end if
31: end for
32: return D(G, 0) ∪R.

particular, for an induced subgraph H of the reduced graph G−R, it suffices to
compute the sets D(H, r) for r ≤ ∆(G), since D(H, r′) = ∅ for every r′ ≥ ∆(G).

23

The correctness of the algorithm is straightforward, using the above-
mentioned characterization of P4-free graphs and Proposition 3 together with
the arguments given in its proof. It is also easy to see that the algorithm runs
in time O(∆(G)n3).

The algorithm can be modified slightly so that it computes a minimum total
vector dominating set. Suppose that an induced subgraph H of G contains a
vertex v such that k(v) − r > d(v). In this case, we set D(H, r) = Inf where
Inf is a special symbol denoting the infeasibility of the problem (we also set
|Inf| = ∞); moreover Inf is invariant under taking unions: A ∪ Inf = Inf for
every A. We need the following modifications:

• replace lines 1–2 with the following:

if there exists a vertex v such that k(v) > d(v) then return Inf.

• replace line 7 with the following:

set D({v}, r) =

{
∅, if k(v) ≤ r;
Inf, otherwise.

2

4.4. Threshold graphs

Threshold graphs form a subclass of P4-free graphs, therefore vector domi-
nation and total vector domination problems are solvable in polynomial time on
threshold graphs. Since threshold graphs are strongly chordal, the total vector
domination problem is solvable in time O(n+m) on threshold graphs [28, 35].
We develop in this section an O(nm) algorithm for the vector domination
problem in threshold graphs, using the following characterization: A graph
G = (V,E) is threshold if and only if there is an ordering v1, . . . , vn of V such
that for every i, vertex vi is either isolated or dominating in the subgraph Gi
of G induced by {v1, . . . , vi}. Such an ordering of a threshold graph G can be
found in linear time by recursively removing dominating or isolated vertices.

We will also need the following proposition similar to Proposition 3. For a
subgraph H of G, we denote by k|H the restriction of k to V (H), that is, the
function k|H : V (H) −→ N0, given by k|H(v) = k(v) for all v ∈ V (H).

Proposition 4. Let G be a graph with a dominating vertex v. Let G′ = G−{v}
and k′ : V (G′) −→ N0 be given by k′(u) = max{k(u)− 1, 0} for all u ∈ V (G′).
If k(v) > d(v) then every minimum vector dominating set D for (G, k) is of
the form D′ ∪ {v} where D′ is a minimum vector dominating set for (G′, k′).
Otherwise,

γ(G, k) = min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)} .

24

More specifically, if D′ is a minimum vector dominating set for (G′, k|G′) and
D′′ is a minimum vector dominating set for (G′, k′) then a minimum vector
dominating set D for (G, k) can be computed as follows:

D =

{
D′ ∪ J, if max{|D′|, k(v)} ≤ 1 + γ(G′, k′);
D′′ ∪ {v}, otherwise,

where J ⊆ V (G′) \D′ such that |J | = max{k(v)− |D′|, 0}.

Proof. If k(v) > d(v) then every minimum vector dominating set D for (G, k)
must contain v, and the first statement follows.

Suppose now that k(v) ≤ d(v). Let D be a minimum vector dominating
set for (G, k). If v ∈ D then D′ = D \ {v} is a vector dominating set for
(G′, k′). Therefore, in this case γ(G′, k′) ≤ γ(G, k) − 1 and the inequality
γ(G, k) ≥ min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)} follows. If v 6∈ D then
D′ = D \ {v} is a vector dominating set for (G′, k|G′), moreover |D′| ≥ k(v);
therefore the inequality γ(G, k) ≥ min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)}
holds in this case too.

To see the converse inequality, suppose first that max{γ(G′, k|G′), k(v)} ≤
1 + γ(G′, k′), and let D′ be a minimum vector dominating set for (G′, k|G′).
Let D = D′ ∪ J where J ⊆ V (G′) \ D′ such that |J | = max{k(v) − |D′|, 0}.
Then, the set D contains at least k(v) neighbors of v, therefore D is a vector
dominating set for (G, k). Similarly, if max{γ(G′, k|G′), k(v)} > 1 + γ(G′, k′),
then letting D′′ be a minimum vector dominating set for (G′, k′), we can define
D = D′′ ∪ {v} to obtain a vector dominating set for (G′, k′). In summary,
γ(G, k) ≤ min{max{γ(G′, k|G′), k(v)}, 1 + γ(G′, k′)}; hence equality holds, and
the set D is also a minimum vector dominating set for (G, k). 2

Proposition 4 leads to Algorithm 3 below for the vector domination problem
on threshold graphs.

Theorem 15. A minimum vector dominating set in a threshold graph can be
found in time O(nm).

Proof. We claim that Algorithm 3 computes a minimum vector dominating set
for (G, k), where G is a threshold graph. We use similar notation as in the proof
of Theorem 14, except that we denote by Di,j a minimum vector dominating
set for (Gi, kj) where kj(v) = max{k(v)−j, 0} for all v ∈ V (Gi). The algorithm
will compute, by dynamic programming, all sets Di,j , for all i ∈ {1, . . . , n} and
all j ∈ {0, 1, . . . , pi} where pi is the number of indices j > i such that vj is
dominating in Gj .

The correctness of the algorithm follows by induction on i, using Proposi-
tion 4. Notice that for all i ≥ 2 such that vi is dominating in Gi, we have

25

Algorithm 3 Vector domination in threshold graphs

Input: A threshold graph G = (V,E), a function k : V −→ N0.
Output: A minimum vector dominating set for (G, k).

1: Let R = {v ∈ V (G) : k(v) > d(v)}.
2: Set G to G−R and k to k′ : V (G−R) −→ N0, given by k′(v) = max{k(v)−
|N(v) ∩R|, 0} for all v ∈ V (G)−R.

3: Compute an ordering v1, . . . , vn of V (G) such that vi is either isolated or
dominating in Gi.

4: Compute the values pj for all j ∈ {1, . . . , n}.
5: for all 0 ≤ j ≤ p1 do

6: set D1,j =

{
∅, if k(v1) ≤ j;
{v1}, otherwise.

7: end for
8: for all i = 2, . . . , n do
9: if vi is isolated in Gi then

10: for all 0 ≤ j ≤ pi do

11: set Di,j =

{
Di−1,j , if k(vi) ≤ j;
Di−1,j ∪ {vi}, otherwise.

12: end for
13: else
14: for all 0 ≤ j ≤ pi do
15: if max{|Di−1,j |, k(v)− j} ≤ 1 + |Di−1,j+1| then
16: let J ⊆ V (Gi−1)\Di−1,j such that |J | = max{k(v)−j−|Di−1,j |, 0}.
17: set Di,j = Di−1,j ∪ J .
18: else
19: set Di,j = Di−1,j+1 ∪ {vi}.
20: end if
21: end for
22: end if
23: end for
24: return Dn,0 ∪R.

pi−1 = pi + 1, therefore j+ 1 ≤ pi−1 in lines 15 and 19, so Di−1,j+1 has already
been computed at that point. The total time complexity is O(n

∑n
i=1 pi) =

O(nm), and can be improved to O(n+m) if only the minimum size of a vector
dominating set is needed. 2

5. Concluding remarks

We have studied some algorithmic issues related to natural extensions of the
well known concepts of domination and total domination in graphs. We have
shown that the problems are approximable to within a logarithmic factor, and
proved that this is essentially best possible. We summarize our and other known

26

results in Table 2 (which should be read in conjuction with Table 1). In the last
column, we provide a reference for NP-completeness proofs of the corresponding
decision problems.

Model Upper bound Lower bound NP-completeness

α-domination ln(2∆(G)) + 1 (1/2 − ε) lnn [11]

α-rate domination ln(∆(G)) + 1 (1/3 − ε) lnn Corollary 4

domination ln(∆(G) + 1) + 1/2 [2, 10] (1 − ε) lnn [2] [17]

k-domination ln(2∆(G)) + 1 (1 − ε) lnn [24]

k-tuple domination ln(∆(G) + 1) + 1 [26] (1 − ε) lnn [26] [28]

k-tuple total domination ln(∆(G)) + 1 (1 − ε) lnn Corollary 4

monopoly ln(∆(G) + 1) + 1 [33] (1/3 − ε) lnn [30] [30, 33]

multiple domination ln(∆(G) + 1) + 1 (1 − ε) lnn generalizes
domination

partial monopoly ln(2∆(G)) + 1 [33] (1/2 − ε) lnn [30] [30, 33]

positive influence domination ln(∆(G)) + 1 [36] (1/3 − ε) lnn [36]

strict α-domination ln(2∆(G)) + 1 (1/2 − ε) lnn Corollary 4

strict total α-domination ln(∆(G)) + 1 (1/3 − ε) lnn Corollary 4

total domination ln(∆(G)) + 1/2 [2, 10] (1 − ε) lnn [2] [21]

total α-domination ln(∆(G)) + 1 (1/3 − ε) lnn Corollary 4

total vector domination ln(∆(G)) + 1 (1/3 − ε) lnn generalizes
total domination

vector domination ln(2∆(G)) + 1 (1/2 − ε) lnn generalizes
domination

Table 2: Known approximability results for different domination problems. Lower bounds
hold unless NP ⊆ DTIME(nO(log logn)). They also hold unless P = NP but the constant must
be multiplied by 0.2267. Unless stated otherwise, all the upper and lower bounds in the table
are from this paper.

We have also provided exact polynomial time algorithms for several inter-
esting classes of graphs, namely, complete graphs, trees, P4-free graphs and
threshold graphs. We leave it as a question for future research to determine the
complexity status of the vector domination and related problems for graphs of
bounded tree-width or bounded clique-width.

Acknowledgements

The authors are grateful to Dieter Rautenbach for telling them about the
notion of α-domination. The linear time algorithm for vector domination in
trees given in Section 4.2 was inspired by discussions with André Nichterlein.
The authors are also grateful to two anonymous referees whose comments helped
to improve the presentation of the paper.

The first author was partially supported by a DAAD grant, ref. code
A/11/15927. The work of the second author was partially done during sev-
eral visits at the Department of Informatics at the University of Salerno; the
kind hospitality of the first and the third authors is greatly appreciated. The
second author was supported in part by “Agencija za raziskovalno dejavnost
Republike Slovenije”, research program P1-0285 and research projects J1–4010,
J1–4021 and N1–0011. The work of the third author was partially done while

27

visiting the Mascotte team of INRIA at Sophia Antipolis. He wants to thank
J.-C. Bermond and D. Coudert for their kind hospitality.

References

[1] N. Alon, D. Moshkovitz and S. Safra. Algorithmic construction of
sets for k-restrictions. ACM Transactions on Algorithms 2 (2006) 153–177.

[2] M. Chleb́ık and J. Chleb́ıkova. Approximation hardness of dominating
set problems in bounded degree graphs. Information and Computation 206
(2008) 1264–1275.

[3] F. Cicalese, M. Milanič and U. Vaccaro. Hardness, approximability,
and exact algorithms for vector domination and total vector domination in
graphs. FCT 2011, LNCS Vol. 6914 (2011) 288–297.

[4] D.G. Corneil, H. Lerchs and L. Stewart Burlingham. Complement
reducible graphs. Discrete Appl. Math. 3 (1981) 163–174.

[5] D.G. Corneil, Y. Perl and L.K. Stewart. A linear recognition algo-
rithm for cographs. SIAM J. Comput. 14 (1985) 926–934.

[6] F. Dahme, D. Rautenbach and L. Volkmann. Some remarks on α-
domination. Discussiones Mathematicae, Graph Theory 24 (2004) 423–430.

[7] F. Dahme, D. Rautenbach and L. Volkmann. α-Domination perfect
trees. Discrete Math. 308 (2008) 3187–3198.

[8] G. Dobson. Worst-case analysis of greedy heuristics for integer program-
ming with nonnegative data. Mathematics of Operations Research 7 (1982)
515–531.

[9] M.P. Dobson, V. Leoni and G. Nasin. The multiple domination and
limited packing problems in graphs. Information Processing Letters 111
(2011) 1108–1113.

[10] R. Duh and M. Fürer. Approximation of k-set cover by semi-local op-
timization. In: Proceedings of the 29th ACM Symposium on Theory of
Computing, STOC, 1997, pp. 256–264.

[11] J.E. Dunbar, D.G. Hoffman, R.C. Laskar and L.R. Markus. α-
Domination. Discrete Math. 211 (2000) 11–26.

[12] U. Feige. A threshold of lnn for approximating set cover. Journal of
ACM 45 (1998) 634–652.

[13] J.F. Fink and M.S. Jacobson. n-domination in graphs. Graph Theory
with Applications to Algorithms and Computer Science. John Wiley and
Sons, New York, 1985, pp. 283–300.

28

[14] J.F. Fink and M.S. Jacobson. On n-domination, n-dependence and
forbidden subgraphs. Graph Theory with Applications to Algorithms and
Computer Science. John Wiley and Sons, New York, 1985, pp. 301–311.

[15] A. Gagarin, A. Poghosyan and V.E. Zverovich. Upper bounds for
α-domination parameters. Graphs and Combinatorics 25 (2009) 513–520.

[16] A. Gagarin, A. Poghosyan and V.E. Zverovich. Randomized algo-
rithms and upper bounds for multiple domination in graphs and networks.
Discrete Applied Math. (2011) doi:10.1016/j.dam.2011.07.004.

[17] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[18] W. Goddard and M.A. Henning. Restricted domination parameters in
graphs. Journal of Combinatorial Optimization 13 (2007) 353–363.

[19] J. Harant, A. Prochnewski and M. Voigt. On dominating sets and
independent sets of graphs. Combinatorics, Probability and Computing 8
(1999) 547–553.

[20] F. Harary and T.W. Haynes. Double domination in graphs. Ars Com-
bin. 55 (2000) 201–213.

[21] T.W. Haynes, S. Hedetniemi and P. Slater Fundamentals of Domi-
nation in Graphs. Marcel Dekker, 1998.

[22] T.W. Haynes, S. Hedetniemi and P. Slater (Eds.) Domination in
Graphs: Advanced Topics. Marcel Dekker, 1998.

[23] M.A. Henning and A.P. Kazemi. k-tuple total domination in graphs.
Discrete Appl. Math. 158 (2010) 1006–1011.

[24] M. S. Jacobson and K. Peters. Complexity questions for n-domination
and related parameters. Congr. Numer. 68 (1989) 7–22.

[25] D. Kempe, J.M. Kleinberg and E. Tardos. Influential Nodes in a
Diffusion Model for Social Networks. ICALP 2005, 1127–1138.

[26] R.Klasing and C. Laforest. Hardness results and approximation algo-
rithms of k-tuple domination in graphs. Inform. Process. Lett. 89 (2004)
75–83.

[27] C.S. Liao and G.J. Chang. Algorithmic aspects of k-tuple domination
in graphs. Taiwanese Journal of Mathematics 6 (2002) 415–420.

[28] C.S. Liao and G.J. Chang. k-tuple domination in graphs. Inform. Pro-
cess. Lett. 87 (2003) 45–50.

[29] S. Mishra. Complexity of majority monopoly and signed domination prob-
lems. J. Discrete Algorithms 10 (2012) 49–60.

29

[30] S. Mishra, J. Radhakrishnan and S. Sivasubramanian. On the hard-
ness of approximating minimum monopoly problems. FST TCS 2002 LNCS
Vol. 2556 2002, 277-288

[31] S. Mishra and S. B. Rao. Minimum monopolies in regular and tree
graphs. Discrete Mathematics 306 (2006) 1586–1594.

[32] E. Mossel, and S. Roch. On the submodularity of influence in social
networks. Proc. 39th Ann. ACM Symp. on Theory of Comp., ACM, 2007,
pp. 128–134.

[33] D. Peleg. Local majorities, coalitions and monopolies in graphs: a review.
Theoretical Computer Science 282 (2002) 231–257.

[34] V. Raman, S. Saurabh and S. Srihari. Parameterized Algorithms for
Generalized Domination. COCOA 2008, LNCS Vol. 5165 (2008) 116–126.

[35] R. Uehara. Linear time algorithms on chordal bipartite and strongly
chordal graphs Proc. ICALP 2002, LNCS 2380, 993-1004, 2002.

[36] F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan
On positive influence dominating sets in social networks. Theoretical Com-
puter Science 412 (2011) 265–269.

[37] L.A. Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. Combinatorica 2 (1982) 385–393.

[38] F. Zou, J. K Willson, Z. Zhang, and W. Wu. Fast information prop-
agation in social networks. Discrete Mathematics, Algorithms and Appli-
cations 2 (2010) 1–17.

30

Appendix A. Proof of Theorem 9

Theorem 9 1. For every α ∈ (0, 1) and every ε > 0, there is no polynomial
time algorithm approximating α-rate domination within a factor of (1

3 − ε) lnn,

unless NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 < α < 1 and ε ∈ (0, 13). Let B = d α
1−αe. We make a reduction

from domination on graphs G with n vertices, none of which are isolated, such
that

n ≥ max

{√
1− α
α

, (B + 1)2/ε

}
, (A.1)

dn1+ε/3e ≤ n1+2ε/3 , (A.2)

n+B ≤ n1+ε/3 . (A.3)

and

γ(G) ≥ B

ε
. (A.4)

Clearly, these assumptions are without loss of generality since the inequalities
in (A.1)–(A.3) are satisfied for all large enough n, while if the inequality (A.4)
is violated, we can find an optimal solution in polynomial time by verifying all
subsets of V (G) of size less than B

ε .

Let G be a graph satisfying (A.1)–(A.4). Let n = |V (G)| and m := dn1+ε/3e.
We transform G into a graph G′ as follows: G′ consists of mn disjoint copies
of G, say G1, . . . , Gmn, together with a complete graph K on Bmn vertices
such that K is disjoint from the mn copies of G. (See Fig. 1.) To describe
the remaining edges, we first partition the vertex set of K into m equally-sized
parts K1, . . . ,Km. (In particular, |Ki| = Bn for all i = 1, . . . , n.) Finally, for
every j ∈ {1, . . . ,mn}, we make every vertex v ∈ V (Gj) adjacent to precisely
kv vertices in Kdj/ne where kv is an integer satisfying

kv
dG(v) + kv + 1

< α ≤ kv + 1

dG(v) + kv + 1
.

We can take kv = dαdG(v)+α−1
1−α e. Notice that since 0 ≤ kv ≤ Bn, it is indeed

possible to assign to every v ∈ V (Gj) precisely kv neighbors in Kdj/ne. (This
assignment is done in an arbitrary way.)

Claim: mnγ(G) ≤ γ×α(G′) ≤ mnγ(G) +Bmn .

Proof of Claim:

Let S′ be an optimal α-rate dominating set in G′, that is, |S′| = γ×α(G′).
For every j = 1, . . . ,mn, let S′j = S′ ∩V (Gj) denote the part of S′ that belongs
to to the j-th copy of G in G′. Pick an index j∗ ∈ {1, . . . ,mn} for which the size

31

of S′j is smallest. We argue that the set S := Sj∗ is a dominating set in Gj∗ (and
thus in G). Indeed, suppose for contradiction that there exists a vertex v in Gj∗

such that S misses the closed neighborhood of v. Then |NG′ [v]∩S′| ≤ kv while
the size of the closed neighborhood of v in G′ is equal to |NG′ [v]| = dG(v)+1+kv.
Therefore

|NG′ [v] ∩ S′|
|NG′ [v]| ≤ kv

dG(v) + 1 + kv
< α ,

contrary to the assumption that S′ is α-rate dominating. This implies that
γ(G) ≤ |S| and consequently mnγ(G) ≤ mn|S| ≤∑mn

j=1 |S′j | ≤ |S′| = γ×α(G′).

Conversely, let S be an optimal dominating set in G. For j = 1, . . . ,mn, let
Sj denote the copy of S in Gj , and let S′ = K ∪⋃mnj=1 Sj . The set S′ ⊆ V (G′)
satisfies |S′| = mnγ(G)+Bnm. Moreover, S′ is an α-rate dominating set in G′:

• For every j = 1, . . . ,mn and for every v ∈ V (Gj), the set NG′ [v] ∩ S′ is
the disjoint union of sets NGj

[v] ∩ Sj and NG′(v) ∩K. Hence

|NG′ [v] ∩ S′| = |NGj
[v] ∩ Sj |+ |NG′(v) ∩K| ≥

≥ 1 + kv ≥ α(dGj (v) + 1 + kv) = α|NG′ [v]| .
The second inequality holds by the choice of kv.

• Let v ∈ K. By construction of G′, v is adjacent to every other vertex in
K, and to at most n2 remaining vertices. Hence |NG′ [v]| ≤ |K| + n2 =
Bmn + n2. Moreover, |NG′ [v] ∩ S′| ≥ |K| = Bmn. Therefore, to show
that |NG′ [v] ∩ S′| ≥ α|NG′ [v]|, it suffices to prove that

Bmn

Bmn+ n2
≥ α .

This is equivalent to Bm(1− α) ≥ αn , or, equivalently,

m ≥ α

(1− α)B
n ,

which is true by the definition of m and since nε/3 ≥ 1 ≥ α
(1−α)B .

This shows that γ×α(G′) ≤ mnγ(G) + Bmn and completes the proof of the
claim.

Let us write n′ = |V (G′)|. By assumptions (A.2) and (A.3) we have

n′ = mn2+Bmn ≤ n3+2ε/3+Bn2+2ε/3 = (n+B)n2+2ε/3 ≤ n1+ε/3n2+2ε/3 = n3+ε .

Suppose that there exists a polynomial time algorithm A′ that computes a (1
3 −

ε) lnn′-approximation to α-rate domination in G′. Let S′ be the set computed
by A′. Then |S′| ≤ (1

3 − ε)(lnn′)γ×α(G′).

32

Similarly as in the proof of the claim above, let S′j = S′ ∩ V (Gj) and pick
an index j∗ ∈ {1, . . . ,mn} for which the value of |S′j | is smallest. Then, setting
S = S′j∗ results in a dominating set in Gj (and hence in G).

We can bound the size of S from above as follows:

|S| ≤ 1
mn · |S′| (by the choice of j∗)

≤ 1
mn (1

3 − ε)(lnn′) · γ×α(G′) (by the assumption on A′)
≤ 1

mn (1
3 − ε)(ln(n3+ε)) · (mnγ(G) +Bnm) (by the Claim and n′ ≤ n3+ε)

= (1
3 − ε)(3 + ε)(lnn) · (γ(G) +B)

≤ (1
3 − ε)(3 + ε)(1 + ε)(lnn) · γ(G) (by (A.4))

= (1− ε′)(lnn)γ(G) ,

where ε′ = ε3 + 11ε2/3 + 5ε/3 ∈ (0, 1). Therefore, S approximates domination
within a factor of (1 − ε′) lnn. By Theorem 4, this shows that there is no
polynomial time algorithm approximating α-rate domination within a factor of
(1
3 − ε) lnn, unless NP ⊆ DTIME(nO(log logn)). 2

33

