
Edited by

Graph Algorithms
and Applications

Serafino Cicerone and Gabriele Di Stefano
Printed Edition of the Special Issue Published in Algorithms

www.mdpi.com/journal/algorithms

Graph Algorithms and Applications

Graph Algorithms and Applications

Editors

Serafino Cicerone
Gabriele Di Stefano

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editors

Serafino Cicerone

Department of Information

Engineering, Computer Science

and Mathematics

University of L’Aquila

L’Aquila

Italy

Gabriele Di Stefano

Department of Information

Engineering, Computer Science

and Mathematics

University of L’Aquila

L’Aquila

Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Algorithms (ISSN 1999-4893) (available at: www.mdpi.com/journal/algorithms/special issues/

Graph Algorithms Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-1542-7 (Hbk)

ISBN 978-3-0365-1541-0 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/algorithms/special_issues/Graph_Algorithms_Applications
www.mdpi.com/journal/algorithms/special_issues/Graph_Algorithms_Applications

Contents

About the Editors . vii

Serafino Cicerone and Gabriele Di Stefano
Special Issue on “Graph Algorithms and Applications”
Reprinted from: Algorithms 2021, 14, 150, doi:10.3390/a14050150 1

Patrizio Angelini, Peter Eades, Seok-Hee Hong, Karsten Klein, Stephen Kobourov, Giuseppe
Liotta, Alfredo Navarra and Alessandra Tappini
Graph Planarity by Replacing Cliques with Paths
Reprinted from: Algorithms 2020, 13, 194, doi:10.3390/a13080194 5

Justie Su-Tzu Juan, Yi-Ching Chen, Chen-Hui Lin and Shu-Chuan Chen
Efficient Approaches to the Mixture Distance Problem
Reprinted from: Algorithms 2020, 13, 314, doi:10.3390/a13120314 15

Mohammad Abouei Mehrizi and Gianlorenzo D’Angelo
Multi-Winner Election Control via Social Influence: Hardness and Algorithms for Restricted
Cases
Reprinted from: Algorithms 2020, 13, 251, doi:10.3390/a13100251 25

Vittorio Bilò, Michele Flammini, Vasco Gallotti and Cosimo Vinci
On Multidimensional Congestion Games
Reprinted from: Algorithms 2020, 13, 261, doi:10.3390/a13100261 45

Chuan-Min Lee
Algorithmic Aspects of Some Variations of Clique Transversal and Clique Independent Sets on
Graphs
Reprinted from: Algorithms 2021, 14, 22, doi:10.3390/a14010022 69

Serafino Cicerone
A Quasi-Hole Detection Algorithm for Recognizing k-Distance-Hereditary Graphs, with k > 2
Reprinted from: Algorithms 2021, 14, 105, doi:10.3390/a14040105 83

v

About the Editors

Serafino Cicerone

Serafino Cicerone received a PhD degree from the University “La Sapienza” of Rome in

1997. He is currently an Associate Professor with the Department of Information Engineering,

Computer Science and Mathematics, University of L’Aquila. His research interests revolve around

the specification, design, verification and implementation of efficient algorithms. Specific areas

of interest include algorithmic graph theory, combinatorial optimization, distributed algorithms,

algorithm engineering, and spatial and geometric data.

Gabriele Di Stefano

Gabriele Di Stefano received a PhD degree from the University “La Sapienza” of Rome, in

1992. He is currently a Full Professor with the Department of Information Engineering, Computer

Science and Mathematics, University of L’Aquila. He has had key-participations in several EU

funded projects. Among them: MILORD (AIM 2024), COLUMBUS (IST 2001-38314), AMORE

(HPRN-CT-1999-00104), ARRIVAL (IST FP6-021235-2), and recently GEOSAFE (H2020-691161). His

current research interests include algorithmic graph theory, combinatorial optimization, network

algorithms, and distributed computing.

vii

algorithms

Editorial

Special Issue on “Graph Algorithms and Applications”

Serafino Cicerone * and Gabriele Di Stefano

����������
�������

Citation: Cicerone, S.; Di Stefano, G.

Special Issue on “Graph Algorithms

and Applications”. Algorithms 2021,

14, 150. https://doi.org/10.3390/

a14050150

Received: 26 April 2021

Accepted: 6 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
I-67100 L’Aquila, Italy; gabriele.distefano@univaq.it
* Correspondence: serafino.cicerone@univaq.it

Abstract: The mixture of data in real life exhibits structure or connection property in nature. Typical
data include biological data, communication network data, image data, etc. Graphs provide a
natural way to represent and analyze these types of data and their relationships. For instance, more
recently, graphs have found new applications in solving problems for emerging research fields such
as social network analysis, design of robust computer network topologies, frequency allocation in
wireless networks, and bioinformatics. Unfortunately, the related algorithms usually suffer from
high computational complexity, since some of these problems are NP-hard. Therefore, in recent
years, many graph models and optimization algorithms have been proposed to achieve a better
balance between efficacy and efficiency. The aim of this Special Issue is to provide an opportunity for
researchers and engineers from both academia and the industry to publish their latest and original
results on graph models, algorithms, and applications to problems in the real world, with a focus on
optimization and computational complexity.

Keywords: analysis and design or graph algorithms; distributed graph and network algorithms;
graph theory with algorithmic applications; computational complexity of graph problems; experi-
mental evaluation of graph algorithms

1. Introduction

Graphs represent mathematical abstractions that can be used to represent networks of
various types: physical (e.g., the Internet or transportation networks), biological (e.g., brain
networks), or social (e.g., online social networks). This led the development of algorithmic
graph theory as a classical research area in computer science. It focuses on the discovery of
characterization theorems on (different types of) graphs, which in turn often lead to the
development of efficient algorithms for practical problems that can be modeled on graphs.

2. Special Issue

In response to the call for papers, a total of eighteen manuscripts were submitted. Out
of them, we selected six submissions to appear in this Special Issue. In what follows, we
summarize the contents of all six published papers.

In [1], the authors faced a typical problem concerning the visual analysis of real-
world networks. To this end, they introduce and study the following beyond-planarity
problem that they call h-CLIQUE2PATH PLANARITY. Let G be a simple topological graph
for which the vertices are partitioned into subsets of size at most h, each inducing a clique:
h-CLIQUE2PATH PLANARITY asks whether it is possible to obtain a planar subgraph of G
by removing edges from each clique so that the subgraph induced by each subset is a path.
They investigate the complexity of this problem in relation to k-planarity. In particular,
they prove that h-CLIQUE2PATH PLANARITY is NP-complete even when h = 4 and G is
a simple 3-plane graph, while it can be solved in linear time when G is a simple 1-plane
graph, for any value of h. The results provided contribute to the growing fields of hybrid
planarity and of graph drawing beyond planarity.

1

Algorithms 2021, 14, 150

In [2], the authors used graph theory models to cope with problems arising in the field
of molecular biology and bioinformatics. They considered the ancestral mixture model
proposed by Chen and Lindsay in 2006, an important model building a hierarchical tree
from high dimensional binary sequences. As a phylogenetic tree (or evolutionary tree),
a mixture tree created from ancestral mixture models involves the inferred evolutionary
relationships among various biological species. Moreover, it contains the information
of time when the species mutates. The tree comparison metric, an essential issue in
bioinformatics, is used to measure the similarity between trees. Since the approach to
the comparison between two mixture trees is still unknown, the authors proposed a new
metric to measure the similarity of two mixture trees and designed efficient algorithms for
computing it.

In [3], the authors proposed graph models and algorithms for social network analysis.
In particular, they considered the phenomenon occurring in many political campaigns
where social influence is used in order to convince voters to support/oppose a specific
candidate/party. In election control via the social influence problem, an attacker tries
to find a set of limited influencers to start disseminating a political message in a social
network of voters. A voter changes their opinion when they receive and accept the
message. In constructive case, the goal is to maximize the number of votes/winners of a
target candidate/party, while in the destructive case, the attacker tries to minimize them.
Recent works considered the problem in different models and presented some hardness
and approximation results. In that paper, the authors considered multi-winner election
control through social influence on different graph structures and diffusion models, and
the goal was to maximize/minimize the number of winners in our target party. They
showed that the problem is hard to approximate when voters’ connections form a graph,
and the diffusion model is the linear threshold model. They also proved the same result
considering an arborescence under independent cascade model. Moreover, they presented
a dynamic programming algorithm for the cases that the voting system is a variation of
straight-party voting and voters form a tree.

In [4], the authors considered congestion games, a well-known class of noncooperative
games that have the capability to model several interesting competitive scenarios while
maintaining nice properties. In these games, there is a set of players sharing a set of
resources. Each resource has an associated cost function, which depends on the number of
players using it (the so-called congestion). Players aim to choose subsets of resources to
minimize the sum of resource costs. In particular, the authors introduced multidimensional
congestion games, that is, congestion games for which the set of players is partitioned
into d + 1 clusters C0, C1, . . . , Cd. Players in C0 have full information about all of the other
participants in the game, while players in Ci, for any 1 ≤ i ≤ d, have full information
only about the members of C0 ∪ Ci and are unaware of the others. This model has at
least two interesting applications: (i) it is a special case of graphical congestion games
induced by an undirected social knowledge graph with independence number equal to d,
and (ii) it represents scenarios in which players have a type and the level of competition
they experience on a resource depends on their type and on the types of the other players
using it. The authors focused on the case in which the cost function associated with each
resource is affine and bound to the price of anarchy and stability as a function of d with
respect to two meaningful social cost functions and for both weighted and unweighted
players. They also provided refined bounds for the special case of d = 2 in the presence of
unweighted players.

The remaining two papers addressed typical problems in algorithmic graph theory.
In [5], the authors studied the maximum-clique independence problem and some variations
of the clique transversal problem such as the {k}-clique, maximum-clique, minus clique,
signed clique, and k-fold clique transversal problems from algorithmic aspects for k-trees,
suns, planar graphs, doubly chordal graphs, clique perfect graphs, total graphs, split
graphs, line graphs, and dually chordal graphs. They gave equations to compute the
{k}-clique, minus clique, signed clique, and k-fold clique transversal numbers for suns and

2

Algorithms 2021, 14, 150

showed that the {k}-clique transversal problem is polynomial-time solvable for graphs
in which the clique transversal numbers equal their clique independence numbers. They
also showed the relationship between the signed and generalization clique problems and
presented NP-completeness results for the considered problems on k-trees with unbounded
k, planar graphs, doubly chordal graphs, total graphs, split graphs, line graphs, and dually
chordal graphs.

Finally, in [6], the class of k-distance-hereditary graphs was studied. The considered
graphs have nice properties for which the distance in each connected induced subgraph is at
most k times the distance in the whole graph. The defined graphs represent a generalization
of the well-known distance-hereditary graphs, which actually correspond to 1-distance-
hereditary graphs. This paper provides characterizations for the class of all k-distance-
hereditary graphs such that k < 2. The new characterizations are given in terms of
both forbidden subgraphs and cycle-chord properties. Such results also lead to devising
a polynomial-time recognition algorithm for this type of graph that, according to the
provided characterizations, simply detects the presence of quasi-holes in any given graph.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The guest editors thank all of the authors who submitted their work to this
Special Issue, the reviewers for their constructive comments, and the editorial staff for their assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Angelini, P.; Eades, P.; Hong, S.H.; Klein, K.; Kobourov, S.; Liotta, G.; Navarra, A.; Tappini, A. Graph Planarity by Replacing

Cliques with Paths. Algorithms 2020, 13, 194. [CrossRef]
2. Juan, J.S.T.; Chen, Y.C.; Lin, C.H.; Chen, S.C. Efficient Approaches to the Mixture Distance Problem. Algorithms 2020, 13, 314.

[CrossRef]
3. Abouei Mehrizi, M.; D’Angelo, G. Multi-Winner Election Control via Social Influence: Hardness and Algorithms for Restricted

Cases. Algorithms 2020, 13, 251. [CrossRef]
4. Bilò, V.; Flammini, M.; Gallotti, V.; Vinci, C. On Multidimensional Congestion Games. Algorithms 2020, 13, 261. [CrossRef]
5. Lee, C.M. Algorithmic Aspects of Some Variations of Clique Transversal and Clique Independent Sets on Graphs. Algorithms

2021, 14, 22. [CrossRef]
6. Cicerone, S. A Quasi-Hole Detection Algorithm for Recognizing k-Distance-Hereditary Graphs, with k < 2. Algorithms 2021,

14, 105. [CrossRef]

3

algorithms

Article

Graph Planarity by Replacing Cliques with Paths †

Patrizio Angelini 1 , Peter Eades 2, Seok-Hee Hong 2, Karsten Klein 3, Stephen Kobourov 4,
Giuseppe Liotta 5, Alfredo Navarra 6,* and Alessandra Tappini 5

1 School of Computer Science, John Cabot University, 00165 Rome, Italy; pangelini@johncabot.edu
2 School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia;

peter.edas@sydney.edu.au (P.E.); seokhee.hong@usyd.edu.au (S.-H.H.)
3 Department of Computer Science, University of Konstanz, 78464 Konstanz, Germany;

karsten.klein@uni-konstanz.de
4 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA; kobourov@cs.arizona.edu
5 Department of Engineering, University of Perugia, 06123 Perugia, Italy; giuseppe.liotta@unipg.it (G.L.);

alessandra.tappini@unipg.it (A.T.)
6 Department of Mathematics and Computer Science, University of Perugia, 06123 Perugia, Italy
* Correspondence: alfredo.navarra@unipg.it; Tel.: +39-075-585-5046
† This paper is an extended version of our paper published in proceedings of the 26th International

Symposium on Graph Drawing and Network Visualization (GD), Barcelona, Spain, 26–28 September 2018.
The work began at the Bertinoro Workshop on Graph Drawing (BWGD), Bertinoro, Italy, 4–9 March 2018.

Received: 3 July 2020; Accepted: 11 August 2020; Published: 13 August 2020
����������
�������

Abstract: This paper introduces and studies the following beyond-planarity problem, which we call
h-CLIQUE2PATH PLANARITY. Let G be a simple topological graph whose vertices are partitioned
into subsets of size at most h, each inducing a clique. h-CLIQUE2PATH PLANARITY asks whether
it is possible to obtain a planar subgraph of G by removing edges from each clique so that the
subgraph induced by each subset is a path. We investigate the complexity of this problem in relation
to k-planarity. In particular, we prove that h-CLIQUE2PATH PLANARITY is NP-complete even when
h = 4 and G is a simple 3-plane graph, while it can be solved in linear time when G is a simple
1-plane graph, for any value of h. Our results contribute to the growing fields of hybrid planarity and
of graph drawing beyond planarity.

Keywords: planar graphs; k-planarity; NP-hardness; polynomial time reduction; cliques; paths

1. Introduction

A typical problem concerning the visual analysis of real-world networks refers to the creation of
occlusions and hairball-like structures in dense subnetworks when node-link diagrams are generated by
standard layout algorithms, e.g., force-directed methods. On the other hand, different representations,
such as adjacency matrices, are well suited for dense graphs but make neighbor identification and
path-tracing more difficult [1,2]. Hybrid graph representations combine different visualization metaphors
in order to exploit their strengths and overcome their drawbacks.

The NodeTrix model [3] represents a first example of hybrid representation. It combines node-link
diagrams with adjacency-matrix representations of the denser subgraphs [3–6]. Inspired by NodeTrix,
other hybrid representation models were recently introduced [7–9]. The ChordLink model [7] embeds
chord diagrams, used for the visualization of dense subgraphs (clusters), into a node-link diagram.
In a (k, p) representation [8], each cluster contains at most k vertices and each vertex can occur at most p
times along the boundary of the cluster. In the intersection-link representations [9] model, vertices are
geometric objects and edges are either intersections between objects (intersection-edges) or crossing-free
Jordan arcs attaching at their boundary (link-edges). Different types of objects determine different
intersection-link representations.

5

Algorithms 2020, 13, 194

Clique-planar drawings are defined in [9] as intersection-link representations in which the objects
are isothetic rectangles, and the partition into intersection- and link-edges is given as a part of the input,
so that the graph induced by the intersection-edges is composed of a set of vertex-disjoint cliques.
The corresponding recognition problem, called CLIQUE-PLANARITY, has been proved NP-complete in
general and polynomial-time solvable in restricted cases, for example when the rectangle representing
each vertex is given as a part of the input, or when the cliques are arranged on levels according to a
hierarchy. In [9], it is also proven that, if a graph is clique-planar, then it admits an intersection-link
representation in which all vertices in a same cluster are isothetic unit squares whose upper-left corners
are aligned along a line of slope one (see Figure 1a,b).

v1

v3
v2

v4

v5

v6

v7

(a)

v3

v2
v1 v4

v5
v6

v7

(b)

v4v1

v2

v3

v5

v6

v7

(c)

Figure 1. (a) A non-planar graph G. Cliques are highlighted with bold edges. (b) A clique-planar
drawing of G. (c) Replacing each clique by a path spanning its vertices. Note that, different from (a),
in (c), the first vertex and the last vertex of each path have only one place to connect to edges, while the
interior vertices have two places: this is what makes the problem non-trivial.

Therefore, we can reformulate the CLIQUE-PLANARITY problem in the terminology of
beyond-planarity [10,11] as follows. Given a graph G = (V, E) and a partition of its vertex set V
into subsets V1, . . . , Vm such that the subgraph of G induced by each subset Vi is a clique, the goal
is to compute a planar subgraph G′ = (V, E′) of G by replacing the clique induced by Vi, for each
i = 1, . . . , m, with a path spanning the vertices of Vi (see Figure 1c).

In this paper, we introduce and study a problem called h-CLIQUE2PATH PLANARITY (for short,
h-C2PP), that is a restricted version of CLIQUE-PLANARITY in which the input graph comes with a
given embedding and each clique has size at most h. Preliminary results have been presented in [12].

6

Algorithms 2020, 13, 194

1.1. Our Results

A graph G is planar if it admits an embedding in the plane where no two edges cross;
this embedding is a planar embedding of G. A planar graph with an associated planar embedding is
said to be an embedded planar graph, or a plane graph.

In the version of h-CLIQUE2PATH PLANARITY that we study, the input graph G is a simple
topological graph. A topological graph is embedded in the plane so that each edge is a Jordan arc
connecting its end-vertices. A topological graph is simple if a Jordan arc does not pass through any
vertex, and does not intersect any arc more than once (either with a proper crossing or sharing a
common end-vertex); finally, no three arcs mutually cross at the same point.

Our main goal is to investigate the complexity of h-C2PP in relation to the well-studied class of
k-planar graphs, i.e., those that admit a drawing in which each edge has at most k crossings [9,10,13,14].
With a slight abuse of notation, we use the term embedding also for non-planar graphs, where we
interpret each crossings as a dummy vertex. In particular, a k-planar graph together with a k-planar
embedding is a k-plane graph.

A geometric graph is drawn in the plane so that each edge is a straight line segment. The version
of h-C2PP in which the input graph G is a geometric graph has been recently studied by
Kindermann et al. [15], who called it the partition spanning forest problem. They proved that 4-C2PP for
geometric graphs is NP-complete, which immediately implies the NP-completeness of 4-C2PP for
simple topological graphs.

We strengthen this result by proving that 4-C2PP is NP-complete even for simple topological
3-plane graphs. On the positive side, we prove that the h-C2PP problem for simple topological 1-plane
graphs can be solved in linear time for any value of h. We finally remark that the 2-SAT formulation
used in [15] to solve 3-C2PP for geometric graphs can be easily extended to solve 3-C2PP for any
simple topological graph.

1.2. Outline

In Section 2, we further investigate the relationship between h-C2PP and the partition spanning
forest problem, that is the problem studied by Kindermann et al. [15]. In Section 3, we prove the
NP-completeness of 4-C2PP for simple topological 3-plane graphs. In Section 4, we show that the
h-C2PP problem for simple topological 1-plane graphs is linear-time solvable for any value of h.
Finally, in Section 5, we provide challenging open problems.

2. Relationship between h-CLIQUE2PAH PLANARITY and the Partition Spanning Forest Problem

The input of the problem studied by Kindermann et al. [15] is a set of colored points in the plane,
and the goal is to decide whether there exist straight-line spanning trees, one for each same-colored
point subset, that do not cross each other. Since edges are straight-line, their drawings are determined
by the positions of the points, and hence each same-colored point subset can, in fact, be seen as a
straight-line drawing of a clique, from which edges have to be removed so that each clique becomes a
tree and the drawing becomes planar.

The authors proved NP-completeness for the case in which the spanning tree is a path, even when
there are at most four vertices with the same color. This result implies that 4-C2PP for geometric
graphs is NP-complete. On the other hand, they provided a linear-time algorithm when there exist at
most three vertices with the same color, which then extends to 3-C2PP for geometric graphs.

Although not explicitly mentioned in [15], the drawings produced by the reduction used to prove
the NP-completeness of 4-C2PP for geometric graphs are 4-planar. We now provide some details
about this reduction.

The authors of [15] performed a polynomial-time reduction from PLANAR 3-SATISFIABILITY.
The variable gadget (shown in the yellow region of Figure 1) consists of a triangle X whose edges
are x, xl , and xr. Edge x is crossing-free and the truth value of X is encoded according to which edge

7

Algorithms 2020, 13, 194

among xl and xr is crossing-free. Let T1 and T2 be two triangles whose vertices are u, y, z and v, y, z,
respectively. They define two faces f1 and f2, respectively. Concatenate a triangle T3 defined as in the
variable gadget with f1 by inserting its crossing-free edge (y, z) inside f1 and by crossing the other
two edges of T3 with (u, y) and (u, z), respectively. Now, concatenate another triangle T4 defined as
in the variable gadget with f2. If the crossing-free edge of T4 is inside f2, the gadget composed by
T1, T2, T3 and T4 is the wire gadget; if the crossing-free edge of T4 is outside f2, the gadget composed
by T1, T2, T3 and T4 is the inverter gadget. The splitting gadget consists of three variable gadgets X, Y
and Z, and two 4-cliques, concatenated as illustrated inside the blue region in Figure 2, where the
yellow region contains a variable gadget, the orange region contains a wire gadget and the violet
region contains an inverter gadget. As shown in Figure 2, multiple splittings of a variable X lead to an
instance where a triangle has two edges with four crossings.

Y = X

Z = X

X

X

y

z

uv

Figure 2. A drawing produced by the reduction in [15]. The yellow region contains a variable gadget,
the blue region contains a splitting gadget, the orange region contains a wire gadget, and the violet
region contains an inverter gadget.

The NP-completeness of 4-C2PP for geometric graphs implies the NP-completeness of 4-C2PP
for simple topological 4-plane graphs. In what follows, we further explore the complexity of 4-C2PP
in relation to k-planarity by considering values of k < 4. In particular, we prove that the problem
remains NP-complete for k = 3, while it becomes linear-time solvable for k = 1.

3. NP-Completeness for Simple Topological 3-Plane Graphs

In this section, we prove that the 4-C2PP problem remains NP-complete even when the input is a
simple topological 3-plane graph.

Since the planarity of a simple topological graph can be checked in linear time, the h-C2PP
problem for simple topological k-plane graphs belongs to NP for all values of h and k.

In the following, we prove the NP-hardness by means of a reduction from the PLANAR

POSITIVE 1-IN-3-SAT problem. In this version of the SATISFIABILITY problem, which is known
to be NP-complete [16], each variable appears only with its positive literal, each clause has at most
three variables, the graph obtained by connecting each variable with all the clauses it belongs to is
planar, and the goal is to find a truth assignment in such a way that, for each clause, exactly one of
its three variables is set to True. Our reduction is technically different from the one presented in [15],
which reduces from PLANAR 3-SATISFIABILITY.

8

Algorithms 2020, 13, 194

For each 3-clique we use in the reduction, there is a base edge, which is crossing-free in the
constructed topological graph, while the other two edges always have crossings. We call left (right)
the edge that follows (precedes) the base edge in the clockwise order of the edges along the 3-clique.
In addition, if an edge e of a clique does not belong to the path replacing the clique, we say that e is
removed, and that all the crossings involving e in G are resolved.

For each variable x, let nx be the number of clauses containing x. We construct a simple topological
graph gadget Gx for x, called variable gadget (see the left dotted box in Figure 3a). This gadget contains
2nx 3-cliques tx

1 , . . . , tx
2nx

, forming a ring, so that the left (right) edge of tx
i only crosses the left (right)

edge of tx
i−1 and of tx

i+1, for each i = 1, . . . , 2nx. In addition, gadget Gx contains nx additional 3-cliques,
called τx

1 , . . . , τx
nx , so that the right edge of τx

j crosses the left edge of tx
2j−1 and the right edge of tx

2j,
while the left edge of τx

j crosses the left edge of tx
2j and the right edge of tx

2j−1.

tx1

tx2

tx3

tx4

tx5

tx6 GcGx

τx1

τx2

τx3

vx
vz

vy

v

(a)

vx

vz

vy

v

(b)

vx

vz

vy

v

(c)

Figure 3. (a) The variable gadget Gx for a variable x is represented in the left dotted box. The clause
gadget for a clause c is represented in the right dotted box. The chain connecting Gx to Gc is represented
with lighter colors. The removed edges are dashed red. (b) All variables are False. (c) At least two
variables are True.

Then, for each clause c, we construct a simple topological graph gadget Gc, called clause gadget,
which is composed of a planar drawing of a 4-clique, together with three 3-cliques whose left and right
edges cross the edges of the 4-clique as in the right dotted box in Figure 3a. In particular, observe that
the right (left) edge of each 3-clique crosses exactly one (two) edges of the 4-clique.

Every 3-clique in Gc corresponds to one of the three variables of c. Let x be one of such variables;
assuming that c is the jth clause that contains x according to the order of the clauses in the given

9

Algorithms 2020, 13, 194

formula, we connect the 3-clique corresponding to x in the clause gadget Gc to the 3-clique τx
j of the

variable gadget Gx of x by a chain of 3-cliques of odd length, as in Figure 3a.
By construction, the resulting simple topological graph G contains cliques of size at most 4,

namely one per clause, and hence is a valid instance of 4-C2PP. In addition, by collapsing each
variable and clause gadget into a vertex, and each chain connecting them into an edge, the resulting
graph G′ preserves the planarity of the PLANAR POSITIVE 1-IN-3-SAT instance. This implies that
the only crossings for each edge of G are with other edges in the gadget it belongs to and, possibly,
with the edges of the 3-cliques of a chain. Hence, G is 3-planar. Namely, each base edge is crossing-free;
each internal edge of a 4-clique has one crossing; each external edge of a 4-clique has two crossings,
and the same is true for the left and right edges of each 3-clique in a chain; finally, the left and right
edges of each 3-clique in either a variable or a clause gadget have three crossings.

In the following, we prove the equivalence between the original instance of PLANAR POSITIVE

1-IN-3-SAT and the constructed instance G of 4-C2PP. For this, we first give a lemma stating that
variable gadgets correctly represent the behavior of a variable; indeed, they can assume one out of two
possible states in any solution for 4-C2PP.

Lemma 1. Let Gx be the variable gadget for a variable x in G. Then, in any solution for 4-C2PP, either the left
edge of each 3-clique τx

j , with j = 1, . . . , nx, is removed, or the right edge of each 3-clique τx
j is removed.

Proof. We first consider the possible removals of edges in tx
1 , . . . , tx

2nx
and claim that, in any solution

for 4-C2PP, one of the two following conditions are satisfied: (i) for each 3-clique tx
i , if i is odd, then the

left edge is removed, while if i is even the right edge is removed; and (ii) for each 3-clique tx
i , if i is odd,

then the right edge is removed, while if i is even the left edge is removed. Note that this claim is
sufficient to prove the statement; in fact, if Condition (i) holds (as in Figure 3a), then the right edge of
each 3-clique τx

j must be removed, in order to resolve its crossings with the right edge of tx
2j−1 and

with the left edge of tx
2j, while if Condition (ii) holds, then the left edge of each 3-clique τx

j must be
removed, in order to resolve its crossings with the left edge of tx

2j−1 and with the right edge of tx
2j.

To prove the claim, we consider the possible removals of edges of tx
1 . Suppose first that the base

edge of tx
1 is removed. Thus, the crossings between the left (right) edge of tx

1 and the left (right) edge of
tx
2 are not resolved; this implies that they have to be resolved by removing both the left and the right

edge of tx
2 , which is not possible. If the right edge of tx

1 is removed, then the crossing between the right
edges of tx

1 and tx
2 is resolved, while the one between their left edges is not. Hence, the left edge of tx

2
must be removed. By iterating this argument we conclude that the right (left) edge of each tx

i with i
odd (even) is removed. Symmetrically, we can prove that, if the left edge of tx

1 is removed, then the left
(right) edge of each tx

i with i odd (even) is removed. This concludes the proof of the lemma.

Given Lemma 1, we can associate the truth value of a variable x with the fact that either the left or
the right edge of each 3-clique τx

j in the variable gadget Gx of G is removed. We use this association to
prove the following theorem.

Theorem 1. The 4-C2PP problem is NP-complete, even for 3-plane graphs.

Proof. Given an instance of PLANAR POSITIVE 1-IN-3-SAT, we construct an instance G of 4-C2PP in
linear time as described above. We prove their equivalence.

Suppose first that there exists a solution for 4-C2PP, i.e., a set of edges of G whose removal
resolves all crossings. By Lemma 1, for each variable x either the left or the right edge of each 3-clique
τx

j in the variable gadget Gx is removed. If the right edge is removed, we assign value True to
variable x, otherwise we assign False.

To prove that this assignment results in a solution for the given formula of PLANAR POSITIVE

1-IN-3-SAT, we first show that, for each clause c that contains variable x, the right (left) edge of the
3-clique tc(x) of the clause gadget Gc corresponding to x is removed if and only if the right (left) edge
of each 3-clique τx

j is removed. Namely, consider the chain that connects tc(x) with a 3-clique τx
j of Gx.

Note that, for any two consecutive 3-cliques along the chain, the left edge of one 3-clique and the right

10

Algorithms 2020, 13, 194

edge of the other 3-clique must be removed. Since the chain has odd length, the right (left) edge of
tc(x) is removed if and only if the right (left) edge of τx

j is removed, that is, the truth value of Gx is
transferred to the 3-clique tc(x) of Gc.

Finally, consider any clause c, composed of variables x, y, and z. Let tc(x), tc(y), and tc(z) be
the three 3-cliques of the clause gadget Gc of c corresponding to x, y, and z, respectively; also, let v
be the central vertex of the 4-clique of Gc, and let vx, vy, and vz be the vertices of this 4-clique lying
inside tc(x), tc(y), and tc(z), respectively; see Figure 3. We assume without loss of generality that
vx, vy, and vz appear in this clockwise order around v. As discussed above, the left or the right edge of
tc(x) (of tc(y); of tc(z)) is removed depending on whether the left or the right edge of each τx

j (of each

τ
y
j ; of each τz

j) is removed. We show that, for exactly one of tc(x), tc(y), and tc(z) the right edge is
removed, which then implies that exactly one of x, y, and z is True, and hence the instance of PLANAR

POSITIVE 1-IN-3-SAT is positive.
Suppose first that for each of tc(x), tc(y), and tc(z) the left edge is removed (and hence all the

three variables are set to False), as in Figure 3b. This implies that the crossings between the right edges
of the three 3-cliques and the three edges of triangle (vx, vy, vz) are not resolved. Hence, all the edges
of this triangle should be removed, which is not possible since the remaining edges of the 4-clique do
not form a path.

Suppose now that for at least two of tc(x), tc(y), and tc(z), say tc(x) and tc(y), the right edge is
removed (and hence x and y are set to True), as in Figure 3c. Since each edge of triangle (vx, vy, v) is
crossed by the left edge of one of tc(x) and tc(y), by construction, these crossings are not resolved.
Hence, all the edges of (vx, vy, v) should be removed, which is not possible since the remaining edges
of the 4-clique do not form a path of length 4.

Suppose finally that for exactly one of tc(x), tc(y), and tc(z), say tc(x), the right edge is removed
(and hence x is the only one to be set to True), as in Figure 3a. Then, by removing edges (v, vx), (vx, vy),
and (vy, vz), all the crossings are resolved and the remaining edges of the 4-clique form a path of
length 4, as desired.

The proof of the other direction is analogous. Namely, suppose that there exists a truth assignment
that assigns a True value to exactly one variable in each clause. Then, for each variable x that is set to
True (to False), we remove the right (left) edge of each 3-clique tx

i , with i = 2j− 1 and j = 1, . . . , nx,
we remove the left (right) edge of each 3-clique tx

i , with i = 2j and j = 1, . . . , nx, and we remove
the right (left) edge of each 3-clique τx

j , with j = 1, . . . , nx. Then, we remove the left or right edge
of each 3-clique in a chain so that for any two consecutive 3-cliques, one of them has been removed
the left edge and the other one the right edge. This ensures that, for each clause c, the right edge of
exactly one of the three 3-cliques that belong to the clause gadget Gc has been removed, say the one
corresponding to variable x, while for the other two 3-cliques the left edge has been removed. Hence,
we can resolve all crossings by removing edges (v, vx), (vx, vy), and (vy, vz), as discussed above (see
Figure 3a). The statement follows.

4. h-CLIQUE2PAH PLANARITY and 1-Planarity

In this section, we show that, when the given simple topological graph is 1-plane, h-C2PP can be
solved in linear time in the size of the input, for any h. We consider all possible simple topological
1-plane cliques and show that the problem can be solved using only local tests, each requiring constant
time. Note that we can restrict to the case h ≤ 6, since K6 is the largest 1-planar complete graph [11].

Simple topological 1-plane graphs containing cliques with at most four vertices that cross each
other can be constructed, but it is easy to enumerate all these graphs (up to symmetry) (see Figure 4).
Note that such graphs involve at most two cliques and that, if K4 has a crossing, combining it with any
other clique would violate 1-planarity (see Figure 4a,b). The next lemma accounts for cliques with five
or six vertices.

11

Algorithms 2020, 13, 194

Lemma 2. There exists no 1-plane simple topological graph that contains two cliques, one of which with at least
five vertices, whose edges cross each other.

Proof. Consider a simple 1-plane graph G that contains two disjoint cliques K and H, with five and
three vertices, respectively. Let K′ be the simple plane topological graph obtained from K by replacing
each crossing with a dummy vertex. By 1-planarity, every face of K′ is a triangle and contains at most
one dummy vertex. Suppose, for a contradiction, that there exists a crossing between an edge of K and
an edge of H in G. Then, there would exist at least a vertex v of H inside a face f of K′ and at least
one outside f . Since H is a triangle, there must have been two edges that connect vertices inside f to
vertices outside f . If f contains one dummy vertex, then two of its edges are not crossed by edges of H,
as otherwise G would not be 1-planar. Hence, both the edges that connect vertices inside f to vertices
outside f cross the other edge of f , a contradiction. If f contains no dummy vertices, then each edge of
f admits one crossing. Let u be the vertex of f that is incident to the two edges crossed by edges of H.
Since u has degree 4 in K, it is not possible to draw the third edge of H so that it crosses only one edge
of K, which completes the proof.

(a) (b) (c) (d) (e)

(f) (g)

Figure 4. All possible 1-plane graphs involving one or more cliques of type K3 and K4 admitting
crossings edges. (a) and (b): two representations of a clique of type K4; (c) and (d): two representations
of two intersecting cliques of type K3; (e) and (f): two representations of a clique of type K3 intersecting
a clique of type K4; (g): two intersecting cliques of type K4.

Combining the previous discussion with Lemma 2, we conclude that, for each subgraph of the
input graph G that consists either of a combination of at most two cliques of size at most 4, as in Figure 4,
or of a single clique not crossing any other clique, the crossings involving this subgraph (possibly
with other edges not belonging to cliques) can only be resolved by removing its edges, which can be
checked in constant time. In the next theorem, n denotes the number of vertices.

Theorem 2. h-C2PP is O(n)-time solvable for simple topological 1-plane graphs.

5. Conclusions and Open Problems

We introduce and study the h-CLIQUE2PATH PLANARITY problem for simple topological k-plane
graphs; we proved that this problem is NP-complete for h = 4 and k = 3, while it is solvable in linear
time for every value of h, when k = 1. The natural open question is: What is the complexity for simple
topological 2-plane graphs?

12

Algorithms 2020, 13, 194

Kindermann et al. [15] recently proved that problem 4-C2PP is NP-complete for geometric
4-plane graphs. It would be interesting to study this geometric version of the problem for 2-plane and
3-plane graphs.

Recall that the version of the h-C2PP problem when the input is an n-vertex abstract graph and
h ∈ O(n) is NP-complete, since it is equivalent to CLIQUE PLANARITY [9]. What if the input is an
abstract graph and h is bounded by a constant or sublinear function? We remark that for h = 3 this
version of the problem is equivalent to CLUSTERED PLANARITY, when restricted to instances in which
the graph induced by each cluster consists of three isolated vertices.

Finally, another intriguing research direction is to study the h-CLIQUE2PATH PLANARITY problem
in the scenario in which the input graph comes without a clustering of its vertex set, but dense
portions of the graph are found by an algorithm. While the problem of finding cliques in a graph is
NP-complete [17], one could identify dense subgraphs, for example k-cores, in polynomial time [18].

Author Contributions: Conceptualization, All authors; Methodology, All authors; Software, All authors;
Validation, All authors; Formal analysis, All authors; Investigation, All authors; Resources, All authors; Data
curation, All authors; Writing—original draft preparation, All authors; Writing—review and editing, All authors;
Visualization, All authors; Supervision, All authors; Project administration, All authors; Funding acquisition, All
authors; All authors have read and agreed to the published version of the manuscript.

Funding: The research was partially supported by: (i) MIUR-DAAD Joint Mobility Program n.57397196 (P.A.);
(ii) ARC (Australian Research Council) DP project (S.H.); (iii) Young Scholar Fund/AFF - Univ. Konstanz (K.K.);
(iv) NSF grants CCF-1740858 - CCF-1712119 (S.K.); (v) MIUR grant 20174LF3T8 “AHeAD: efficient Algorithms for
HArnessing networked Data” (G.L., A.T.); (vi) Dipartimento di Ingegneria dell’Università degli Studi di Perugia,
grant RICBA19FM: “Modelli, algoritmi e sistemi per la visualizzazione di grafi e reti” (G.L., A.T.); and (vii) projects
“Algorithms and Emergency”, “Robot-based computing systems”, “Distributed Computing by mobile entities”
funded by Fondo Ricerca di Base 2017, 2018, 2019, respectively, University of Perugia (A.N.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghoniem, M.; Fekete, J.; Castagliola, P. On the readability of graphs using node-link and matrix-based
representations: A controlled experiment and statistical analysis. Inf. Vis. 2005, 4, 114–135. [CrossRef]

2. Okoe, M.; Jianu, R.; Kobourov, S.G. Node-Link or Adjacency Matrices: Old Question, New Insights.
IEEE Trans. Vis. Comput. Graph. 2019, 25, 2940–2952. [CrossRef] [PubMed]

3. Henry, N.; Fekete, J.; McGuffin, M.J. NodeTrix: A Hybrid Visualization of Social Networks. IEEE Trans. Vis.
Comput. Graph. 2007, 13, 1302–1309. [CrossRef] [PubMed]

4. Da Lozzo, G.; Di Battista, G.; Frati, F.; Patrignani, M. Computing NodeTrix Representations of Clustered
Graphs. J. Graph Algorithms Appl. 2018, 22, 139–176. [CrossRef]

5. Di Giacomo, E.; Liotta, G.; Patrignani, M.; Rutter, I.; Tappini, A. NodeTrix Planarity Testing with Small
Clusters. Algorithmica 2019, 81, 3464–3493. [CrossRef]

6. Yang, X.; Shi, L.; Daianu, M., Tong, H.; Liu, Q.; Thompson, P. Blockwise Human Brain Network Visual
Comparison Using NodeTrix Representation. IEEE Trans. Vis. Comput. Graph. 2017, 23, 181–190. [CrossRef]
[PubMed]

7. Angori, L.; Didimo, W.; Montecchiani, F.; Pagliuca, D.; Tappini, A. ChordLink: A New Hybrid Visualization
Model. In Proceedings of the Graph Drawing and Network Visualization—27th International Symposium,
GD, Prague, Czech Republic, 17–20 September 2019; Volume 11904, pp. 276–290. [CrossRef]

8. Di Giacomo, E.; Lenhart, W.J.; Liotta, G.; Randolph, T.W.; Tappini, A. (k, p)-Planarity: A Relaxation of Hybrid
Planarity. In Proceedings of the WALCOM: Algorithms and Computation—13th International Conference,
Guwahati, India, 27 February–2 March 2019; pp. 148–159. [CrossRef]

9. Angelini, P.; Da Lozzo, G.; Di Battista, G.; Frati, F.; Patrignani, M.; Rutter, I. Intersection-Link Representations
of Graphs. J. Graph Algorithms Appl. 2017, 21, 731–755. [CrossRef]

10. Didimo, W.; Liotta, G.; Montecchiani, F. A Survey on Graph Drawing Beyond Planarity. ACM Comput. Surv.
2019, 52, 4:1–4:37. [CrossRef]

11. Kobourov, S.G.; Liotta, G.; Montecchiani, F. An annotated bibliography on 1-planarity. Comput. Sci. Rev.
2017, 25, 49–67. [CrossRef]

13

Algorithms 2020, 13, 194

12. Angelini, P.; Eades, P.; Hong, S.; Klein, K.; Kobourov, S.G.; Liotta, G.; Navarra, A.; Tappini, A. Turning
Cliques into Paths to Achieve Planarity. In Proceedings of the 26th International Symposium on Graph
Drawing and Network Visualization (GD), Barcelona, Spain, 26–28 September 2018; Volume 11282, pp. 67–74.

13. Bekos, M.A.; Kaufmann, M.; Raftopoulou, C.N. On Optimal 2- and 3-Planar Graphs. In Proceedings of the
33rd International Symposium on Computational Geometry, SoCG 2017, Brisbane, Australia, 4–7 July 2017;
pp. 16:1–16:16. [CrossRef]

14. Pach, J.; Tóth, G. Graphs Drawn with Few Crossings per Edge. Combinatorica 1997, 17, 427–439. [CrossRef]
15. Kindermann, P.; Klemz, B.; Rutter, I.; Schnider, P.; Schulz, A. The Partition Spanning Forest Problem.

In Proceedings of the 34th European Workshop on Computational Geometry (EuroCG’18), Franconia,
Germany, 21–23 March 2018; p. 53.

16. Mulzer, W.; Rote, G. Minimum-weight triangulation is NP-hard. J. ACM 2008, 55, 1–29. [CrossRef]
17. Karp, R.M. Reducibility Among Combinatorial Problems. In Proceedings of the symposium on the

Complexity of Computer Computations, New York, NY, USA, 20–22 March 1972; pp. 85–103. [CrossRef]
18. Batagelj, V.; Zaversnik, M. Fast algorithms for determining (generalized) core groups in social networks.

Adv. Data Anal. Classif. 2011, 5, 129–145. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

14

algorithms

Article

Efficient Approaches to the Mixture Distance Problem

Justie Su-Tzu Juan 1, Yi-Ching Chen 2, Chen-Hui Lin 1 and Shu-Chuan Chen 3,*
1 Department of Computer Science and Information Engineering, National Chi Nan University,

Puli, Nantou 54561, Taiwan; jsjuan@ncnu.edu.tw (J.S.-T.J.); tedlinct@gmail.com (C.-H.L.)
2 Department of Computer Science and Information Engineering, National Taiwan University,

Taipei 10617, Taiwan; d94010@csie.ntu.edu.tw
3 Department of Mathematics and Statistics, Idaho State University, Pocatello, ID 83209, USA
* Correspondence: scchen@isu.edu

Received: 31 August 2020; Accepted: 23 November 2020; Published: 28 November 2020
����������
�������

Abstract: The ancestral mixture model, an important model building a hierarchical tree from high
dimensional binary sequences, was proposed by Chen and Lindsay in 2006. As a phylogenetic tree
(or evolutionary tree), a mixture tree created from ancestral mixture models, involves the inferred
evolutionary relationships among various biological species. Moreover, it contains the information
of time when the species mutates. The tree comparison metric, an essential issue in bioinformatics,
is used to measure the similarity between trees. To our knowledge, however, the approach to the
comparison between two mixture trees is still unknown. In this paper, we propose a new metric
named the mixture distance metric, to measure the similarity of two mixture trees. It uniquely
considers the factor of evolutionary times between trees. If we convert the mixture tree that contains
the information of mutation time of each internal node into a weighted tree, the mixture distance
metric is very close to the weighted path difference distance metric. Since the converted mixture tree
forms a special weighted tree, we were able to design a more efficient algorithm to calculate this
new metric. Therefore, we developed two algorithms to compute the mixture distance between two
mixture trees. One requires O(n2) and the other requires O(nh1h2) computational time with O(n)
preprocessing time, where n denotes the number of leaves in the two mixture trees, and h1 and h2

denote the heights of these two trees.

Keywords: phylogenetic tree; evolutionary tree; ancestral mixture model; mixture tree; mixture distance;
tree comparison

1. Introduction

Phylogeny reconstruction involves reconstructing the evolutionary relationship from biological
sequences among species. Nowadays it has become a critical issue in molecular biology and
bioinformatics. Several existing methods, such as neighbor-joining methods [1] and maximum
likelihood methods [2], have been proposed to reconstruct a phylogenetic tree. A novel and natural
method, ancestral mixture models [3], was developed by Chen and Lindsay to deal with such a
problem. The mixture tree, a hierarchical tree created from the ancestral mixture model, induces
a sieve parameter to represent the evolutionary time. Chen, Rosenberg and Lindsay (2011) then
developed MixtureTree algorithm [4], a linux based program written in C++, which employed the
ancestral mixture models to reconstruct mixture tree from DNA sequences. With the information
provided by the mixture tree, one can identify when and how a mutation event of species occurs.
An example of the mixture tree created by MixtureTree algorithm [3] is shown in Figure 1. The data
from Griffiths and Tavare (1994) [5] are a subset of the mitochondrial DNA sequences which first
appeared in Ward et al. (1991) [6]. To study the mitochondrial diversity within the Nuu-Chuah-Nulth,
an Amerindian tribe from Vancouver Island, Ward et al. (1991) [6] sequenced 360 nucleotide segments

15

Algorithms 2020, 13, 314

of the mitochondrial control region for 63 individuals from the Nuu-Chuah-Nulth. Griffiths’ and
Tavares’ subsample consisted of 55 of the 63 distinct sequences and 18 segregating sites, including
13 pyrimidines (C, T) and five purines (A, G). Each linage represents a distinct sequence—that is, there
are lineages a through n. The time scale on the tree can be represented by − log(1− 2p), where p is a
parameter, the mutation rate. The number on the tree represents the site of the lineage whereat the
mutation occurs. For example, when p = 0.01, lineages e and f merge because mutation occurs at site
5 of lineage f .

Figure 1. An example of the mixture tree [3].

Distinct methods may produce distinct trees, even though the methods adopt an identical
dataset [7]. To uncover a well-represented tree involved in evolutionary relationship among species it
is quite important to estimate how similar (or different) trees are. The tree distance between two trees
is a general measurement for the similarity of the trees.

The tree distance problem is a traditional issue in mathematics. Several metrics have been
proposed to measure the similarity between two trees, such as the partition metric (also called the
Robison–Foulds metric or RF distance for short) [8], the quartet metric [9], the nearest neighbour
interchange metric [10] and the nodal distance metric [11]. Those metrics all compare two trees by
considering the tree structure only, and do not mention any parameter in the tree. Thus, those metrics
are not suitable for computing the similarity between two mixture trees. Therefore, we propose a novel
metric named the mixture distance metric to measure the similarity of two mixture trees in this paper.
Among the above metrics, the metric from the nodal distance algorithm is similar to our proposed
metric. In 2003, John Bluis and Dong-Guk Shin [11] presented the nodal distance algorithm which is
used to measure the distances from leaves to all other leaves in a tree. The metric is defined as follows:
Distance(T1, T2) = ∑x,y∈L(T1)=L(T2)

|DT1(x, y) − DT2(x, y)|, where DTi (x, y) denotes the distance of
leaf x to leaf y in the tree Ti. The nodal distance algorithm was developed for this metric. Anyway,
using this metric to measure the distance between two mixture trees is not conformable.

For the metric of the mixture distance, the time parameter indicating when a mutation event
of species occurs plays an important role in the tree similarity, which is, however, not considered
by those previous metrics. If the weight of an edge in a mixture tree is defined as the difference
in time parameters between its two endpoints, a mixture tree can be regarded as a weighted tree.
We can design metrics to calculate the distance between two weighted trees. Some literature discusses
the distance problem between two weighted trees. For example, take the weighted RF metric [12],
geodesic distance [13] and the path difference metric [14]. However, the weight on each edge is
considered to be the number of base changes between the sequences of the species represented by
its incident vertices in these documents. Since the weights of each edge in those weighted trees may
be different, the algorithm must spend more time to calculate those distances between those two

16

Algorithms 2020, 13, 314

weighted trees. For example, although there is an linear time algorithm to compute RF distance [15],
and a randomized algorithm has been shown to approximate the RF distance with a bounded error in
sublinear time [16], the complexity of the weighted RF distance still needs O(n2). Some papers have
studied algorithms for calculating the geodesic trees distances [17–19]. The best one already known is
O(n4) [19]. Due to the characteristics of the time parameter of a mixture tree, any two edges connecting
two leaves to the same parent will have the same “weight” in a mixture tree. This helped us to design
a better metric and algorithm. We further developed two algorithms to compute the mixture distance
between two mixture trees. One requires O(n2) and the other requires O(nh1h2) computational time
with O(n) preprocessing time, where n denotes the number of leaves in these two mixture trees, and h1

and h2 denote the heights of these two trees. If we use the nodal distance algorithm with the mixture
distance metric, the time complexity will be O(n3) for binary unrooted trees. Comparisons with some
previous methods show our method performs better.

2. Mixture Distance Metric

A tree T = (V(T), E(T)) is a connected and acyclic graph with a node set V(T) and an edge set
E(T). T is a rooted tree if exactly one node of T has been designated the root. A node v ∈ V(T) is a
leaf if it has no child; otherwise, v is an internal node. A node v ∈ V(T) is called in level i, denoted by
level(v) = i, which means the number of edges on the path between the root and v is i. Let L(T)
denote a subset of node set V(T), where each member is a leaf in T and n = |L(T)|. Let height(T)
denote the height of tree T, which is max{level(v)|v ∈ L(T)}. T is a full binary tree if each node of T
either has two children or it is a leaf. A complete binary tree is a full binary tree in which every level,
except possibly the last, is completely filled, and all nodes are as far left as possible. Let h1 = height(T1),
h2 = height(T2).

For a mixture tree T, each leaf is associated with a species, and every internal node v is associated
with a mutation time mT(v) that represents the time when a mutation event occurs on the species
node. In fact, the mutation time of an internal node in a mixture tree can be regarded as the distance
between the node and any leaf of its descendants. Any two mixture tress T1 and T2 are comparable if
L(T1) = L(T2). Throughout this paper, a tree refers to a rooted full binary tree and each internal node
of the tree is associated with its mutation time, if not mentioned particularly.

Given any two nodes u, v ∈ V(T), the least common ancestor or lowest common ancestor
(abbreviated LCA) of u and v is an ancestor of both u and v with the smallest mutation time. (It is
also called the most recent common ancestor (abbreviated MRCA), or the last common ancestor
(abbreviated LCA) in biology and genealogy.) Let PT(u, v) denote the mutation time mT(w) of the LCA
w of two leaves u and v in T. The mixture distance metric, a metric for the mixture tree, is formally
defined as follows.

The mixture distance between two comparable mixture trees T1 and T2, denoted by dm(T1, T2),
is defined as the sum of difference of the mutation times with respect to the LCAs of any two leaves in
T1 and T2. That is, dm(T1, T2) = ∑u,v∈L(T1)=L(T2)

|PT1(u, v)− PT2(u, v)|.
The significance of the mixture distance metric is to measure the similarity between two

mixture trees, considering the mutation times (molecular clock) and mutation sites simultaneously.
The study sought to develop two algorithms for efficiently computing the mixture distance between
two comparable mixture trees. Before we go into the algorithms, three properties of the mixture
distance matric are demonstrated. Felsenstein [20] derived three mathematical properties—reflexivity,
symmetry and triangle inequality—required for a well-defined metric. We show that the mixture
distance is well-defined in Theorem 1.

Theorem 1. The mixture distance dm satisfies:

1. Reflexivity: for any two comparable mixture trees T1 and T2, dm(T1, T2) = 0 if and only if T1 and T2

are identical.
2. Symmetry: for any two comparable mixture trees T1 and T2, dm(T1, T2) = dm(T2, T1).

17

Algorithms 2020, 13, 314

3. Triangle inequality: for any three comparable mixture trees T1, T2 and T3, dm(T1, T2) + dm(T2, T3) ≥
dm(T1, T3).

Proof. 1. Due to T1 = T2, for any two nodes u, v ∈ L(T1) = L(T2), we have PT1(u, v) = PT2(u, v).
Therefore, dm(T1, T2) = 0 can be concluded. On the other hand, if dm(T1, T2) = 0 for any two
comparable mixture trees T1 and T2. We have PT1(u, v)− PT2(u, v) for any u, v ∈ L(T1) = L(T2) by the
definition. Then we can prove T1 = T2 by induction on the height of T1 (or T2).

2. For any two nodes u, v ∈ L(T1) = L(T2), PT1(u, v) − PT2(u, v) = −(PT2(u, v) − PT1(u, v)).
Thus, dm(T1, T2) = ∑u,v∈L(T1)=L(T2)

|PT1(u, v)− PT2(u, v)| = ∑u,v∈L(T1)=L(T2)
|PT2(u, v)− PT1(u, v)| =

dm(T2, T1).
3. The triangle inequality is always satisfied for any three nonnegative numbers a, b, c ∈ <+ ∪ 0;

that is, |a − b| + |b − c| ≥ |a − c|. Therefore, |PT1(u, v) − PT2(u, v)| + |PT2(u, v) − PT3(u, v)| ≥
|PT1(u, v)− PT3(u, v)| holds. Further, we have

∑
u,v∈L(T1)

|PT1(u, v)− PT2(u, v)|+ ∑
u,v∈L(T2)

|PT2(u, v)− PT3(u, v)|

≥ ∑
u,v∈L(T1)

|PT1(u, v)− PT3(u, v)|.

Consequently, dm(T1, T2) + dm(T2, T3) ≥ dm(T1, T3) can be concluded.

3. An O(nh1h2)-Time Algorithm

Let T1 and T2 denote two comparable mixture trees of n leaves for each tree. Note that the mixture
distance of T1 and T2 can be solved in O(n2)-time: As when given two comparable mixture trees T1 and
T2 each with n leaves, there are O(n2) pairs of leaves separately in T1 and T2. In fact, the LCA of any
pair of leaves can be found by adopting the O(1)-time algorithm with O(n)-time preprocessing [21].

In the following, another O(n2)-time algorithm, named Algorithm MIXTUREDISTANCE,
is proposed to compute the mixture distance between T1 and T2, which will help us to realize the next
O(nh1h2)-time algorithm, the main result.

3.1. Algorithm MixtureDistance

Algorithm MIXTUREDISTANCE, as shown on Algorithm 1, proceeds the nodes of T1 by
breadth-first search. For each internal node v in T1, we find out the leaves of T1 such that v is
exactly the LCA of each pair of leaves, and then compute the LCA u of the leaves in T2 which are
mapped into the found leaves of T1. Finally, the difference of the mutation times between u and v is
calculated. For convenience, we define (a, b) ∗ (c, d) = ad + bc for any two ordered pairs (a, b) and
(c, d) in this algorithm, where a, b, c and d are any four integers.

The algorithm adopts a 2-coloring method [22] on the leaves in T1 and T2 for easy implementation.
For each iteration associated with an internal node v of T1 in line 4, the leaves of the left and right
subtrees rooted by v are colored by red and green, respectively. The mapped leaves in T2 have the
same coloring as one in T1. The mixture distance between each internal node u in T2 and v is calculated
according the coloring scheme in T2 (in lines 16–17), and the coloring information of u would be
derived for the computation of its parent node (in line 18).

The coloring information of u, denoted by color(u), indicates the coloring information of the
subtree in T2 rooted by u. color(u) includes two numbers of u’s descendant leaves colored by red
(color(u)[0]) and green (color(u)[1]), respectively. color(u) is derived by the coloring information of
its two children. That is, color(u)[0] = color(uL)[0] + color(uR)[0] and color(u)[1] = color(uL)[1] +
color(uR)[1], where uL and uR separately denote the left and right children of u in T2.

18

Algorithms 2020, 13, 314

Algorithm 1: MIXTUREDISTANCE(T1, T2).
Input: Two comparable mixture trees T1 and T2, with mutation times mT1(v) (mT2(u),
respectively) for every internal node v of T1 (u of T2, respectively).

Output: The mixture distance D between T1 and T2.
1 D = 0.
2 Traverse T1 by the breadth-first search from its root and keep a list I1 of

the internal nodes in order.
3 Traverse T2 by the breadth-first search from its root and keep a list I2 of

the internal nodes in reverse order.
4 for each node v ∈ I1 do
5 In T1, color red the leaves of the left subtree rooted by v and green the

leaves of the right subtree rooted by v.
6 for each node u ∈ I2 do

// Initialize the coloring information of u’s children
7 for each child w of u in T2 do
8 if w is a leaf then
9 if w is colored by red in T1 then

10 color(w) = (1, 0).
11 else if w is colored by green in T1 then
12 color(w) = (0, 1).
13 else
14 color(w) = (0, 0).
15 Let uL and uR be the left and right children of u in T2, respectively.

// Calculate the difference of the mutation times of u and v and
sum them up for computing mixture distance

16 number(u) = color(uL) ∗ color(uR).
17 D = D + |mT1(v)−mT2(u)| × number(u).

// Calculate the coloring information of u
18 color(u) = color(uL) + color(uR).

In line 16, number(u) is achieved by the special product of the color vectors of u’s two children,
number(u) = color(uL)[0]× color(uR)[1] + color(uL)[1]× color(uR)[0], which means the number of
times that u is an LCA of a red leaf and a green leaf. We multiply the difference of their mutation times
by number(u) in line 17, for computing the mixture distance between each internal node u in T2 and v.
At the end of Algorithm MIXTUREDISTANCE, D indicates the mixture distance of T1 and T2.

Since the numbers of internal nodes in T1 and T2 (= I1 and I2) are both equal to n − 1,
two for-loops will take O(n) time, and the innermost for-loop always takes 2 (a constant) time units.
Therefore, Algorithm MIXTUREDISTANCE requires O(n2) computational time.

3.2. Modified Algorithm

After introducing Algorithm MIXTUREDISTANCE, we can give a O(nh1h2) computational time
algorithm for computing the mixture distance between two mixture trees in the following part.
In Algorithm MIXTUREDISTANCE, when the leaves of the subtree rooted by an internal node v in T1

are colored, other leaves in T1 have no color, as do the mapped leaves in T2. That is, color(w) = (0, 0)
for w ∈ L(T2). However, Algorithm MIXTUREDISTANCE still processes the ancestors of such leaves in
T2. In the following, we propose an algorithm for disregarding the nodes without meaningful coloring
information, and reduce the time complexity from O(n2) to O(nh1h2) .

19

Algorithms 2020, 13, 314

The algorithm contains three main stages, as follows:

1. Rank the leaves in T1 and T2.
2. Construct a minimal subtree T′2 of T2 involved in colored leaves with respect to node v, for each

internal node v in T1.
3. Compute the mixture distance between v and each internal node in T′2.

In stage 1, the nodes of T2 are ranked in postorder, and the leaves of T1 are assigned by the same
rank of the mapped leaves in T2. In Figure 2, red numbers nearby leaves in two given comparable
mixture trees T1 and T2 indicate the ranking achieved by stage 1 of the algorithm. Note that the number
within the nodes means the mutation time mTi (v) of the associated node v for i = 1 or 2.

9

6 8

1 43 5

9

7 8

2 43 5

A B C D E F G HA B G H D E F C

T
1

T
2

1 2 4 5 8 9 11 121 2 11 12 5 8 9 4

3 6 10 13

7 14

15

Figure 2. An example of ranking leaves of T1 and T2.

The algorithm proceeds to stage 2 for each internal node v of T1 in the reverse order of breadth-first
search. When v in T1 is processed, stage 2 seeks to construct a minimal subtree T′2 of T2 involved in
colored leaves with respect to node v. For node v, a nondecreasing list of the leaves of the subtree
rooted by v, denoted by lea f (v), is obtained from the leaf lists of its two children, where the leaves
in the list are sorted by their ranks. Suppose that there are k ordered nodes in lea f (v), that is,
lea f (v) = {w1, w2, . . . , wk}. With the list lea f (v), the subtree T′2 can be constructed as follows.

Let lca(wi, wj) denote the LCA of leaves wi and wj in T2, for any i, j ∈ {1, 2, . . . , k}. The subtree
T′2 = (V′, E′) is initialized by V′ = {w1, w2, lca(w1, w2)}, E′ = {lca(w1, w2)w1, lca(w1, w2)w2} and
root = lca(w1, w2) . For node wi, i ∈ {1, 2, . . . , k− 2},

V′ = V′ ∪ {lca(wi+1, wi+2), wi+2} and

E′ = E′ ∪ {lca(wi+1, wi+2)wi+2}

Moreover, if the mutation time (the number written in the node circle) of lca(wi+1, wi+2),
denoted by t(lca(wi+1, wi+2)), is larger than the mutation time of root, denoted by t(root),
the edge lca(wi+1, wi+2)root is inserted into E′ and reset lca(wi+1, wi+2) as the new root.
Otherwise, if t(lca(wi+1, wi+2)) is smaller than the mutation time of lca(wi, wi+1), denoted by
t(lca(wi, wi+1)), the edge lca(wi, wi+1)wi+1 is removed from E′ and the edges lca(wi+1, wi+2)wi+1
and lca(wi, wi+1)lca(wi+1, wi+2) are inserted into E′. Otherwise, let x = wi+1 and repeat do
x = f ather(x) until t(x) < t(lca(wi+1, wi+2)) < t(f ather(x)), where f ather(x) is the node y such
that yx ∈ E′ . Then the edge f ather(x)x is removed from E′ and the edges lca(wi+1, wi+2)x and
f ather(x)lca(wi+1, wi+2) are inserted into E′.

20

Algorithms 2020, 13, 314

Example 1. An example of constructing the subtree T′2 with respect to lea f (v2) = {A, B, G, H} is illustrated
in Figure 3. Initially, the node set V′ is {A, B, lca(A, B)} and the edge set E′ includes the incident edges of
the three nodes in T2. As node A is processed, two nodes lca(B, G) and G are inserted into V′, and two edges
lca(A, B)lca(B, G) and lca(B, G)G are inserted into E′. Later, when node B is processed, two nodes lca(G, H)

and H are inserted into V′ and two edges lca(B, G)lca(G, H) and lca(G, H)H are inserted into E′. Meanwhile,
the edge lca(B, G)G is removed from E′ and the edge lca(G, H)G is inserted into E′, because the mutation time
of lca(B, G) is larger than the time of the lca(G, H).

9

2 5

A B G H1 2 11 12

3 13

15

2

A B1 2

3

leaf(v2) = {A, B, G, H}

(a)

9

2

A B G1 2 11

3

15

(b) (c)

Figure 3. An example of constructing the subtree T′2 with respect to lea f (v2) in Figure 2. (a) The
initialization of T′2. (b) The intermediate of T′2 as node A is processed. (c) The complete subtree T′2 as
node B is processed. As the mutation time of lca(B, G) is larger than the time of lca(G, H), the dotted
line incident to G is removed and the other incident edge of G is inserted.

After the subtree T′2 with respect to currently processed node v is constructed, stage 3 of the
algorithm performs lines 5–18 of Algorithm MIXTUREDISTANCE to compute the “partial” mixture
distance between T′2 and the subtree rooted by v (only computes the distances of some nodes pairs,
for which LCA is equal to v). At the end of the algorithm, D indicates the mixture distance between T1

and T2.

Theorem 2. The improved algorithm takes O(nh1h2) computational time and O(n) preprocessing time, where n
denotes the number of leaves of the mixture trees and hi = height(Ti) for i = 1, 2.

Proof. The algorithm contains three main stages. The first stage ranks the leaves in T1 and T2,
which takes O(n) time.

In the second stage, a minimal subtree T′2 of T2 involved in colored leaves with respect to each
node v in T1 is constructed. For each node v, a leaf list lea f (v) is obtained from the leaf lists of its two
children, which is achieved in O(t) time by using the two-way merging algorithm [23] performed on
the leaf list of v’s children, where t is the size of lea f (v). The O(1)-time algorithm with O(n)-time
processing [21] is employed to compute the LCA of any pair of nodes in T2. Constructing T′2 takes O(th′)
time, where h′ is the height of T′2 due to the “repeat” step. The last stage computes the mixture distance
between v and each internal node in T′2 by performing lines 5–18 of Algorithm MIXTUREDISTANCE,
which takes O(t) time. Stages 2 and 3 take O(n) iterations in total. However, each iteration deals
with different t nodes. Note that for all internal nodes which are in the same level of T1, the sum of t
(for each node) is n. Therefore, stages 2 and 3 totally take O(nh1h′) = O(h1h2) time, where h1 is the
height of T1 (note that h′ ≤ h2 = height(T2)). Hence, the algorithm requires O(nh1h2) computational
time with O(n) preprocessing time.

4. Conclusions

In this paper, we provide a novel metric named the mixture distance metric to measure the
similarity between two mixture trees. It uniquely considers the estimated evolutionary time in

21

Algorithms 2020, 13, 314

the trees. Two algorithms were developed to compute the mixture distance between mixture trees.
One requires O(n2) computational time and the other requires O(nh1h2) computational time with
O(n) preprocessing time, respectively. Note that when T1 and T2 are complete binary trees, h1 and h2

will be O(log n) and the time complexity of our algorithm will be (n log2 n).
Now, we compare our metric with some previous methods which measure phylogenetic

differences in consideration of the branch length, when we consider a mixture tree as a weighted tree
(recall that the weight of an edge in a mixture tree is defined as the difference of time parameters
between its two endpoints). For the geodesic tree distance, the implementation is quite complex
and requires heavy computation [19], although a heuristic fast version exists [18]. The definition
of the weighted path difference distance [14] is almost the same as the mixture distance. Actually,
the weighted path difference distance between two mixture trees T1 and T2 is equal to 2dm(T1, T2).
However, it requires O(n2) computational time. The mixture distance seems to be similar to the
weighted RF distance [12], but the calculation performance will vary when we consider the distance
between two different extents of similar mixture trees. We give an example as follows.

Example 2. Four mixture trees with the same lineages A, B and C are illustrated in Figure 4; the time parameters
are listed in the vertices, and the associated edge weights are labeled beside each edge. All pairs of these four trees
have been compared using the methods outlined in [12] and this paper. The tables of the weighted RF (wRF) and
mixture distances (dm) are given in Tables 1 and 2, respectively. From these two tables, one can find something
interesting. (1) dm seems maintain the order relationship in wRF: When wRF thinks that two trees are similar,
then dm also gets a smaller value between these two trees: wRF(T1, T3) > wRF(T2, T3) > wRF(T2, T4) >

wRF(T1, T2) and dm(T1, T3) > dm(T2, T3) > dm(T2, T4) > dm(T1, T2). (2) When wRF thinks that the
distances between two pairs of trees are the same, then dm also thinks they are in the same: wRF(T1, T2) =

wRF(T3, T4), wRF(T1, T4) = wRF(T2, T3) and dm(T1, T2) = dm(T3, T4), dm(T1, T4) = dm(T2, T3). However,
there are still differences between these two metrics in the details: (3) When wRF thinks two distances between
two pairs of trees are very different, sometimes dm may not think that: wRF(T1, T3)− wRF(T2, T3) = 1,
wRF(T1, T4)− wRF(T2, T4) = 3, but dm(T1, T3)− dm(T2, T3) = dm(T1, T4)− dm(T2, T4) = 1.

0

A B C

1

T
1

0 0

1

1

3

2

3

0

2

T
2

0 0

2

2

3

1

3

0 0

1

T
3

0

1

1

3

2

3

00

2

T
4

0

2

2

3

1

3

A B C A B C A B C

Figure 4. Four weighted trees with the same lineages A, B and C.

Table 1. The weighted RF distances wRF among T1, T2, T3 and T4.

wRF T1 T2 T3 T4

T1 3 8 7
T2 7 4
T3 3

22

Algorithms 2020, 13, 314

Table 2. The mixture distances dm among T1, T2, T3 and T4.

dm T1 T2 T3 T4

T1 1 4 3
T2 3 2
T3 1

Therefore, it can be said that the performance of the mixture distance in calculating the similarity
of two weighted trees is as good as the performance of the weighted RF distance, while the time
complexity of the mixture distance is better. In addition, we compared our approaches with the
methods performed with the nodal distance metric [11], geodesic tree distance [19], weighted path
difference metric [14] and weighted RF distance [12], and the results are shown in Table 3. Our proposed
approaches performed better than all of the previous methods when discussing the distance between
two mixture trees.

Table 3. Comparison of metrics for binary trees.

Metric Consideration
Time Complexity

Full Binary Trees Complete Binary Trees

Mixture distance Structure and mutation time O(nh1h2) O(n log2 n)
Nodal distance Structure O(n3) O(n2 log n)

Geodesic tree distance Structure and mutation number O(n4) O(n4)
Weighted path difference distance Structure and mutation number O(n2) O(n2)

Weighted RF distance Structure and mutation number O(n2) O(n2)

Author Contributions: Investigation, Y.-C.C. and C.-H.L.; methodology, J.S.-T.J. and S.-C.C. All authors have read
and agreed to the published version of the manuscript.

Funding: The first author was supported in part by the Ministry of Science and Technology of the Republic of
China under Contract No. MOST100-2221-E-260-024- and MOST109-2115-M-260-001.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees.
Mol. Biol. Evol. 1987, 4, 406–425. [PubMed]

2. Lesperance, M.L.; Kalbfleisch, J.D. An algorithm for computing the nonparametric MLE of a mixing
distribution. J. Am. Stat. Assoc. 1992, 87, 120–126. [CrossRef]

3. Chen, S.C.; Lindsay, B.G. Building mixture trees from binary sequence data. Biometrika 2006, 93, 843–860.
[CrossRef]

4. Chen, S.C.; Rosenberg, M.; Lindsay, B.G. MixtureTree: A program for constructing phylogeny. BMC Bioinform.
2011, 12, 111–114. [CrossRef] [PubMed]

5. Griffiths, R.C.; Tavare, S. Ancestral inference in population genetics. Statist. Sci. 1994, 9, 307–319. [CrossRef]
6. Ward, R.H.; Frazier, B.L.; Dew-Jager, K.; Paabo, S. Extensive mitochondrial diversity within a single

amerindian tribe. Proc. Nat. Acad. Sci. USA 1991, 88, 6720–6724. [CrossRef] [PubMed]
7. Steel, M.A. The maximum likelihood point for a phylogenetic tree is not unique. Syst. Biol. 1994, 43, 560–564.

[CrossRef]
8. Robinson, D.F.; Foulds, L.R. Comparison of phylogenetic trees. Biosciences 1981, 53, 131–147. [CrossRef]
9. Estabrook, G.F.; McMorris, F.R.; Meacham, C.A. Comparison of undirected phylogenetic trees based on

subtrees of four evolutionary units. Syst. Zool. 1985, 34, 193–200. [CrossRef]
10. Dasgupta, B.; He, X.; Jiang, T.; Li, M.; Tromp, J.; Zhang, L. On computing the nearest

neighbor interchange distance. In Proceedings of the Discrete Mathematical Problems with Medical
Applications: DIMACS Workshop on Discrete Problems with Medical Applications, Piscataway, NJ, USA,
8–10 December 1999; DIMACS Series in Discrete Mathematics and Theoretical Computer Science; American
Mathematical Society: Washington, DC, USA, 2000; Volume 55, pp. 125–143.

23

Algorithms 2020, 13, 314

11. Bluis, J.; Shin, D. Nodal distance algorithm: calculating a phylogenetic tree comparison metric. In Proceedings
of the Third IEEE Symposium on BioInformatics and BioEngineering, Bethesda, MD, USA, 12 March 2003;
pp. 87–94.

12. Robinson, D.F.; Foulds, L.R. Comparison of weighted labelled trees. In Combinatorial Mathematics VI; Springer:
Berlin/Heidelberg, Germany, 1979; pp. 119–126.

13. Billera, L.J.; Holmes, S.P.; Vogtmann, K. Geometry of the space of phylogenetic trees. Adv. Appl. Math.
2001, 27, 733–767. [CrossRef]

14. Steel, M.A.; Penny, D. Distributions of tree comparison metrics—Some new results. Syst. Biol. 1993, 42, 126–141.
15. Day, W.H. Optimal algorithms for comparing trees with labeled leaves. J. Classif. 1985, 2, 7–28. [CrossRef]
16. Pattengale, N.D.; Gottlieb, E.J.; Moret, B.M. Efficiently computing the Robinson-Foulds metric. J. Comput. Biol.

2007, 14, 724–735. [CrossRef] [PubMed]
17. Battagliero, S.; Puglia, G.; Vicario, S.; Rubino, F.; Scioscia, G.; Leo, P. An efficient algorithm for approximating

geodesic distances in tree space. IEEE/ACM Trans. Comput. Biol. Bioinform. 2010, 8, 1196–1207. [CrossRef]
[PubMed]

18. Amenta, N.; Godwin, M.; Postarnakevich, N.; John, K.S. Approximating geodesic tree distance.
Inf. Process. Lett. 2007, 103, 61–65. [CrossRef]

19. Owen, M.; Provan, J.S. A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2010, 8, 2–13. [CrossRef] [PubMed]

20. Felsenstein, J. Inferring Phylogenies; Sinauer Associates: Sunderland, MA, USA, 2004.
21. Bender, M.A.; Farach-Colton, M. The LCA problem revisited. Lat. Am. Theor. Inform. 2000, 1776, 88–94.
22. Brodal, G.S.; Fagerberg, R.; Pedersen, C.N.S. Computing the quartet distance between evolutionary trees in

time O(n log n). Algorithmica 2003, 38, 377–395. [CrossRef]
23. Lee, R.C.T.; Chang, R.C.; Tseng, S.S.; Tsai, Y.T. Introduction to the Design and Analysis of Algorithms;

McGraw-Hill Education: Berkshire, UK, 2005.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

24

algorithms

Article

Multi-Winner Election Control via Social Influence:
Hardness and Algorithms for Restricted Cases

Mohammad Abouei Mehrizi * and Gianlorenzo D’Angelo *

Computer Science Department, Gran Sasso Science Institute (GSSI), Viale Francesco Crispi,
L’Aquila AQ 67100, Italy
* Correspondence: mohammad.aboueimehrizi@gssi.it (M.A.M.); gianlorenzo.dangelo@gssi.it (G.D.)

Received: 4 September 2020; Accepted: 29 September 2020; Published: 2 October 2020
����������
�������

Abstract: Nowadays, many political campaigns are using social influence in order to convince
voters to support/oppose a specific candidate/party. In election control via social influence problem,
an attacker tries to find a set of limited influencers to start disseminating a political message in
a social network of voters. A voter will change his opinion when he receives and accepts the message.
In constructive case, the goal is to maximize the number of votes/winners of a target candidate/party,
while in destructive case, the attacker tries to minimize them. Recent works considered the problem in
different models and presented some hardness and approximation results. In this work, we consider
multi-winner election control through social influence on different graph structures and diffusion
models, and our goal is to maximize/minimize the number of winners in our target party. We show
that the problem is hard to approximate when voters’ connections form a graph, and the diffusion
model is the linear threshold model. We also prove the same result considering an arborescence
under independent cascade model. Moreover, we present a dynamic programming algorithm for the
cases that the voting system is a variation of straight-party voting, and voters form a tree.

Keywords: computational social choice; election control; multi-winner election; social influence;
influence maximization

1. Introduction

Social media is an integral part of nowadays life. No one can ignore the effect of social media
on different aspects of our life. Many people from all around the world are using social networks to
provide/use various services like teaching/learning, spreading information, events’ announcements,
and advertising. It has been shown that two-thirds of American adults get news on social mediaSM [1].
It is easy to find evidence that a social influence (SI) started by few users has influenced many people.
Then, social media is a kind of cheap means to spread a message among many users. Note that the
power of social media is not just like spreading a message or advertising. Its power comes from the
fact that a user will receive news from those who have enough authority to change his opinion, like
close friends, family members, and colleagues. Since using social influence is effective and cheap,
it has been attracting the attention of many political campaigns and candidates to target the user’s
opinion through SI. They disseminate a piece of information to change voters’ opinion. Many real case
studies show that campaigns used social influence to change the voters’ opinion [2–5]. For example,
Allcott and Gentzkow showed that 92% of Americans remembered pro-Trump false news, and 23%
remembered pro-Clinton fake news [6].

There are two well-known diffusion models used in social influence called linear threshold model
(LTM) and Independent Cascade Model (ICM) [7]. In LTM, a voter accepts a message if the sum over
his incoming neighbors’ influence, who already accepted the message, is high enough. On the other
hand, in ICM, a voter will accept a message if at least one of his incoming neighbors, who already

25

Algorithms 2020, 13, 251

accepted the message, can convince him to accept it (please see Section 2 for a formal definition of LTM
and ICM).

In this paper, we consider the multi-winner election control via social influence problem. We are
given a social network of voters, a limited budget, a set of candidates each belongs to a party,
a dynamic diffusion model to spread a message among the voters, and an attacker/manipulator
who supports/opposes a party. When we use LT diffusion model, we assume that the attacker knows
the probability that each voter wants to vote for each candidate. To take into account the incoming
influence of each node v, we use an updating rule based on the incoming influence from the node’s
incoming activated neighbors, akin to [8]. On the other hand, when we use ICM, we assume the attacker
knows the exact preferences list of all voters. When a node/voter becomes active/influenced/infected,
in constructive (resp. destructive) case, it will promote (resp. demote) the position of the target
candidates in its/his preference list, akin to [9,10] (see Section 3 for formal definition).

Regarding both LTM and ICM, there will be several winners, and they will be elected according to
the overall candidates’ scores after the diffusion. In the constructive (resp. destructive) case, the attacker
wants to find a set of nodes (voters), according to its budget, to start the diffusion and change the
voters’ opinion to maximize (resp. minimize) the number of winners from his target party. In fact,
in a given directed graph, we should find some diffusion starters to influence the voters such that the
difference between the number of winners from our target party, w.r.t. the number of winners in the
opponent party with the most winners, after and before the diffusion is maximized (resp. minimized).
We present some results, including hardness of approximation, approximation, and polynomial-time
exact algorithms considering some well-known objective functions on different structures.

Related works. There are many articles regarding voting manipulation (see the survey in [11]).
The problem of finding a set of limited seed nodes from a given graph to maximize the expected
number of influenced nodes is known as Influence Maximization (IM) problem. There exists an
extensive literature about it, too [12]. Domingos and Richardson [13,14] introduced the IM problem,
and Kempe et al. formalized it [7,15]. On the other hand, few works consider both of them together,
i.e., the election control through social influence problem.

Wilder and Vorobeychik introduced the election control through SI problem regarding
single-winner elections [10]. They investigated maximizing margin of victory (MoV) and probability
of victory (PoV), where MoV is the difference of the score between the target candidate and the most
voted opponent after and before the diffusion. The problem is considered under ICM. They showed
maximizing MoV is NP-hard, and presented a 1− 1

e -approximation algorithm concerning the optimal
solution. Furthermore, for maximizing PoV, they showed that it is NP-hard to approximate the problem
within any constant factor. Corò et al. [16,17] extended the work using any non-increasing scoring
function under LTM. They demonstrated the same approximation factor for it. Abouei Mehrizi et al.
considered the problem when the attacker knows a probability distribution over the candidates
instead of the exact preferences list, under LTM [8]. They showed that maximizing/minimizing the
expected probability to vote for a target candidate is hard to approximate within any constant factor
under unique game with small set expansion conjecture. They also presented some constant factor
approximation algorithms for a relaxed version of the problem. Abouei Mehrizi and D’Angelo showed
that in multi-winner elections, when the manipulator wants to maximize/minimize the number of
winners in his target party, the problem is inapproximable under ICM, except P = NP [9]. They also
presented some constant factor approximation algorithms when the voting system is similar to the
straight-party voting.

Bredereck and Elkind considered some different models, like bribing nodes/voters, adding
or deleting edges under LTM. They showed that the problem is hard in those models. They also
presented some polynomial-time algorithms for specific cases of the problem [18]. Castiglioni et al.
investigated similar models under ICM. They showed that the problem is hard even in restricted
structures. Regarding the bribing nodes to influence other voters, they proved that the election
control is hard even if the given graph is a line. Furthermore, considering the edge removal/addition

26

Algorithms 2020, 13, 251

case, they demonstrated that the problem is hard even if the attacker has an infinite budget [19].
Faliszewsk et al. considered the problem where each voter has a preference list. Each node of the
graph is representative of all users with the same opinions. There is an edge between two nodes if
their opinion differs by the place of an adjacent pair of candidates. They used LTM and proved that
maximizing the number of votes for the target candidate is NP-hard and fixed parameter tractable
with respect to the number of candidates [20]. Furthermore, there is another model in which voters
have a preference list over candidates, and voters will change their preference list according to the
majority of their neighbors’ opinions [21–23].

Outline and our results. In Section 2, we define the most prominent diffusion models in the
literature (called LTM and ICM) that we used in this paper. Section 3 defines our model and objective
functions formally. We show that our problem is hard to approximate within any factor in a general
graph when the diffusion model is LTM in Section 4. Section 5 contains the same result when the
diffusion model is ICM, and the given graph is in the form of an arborescence, i.e., edges are from
leaves to root of the tree. Moreover, in Section 6, we investigate the problem while the voting system
is a variation of straight-party voting, where voters can vote for the parties. In other words, voters
have a preference list (or probability distribution) over the candidates, but they can vote for the parties
instead of candidates. We presented a polynomial-time algorithm based on the dynamic programming
approach to find the maximum difference of votes for our target party before and after diffusion.
It also gives a 1

3 and 1
2 -approximation algorithms for maximizing MoV in constructive and destructive

models, respectively. Finally, we will discuss the results and future works in Section 7.

2. Background

In this section, we introduce two diffusion models that we have used in this paper, called linear
threshold model (LTM) and independent cascade model (ICM) presented by Kemp et al. [7,15]. They are
the most prominent dynamic diffusion models used in literature (see a survey on the topic [24]).

2.1. Linear Threshold Model

We are given a directed graph G = (V, E). Each edge (u, v) ∈ E has a weight bu,v ∈ [0, 1]. The sum
of the incoming weight to each node v ∈ V is at most one, i.e., ∑u∈Ni

v
bu,v 6 1, where Ni

v is the set of
incoming neighbors of v. Furthermore, each node v ∈ V has a threshold tv ∈ [0, 1] which is generated
uniformly at random.

In this model, the diffusion will start from a set of nodes S ⊆ V known as seed nodes. At the
first step, just the seed nodes will become active/influenced/infected, and all other nodes are inactive.
Let us show Ai as the set of nodes that are active at step i, i.e., A1 = S. The activation process,
for each step i > 1, is as follows: all nodes in Ai−1 will remain active at step i, i.e., Ai−1 ⊆ Ai; moreover,
each inactive node v ∈ V \ Ai−1 will become active if the sum of the weight from its incoming activated
neighbors is not less than its threshold, i.e., for each node v ∈ V \ Ai−1, it will be in Ai if ∑u∈Ni

v
bu,v > tv.

The diffusion process will proceed in utmost |V| discrete steps, and it will stop as soon as no extra node
becomes active, i.e., it stops at step k > 1 if Ak = Ak−1. We use AS as the set of activated nodes after
the diffusion process started from the set of seed nodes S. In what follows, to increase the readability
of this article, when we say after S, it means after the diffusion process started from a set of seed
nodes S. Note that the thresholds are not a part of the input, and they will be generated uniformly at
random and independently when we run the process. Furthermore, the process is random, and several
executions on the same graph may get different results for AS.

Kemp et al. [7] defined the IM problem as: Given a graph G = (V, E) and a budget B 6 |V|.
Find a set of seed nodes S ⊆ V, (|S| 6 B) so that the expected |AS| is maximized. They proved that
the problem is NP-hard under LTM. Moreover, they showed that a greedy algorithm can solve the
problem approximately within a factor of 1− 1

e − ε, where ε is any small constant and fixed number.

27

Algorithms 2020, 13, 251

2.2. Independent Cascade Model

Consider a graph G = (V, E) with a weight bu,v ∈ [0, 1] on each edge (u, v) ∈ E. The same as
LTM, all nodes are inactive, and at the first step the seed nodes S ⊆ V become active. Let us define
Si as the nodes that were inactive at step i− 1 and became active at step i, then S1 = S. At each step
i > 1, each node v ∈ Si−1 will try to activate its outgoing neighbors with the probability of the edge
between them. In other words, consider No

v as the set of outgoing neighbors of node v; for each u ∈ No
v ,

node v tries to activate u with the probability bv,u. If v has multiple outgoing neighbors, it tries to
activate them in an arbitrary order. Note that a node becomes active once, let us say at step k, and try
to activate its outgoing neighbors exactly once, at step k + 1.

Kemp et al. [7] considered the IM under ICM. They showed that the greedy algorithm works for
this model, too. They also demonstrated that it is NP-hard to approximate the problem within any
factor better than 1− 1

e .

3. Multi-Winner Election Control: Models and Objective Functions

In this section, we consider the Multi-Winner Election Control, where some parties are running
for an election so that more than one candidate will be elected as the winner, like a parliament
election. We consider t different parties C1, . . . , Ct, each of them contains k different candidates,
i.e., Ci = {ci

1, . . . , ci
k}, 1 6 i 6 t. We use C for the set of all candidates, i.e., C = ∪t

i=1Ci. Furthermore,
without loss of generality, we assume C1 is our target party. Note that there will be exactly k winners
for the election.

3.1. Multi-Winner Election Control under LTM

In this model, we investigate the case that the adversary does not know the preferences list of the
voters; instead of that, for each voter, the attacker has a probability distribution over all candidates.
This model is similar to the model known as probabilistic linear threshold ranking (PLTR) defined
in [8]. Since most voters do not reveal their preferences in social media, then it is a realistic assumption.

The adversary tries to maximize/minimize the number of winners in his target party. For each
node v ∈ V, we show πv as the probability distribution of the voter/node v over all candidates;
we define πv(c) as the probability that the voter v votes for a specific candidate c ∈ C. Then for every
node v ∈ V, and candidate c ∈ C we have πv(c) ∈ [0, 1], and ∑c∈C πv(c) = 1.

In LTM, each node has an incoming influence, which shows the amount of pressure from incoming
neighbors to support/oppose a target party. We use this incoming influence of node v ∈ V to change its
probability distribution. Let us define π̃v as the probability distribution of node v after S. Respectively,
π̃v(c) is the probability that node v will vote for candidate c ∈ C after S. We use AS to show the set of
nodes that will become active after S.

We consider a single message which spreads among the voters. The message contains some
constructive/destructive information targeting all candidates in the target party. When a node v
becomes active, its probability distribution will change according to the incoming influence from
its activated neighbors. We have to normalize the vector in order to make sure that the sum of the
probabilities is equal to one, after S. For constructive model the probability distribution of a node
v ∈ AS changes as follows.

∀c ∈ C1 : π̃v(c) =
πv(c) + 1

|C1| ∑u∈AS∩Ni
v

buv

1 + ∑u∈AS∩Ni
v

buv
,

∀c ∈ C \ C1 : π̃v(c) =
πv(c)

1 + ∑u∈AS∩Ni
v

buv
.

28

Algorithms 2020, 13, 251

Recall that Ni
v is the set of incoming neighbors of node v. Furthermore, considering the destructive

case, the probability distribution of an active node v ∈ AS will change as follows.

∀c ∈ C1 : π̃v(c) =
πv(c)

1 + ∑u∈AS∩Ni
v

buv

∀c ∈ C \ C1 : π̃v(c) =
πv(c) + 1

|C\C1| ∑u∈AS∩Ni
v

buv

1 + ∑u∈AS∩Ni
v

buv

By these changes (and normalization), we guarantee that the sum of the probability for each node
is equal to 1. In both constructive and destructive cases, the probability distribution of inactive nodes
v ∈ V \ AS will not change after S, i.e., π̃v = πv.

Let us define the expected number of votes for candidate c ∈ C after S,
as F (c, S) = EAS [∑v∈V π̃v(c)]; similarly, F (c, ∅) = E[∑v∈V πv(c)] is the expected number of
votes for candidate c ∈ C before any diffusion.

Example 1. Assume there are two parties supporting two candidates each, i.e., C = C1 ∪ C2,
C1 = {c1

1, c1
2}, C2 = {c2

1, c2
2}. There are five nodes in the given graph G = (V, E), where their

connections form a star and the weight of all edges is one, i.e., (v1, v2), (v1, v3), (v1, v4), (v1, v5) ∈ E,
bv1,v2 = bv1,v3 = bv1,v4 = bv1,v5 = 1. Let us consider the probability distribution of each node v ∈ V as
πv = πv(c1

1), πv(c1
2), πv(c2

1), πv(c2
2). We set the probability distribution of all nodes as 1

8 , 1
8 , 3

8 , 3
8 . Then before

any diffusion, the candidates’ score is

F (c1
1, ∅) = F (c1

2, ∅) =
5
8

,

F (c2
1, ∅) = F (c2

2, ∅) =
15
8

,

and none of our target candidates have less score than their opponents. Consider the constructive model in
which the adversary’s budget is one, i.e., he can select one node to influence the voters and change their opinion.
Since the node v1 ∈ V is the most influential node in the graph, the adversary selects it as his seed node.
It activates all nodes in the graph, and their probability distribution will be updated as follows.

π̃v1 =
1
8

,
1
8

,
3
8

,
3
8

,

π̃v2 = π̃v3 = π̃v4 = π̃v5 =
5

16
,

5
16

,
3
16

,
3

16
,

and the expected number of votes for the candidates is

F (c1
1, S) = F (c1

2, S) =
11
8

,

F (c2
1, S) = F (c2

2, S) =
9
8

,

and our target candidates’ score is more than their opponents’ score.

3.2. Multi-Winner Election Control under ICM

Our model is similar to the work presented in [9]. We briefly mention the model bellow. In this
model, despite LTM, we assume that the attacker knows the voters’ preference list. Each voter v ∈ V
has a preferences list πv. Abusing the notations, 1 6 πv(c) 6 tk is the rank of candidate c in the
preference list of the voter v. After the diffusion, inactive voters will keep their original opinions,
i.e., ∀v ∈ V \ AS : π̃v = πv; however, the activated voters will change their preferences list as follows.
Remind that AS is the set of activated nodes after S.

29

Algorithms 2020, 13, 251

• Constructive: For each node v ∈ AS and for each target candidate c ∈ C1, the new position of c in
π̃v is

π̃v(c)=

{
πv(c)− 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) < πv(c)
πv(c) otherwise,

also, for other candidates c ∈ C \ C1, if there is a candidate c′ ∈ C \ C1 s.t. πv(c′) = πv(c) + 1,
then we set π̃v(c) = πv(c); otherwise the new rank of the candidate c will be calculated as
follows.

π̃v(c) = πv(c) + |{c′′ ∈ C1 | πv(c′′) > πv(c) ∧ (@ c̄ ∈ C \ C1 : πv(c) < πv(c̄) < πv(c′′))}| .

• Destructive: For each node v ∈ AS and for each target candidate c ∈ C1, we have

π̃v(c)=

{
πv(c) + 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) > πv(c)
πv(c) otherwise,

while for c ∈ C \ C1, if there exists a candidate c′ ∈ C \ C1 s.t. πv(c′) = πv(c) − 1 we set
π̃v(c) = πv(c), otherwise we have

π̃v(c) = πv(c)− |{c′′ ∈ C1 | πv(c′′) < πv(c) ∧ (@ c̄ ∈ C \ C1 : πv(c′′) < πv(c̄) < πv(c))}| .

In this article, we consider the plurality scoring rule for simplicity, where just the most
preferred candidate of each voter gets one score. However, the results can be extended for any
non-increasing scoring function, e.g., k-approval, anti-plurality, and Borda’s rule [25]. Let us denote
by F (c, ∅),F (c, S), the expected score of candidate c before and after S, respectively; formally,

∀c ∈ C : F (c, ∅) = ∑v∈V 1πv(c)=1,F (c, S) = EAS

[
∑v∈V 1π̃v(c)=1

]
. (If we want to generalize the

problem and consider any non-increasing scoring function g(·), the functions would be defined as

F (c, ∅) = ∑v∈V g(πv(c)),F (c, S) = EAS

[
∑v∈V g(π̃v(c))]).

Example 2. Consider the graph G and candidates C in Example 1. Let set the voters’ preference list as follows.

πv1 = c1
1 � c1

2 � c2
1 � c2

2,

πv2 = c2
1 � c1

2 � c1
1 � c2

2,

πv3 = c2
2 � c2

1 � c1
1 � c1

2,

πv4 = c2
1 � c1

2 � c1
1 � c2

2,

πv5 = c2
2 � c1

1 � c2
1 � c1

2,

where a � b means a is preferred to b. The candidates’ score before any diffusion is

F (c1
1, ∅) = 1,

F (c1
2, ∅) = 0,

F (c2
1, ∅) = F (c2

2, ∅) = 2,

and before any diffusion, both of our target candidates have less score than their opponents. Consider the
constructive case where the adversary’s budget is one. The same as Example 1, the adversary selects the node v1

as a seed node, and it activates all nodes in the graph. After S, the voters update their preference list as follows.

πv1 = c1
1 � c1

2 � c2
1 � c2

2,

πv2 = c1
2 � c1

1 � c2
1 � c2

2,

πv3 = c2
2 � c1

1 � c1
2 � c2

1,

30

Algorithms 2020, 13, 251

πv4 = c1
2 � c1

1 � c2
1 � c2

2,

πv5 = c1
1 � c2

2 � c1
2 � c2

1,

and the candidates’ score will be as follows.

F (c1
1, S) = F (c1

2, S) = 2,

F (c2
1, S) = 0,

F (c2
2, S) = 1,

and both of the target candidates get more vote than their opponents.

3.3. Objective Functions

In this paper, our goal is to maximize/minimize the number of winners from our target party.
Then the objective functions are the same as [9]. Considering both IC and LT models, we define
F (C1, S) as the number of candidates in C1 that are among the winners. Formally, consider a set of
given activated nodes AS, which became active after S. Let us define FAS(c) as the expected number of
votes that candidate c will receive while AS is the set of activated nodes. We set YAS(c) as the number
of candidates c′ ∈ C \ {c} where the expected number of their votes is less than c. In order to consider

the tie-breaking rule, if FAS(c
j
i) = FAS(c

j′

i′), then cj
i has more priority than cj′

i′ if j < j′, or j = j′ ∧ i < i′.
Then YAS(c) is defined as

YAS(c
j
i) =

∣∣∣{cj′

i′ ∈ C | FAS(c
j
i) > FAS(c

j′

i′) ∨ (FAS(c
j
i) = FAS(c

j′

i′) ∧ (j < j′ ∨ (j = j′ ∧ i < i′))}
∣∣∣.

By this definition, we define F (C1, S) as the expected number of winners from party C1,
i.e., F (C1, S) = EAS

[
∑c∈C1

1YAS
(c)>(t−1)k

]
.

Now, let us define the first objective function as Difference of Winners (DoW), where is
the difference between the number of winners in our target party before and after S. Formally,
in constructive (resp., destructive) model we define DoWc (resp., DoWd) as

DoWc(C1, S) = F (C1, S)−F (C1, ∅),

DoWd(C1, S) = F (C1, ∅)−F (C1, S).

The problem of constructive difference of winners (CDW) asks for finding a set of seed nodes
S (|S| 6 B) to maximize DoWc(C1, S). Similarly, destructive difference of winners (DDW) refers to the
problem of finding a set of seed node S (|S| 6 B) to maximize DoWd(C1, S).

As the second objective function, we define a more compelling one called Margin of Victory
(MoV). For constructive case, we define it as DoW plus the difference between the number of
winners in the opponent parties with the most winners after and before S. Formally, for constructive
(resp., destructive) case, we define MoVc (resp., MoVd) as

MoVc(C1, S) = F (C1, S)−F (CS
A , S)−

(
F (C1, ∅)−F (CB, ∅)

)
,

MoVd(C1, S) = F (C1, ∅)−F (CB, ∅)−
(
F (C1, S)−F (CS

A , S)
)
,

where CB, CS
A , respectively, are the opponent parties with the most winner before and after S.

The constructive margin of victory (CMV) problem is looking for a set of seed nodes S (|S| 6 B)
in order to maximize MoVc(C1, S). Similarly, destructive margin of victory (DMV) refers to the problem
of finding a set of seed nodes S (|S| 6 B) to maximize MoVd(C1, S).

31

Algorithms 2020, 13, 251

4. Multi-Winner Election Control on Graph under LTM

It is proven that the problem is NP-hard to approximate within any factor of approximation using
ICM [9]. In this part, we prove the same statement considering LTM.

Theorem 1. It is NP-hard to approximate CMV and CDW within any factor on a given graph under LTM.

Proof. Let us reduce the vertex cover (VC) problem to any approximation algorithm for CDW
(reps., CMV). In VC, we are given an undirected graph G = (V, E) and an integer k; the decision
question is: Is there a set of nodes V′ ⊆ V (|V′| 6 k) so that for each edge (u, v) ∈ E, at least one
of its vertices are in V′? Assume I(G, B) is a given instance for VC problem, where G = (V, E) is
the given graph, and B is an integer value. We create an instance I ′(G′, B) for CDW (reps., CMV)
so that G′ = (V ∪ V′ ∪ V′′, E′) is the graph build from G, and B is also the budget for our problem.
Let us consider a case where there are two parties and four candidates, i.e., t = k = 2, C = C1 ∪ C2,
C1 = {c1

1, c1
2}, C2 = {c2

1, c2
2}. We fix the order of candidates in the probability distribution of the voter v

as πv = (πv(c1
1), πv(c1

2), πv(c2
1), πv(c2

2)), and build G′ as follows.

• For each undirected edge (u, v) ∈ E add two directed edges (u, v), (v, u) to E′. Set the weight of
each incoming edge to a node v ∈ V as 1

|Ni
v |

. By this the sum over weight of all incoming edges is
equal to one, i.e., ∀v ∈ V : ∑u∈Ni

v
bu,v = 1.

• For each node v ∈ V, add two more nodes v′, v′′ to V′, V′′, respectively. Furthermore, add an
edge (v, v′) to E′ with bv,v′ = 1. Formally, ∀v ∈ V : v′ ∈ V′, v′′ ∈ V′′, (v, v′) ∈ E′ s.t. bv,v′ = 1.
Note that nodes in V′′ are isolated.

• Set the preferences list of the nodes as follows.

∀v ∈ V, πv = (
1
2

,
1
2

, 0, 0),

∀v′ ∈ V′, πv′ = (
1
2

, 0,
1
2

, 0),

∀v′′ ∈ V′′, πv′′ = (0, 0,
1
2

,
1
2
).

By this reduction, the score of candidates before any diffusion is F (c1
1, ∅) = F (c2

1, ∅) = |V|,
F (c1

2, ∅) = F (c2
2, ∅) = 1

2 |V|. Then F(C1, ∅) = F (C2, ∅) = 1.
Note that in this reduction a node v will become active deterministically, if either it is selected as a

seed node, or all of its incoming neighbors are selected as the seed nodes. Then if we can find a set of
seed nodes S ⊆ V so that it activates all nodes in V deterministically, the seed set S is also an answer
for the corresponding VC problem.

In any approximation algorithm, we know that S ⊆ V after the diffusion; otherwise, if there is a
node v′ ∈ V′ ∩ S we can replace it with its incoming neighbor v ∈ V such that (v, v′) ∈ E′ and we get
at least the same value for MoVc, DoWc. Furthermore, if there exists a node v′′ ∈ V′′ ∩ S one of the
following situations holds:

• There exists an inactive node v ∈ V \ AS after the diffusion S. In this case, we can substitute v for
v′′ and then we get at least the same DoWc, MoVc.

• There is no inactive node v ∈ V \ AS. In this case, according to the nodes’ probability distribution,
when all nodes in V become active, the value of MoVc and DoWc is maximum. Then even
if we remove v′′ from S it does not change the value of MoVc or DoWc. By the way, in this
situation, if there exist any node v ∈ V \ AS we replace v′′ with it, otherwise we replace it with
a node v ∈ V \ S.

Then from now on, we assume S ⊆ V.

32

Algorithms 2020, 13, 251

If all nodes in V become active, since they have an outgoing edge to all nodes v′ ∈ V′ with
probability one, then all nodes in V ∪V′ will become active, and the score of the candidates will be
as follows.

F (c1
1, S) = |V|,

F (c1
2, S) = F (c2

1, S) =
3
4
|V|,

F (c2
2, S) =

1
2
|V|.

Then F(C1, S) = 2,F (C2, S) = 0, DoWc(C1, S) > 0, MoVc(C1, S) > 0, and any approximation
algorithm will return a positive value, then the answer of I will be YES.

On the other hand, if there is a node v ∈ V, which is inactive after the diffusion, i.e., ∃v ∈ V \ AS,
the score of candidates will be as follows.

F (c1
1, S) = |V|,

F (c1
2, S) <

3
4
|V|,

F (c2
1, S) >

3
4
|V|,

F (c2
2, S) =

1
2
|V|.

Then F(C1, S) = F (C2, S) = 1, DoWc(C1, S) = MoVc(C1, S) = 0, and any approximation
algorithm will return zero, then the answer of I will be NO.

For the other direction, note that if we can find a set of nodes S ⊆ V, which is an answer for I ,
using the same set of nodes, we can activate all nodes in V ∪V′ and DoWc(C1, S) > 0, MoVc(C1, S) > 0.

To extend the proof for any number of parties (t) and candidates (k), we need to assign
the probability distribution as follows, and the same approach concludes the proof for any
t, k > 2. The same as before, the order of the candidates in probability distribution of a voter v
is πv = (πv(c1

1), . . . , πv(c1
k), πv(c2

1), . . . , πv(c2
k), . . . , πv(ct

1), . . . , πv(ct
k)).

∀v ∈ V, πv = (

k︷ ︸︸ ︷
1
k

,
1
k

, . . . ,
1
k

,

k(t−1)︷ ︸︸ ︷
0, . . . , 0),

∀v′ ∈ V′, πv′ = (

k−1︷ ︸︸ ︷
1
k

,
1
k

, . . . ,
1
k

, 0,
1
k

,

k(t−1)−1︷ ︸︸ ︷
0, . . . , 0),

∀v′′ ∈ V′′, πv′′ = (

k︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
1
k

, . . . ,
1
k

,

k(t−2)︷ ︸︸ ︷
0, . . . , 0).

The following theorem proves the same statement for the destructive case of the problem.

Theorem 2. It is NP-hard to approximate DMV and DDW within any factor on a given graph under LTM.

Proof. The reduction is similar to the constructive case. Consider the case where t = k = 2. We should
set the voters’ probability distributions such that one of our target candidates be among the losers
before and after any diffusion. Furthermore, another target candidate is among the winners before any
dissemination; however, he will lose the election if and only if all nodes in the connected part of the

33

Algorithms 2020, 13, 251

graph become active. Please note that, since our target candidates have more priority than the others,
we need one more node to be able to do that.

5. Multi-Winner Election Control on Arborescence under ICM

In this section, instead of a general graph, we consider an arborescence structure. We are given
a tree G = (V, E) and a budget B where the directed edges are from leaves towards the root under ICM.
We are asked to find at most B seed nodes to maximize MoVc and DoWc.

It has been shown that the problem in inapproximable on a general graph, except P = NP [9].
Bharathi et al. conjectured that the IM problem considering ICM on arborescence is NP-hard [26].
Lu et al. proved that the conjecture is true [27], while Wang et al. showed that the IM problem accepts
a polynomial-time algorithm on arborescence under LTM [28]. In the following, we show that our
problem is hard to approximate within any factor of approximation on arborescence under ICM.

Theorem 3. It is NP-hard to find an approximation algorithm for CMV and CDW on arborescence under ICM.

Proof. We show the hardness by reducing the IM problem to our problem. Given an instance I(T, B)
of IM problem where T = (V, E) is the tree (arborescence), and B is the budget. Let us define the
decision version of the problem as follows: is there at most B seed nodes so that it activates all nodes
of the tree in expected?

We consider the case where there are two parties and each of them have just two candidates,
i.e., C = C1 ∪ C2, C1 = {c1

1, c1
2}, C2 = {c2

1, c2
2}. Furthermore, for simplicity, we consider the plurality

scoring rule. The proof can be extended for any number of parties and candidates using any
non-increasing scoring function, akin to [29].

Let us create an instance of our problem I ′(T′, B) as follows, where T′ = (V ∪ V′ ∪ V′′, E) is
a tree, and B is the same budget for both problems.

• For each node v ∈ V we add two more nodes v′, v′′ to V′, V′′, respectively, i.e., ∀v ∈ V : v′ ∈ V′,
v′′ ∈ V′′.

• For each node v ∈ V we add an edge (v, v′′) to E where bv,v′′ = 1.
• Set the preference list of all nodes as follows.

∀v ∈ V : c2
1 � c2

2 � c1
1 � c1

2,

∀v′ ∈ V′ : c2
2 � c2

1 � c1
2 � c1

1,

∀v′′ ∈ V′′ : c2
1 � c1

1 � c1
2 � c2

2

Clearly, seed nodes will be selected from V, i.e., S ⊆ V; otherwise, if there is a node v′ ∈ S ∩V′,
then the node is useless and does not affect DoWc or MoVc. If there is a node v′′ ∈ S ∩ V′′, we can
replace it with its incoming neighbor and get at least the same value for DoWc and MoVc.

Using aforementioned polynomial-time reduction, if there exists a set of nodes S ⊆ V (|S| 6 B) so
that MoVc > 0 (resp. DoVc > 0), then the node will activate all nodes in V ∪V′′. Hence, we can select
the same set and they will activate all nodes in T; then the answer of I will be YES. On the other hand,
if MoVc = 0 (resp. DoWc = 0), it means there is no seed set can activate all nodes in V ∪V′′; then the
answer of I is NO. More formally, before any diffusion the score of candidates is

F (c1
1, ∅) = F (c1

2, ∅) = 0,

F (c2
1, ∅) = 2|V|,

F (c2
2, ∅) = |V|.

34

Algorithms 2020, 13, 251

Then, none of the candidates in our target party will be elected as winner. After S, if there exists
an inactive node in V ∪V′′, then the the score of candidates will be as follows:

F (c1
1, S) < |V|,

F (c1
2, S) = 0,

F (c2
1, S) > |V|,

F (c2
2, S) = |V|.

In this case also, none of our target candidates will be among the winners, and MoVc = DoWc = 0.
However, if all nodes in V ∪V′′ become active after S, the score of the candidates will be as follows
and one of our target candidates (c1

1) will be elected as winner and any approximation algorithm will
return MoVc > 0 (resp. DoWc > 0). It concludes the prove.

F (c1
1, S) = |V|,

F (c1
2, S) = 0,

F (c2
1, S) = |V|,

F (c2
2, S) = |V|.

The following theorem demonstrates the same hardness of approximation for the destructive case
of our problem.

Theorem 4. It is NP-hard to find an approximation algorithm for DMV and DDW on arborescence under ICM.

Proof. The prove for the destructive case is similar to the constructive one. Consider I ′ in Theorem 3,
we need to set the preferences list of the nodes so that all of our target candidates win the election
before any diffusion; however, after the diffusion, one of them (let us say c ∈ C1) will lose if and only
if all nodes in V ∪V′′ become active. Note that since our target candidates have more priority than
the others, we need one more isolated node to ensure that c will lose the election after the diffusion.
Following the same approach concludes the statement.

6. Multi-Winner Election Control on Tree Using Straight-Party Voting

In this part, we consider the problem on a variation of the straight-party voting system (also called
straight-ticket voting) in which the voters can vote for a party instead of candidates [30,31]. This model
is used in many real elections [32,33]. The multi-winner election control problem via social influence
under ICM and a general graph is considered in [9]. They showed that the problem is hard,
and presented some constant factor approximation using straight-party voting system. In this section,
we consider the problem on a tree where the edges are directed from root to the leaves.

In the rest of this section, we assume the given tree is a binary tree as we can convert any tree
T to a binary tree T′ by adding O(n) fake nodes. However, our algorithm can use the fake nodes to
navigate the tree, but they neither have a probability distribution (preference list) nor can be selected as
a seed node. To ensure that the fake nodes will not change the diffusion process on the tree, the weight
of each incoming edge to each fake node should be equal to one. Moreover, the weight of an edge from
a fake node to an original node is equal to the weight of the original node’s incoming edge in T.

In the following, we present some dynamic programming (DP) algorithm to maximize DoVspv
c

(and DoVspv
d). Given a tree T = (V, E), and budge B, the idea is that for a fixed node v ∈ V and budget

k (0 6 k 6 B), we calculate the maximum outcome from the sub-tree rooted at v, among the following
cases: First, select the node v and try to find the other k− 1 seed nodes in its children. Second, do not
select v and look for k seed nodes in its children.

35

Algorithms 2020, 13, 251

We define r(v), l(v), f (v), respectively, as the right child, left child, and the parent (father) of
the node v. In Section 6.1 we consider the problem under LTM, and in Section 6.2 the problem is
investigated under ICM.

6.1. Multi-Winner Election Control Using Straight-Party Voting under LTM

In this section, the voters have preferences list over the candidates. However, they vote for
a party proportional to the probability of voting for all candidates in each party. Let us define
Fspv(C1, ∅),Fspv(C1, S), as the sum of the scores for our target party C1 before and after S, respectively.
Formally they are defined as follows.

Fspv(C1, ∅) = E
[

∑
v∈V

∑
c∈C1

πv(c)
]
,

Fspv(C1, S) = EAS

[
∑

v∈V
∑

c∈C1

π̃v(c)
]
.

The same as before we define the objective function MoV and difference of votes (DoV),
for constructive case, as follows.

DoVspv
c (C1, S) = Fspv(C1, S)−Fspv(C1, ∅),

MoVspv
c (C1, S) = Fspv(C1, S)−Fspv(CS

A , S)−
(
Fspv(C1, ∅)−Fspv(CB, ∅)

)
, (1)

while CB and CS
A are the most voted opponent party before and after S, respectively. For destructive

model the objective functions are defined as

DoVspv
d (C1, S) = Fspv(C1, ∅)−Fspv(C1, S),

MoVspv
d (C1, S) = Fspv(C1, ∅)−Fspv(CB, ∅)−

(
Fspv(C1, S)−Fspv(CS

A , S)
)
. (2)

6.1.1. Maximizing DoV in Straight-Party Voting under LTM

We define Fv as the set of possible probabilities that the node f (v) may become active.
More precisely, consider all nodes in the path from root to the v as F′v = {v0, v1, . . . , vt = f (v)}
(recall that f (v) is the parent of v). If none of the nodes in F′v are selected as a seed node, then the
probability that f (v) becomes active by his incoming influence is zero. If just the root (v0) is selected as
the seed node, then the probability that f (v) becomes active is ∏i<t

i=0 bvi ,vi+1 ; also, if v1 is selected as
a seed node but none of the nodes vi, 2 6 i 6 t, are selected as a seed node, the probability that f (v)
becomes active by its parent is ∏i<t

i=1 bvi ,vi+1 , and so on; all these probabilities belong to Fv.
Let us define DoVc(v, k, S, p) as the maximum value of the sum over the difference of probability

to vote for our target party after and before S in the sub-tree rooted at v while p ∈ Fv is the probability
that its parent is active, and the budget is k. Furthermore, all selected seed nodes will be in S. In other
words, DoVc(v, k, S, p) = max{DoVspv

c (C1, S)} in the sub-tree rooted at v while it will become active
with probability p · b f (v),v and |S| 6 k. The formal definition of DoVc(v, k, S, p) is as follows:

DoVc(v, k, S, p) = max

{

maxk
k′=0

{
DoVc

(
r(v), k′, S, p · b f (v),v

)
+ DoVc

(
l(v), k− k′, S, p · b f (v),v

) }
+ p · b f (v),v · Dv,

maxk−1
k′=0

{
DoVc

(
r(v), k′, S ∪ {v}, 1

)
+ DoVc

(
l(v), k− k′ − 1, S ∪ {v}, 1

) }
+Dv

}
, (3)

where Dv is the increased score of our target party made by the node v if it becomes active, which is

Dv = ∑
c∈C1

(
πv(c) + 1

|C1| · p · b f (v),v

1 + p · b f (v),v
− πv(c)

)
. (4)

36

Algorithms 2020, 13, 251

We can calculate and store the values in a two-dimensional array A[B + 1, |V|] where the rows
are the budgets (starting from zero to B), and the columns are the nodes of the tree presented as the
BFS reverse order, and each cell (i, j) (0 6 i 6 B, 0 6 j < |V|) of the array refers to another array
A′[|Fvj |]. Then in the worst case, since the budget B, and |Fvj | (for any vj ∈ V) are at most equal to |V|,
then we can solve the problem in polynomial time using O(|V|3) memory. Note that we have to fill
the matrix A left-to-right and top-down, while for each cell of it we can fill the corresponding array A′

in any order.
As the base cases, for each leaf v ∈ V, and p ∈ Fv, if k > 0 we set DoVc(v, k, S, p) = Dv, otherwise,

if k = 0 we have DoVc(v, k, S, p) = p · b f (v),v · Dv which is the difference of the probability to vote for
our party after and before diffusion S, made by the node v. In fact, if the budget is greater than zero,
the node will become active for sure, and we need to consider the difference of scores, but if the budget
is zero we cannot select it as a seed node and the value should be multiplied by the probability that the
node will become active, i.e., p · b f (v),v. We also define DoVc(null, k, S, p) = 0, that is, the value of DoVc

for a null reference is zero. It is useful when a node has just left (resp. right) child, then the value of the
function for its right (resp. left) child, regardless of the other parameters, is zero. The pseudo-code of
the DP is presented in Algorithm 1, which calculates the maximum DoVspv

c ; by small changes, it can
find the seed nodes too. Note that the final answer will be calculated by DoVc(vroot, B, ∅, 0) where vroot

is the root node of the tree, B is the budget, ∅ represents that we have no seed node so far, and 0 means
the parent of the root node will be activated with zero probability. The following theorem shows that
the DP works well.

Algorithm 1: Calculating maximum DoVc for e given tree T and budget B when the diffusion model is LTM
and voting system is straight-party voting.

Procedure DoV(Tree T = (V, E), Budget B)
A← [B + 1, |V|] . It is a two-dimensional array A[0..B, 0..|V| − 1]
Name all nodes in V from 0 to |V| − 1 in BFS reverse order
for (j← 0; j < |V|; j← j + 1) do

Fvj ← Set of all possible probabilities that f (vj) may become active
for (i← 0; i <= B; i← i + 1) do

. the variables i, j are a counter for rows and columns, respectively.
A[i, j]← Array[|Fvj |] . Each cell (i, j) is an array
if (vj is a leaf) then

for (p ∈ Fvj) do

A[i, j; p]← ∑c∈C1

(πvj (c)+
1
|C1 |
·p·b f (vj),vj

1+p·b f (vj),vj
− πvj (c)

)

if (i = 0) then
A[i, j; p]← p · b f (vj),vj

· A[i, j; p]
end

end
continue

end
for (p ∈ Fvj) do

. If r(vj) or l(vj) does not exist, A[. . . , r(vj) or l(vj); . . .] is zero.

Dv ← ∑c∈C1

(πvj (c)+
1
|C1 |
·p·b f (vj),vj

1+p·b f (vj),vj
− πvj (c)

)

maxj ← maxi
k=0(A[k, r(vj); p · b f (vj),vj

] + A[i− k, l(vj); p · b f (vj),vj
])

max′j ← maxi−1
k=0(A[k, r(vj); 1] + A[i− k− 1, l(vj); 1])

A[i, j; p]← max(maxj + p · b f (vj),vj
· Dv, max′j +Dv)

end
end

end
return A[B, |V| − 1; 0] . The final result for the root node using all budget

end

37

Algorithms 2020, 13, 251

Theorem 5. Given a tree T = (V, E) and budget B, the DP Equation (3) finds a set of seed nodes S (|S| 6 B)
to maximize DoVspv

c .

Proof. Consider the matrix A[B + 1, |V|] where each cell A[k, v] point to another array A′ where the
columns are all possible probabilities that f (v) will become active. Calculating all possible probabilities
for the array A′, we have at most |Fv| columns for each node v ∈ V and budget 0 6 k 6 B, and for
each of them, we need to calculate and store the maximum DoVc.

Please note that if f (v) becomes active, it can activate v with a probability equal to the weight of
the edge between them (b f (v),v). It holds because each node has just one incoming edge (its parent),
and the threshold of the node will be generated uniformly at random. Then the probability that the
threshold of the node v be less than (or equal) to the weight of the incoming edge is b f (v),v.

Let us show that all values in the arrays will be calculated correctly, by induction. To see that,
consider the base cases. For each leaf v ∈ V, the node cannot activate any other node as it has no
outgoing edge. Then, these nodes cannot change the probability distribution of other nodes. In other
words, each leaf will change just its own probability distribution. If k = 0, it means that we cannot select
the node as a seed node, and we need to consider the probability of activating the node, because just
activated nodes can update their probability distribution after the diffusion. Then if k = 0, we have
DoVc(v, k, S, p) = p · b f (v),v · Dv, where Dv is the difference of the party’s score if the node v becomes
active (defined in Equation (4)), and p · b f (v),v is the probability that the node will be activated by its
parent. On the other hand, if k > 0, we can select v as a seed node, and it will be activated with the
probability of one, then we have DoVc(v, k, S, p) = Dv. Using the updating rule (defined in Section 3.1),
and the definition of DoVspv

c (defined in Equation (1)), the base cases are true.
Let us define (i′, j′) < (i, j) if j′ < j, or j′ = j ∧ i′ < i. We have shown that all arrays A′ related

to the base cases filled out correctly. Now by induction step, assume all related arrays related to pair
(i′, j′) smaller than (i, j) are correctly calculated. In order to calculate the A′ related to A[i, j], for each
column p ∈ Fvj we use following formula

DoVc(vj, i, S, p) = max

{

maxi
k=0

{
DoVc

(
r(vj), k, S, p · b f (vj),vj

)
+ DoVc

(
l(vj), i− k, S, p · b f (vj),vj

) }
+ p · b f (vj),vj

· Dvj ,

maxi−1
k=0

{
DoVc

(
r(vj), k, S ∪ {vj}, 1

)
+ DoVc

(
l(vj), i− k− 1, S ∪ {vj}, 1

) }
+Dvj

}
,

in which the first maximization considers the maximum value among all possible cases that we do not
select the node vj as a seed node, and the second one considers the maximum value among all possible
cases that we choose vj as a seed node. The last term in each maximization is the increased amount of
DoVc in the node vj, which is according to the probability that vj will become active. Note that in the
above formula, we are using the value of DoVc for the children of vj, and the nodes are sorted as the
BFS reverse order, then all required values are correctly calculated before, and we are selecting the
maximum value among all possible cases. Then DoVc(vj, i, S, p) will find the maximum possible value
of DoVspv

c correctly and concludes the proof.

For the destructive model, we define DoVd(v, k, S, p) as the maximum difference of probability to
vote for our target party before and after S in the sub-tree rooted at v, while the budget is k and p ∈ Fv

is the probability that f (v) will become active. Formally, we define DoVd(v, k, S, p) as follows.

38

Algorithms 2020, 13, 251

DoVd(v, k, S, p) = max

{

maxk
k′=0

{
DoVd

(
r(v), k′, S, p · b f (v),v

)
+ DoVd

(
l(v), k− k′, S, p · b f (v),v

) }
+ p · b f (v),v · D′v,

maxk−1
k′=0

{
DoVd

(
r(v), k′, S ∪ {v}, 1

)
+ DoVd

(
l(v), k− k′ − 1, S ∪ {v}, 1

) }
+D′v

}
, (5)

where D′v = ∑c∈C1

(
πv(c)− πv(c)

1+p·b f (v),v

)
is the difference that the node v can apply. Moreover, for the

base cases of the problem, for each leaf v ∈ V, and each probability p ∈ Fv, if k = 0 we need to consider
the probability that the node will become active, then DoVd(v, k, S, p) = p · b f (v),v · D′v; otherwise,
if k > 0, we have DoVd(v, k, S, p) = D′v. Furthermore, we set DoVc(null, k, S, p) = 0. The same as
constructive case, for implementation we need a tow-dimensional array A[B + 1, |V|]. Moreover,
for each cell (i, j), 0 6 i 6 B, 0 6 j < |V|, we keep another array A′[|Fvj |], where Fvj is the set of
possible probabilities that the node f (vj) can become active. The following theorem shows that by
filling the matrix A left-to-right and up-down direction, we can find the optimal answer for DoVspv

d .

Theorem 6. Given a tree T = (V, E) and a budget B, using the DP Equation (5), we can find a set of seed
nodes S (|S| 6 B) to maximize DoVspv

d .

Proof. The proof is similar to Theorem 5, except for the base cases and the way of updating each
activated node’s probability distribution after the diffusion. Since a leaf cannot activate any other
node, the only change that it can make is updating its own probability distribution. According to the
updating rule (in Section 3.1), and the definition of DoVspv

d (defined in Equation (2)), the base cases
hold. Furthermore, by induction, we can see that the DP Equation (5) will find the maximum value of
DoVspv

d correctly.

6.1.2. Maximizing MoV in Straight-Party Voting under LTM

In order to maximize MoVspv
c we have to know CS

A , i.e., the most voted opponent party after S.
We have no problem to find the most voted opponent party before any diffusion (CB); however, to find
the most voted opponent party after S we need to have the optimal set of seed nodes that maximizes
MoVspv

c , and to find the optimal set of seed nodes we need the most voted opponent party (parties),
which is a defective cycle.

To deal with this problem, someone may say that we consider Ci, 2 6 i 6 t as the most voted
opponent party after S, and solve the related DP; after finding the outcome for all t− 1 parties, we select
the maximum result as the output. Nevertheless, this is not true in all cases. Consider a case that there
are two opponent parties, and each of them has half of the votes before any diffusion. If we consider
each of them as the most voted opponent after the diffusion, we will get a wrong outcome as they
both can be the most voted opponent after different diffusion processes. In fact, we need to consider
multiple parties as the most voted opponent party.

By the way, it has been shown that by maximizing DoVspv
c we get a 1

3 -approximation factor
for maximizing MoVspv

c . Moreover, by maximizing DoVspv
d we get a 1

2 -approximation answer for
maximizing MoVspv

d [8].

6.2. Multi-Winner Election Control Using Straight-Party Voting under ICM

As we saw in previous section (in LTM), each node v becomes active either by being among the
seed nodes or by the incoming influence from its parent f (v). Since there is just one incoming edge
for each node v ∈ V, and the threshold of the nodes tv is generated uniformly at random, then the

39

Algorithms 2020, 13, 251

probability that its threshold be less than or equal to the incoming weight (b f (v),v) is equal to b f (v),v.
In other words, the node will become active from its parent with the probability that its parent f (v)
is active, times the weight of the edge between them. On the other side, in ICM, a node v becomes
active if it is either selected as a seed node or its parent f (v) is activated and tries to influence v with
the probability b f (v),v. Then in a tree, the activation processes in both LTM and ICM are the same.

However, the updating rule is entirely different in them. In other words, in LTM, voters have a
probability distribution over the candidates, and the activated nodes will update the probability of
voting for candidates regarding the influence from activated incoming neighbors, while in ICM, voters
have an exact preferences list over candidates, and the activated nodes promote/demote the position of
some candidates in their preference list, regardless of neighbors (see Section 2 for a formal definition).

Since the diffusion process in ICM is the same as LTM, we focus more on updating part of
the problem to maximize DoVspv

c . Recall that we consider the plurality scoring rule for simplicity;
however, it is possible to extend the results to any non-increasing scoring function. Then the scoring
function Fspv for our target party is defined as follows. (To extend the result using any non-increasing
scoring function g(·), we should define the functions as Fspv(C1, ∅) = ∑v∈V ∑c∈C1

g(πv(c)),

Fspv(C1, S) = EAS

[
∑v∈V ∑c∈C1

g(π̃v(c))
]
.)

Fspv(C1, ∅) = ∑
v∈V

∑
c∈C1

1πv(c)=1,

Fspv(C1, S) = EAS

[
∑

v∈V
∑

c∈C1

1π̃v(c)=1

]
,

and the objective functions for the constructive and destructive cases of our problem are the same
as Equations (1) and (2), respectively.

6.2.1. Maximizing DoV in Straight-Party Voting under ICM

In this case, node v can increase our target party’s score by one, if none of our target candidates
are in the first position before any diffusion, and one of them is in the second position of the voter’s
preference list. In other words, the voter v may increase the score of our target party if ∃c ∈ C1,
∃c′ ∈ C \ C1 : πv(c′) = 1∧ πv(c) = 2; otherwise, the node v can influence its children and change their
opinion, but it cannot affect the target party’s score. We call this condition as pre-condition and
show it by ¶v. We define Fv as the set of all possible probabilities that the node v may become active
(Please note that the definition of Fv in ICM is different from LTM). Consider a sub-tree rooted at v ∈ V,
budget k, seed set S, and p ∈ Fv, we define DoV′c(v, k, S, p) as follows.

DoV′c(v, k, S, p) = max
{

maxk
k′=0{DoV′c(r(v), k′, S, p · bv,r(v)) + DoV′c(l(v), k− k′, S, p · bv,l(v))}+ p · 1¶v ,

maxk−1
k′=0{DoV′c(r(v), k′, S ∪ {v}, bv,r(v)) + DoV′c(l(v), k− k′ − 1, S ∪ {v}, bv,l(v))}+ 1¶v

}
. (6)

As the base cases of the problem, for each leaf v ∈ V, budget zero, and p ∈ Fv as
the probability that v will become active, we set DoV′c(v, k, S, p) = p · 1¶v , and for the same
parameters except a budget k > 0 we set DoV′c(v, k, S, p) = 1¶v . (To extend the algorithm
for any non-increasing scoring function g(·), we need to define the base cases, respectively,
as DoV′c(v, k, S, p) = p · (∑c∈C1,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c) − 1) − g(πv(c))) and DoV′c(v, k, S, p) =

∑c∈C1,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c)− 1)− g(πv(c)).) The same as before, for each reference to a node
which does not exists (null), we define DoV′c(null, k, S, p) = 0. In order to implement the DP Equation
(6), the idea is the same as Algorithm 1. The following theorem shows that it calculates the maximum
DoVspv

c in polynomial-time.

40

Algorithms 2020, 13, 251

Theorem 7. Given a tree T = (V, E), and budget B, the DP Equation (6) gives a set of seed nodes S (|S| 6 B)
which maximizes DoVspv

c .

Proof. In DP Equation (6), there is a maximization over two other maximization formulae. The first
one considers the case that we do not select v as a seed node; in this case, we consider the probability
that node v will become active, i.e., p ∈ Fv. The second maximization considers selecting v as a
seed node; in this state, v will be activated with probability equal to one. In both cases, the node
may increase the function’s value if the pre-condition holds; otherwise, it can influence its children.
The same as previous proves, we show that it works by induction.

Consider a two-dimensional array A[B + 1, |V|] where rows are the budgets from zero to B,
and columns are the nodes in BFS reveres order. Each cell A[i, j] (0 6 i 6 B, 0 6 j < |V|) refers to
another array A′ with the size of |Fvj |. We calculate each array related to each cell (i, j) left-to-right and
up-down direction.

To show that the base cases are correct, note that the leaves cannot activate any other node.
Their only effect is by becoming active and changing their own opinion. Then there are two cases if
the pre-condition holds for a leaf v: First, the budget is more than zero, then v can be a seed node and
increase the amount of DoV′c by one. Second, if the budget is zero, v can increment DoV′c with the
probability of becoming active through its parent, i.e., in expected, it will be p · 1¶v where p ∈ Fv is the
probability that v will be activated through its parent. Note that if the pre-condition does not hold,
the leaf cannot make any effect, and in both cases, its effect is equal to zero.

Let us say (i′, j′) < (i, j) if j′ < j, or j′ = j ∧ i′ < i. As the step of induction, assume that all cells
(i′, j′) smaller that (i, j) are filled correctly for 0 6 i 6 B, 0 6 j < |V|. In order to calculate the array A′

related to the cell (i, j), for each p ∈ Fvj we have to calculate the result of the following function.

DoV′c(vj, i, S, p) = max
{

maxi
k=0{DoV′c(r(vj), k, S, p · bvj ,r(vj)

) + DoV′c(l(vj), i− k, S, p · bvj ,l(vj)
)}+ p · 1¶v ,

maxi−1
k=0{DoV′c(r(vj), k, S ∪ {vj}, bvj ,r(vj)

) + DoV′c(l(vj), i− k− 1, S ∪ {vj}, bvj ,l(vj)
)}+ 1¶v

}
.

There is a maximization over two cases. Let us check each case separately. The first case considers
all possible cases to split the budget into two parts for its children r(vj) and l(vj) (the first and second
terms) when vj is not selected as a seed node. It finds the split with the maximum outcome using the
DoV′c of its children, which are calculated correctly. In this case, since the node vj is not a seed node,
then the probability that its right (resp. left) child will become active is p · bvj ,r(vj)

(resp. p · bvj ,l(vj)
).

The fixed-term is the amount of change that the node vj can afford to maximize our target party’s score.
If the pre-condition holds, then with the probability of p it will increase the score by one, that is p · 1¶v .

The second maximization investigates the same situation except that it selects vj as a seed node
(if i > 0) and uses the value DoV′c of its children to find the best split for the i− 1 remaining budgets.
In this case, the node vj can increase our party’s score by one (if the pre-condition holds) as it is selected
as a seed node and will be activated for sure. (To generalize the proof using any non-increasing
scoring function g(·), we should change the updating part of each maximization (the fixed part) as
p · (∑c∈C1,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c) − 1) − g(πv(c))) and ∑c∈C1,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c) − 1) −
g(πv(c)), respectively.) Note that all corresponding values for the children of vj are correctly calculated
before because the nodes are sorted as BFS reverse order. Finally, it finds the maximum value among
the two cases.

For the destructive case of the problem, we define pre-condition ¶′v as ∃c ∈ C1 : πv(c) = 1.
Then for a node v, if it becomes active and ¶′v holds, the node will decrease the party’s score by one;
otherwise, v cannot change it. For each sub-tree rooted at v, budget k, and p ∈ Fv, let us define
DoV′d(v, k, S, p) as follows.

41

Algorithms 2020, 13, 251

DoV′d(v, k, S, p) = max
{

maxk
k′=0{DoV′d(r(v), k′, S, p · bv,r(v)) + DoV′d(l(v), k− k′, S, p · bv,l(v))}+ p · 1¶′v ,

maxk−1
k′=0{DoV′d(r(v), k′, S ∪ {v}, bv,r(v)) + DoV′d(l(v), k− k′ − 1, S ∪ {v}, bv,l(v))}+ 1¶′v

}
. (7)

Note that the definition is exactly the same as constructive case except for the pre-condition.
Furthermore the base cases are the same as before if we substitute ¶′v for ¶v. The prove of the following
theorem is similar to the Theorem 7; then we omit it to avoid repetition.

Theorem 8. Given a tree T = (V, E), and budget B, the DP Equation (7) gives a set of seed nodes S (|S| 6 B)
which maximizes DoVspv

d .

6.2.2. Maximizing MoV in Straight-Party Voting under ICM

Similar to Section 6.1.2, we do not know the most scored parties after the diffusion started from a
set of optimal seed nodes. However, it has been shown that by maximizing DoVspv

c (resp. DoVspv
d) we

get a 1
3 (resp. 1

2) approximation algorithm for maximizing MoVspv
c (resp. MoVspv

d) [9].

7. Discussion

Controlling election via social influence is one of the most crucial parts of each democratic election.
It has been shown that many campaigns are using this powerful tool to influence the voters and change
their opinion during elections. In this work, we considered the multi-winner election control utilizing
social influence so that the attacker tries to maximize/minimize the number of winners from his target
party, concerning the party with the most winners.

We exhibited different results, including hardness of approximation, approximation guarantee,
and optimal solutions for our problem considering different structures, diffusion models, and voting
systems. In ICM, each voter has a preference list over the candidates and will vote for one or more
candidate according to the voting rule, e.g., plurality, Borda’s rule, k-approval, and anti-plurality. In this
case, the influenced voters change their opinion by promoting/demoting the candidates’ position
in their preference list. On the other hand, in LTM, we consider that the voters have a probability
distribution over all candidates. Each voter votes for one or more candidates proportional to the
probability of voting for them. In this model, the activated voters change their opinion based on the
incoming activated neighbors’ influence.

We proved the problem is hard to approximate within any factor when the structure is a general
graph, and the diffusion model is LTM. We also considered the problem when the structure is an
arborescence, and the diffusion process follows the ICM rules. We showed that the problem is
inapproximable within any factor, except P = NP. Another structure that we investigated is a tree
where the voting system is a variation of straight-party voting. We presented a polynomial-time
algorithm to maximize the expected score of our target party regarding both LT and IC diffusion
models. It yields that we can get a 1

3 -approximation factor for maximizing MoV in constructive case,
and 1

2 -approximation factor concerning MoV in the destructive model.
The results of this paper open several research directions. Considering the multi-winner election

control through social influence on arborescence, when the diffusion model is LTM can be an
exciting research problem. We conjecture that maximizing both objective functions (MoV and DoW)
is hard; however, there exists a polynomial-time algorithm for the IM problem on arborescence under
LTM. We plan to consider maximizing MoV in straight-party voting to either present an optimal
solution or provide a hardness result regarding both constructive and destructive cases. Furthermore,
maximizing DoV on the bidirected trees, where a child can activate its parent too, can be impressive.

42

Algorithms 2020, 13, 251

We conjecture that the problem accepts a polynomial-time algorithm following a similar dynamic
programming approach.

Author Contributions: Conceptualization, M.A.M. and G.D.; methodology, M.A.M. and G.D.; software, M.A.M.
and G.D.; validation, M.A.M. and G.D.; formal analysis, M.A.M. and G.D.; investigation, M.A.M. and G.D.;
resources, M.A.M. and G.D.; data curation, M.A.M. and G.D.; writing–original draft preparation, M.A.M. and
G.D.; writing–review and editing, M.A.M. and G.D.; visualization, M.A.M and G.D.; supervision, G.D.; project
administration, G.D.; funding acquisition, G.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by the Italian MIUR PRIN 2017 Project ALGADIMAR
“Algorithms, Games, and Digital Markets”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Matsa, K.E.; Shearer, E. News Use Across Social Media Platforms 2018; Pew Research Center: Washington, DC,
USA, 2018.

2. Bond, R.M.; Fariss, C.J.; Jones, J.J.; Kramer, A.D.I.; Marlow, C.; Settle, J.E.; Fowler, J.H. A 61-million-person
experiment in social influence and political mobilization. Nature 2012, 489, 295.

3. Ferrara, E. Disinformation and social bot operations in the run up to the 2017 French presidential election.
First Monday 2017, 22, doi:10.5210/fm.v22i8.8005.

4. Kreiss, D. Seizing the moment: The presidential campaigns’ use of Twitter during the 2012 electoral cycle.
New Media Soc. 2016, 18, 1473–1490.

5. Stier, S.; Bleier, A.; Lietz, H.; Strohmaier, M. Election Campaigning on Social Media: Politicians, Audiences,
and the Mediation of Political Communication on Facebook and Twitter. Political Commun. 2018, 35, 50–74,
doi:10.1080/10584609.2017.1334728.

6. Allcott, H.; Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspect. 2017, 31, 211–236.
7. Kempe, D.; Kleinberg, J.; Tardos, E. Maximizing the Spread of Influence through a Social Network.

Theory Comput. 2015, 11, 105–147, doi:10.4086/toc.2015.v011a004.
8. Abouei Mehrizi, M.; Corò, F.; Cruciani, E.; D’Angelo, G. Election control through social influence with

unknown preferences. In Proceedings of the 2020 International Computing and Combinatorics Conference,
Atlanta, GA, USA, 29–31 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 397–410.

9. Abouei Mehrizi, M.; D’Angelo, G. Multi-winner election control via social influence. In Proceedings of
the Structural Information and Communication Complexity—27th International Colloquium (SIROCCO
2020), Paderborn, Germany, 29 June–1 July 2020; Richa, A.W., Scheideler, C., Eds.; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12156, pp. 331–348,
doi:10.1007/978-3-030-54921-3_19.

10. Wilder, B.; Vorobeychik, Y. Controlling elections through social influence. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), Stockholm, Sweden,
10–15 July 2018; pp. 265–273.

11. Faliszewski, P.; Rothe, J.; Moulin, H. Control and Bribery in Voting; Handbook of Computational Social Choice;
Cambridge University Press: Cambridge, UK, 2016; pp. 146–168.

12. Banerjee, S.; Jenamani, M.; Pratihar, D.K. A survey on influence maximization in a social network.
Knowl. Inf. Syst. 2020, 62, 3417–3455.

13. Domingos, P.; Richardson, M. Mining the network value of customers. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
26–29 August 2001; ACM: New York, NY, USA, 2001; pp. 57–66.

14. Richardson, M.; Domingos, P. Mining knowledge-sharing sites for viral marketing. In Proceedings of the
2002 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB,
USA, 23–26 July 2001; ACM: New York, NY, USA, 2001; pp. 61–70.

15. Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the spread of influence through a social network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146.

43

Algorithms 2020, 13, 251

16. Corò, F.; Cruciani, E.; D’Angelo, G.; Ponziani, S. Exploiting social influence to control elections based on
scoring rules. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI),
Macao, China, 10–16 August 2019.

17. Corò, F.; Cruciani, E.; D’Angelo, G.; Ponziani, S. Vote for me!: Election control via social influence in arbitrary
scoring rule voting systems. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS ’19), Montreal, QC, Canada, 13–17 May 2019; International Foundation
for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2019; pp. 1895–1897.

18. Bredereck, R.; Elkind, E. Manipulating opinion diffusion in social networks. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 19–25 August 2017;
pp. 894–900.

19. Castiglioni, M.; Ferraioli, D.; Gatti, N. Election control in social networks via edge addition or removal.
In Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February
2020; pp. 1878–1885.

20. Faliszewski, P.; Gonen, R.; Koutecký, M.; Talmon, N. Opinion diffusion and campaigning on society graphs.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm,
Sweden, 13–19 July 2018; pp. 219–225.

21. Auletta, V.; Caragiannis, I.; Ferraioli, D.; Galdi, C.; Persiano, G. Minority becomes majority in social networks.
In Proceedings of the 11th Web and Internet Economics (WINE), Amsterdam, The Netherlands, 9–12
December 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 74–88.

22. Brill, M.; Elkind, E.; Endriss, U.; Grandi, U. Pairwise diffusion of preference rankings in social networks.
In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY,
USA, 9–15 July 2016; pp. 130–136.

23. Botan, S.; Grandi, U.; Perrussel, L. Propositionwise opinion diffusion with constraints. In Proceedings of the
4th AAMAS Workshop (EXPLORE), Sao Paulo, Brazil, 8 May 2017.

24. Li, Y.; Fan, J.; Wang, Y.; Tan, K. Influence Maximization on Social Graphs: A Survey. IEEE Trans. Knowl.
Data Eng. 2018, 30, 1852–1872, doi:10.1109/TKDE.2018.2807843.

25. Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; Procaccia, A.D. Handbook of Computational Social Choice, 1st ed.;
Cambridge University Press: New York, NY, USA, 2016.

26. Bharathi, S.; Kempe, D.; Salek, M. Competitive influence maximization in social networks. In International
Workshop on Web and Internet Economics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 306–311.

27. Lu, Z.; Zhang, Z.; Wu, W. Solution of Bharathi–Kempe–Salek conjecture for influence maximization on
arborescence. J. Comb. Optim. 2017, 33, 803–808.

28. Wang, A.; Wu, W.; Cui, L. On Bharathi–Kempe–Salek conjecture for influence maximization on arborescence.
J. Comb. Optim. 2016, 31, 1678–1684.

29. Abouei Mehrizi, M.; D’Angelo, G. Multi-Winner Election Control via Social Influence. arXiv 2020,
arXiv:2005.04037.

30. Campbell, B.A.; Byrne, M.D. Straight-party voting: What do voters think? IEEE Trans. Inf. Forensics Secur.
2009, 4, 718–728.

31. Kritzer, H.M. Roll-Off in State Court Elections: Change Over Time and the Impact of the Straight-Ticket
Voting Option. J. Law Court 2016, 4, 409–435.

32. Ruhl, J.; Mcdonald, R. Party Politics And Elections In Latin America; Taylor & Francis: Abingdon, UK, 2019.
33. Hershey, M. Party Politics in America; Taylor & Francis: Abingdon, UK, 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

44

algorithms

Article

On Multidimensional Congestion Games †

Vittorio Bilò 1,*, Michele Flammini 2,*, Vasco Gallotti 3 and Cosimo Vinci 2,*
1 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento-Provinciale

Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy
2 Gran Sasso Science Institute-Viale Francesco Crispi 7, 67100 L’Aquila, Italy
3 Department of Information Engineering Computer Science and Mathematics, University of L’Aquila-Via

Vetoio, Loc. Coppito, 67100 L’Aquila, Italy; vasco.gallotti@univaq.it
* Correspondence: vittorio.bilo@unisalento.it (V.B.); michele.flammini@gssi.it (M.F.);

cosimo.vinci@gssi.it (C.V.)
† This work widely improves on an extended abstract presented at SIROCCO 2012.

Received: 9 September 2020; Accepted: 3 October 2020; Published: 15 October 2020
����������
�������

Abstract: We introduce multidimensional congestion games, that is, congestion games whose set of
players is partitioned into d + 1 clusters C0, C1, . . . , Cd. Players in C0 have full information about all
the other participants in the game, while players in Ci, for any 1 ≤ i ≤ d, have full information only
about the members of C0 ∪Ci and are unaware of all the others. This model has at least two interesting
applications: (i) it is a special case of graphical congestion games induced by an undirected social
knowledge graph with independence number equal to d, and (ii) it represents scenarios in which
players have a type and the level of competition they experience on a resource depends on their
type and on the types of the other players using it. We focus on the case in which the cost function
associated with each resource is affine and bound the price of anarchy and stability as a function of d
with respect to two meaningful social cost functions and for both weighted and unweighted players.
We also provide refined bounds for the special case of d = 2 in presence of unweighted players.

Keywords: congestion games; pure Nash equilibrium; potential games; price of anarchy; price
of stability

1. Introduction

Congestion games [1–4] are, perhaps, the most famous class of non-cooperative games due to
their capability to model several interesting competitive scenarios, while maintaining nice properties.
In these games, there is a set of players sharing a set of resources. Each resource has an associate cost
function which depends on the number of players using it (the so-called congestion). Players aim at
choosing subsets of resources so as to minimize the sum of the resource costs.

Congestion games were introduced by Rosenthal in Reference [2]. He proved that each such a
game admits a bounded potential function whose set of local minima coincides with the set of pure
Nash equilibria [5] of the game, that is, strategy profiles in which no player can decrease her cost by
unilaterally changing her strategic choice. This existence result makes congestion games particularly
appealing especially in all those applications in which pure Nash equilibria are elected as the ideal
solution concept.

In these contexts, the study of inefficiency due to selfish and non-cooperative behavior has
affirmed as a fervent research direction. To this aim, the notions of price of anarchy [6] and price of
stability [7] are widely adopted. The price of anarchy (resp. stability) compares the performance of the
worst (resp. best) pure Nash equilibrium with that of an optimal cooperative solution.

Congestion games with unrestricted cost functions are general enough to model the Prisoner’s
Dilemma game, whose unique pure Nash equilibrium is known to perform arbitrarily bad with

45

Algorithms 2020, 13, 261

respect to the solution in which all players cooperate. Hence, in order to deal with significative
bounds on the prices of anarchy and stability, some kind of regularity needs to be imposed on the
cost functions associated with the resources. To this aim, lot of research attention has been devoted to
the case of polynomial cost functions [8–17], and more general latency functions verifying some mild
assumptions [10,18,19]. Among these, the particular case of affine functions occupies a predominant
role. In fact, as shown in References [20–22], they represent the only case, together with that (perhaps
not particularly meaningful) of exponential cost functions, for which weighted congestion games [20],
that is the generalization of congestion games in which each player has a weight and the congestion of
a resource becomes the sum of the weights of its users, still admit a potential function.

1.1. Motivations

Traditional (weighted) congestion games are defined under a full information scenario—each player
knows all the other participants in the game as well as their available strategies. These requirements,
anyway, become too strong in many practical applications, where players may be unaware about even
the mere existence of other potential competitors. This observation, together with the widespread
of competitive applications in social networks, has drawn some attention on the model of graphical
(weighted) congestion games [23–25].

A graphical (weighted) congestion game (G, G) is obtained by coupling a traditional (weighted)
congestion game G with a social knowledge graph G expressing the social context in which the players
operate. In G, each node is associated with a player of G and there exists a directed edge from node
i to node j if and only if player i has full information about player j. A basic property of (weighted)
congestion games is that the congestion of a resource r in a given strategy profile σ is the same for all
players. The existence of a social context in graphical (weighted) congestion games, instead, makes the
congestion of each resource player dependent. In these games, in fact, the congestion presumed by
player i on resource r in the strategy profile σ is obtained by excluding from the set of players choosing
r in σ those of whom player i has no knowledge. Clearly, if G is complete, then there is no difference
between (G, G) and G. In all the other cases, however, there may be a big difference between the cost
that a player presumes to pay on a certain strategy profile and the real cost that she effectively perceives
because of the presence of players she was unaware of during her decisional process (We observe that
the model of graphical congestion games is sufficiently powerful to describe an alternative scenario in
which players never perceive their real costs, which are perceived and evaluated by a central entity
only. In such case, the central entity aims at evaluating the global and real impact on the performance
of the game caused by the players’ strategic behaviour).

Graphical congestion games have been introduced by Bilò et al. in Reference [24]. They focus
on affine cost functions and provide a complete characterization of the cases in which existence of
pure Nash equilibria can be guaranteed. In particular, they show that equilibria always exist if and
only if G is either undirected or directed acyclic. Then, for all these cases, they give bounds on the
price of anarchy and stability expressed as a function of the number of players in the game and of the
maximum degree of G. These metrics are defined with respect to both the sum of the perceived costs
and the sum of the presumed ones.

Fotakis et al. [25] argue that the maximum degree of G is not a proper measure of the level of
social ignorance in a graphical congestion game and propose to bound the prices of anarchy and
stability as a function of the independence number of G, denoted by δ(G). They focus on graphical
weighted congestion games with affine cost functions and show that they still admit a potential
function when G is undirected. Then, they prove that the price of anarchy is between δ(G)(δ(G) + 1)
and δ(G)(δ(G) + 2 +

√
δ(G)2 + 4δ(G))/2 with respect to both the sum of the perceived costs and the

sum of the presumed ones, and that the price of stability is between δ(G) and 2δ(G) with respect to
the sum of the perceived costs.

46

Algorithms 2020, 13, 261

1.2. Our Contribution and Significance

The works of Bilò et al. [24] and Fotakis et al. [25] aim at characterizing the impact of social
ignorance in the most general case, that is, without imposing any particular structure on the
social knowledge graphs defining the graphical game. Nevertheless, real-world-based knowledge
relationships usually obey some regularities and present recurrent patterns: for instance, people tend
to cluster themselves into well-structured collaborative groups (cliques) due to family memberships,
mutual friendships, interest sharing, business partnerships.

To this aim, we introduce and study multidimensional (weighted) congestion games, that is, (weighted)
congestion games whose set of players are partitioned into d + 1 clusters C0, C1, . . . , Cd. Players in
C0 have full information about all the other participants in the game, while players in Ci, for any
1 ≤ i ≤ d, have full information only about the members of C0 ∪ Ci and are unaware of all the
others. It is not difficult to see (and we provide a formal proof of this fact in the next section) that
each multidimensional (weighted) congestion game is a graphical (weighted) congestion game whose
social knowledge graph G is undirected and verifies δ(G) = d. In addition, G possesses the following,
well-structured, topology: it is the union of d + 1 disjoint cliques (each corresponding to one of the
d + 1 clusters in the multidimensional (weighted) congestion game) with the additional property that
there exists an edge from all the nodes belonging to one of these cliques (the one corresponding to
cluster C0) to all the nodes in all the other cliques.

We believe that the study of graphical games restricted to some prescribed social knowledge
graphs like the ones we consider here, may be better suited to understand the impact of social ignorance
in non-cooperative systems coming from practical and real-world applications. Moreover, the particular
social knowledge relationships embedded in the definition of multidimensional (weighted) congestion
games perfectly model the situation that generates when several independent games with full
information are gathered together by some promoting parties so as to form a sort of “global
super-game”. The promoting parties become players with full information in the super-game,
while each player in the composing sub-games maintains full information about all the other players
in the same sub-game, acquires full information about all the promoting parties in the super game,
but completely ignores the players in the other sub-games. Such a composing scheme resembles, in a
sense, the general architecture of the Internet, viewed as a self-emerged network resulting from the
aggregation of several autonomous systems (AS). Users in an AS have full information about anything
happening within the AS, but, at the same time, they completely ignore the network global architecture
and how it develops outside their own AS, except for the existence of high-level network routers.
High-level network routers, instead, have full information about the entire network.

Furthermore, multidimensional (weighted) congestion games are also useful to model games in
which players belong to different types and the level of competition that each player experiences on
each selected resource depends on her type and on the types of the other players using the resource.
Consider, for instance, a machine which is able to perform d different types of activities in parallel
and a set of tasks requiring the use of this machine. Tasks are of two types: simple and complex.
Simple tasks take the machine busy on one particular activity only, while complex tasks require the
completion of all the d activities. Hence, complex tasks compete with all the other tasks, while simple
ones compete only with the tasks requiring the same machine (thus, also with complex tasks). A similar
example is represented by a facility location game where players want to locate their facilities so as
to minimize the effect of the competition due to the presence of neighbor competitors. If we assume
that the facilities can be either specialized shops selling particular products (such as perfumeries,
clothes shops, shoe shops) or shopping centers selling all kinds of products, we have again that the
shopping centers compete with all the other participants in the game, while specialized shops compete
only with shops of the same type and with shopping centers.

In this paper, we focus on multidimensional (weighted) congestion games with affine cost
functions. In such a setting, we bound the price of anarchy and the price of stability with respect to
the two social cost functions, which are the sum of the perceived costs and the sum of the presumed

47

Algorithms 2020, 13, 261

costs. In fact, when multidimensional (weighted) congestion games are viewed as graphical (weighted)
congestion games with highly clustered knowledge relationships, the sum of the perceived costs is
more appropriate to define the overall quality of a profile: players decide according to their knowledge,
but then, when the solution is physically realized, their cost becomes influenced also by the players
of which they were not aware. Hence, under this social cost function, the notions of price of anarchy
and price of stability effectively measure the impact of social ignorance in the system. On the other
hand, when multidimensional (weighted) congestion games are used to model players belonging to
different types, the perceived cost of a player coincides with the presumed one since there is no real
social ignorance, even if the fact that players can be of different types allows for a reinterpretation
of the model as a special case of graphical (weighted) congestion games. Hence, in such a setting,
the inefficiency due to selfish behavior has to be analyzed with respect to the sum of the presumed costs.

We determine general upper bounds for the price of anarchy and the price of stability as a function
of d. For the sum of the presumed costs, we show that the price of anarchy and stability of weighted

games are at most (
√

d+4+
√

d)(
√

d
√

d+4+d+4)
4
√

d+4
≤ d + 2 and 2, respectively. Instead, for the sum of the

perceived costs, the results of Reference [25] yield upper bounds of d(d + 2 +
√

d2 + 4d)/2 and 2d for
the price of anarchy and the price of stability, respectively.

Then, we investigate the case of unweighted games with d = 2 (i.e., bidimensional congestion
games) in higher depth and provide refined bounds. In particular, we prove that price of anarchy
is 119/33 ≈ 3.606 with respect to the sum of the presumed costs and it is 35/8 = 4.375 with respect
to the sum of the perceived ones, and that the price of stability is between (1 +

√
5)/2 ≈ 1.618

and 1 + 2/
√

7 ≈ 1.756 for the sum of the presumed costs as social cost function, and between
(5 +

√
17)/4 ≈ 2.28 and 2.92 for the sum of the perceived ones. These results are derived by exploiting

the primal-dual method developed in Reference [11].
A preliminary version of this paper has been presented at SIROCCO 2012 [26].

1.3. Paper Organization

Next section contains all formal definitions and notation. In Section 3 we discuss the existence of
pure Nash equilibria in multidimensional weighted congestion games. In Sections 4 and 5, we present
our bounds for the price of anarchy and the price of stability, respectively. Finally, in the last section,
we give some concluding remarks and discuss open problems.

2. Model and Definitions

For an integer n ≥ 2, we denote [n] := {1, 2, . . . , n}. In a weighted congestion game G, we have
n players and a set of resources R, where each resource r ∈ R has an associated cost function `r.
The set of strategies for each player i ∈ [n], denoted as Si, can be any subset of the powerset of R,
that is, Si ⊆ 2R. Each player i ∈ [n] is associated with a positive weight wi > 0. Given a strategy
profile σ = (σ1, . . . , σn), the congestion of resource r in σ, denoted as nr(σ), is the total weight of
players choosing r in σ, that is, nr(σ) = ∑i∈[n]:r∈σi

wi. The perceived cost paid by player i in σ is
ci(σ) = ∑r∈σi

`r(nr(σ)). An unweighted congestion game (congestion game, for brevity) is a weighted
congestion game in which all players have unitary weights. An affine weighted congestion game is a
weighted congestion game such that, for any r ∈ R, it holds that `r(x) = αrx + βr, with αr, βr ≥ 0;
the game is linear if βr = 0 for any r ∈ R.

For any integer d ≥ 2, a d-dimensional weighted congestion game (G, C) consists of a weighted
congestion game G whose set of players is partitioned into d + 1 clusters C0, C1, . . . , Cd. For a player
i, we denote by f (i) ∈ {0, . . . , d} the cluster she belongs to. We say that players in C0 are omniscient
and that players in Ci, for any i ∈ [d], are ignorant. Given a strategy profile σ, we denote by nr,j(σ) the
total weight of players belonging to Cj who are using resource r in σ. The presumed cost of a player
i in σ is ĉi(σ) = ∑r∈σi

`r(nr, f (i)(σ) + nr,0(σ)) if she is ignorant and ĉi(σ) = ∑r∈σi
`r(∑d

j=0 nr,j(σ)) =

48

Algorithms 2020, 13, 261

∑r∈σi
`r(nr(σ)) = ci(σ) if she is omniscient. A d-dimensional weighted affine congestion game is a pair

(G, C) such that G is an affine weighted congestion game.
Given a strategy profile σ and a strategy s ∈ Si for a player i ∈ [n], we denote with (σ−i, s) the

strategy profile obtained from σ by replacing the strategy σi played by i in σ with s. A pure Nash
equilibrium is a strategy profile σ such that, for any player i ∈ [n] and for any strategy s ∈ Si, it holds
that ĉi(σ−i, s) ≥ ĉi(σ).

Let Σ be the set of all possible strategy profiles which can be realized in (G, C). We denote with
NE(G, C) ⊆ Σ the set of pure Nash equilibria of (G, C). Let SF : Σ → R≥0 be a social cost function
measuring the overall quality of each strategy profile in Σ. We denote with σ∗ a social optimum of
(G, C) with respect to SF, that is, a strategy profile minimizing the social cost function SF. We consider
two social cost functions, namely, the (weighted) sum of the presumed costs of all players and the
(weighted) sum of their perceived ones denoted, respectively, as Pres and Perc. Technically, they assume
the following expressions:

Pres(σ) = ∑
i∈[n]

wi ĉi(σ)

= ∑
i∈C0

wi ∑
r∈σi

(αrnr(σ) + βr) + ∑
i/∈C0

wi ∑
r∈σi

(
αr

(
nr, f (i)(σ) + nr,0(σ)

)
+ βr

)

= ∑
r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)

)

+ ∑
r∈R

(
αrnr,0(σ)

d

∑
j=1

nr,j(σ) + αr

d

∑
j=1

nr,j(σ)
2 + βr

d

∑
j=1

nr,j(σ)

)

= ∑
r∈R

(
αr

(
d

∑
j=0

nr,j(σ)
2 + 2nr,0(σ)

d

∑
j=1

nr,j(σ)

)
+ βr

d

∑
j=0

nr,j(σ)

)

and
Perc(σ) = ∑

i∈[n]
wici(σ) = ∑

i∈[n]
wi ∑

r∈σi

(αrnr(σ) + βr) = ∑
r∈R

(
αrnr(σ)

2 + βrnr(σ)
)

.

For a fixed social cost function SF, the price of anarchy of (G, C), denoted by PoA(G, C), is the ratio
between the social value of the worst pure Nash equilibrium of (G, C) and that of a social optimum,
that is, PoA(G, C) = maxσ∈NE(G,C)

SF(σ)
SF(σ∗) . The price of stability, denoted by PoS(G, C), considers the

best case, so that PoS(G, C) = minσ∈NE(G,C)
SF(σ)
SF(σ∗) .

3. Existence of Pure Nash Equilibria

In this section, we prove that multidimensional unweighted (resp. weighted affine) congestion
games are graphical unweighted (resp. weighted affine) congestion games defined by an underlying
undirected social knowledge graph. This allows us to use a result in Reference [24] (resp. [25]) stating
that these games are potential games, thus admitting pure Nash equilibria.

A graphical weighted congestion game (G, G) consists of a weighted congestion game G and a directed
graph G = (N, A) such that each node of N is associated with a player in G and there exists a directed
edge from node i to node j if and only if player i has full information about player j. The congestion
presumed by player i on resource r in the profile σ is ñr,i(σ) = ∑p∈N:r∈σp ,(i,p)∈A wp + wi and the
presumed cost paid by player i in σ is c̃i(σ) = ∑r∈σi

`r(ñr,i(σ)). A graphical weighted affine congestion
game is a pair (G, G) such that G is an affine weighted congestion game. The independence number δ(G)

of (G, G) is the cardinality of a maximum independent set of graph G.
A function Φ : Σ→ R is a weighted potential function for a graphical weighted congestion game

(G, G), if for any profile σ, any player i ∈ [n] and any strategy s ∈ Si, it holds that Φ(σ)−Φ(σ−i, s) =
ai(c̃i(σ) − c̃i(σ−i, s)) for some ai > 0; if ai = 1, Φ is an exact potential function. In Reference [24]

49

Algorithms 2020, 13, 261

(resp. [25]), it is shown that each graphical unweighted (resp. weighted affine) congestion game (G, G)

such that G is undirected admits an exact potential function (resp. weighted potential function).
The following result shows that d-dimensional weighted congestion games are a subclass of

graphical weighted congestion games.

Proposition 1. Each d-dimensional weighted congestion game is a graphical weighted congestion game whose
social knowledge graph is undirected.

Proof. Fix a d-dimensional weighted congestion game (G, C). We define a graph G = (N, A) such that
each node in N is associated with a player in G and there is an undirected edge {u, v} ∈ A if and only
if either u, v ∈ Ci for some 0 ≤ i ≤ d or u ∈ C0. We show that, for any strategy profile σ of G and for
any i ∈ [n], ĉi(σ) = c̃i(σ).

Consider first an omniscient player i ∈ C0. In (G, C), it holds that

ĉi(σ) = ∑
r∈σi

`r(nr(σ)) = ∑
r∈σi

`r


 ∑

p∈[n]:r∈σp

wp


 ,

while in (G, G), it holds that

c̃i(σ) = ∑
r∈σi

`r(ñr,i(σ)) = ∑
r∈σi

`r


 ∑

p∈N:r∈σp ,{i,p}∈A
wp + wi


 = ∑

r∈σi

`r


 ∑

p∈[n]:r∈σp

wp


 ,

where the last equality follows from the fact that, by construction of G, it holds that {i, p} ∈ A, for any
p ∈ [n] with p 6= i.

Next, consider an ignorant player i ∈ Cj for some j ∈ [d]. In (G, C), it holds that

ĉi(σ) = ∑
r∈σi

`r(nr, f (i)(σ) + nr,0(σ)) = ∑
r∈σi

`r


 ∑

p∈C0∪Cj :r∈σp

wp


 ,

while in (G, G), it holds that

c̃i(σ) = ∑
r∈σi

`r(ñr,i(σ)) = ∑
r∈σi

`r


 ∑

p∈N:r∈σp ,{i,p}∈A
wp + wi


 = ∑

r∈σi

`r


 ∑

p∈C0∪Cj :r∈σp

wp


 ,

where the last equality follows from the fact that, by construction of G, for any p ∈ [n] with p 6= i,
it holds that {i, p} ∈ A if and only if p ∈ C0 ∪ Cj.

Each game admitting an exact or weighted potential function always admits pure Nash equilibria.
Hence, by Proposition 1 and the existence of an exact (resp. weighted) potential function for graphical
unweighted (resp. weighted affine) congestion games with undirected social knowledge graphs,
we have that d-dimensional unweighted (resp. weighted affine) congestion games always admit pure
Nash equilibria.

For weighted affine games, the potential function assume the following expression:

Φ(σ) = ∑
r∈R


αr


 ∑

i∈[n]:r∈σi

w2
i + ∑

{i,p}∈A:r∈σi∩σp

wiwp


+ βr ∑

i∈[n]:r∈σi

wi




=
1
2 ∑

r∈R


αr




d

∑
j=0

nr,j(σ)
2 + ∑

i∈[n]:r∈σi

w2
i + 2nr,0(σ)

d

∑
j=1

nr,j(σ)


+ 2βr

d

∑
j=0

nr,j(σ)


 . (1)

50

Algorithms 2020, 13, 261

4. Bounds for the Price of Anarchy

In this section, we provide an upper bound for the price of anarchy of multidimensional weighted
affine congestion games as a function of d.

Fix a pure Nash equilibrium σ and a social optimum σ∗, thus fixing the congestions nr,i(σ) and
nr,i(σ

∗) for each i ∈ [n] and r ∈ R. The pure Nash equilibrium condition implies that no player lowers
her presumed cost by deviating to the strategy she uses in σ∗. For any player i ∈ C0, this yields

∑
r∈σi

(αrnr(σ) + βr)− ∑
r∈σ∗i

(αr(nr(σ) + wi) + βr) ≤ 0, (2)

that is a necessary condition satisfied by any pure Nash equilibrium (The equilibrium condition
yields the stronger inequality ∑r∈σi\σ∗i (αrnr(σ) + βr) − ∑r∈σ∗i \σi

(αr(nr(σ) + wi) + βr) ≤ 0, so that
inequality ∑r∈σi

(αrnr(σ) + βr)−∑r∈σ∗i
(αr(nr(σ) + wi) + βr) ≤ 0 is a relaxation of the equilibrium

condition.). For weighted games, by using wi ≤ nr,0(σ
∗) for any r ∈ R and i ∈ [n] such that r ∈ σi,

by multiplying (2) for wi and summing it for each i ∈ C0, we get

∑
r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)− αrnr,0(σ
∗)

(
nr,0(σ

∗) +
d

∑
j=0

nr,j(σ)

)
− βrnr,0(σ

∗)

)
≤ 0, (3)

that is a further necessary condition satisfied by any pure Nash equilibrium. For unweighted games,
we simply fix wi = 1 for any i ∈ [n] and sum the inequality for each i ∈ C0, thus getting

∑
r∈R

(
αrnr,0(σ)

d

∑
j=0

nr,j(σ) + βrnr,0(σ)− αrnr,0(σ
∗)

(
1 +

d

∑
j=0

nr,j(σ)

)
− βrnr,0(σ

∗)

)
≤ 0. (4)

For any player i ∈ Cj, with j ∈ [d], the equilibrium condition yields

∑
r∈σi

(
αr
(
nr,j(σ) + nr,0(σ)

)
+ βr

)
− ∑

r∈σ∗i

(
αr
(
nr,j(σ) + nr,0(σ) + wi

)
+ βr

)
≤ 0.

For weighted games, again, by using wi ≤ nr,0(σ
∗) for any r ∈ R and i ∈ [n] such that r ∈ σi,

by multiplying this inequality for wi, and by summing it for each i ∈ Cj, we get

∑
r∈R

(
αrnr,j(σ)

(
nr,j(σ) + nr,0(σ)

)
+ βrnr,j(σ)− αrnr,j(σ

∗)
(

nr,j(σ) + nr,0(σ) + nr,j(σ
∗)
)
− βrnr,j(σ

∗)
)
≤ 0.

By further summing for each j ∈ [d], we obtain

∑
r∈R

(
d

∑
j=1

(
nr,j(σ)

(
αr(nr,j(σ) + nr,0(σ) + βr

))
−

d

∑
j=1

(
nr,j(σ

∗)
(
αr(nr,j(σ) + nr,0(σ) + nr,j(σ

∗)) + βr
))
)
≤ 0. (5)

For unweighted games, by setting wi = 1, and by summing the equilibrium constraint for any i ∈ [n]
and j ∈ [d], we analogously get

∑
r∈R




d

∑
j=1

(
nr,j(σ)

(
αr(nr,j(σ) + nr,0(σ) + βr

))
−

d

∑
j=1

(
nr,j(σ

∗)
(

αr(nr,j(σ) + nr,0(σ) + 1) + βr

))

 ≤ 0. (6)

In the sequel, for the sake of conciseness, we adopt kr,j and lr,j as short-hands for nr,j(σ) and
nr,j(σ

∗), respectively.
Theorem 1 provides an upper bound for the price of anarchy of multidimensional weighted affine

congestion games with respect to social cost function Pres.

51

Algorithms 2020, 13, 261

Theorem 1. For each d-dimensional weighted affine congestion game (G, C),

PoA(G, C) ≤ (
√

d + 4 +
√

d)(
√

d ·
√

d + 4 + d + 4)
4
√

d + 4
≤ d + 2

under the social cost function Pres.

Proof. Let σ and σ∗ be a worst-case equilibrium and a social optimum of (G, C), respectively. Let kr =

(kr,0, . . . , kr,d), lr = (lr,0, . . . , lr,d), and let P = (pi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) binary matrix such
that: (i) pi,j = 1 if either i = j, or i = 0, or j = 0; (ii) pi,j = 0 otherwise. By summing inequalities (3)
and (5), we get the following compact inequality involving the product between vectors, matrices,
and scalars:

∑
r∈R

(
αr(kr · P · kT

r) + βr

d

∑
j=0

kr,j − αr(lr · P · kT
r + lr · lT

r)− βr

d

∑
j=0

lr,j

)
≤ 0 (7)

Let Q = (qi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) matrix such that: (i) qi,j =
√

d if i = j; (ii) qi,j = 1 if
either i = 0, or j = 0, with (i, j) 6= (0, 0); (iii) qi,j = 0 otherwise. As 0 ≤ pi,j ≤ qi,j for any i, j we
have that

lr · P · kT
r ≤ lr ·Q · kT

r . (8)

We have that matrix Q is a symmetric positive-semidefinite matrix (see Lemma A1 in the Appendix A
for the proof of this fact), thus, the following inequality holds for any u > 0:

0 ≤
(√

u · kr −
1

2
√

u
· lr

)
·Q ·

(√
u · kr −

1
2
√

u
· lr

)T
= u · kr ·Q · kT

r +
1

4u
· lr ·Q · lT

r − lr ·Q · kT
r . (9)

Finally, as 0 ≤ qi,j ≤
√

d · pi,j for any i, j, we have that

x ·Q · xT ≤
√

d · x · P · xT (10)

for any vector x = (x0, . . . , xd) of non-negative real numbers. By exploiting (7), (9), and (10), for any
fixed u > 0 we get

Pres(σ) = ∑
r∈R


αr(kr · P · kT

r) + βr

d

∑
j=0

kr,j




≤ ∑
r∈R


αr(lr · P · kt

r + lr · lT
r) + βr

d

∑
j=0

lr,j


 (11)

≤ ∑
r∈R


αr(lr · P · kT

r + lr · P · lT
r) + βr

d

∑
j=0

lr,j




≤ ∑
r∈R


αr

(
u · kr ·Q · kT

r +
1

4u
· lr ·Q · lT

r + lr · P · lT
r

)
+ βr

d

∑
j=0

lr,j


 (12)

≤ ∑
r∈R


αr

(√
d · u · kr · P · kT

r +

(√
d

4u
+ 1

)
· lr · P · lT

r

)
+ βr

d

∑
j=0

lr,j


 (13)

≤
√

d · u · ∑
r∈R


αr(kr · P · kT

r) + βr

d

∑
j=0

kr,j


+

(√
d

4u
+ 1

)
· ∑

r∈R


αr(lr · P · lT

r) + βr

d

∑
j=0

lr,j




=
√

d · u · Pres(σ) +
(√

d
4u

+ 1

)
· Pres(σ∗), (14)

52

Algorithms 2020, 13, 261

where (11), (12), and (13), come from (7), (9), and (10), respectively (Inequalities (11)–(14) can be
stated within the smoothness framework of Roughgarden [19], and show that multidimensional
weighted affine congestion games are (λ, µ)-smooth with λ =

√
d

4u + 1 and µ =
√

d · u for any u > 0.).
Finally, by manipulating (14), we get

PoA(G, C) = Pres(σ)

Pres(σ∗)
≤ inf

u>0

√
d

4u + 1

1−
√

d · u
=

(
√

d + 4 +
√

d)(
√

d ·
√

d + 4 + d + 4)
4
√

d + 4
, (15)

thus showing the claim. A simpler upper bound of d+ 2 can be obtained by setting u = 1
2
√

d
in (15).

Relatively to the social cost function Perc, the following upper bound is derived as a corollary of a
result in Reference [25].

Corollary 1. For each d-dimensional affine congestion game (G, C), PoA(G, C) ≤ d(d + 2 +
√

d2 + 4d)/2
under the social cost function Perc.

Proof. Theorem 2 of Reference [25] states that δ(G)(δ(G) + 2 +
√

δ(G)2 + 4δ(G))/2 is an upper
bound for the price of anarchy of any graphical congestion having independence number δ(G).
As the graphical congestion game equivalent to (G, C) has independence number equal to d,
the claim follows.

5. Bounds for the Price of Stability

In order to bound the price of stability with respect to the social cost function Pres, we consider
a pure Nash equilibrium that minimizes the potential function Φ defined in (1), which leads to the
following upper bound.

Theorem 2. For each d-dimensional weighted affine congestion game (G, C), PoS(G, C) ≤ 2 under the social
cost function Pres.

Proof. Let σ and σ∗ be a pure Nash equilibrium minimizing the potential function Φ defined in (1),
and let σ∗ be a social optimum. We have that

Pres(σ) = ∑
r∈R

(
αr

(
d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j

)
+ βr

d

∑
j=0

kr,j

)

≤ ∑
r∈R


αr




d

∑
j=0

k2
r,j + ∑

i∈[n]:r∈σi

w2
i + 2kr,0

d

∑
j=1

kr,j


+ 2βr

d

∑
j=0

kr,j




= 2 ·Φ(σ) (16)

≤ 2 ·Φ(σ∗) (17)

= ∑
r∈R


αr




d

∑
j=0

l2
r,j + ∑

i∈[n]:r∈σ∗i

w2
i + 2lr,0

d

∑
j=1

lr,j


+ 2βr

d

∑
j=0

lr,j


 (18)

≤ ∑
r∈R

(
αr

(
2

d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ 2βr

d

∑
j=0

lr,j

)

≤ 2 ∑
r∈R

(
αr

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ βr

d

∑
j=0

lr,j

)

= 2 · Pres(σ∗), (19)

53

Algorithms 2020, 13, 261

where (17) holds since σ minimizes Φ, and (16) and (18) hold by exploiting (1). By (19), we get
PoS(G, C) ≤ Pres(σ)

Pres(σ∗) ≤ 2, and the claim follows.

Relatively to the social cost function Perc, the following upper bound is derived as a corollary of a
result in Reference [25].

Corollary 2. For each d-dimensional affine congestion game (G, C), PoS(G, C) ≤ 2d under the social cost
function Perc.

Proof. Theorem 6 of Reference [25] states that 2δ(G) is an upper bound for the price of stability of any
graphical congestion game having independence number δ(G). As the graphical congestion game
equivalent to (G, C) has independence number equal to d, the claim follows.

6. Bounds for Bidimensional Unweighted Games

In this section, we investigate in more detail the case of unweighted affine games with d = 2,
that is, bidimensional affine congestion games, and provide refined bounds for the price of anarchy
and the price of stability under both social cost functions. The technique we adopt is the primal-dual
framework introduced in Reference [11].

6.1. Price of Anarchy

We first consider the price of anarchy. Let (G, C) be an arbitrary d-dimensional unweighted
congestion game, and let σ and σ∗ be a worst-case equilibrium and a social optimum of (G, C),
respectively. For SF = Pres, we get the following primal linear program LP(Pres, σ, σ∗) in variables
(αr, βr)r∈R, whose optimal solution provides an upper bound to PoA(G, C):

max ∑
r∈R

(
αr

(
d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j

)
+ βr

d

∑
j=0

kr,j

)

s.t.

∑
r∈R

(
αrkr,0

d

∑
j=0

kr,j + βrkr,0 − αrlr,0

(
1 +

d

∑
j=0

kr,j

)
− βrlr,0

)
≤ 0

∑
r∈R

(
d

∑
j=1

(
kr,j
(
αr(kr,j + kr,0 + βr

))
−

d

∑
j=1

(
lr,j
(
αr(kr,j + kr,0 + 1) + βr

))
)
≤ 0

∑
r∈R

(
αr

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
+ βr

d

∑
j=0

lr,j

)
= 1

αr, βr ≥ 0 ∀r ∈ R.

The optimal solution of the above linear program is an upper bound to the price of anarchy as the
objective function is equal to Pres(σ), the first two constraints are the pure Nash equilibrium conditions
derived in (4) and (6), respectively (which are necessary conditions satisfied by any equilibrium),
and the last normalization constraint imposes without loss of generality that Pres(σ∗) = 1 (When
applying the primal dual method, we observe that, once σ and σ∗ are fixed, the coefficients (αr)r∈R
and (βr)r∈R are chosen in such a way that the value Pres(σ) = Pres(σ)/Pres(σ∗) is maximized,
thus getting an upper bound on the price of anarchy. We also observe that (αr)r∈R and (βr)r∈R are the
unique variables in the considered LP formulation, and the other quantities (e.g., the congestions) are
considered as fixed parameters (w.r.t. the LP formulation). See Reference [11] for further details on
the primal-dual method and how to apply it to measure the performance of congestion games under
different quality metrics.).

54

Algorithms 2020, 13, 261

By associating the three dual variables x, y and γ, with the three constraints of LP(Pres, σ, σ∗),
the dual formulation DLP(Pres, σ, σ∗) becomes

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)

+γ

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
≥

d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j ∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y ≥ 0.

By the Weak Duality Theorem, each feasible solution for DLP(Pres, σ, σ∗) provides an upper bound
to the optimal solution of LP(Pres, σ, σ∗), that is on the price of anarchy achievable by the particular
choice of σ and σ∗. Anyway, if the provided dual solution is independent of this choice, we obtain an
upper bound on the price of anarchy for any possible game.

For the case of the social cost function Perc, we only need to replace the objective function and the
third constraint in LP(Pres, σ, σ∗), respectively, with

∑
r∈R


αr

(
d

∑
j=0

kr,j

)2

+ βr

d

∑
j=0

kr,j


 and ∑

r∈R


αr

(
d

∑
j=0

lr,j

)2

+ βr

d

∑
j=0

lr,j


 = 1.

This results in the following dual program DLP(Perc, σ, σ∗):

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)

+γ

(
d

∑
j=0

lr,j

)2

≥
(

d

∑
j=0

kr,j

)2

∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y ≥ 0.

Note that the second constraint is the same in both DLP(Pres, σ, σ∗) and DLP(Perc, σ, σ∗). For the sake
of conciseness, in the sequel, we shall drop the subscript r from the notation; moreover, when fixed a
dual solution, we shall denote the first and second constraint of a given dual program as g1(k, l) ≥ 0
and g2(k, l) ≥ 0, respectively, where we set k = (k0, . . . , kd) and l = (l0, . . . , ld).

When d = 2, we exploit an equivalent, but nicer, representation of the dual inequalities. With this
aim, we set kr := nr(σ) and lr := nr(σ∗) and replace kr,0 and lr,0 with kr − kr,1 − kr,2 and lr − lr,1 − lr,2,
respectively. By substituting and rearranging, DLP(Pres, σ, σ∗) becomes

55

Algorithms 2020, 13, 261

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))

+γ
(

l2
r − 2lr,1lr,2

)
≥ k2

r − 2kr,1kr,2 ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + γlr ≥ kr ∀r ∈ R
x, y ≥ 0.

Similarly, the dual program DLP(Perc, σ, σ∗) can be rewritten as:

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1)) + γl2

r ≥ k2
r ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + γlr ≥ kr ∀r ∈ R
x, y ≥ 0.

In the following theorem we provide upper bounds for the price of anarchy of bidimensional affine
congestion games under social cost functions Pres and Perc.

Theorem 3. For each bidimensional affine congestion game (G, C), PoA(G, C) ≤ 119
33 under the social cost

function Pres and PoA(G, C) ≤ 35
8 under the social cost function Perc.

We now show the existence of two matching lower bounding instances (the proof is deferred to
the Appendix B).

Theorem 4. There exist two bidimensional linear congestion games (G, C) and (G ′, C ′) such that PoA(G, C) ≥
119
33 under the social cost function Pres and PoA(G ′, C ′) ≥ 35

8 under the social cost function Perc Appendix B.

6.2. Price of Stability

In order to bound the price of stability, we can use the same primal formulations exploited
for the determination of the price of anarchy with the additional constraint Φ(σ) ≤ Φ(σ∗),
which, by Equation (1), becomes

∑
r∈R

(
αr

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)
+ 2βr

d

∑
j=0

(kr,j − lr,j)

)
≤ 0.

56

Algorithms 2020, 13, 261

Hence, the dual program for the social cost function Pres becomes the following one.

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)

+z

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)

+γ

(
d

∑
j=0

l2
r,j + 2lr,0

d

∑
j=1

lr,j

)
≥

d

∑
j=0

k2
r,j + 2kr,0

d

∑
j=1

kr,j ∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + 2z
d

∑
j=0

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y, z ≥ 0.

Again, for the social cost function Perc, we obtain mutatis mutandis the following dual program.

min γ

s.t.

x

(
kr,0

d

∑
j=0

kr,j − lr,0 − lr,0

d

∑
j=0

kr,j

)
+ y

d

∑
j=1

(
kr,j(kr,j + kr,0)− lr,j(kr,j + kr,0 + 1)

)

+z

(
d

∑
j=0

(
k2

r,j + kr,j − l2
r,j − lr,j

)
+ 2kr,0

d

∑
j=1

kr,j − 2lr,0

d

∑
j=1

lr,j

)

+γ

(
d

∑
j=0

lr,j

)2

≥
(

d

∑
j=0

kr,j

)2

∀r ∈ R

x(kr,0 − lr,0) + y
d

∑
j=1

(kr,j − lr,j) + 2z
d

∑
j=0

(kr,j − lr,j) + γ
d

∑
j=0

lr,j ≥
d

∑
j=0

kr,j ∀r ∈ R

x, y, z ≥ 0.

Again, by setting kr := nr(σ) and lr := nr(σ∗) and replacing kr,0 and lr,0 with kr − kr,1 − kr,2 and
lr − lr,1 − lr,2, respectively, DLP(Pres, σ, σ∗) becomes

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))

+z
(

k2
r − 2kr,1kr,2 − l2

r + 2lr,1lr,2 + kr − lr
)
+ γ

(
l2
r − 2lr,1lr,2

)
≥ k2

r − 2kr,1kr,2 ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + 2z(kr − lr) + γlr ≥ kr ∀r ∈ R
x, y, z ≥ 0.

Similarly, the dual program DLP(Perc, σ, σ∗) can be rewritten as:

min γ

s.t.
x ((kr − kr,1 − kr,2)kr − (lr − lr,1 − lr,2)(kr + 1))
+y (kr,1(kr − kr,2)− lr,1(kr − kr,2 + 1) + kr,2(kr − kr,1)− lr,2(kr − kr,1 + 1))
+z
(
k2

r − 2kr,1kr,2 − l2
r + 2lr,1lr,2 + kr − lr

)
+ γl2

r ≥ k2
r ∀r ∈ R

x(kr − kr,1 − kr,2 − lr + lr,1 + lr,2) + y(kr,1 + kr,2 − lr,1 − lr,2) + 2z(kr − lr) + γlr ≥ kr ∀r ∈ R
x, y, z ≥ 0.

57

Algorithms 2020, 13, 261

Theorem 5. For each bidimensional affine congestion game (G, C), PoS(G, C) ≤ 1 + 2√
7

under the social cost
function Pres and PoS(G, C) ≤ 2.92 under the social cost function Perc.

Proof. For the social cost function Pres, set γ = 1 + 2√
7
, x = y = 1√

7
and z = 1

2 + 1
2
√

7
. The second

dual constraint is always satisfied, as min{x, y} ≥ 1 and max{x, y}+ 2z ≤ γ. Thus, we shall focus
again on the first constraint g1(k, l) ≥ 0. For any r ∈ R, g1(k, l) becomes

k2(3−
√

7)− k(2l− 1−
√

7) + 2k1k2(
√

7− 3) + 2(k1l2 + k2l1) + (l2− l)(3+
√

7)− 2l1l2(3+
√

7) ≥ 0.

The claim follows by applying Lemma A9 reported in the Appendix A.
For the social cost function Perc, set γ = 2.92, x = 0.68, y = 1.3 and z = 0.81. Again, the second

dual constraint is always satisfied, as min{x, y} ≥ 1 and max{x, y}+ 2z ≤ γ. Thus, we shall focus
again on the first constraint g1(k, l) ≥ 0. For any r ∈ R, g1(k, l) become 49k2 + k(62k1 + 62k2 − 68l −
62l1 − 62l2 + 81) + 130k1l2 + 130k2l1 − 422k1k2 + 211l2 − 149l + 2(81l1l2 − 31l1 − 31l2) ≥ 0. The claim
follows by applying Lemma A13 reported in the Appendix A.

For these cases, unfortunately, we are not able to devise matching lower bounds. The following
result is obtained by suitably extending the lower bounding instance given in Reference [17] for the
price of stability of congestion games (the proof is deferred to the Appendix).

Theorem 6. For any ε > 0, there exist two bidimensional linear congestion games (G, C) and (G ′, C ′) such
that PoS(G, C) ≥ 1+

√
5

2 − ε under the social cost function Pres and PoS(G ′, C ′) ≥ 5+
√

17
4 − ε under the social

cost function Perc.

7. Conclusions and Open Problems

We have introduced d-dimensional (weighted) congestion games: a generalization of (weighted)
congestion games able to model various interesting scenarios of applications. They can also be
reinterpreted as a particular subclass of that of graphical (weighted) congestion games defined by an
undirected social knowledge graph whose independence number is equal to d. We have provided
bounds for the price of anarchy and the price of stability of these games as a function of d under the
two fundamental social cost functions sum of the players’ perceived costs and sum of the players’
presumed costs. We have also considered in deeper detail the case of d = 2 in presence of unweighted
players only.

Closing the gap between upper and lower bounds is an intriguing and challenging open problem.
In particular, we conjecture that the upper bound of O(d) for the price of anarchy of d-dimensional
weighted congestion games is asymptotically tight (with respect to d), even for unweighted games.

Along the line of research of improving the performance of congestion games via some feasible
strategies or coordination (e.g., taxes [27,28] or Stackelberg strategies [29,30]), another interesting
research direction is partitioning the players into d + 1 clusters similarly as in d-dimensional games,
to improve as much as possible the price of anarchy or the price of stability.

A further research direction is that of combining the model of multidimensional congestion games
with other variants of congestion games (e.g., risk-averse congestion games [31–34] and congestion
games with link failures [35–37]).

Author Contributions: Conceptualization, V.B., M.F., V.G., and C.V.; Methodology, V.B., M.F., V.G., and C.V.;
Validation, V.B., M.F., and C.V.; Formal Analysis, V.B., M.F., and C.V.; Investigation, V.B., M.F., V.G., and C.V.;
Writing Original Draft Preparation, V.B., M.F., and C.V.; Writing Review & Editing, V.B. and C.V.; Visualization,
V.B., M.F., V.G., and C.V.; Supervision, V.B., M.F., and C.V.; Project Administration, V.B. and M.F.; Funding
Acquisition, M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Italian MIUR PRIN 2017 Project ALGADIMAR “Algorithms,
Games, and Digital Markets”.

Conflicts of Interest: The authors declare no conflict of interest.

58

Algorithms 2020, 13, 261

Appendix A. Technical Lemmas

In this section we gather all technical lemmas needed to prove our main theorems.

Lemma A1. For any d ≥ 0, let Q = (qi,j)i,j∈[d]∪{0} be the (d + 1)× (d + 1) matrix such that: (i) qi,j =
√

d
if i = j; (ii) qi,j = 1 if either i = 0, or j = 0, with (i, j) 6= (0, 0); (iii) qi,j = 0 otherwise. We have that Q is a
positive-semidefinite matrix.

Proof. To show the claim, we resort to the Sylvester’s criterion, stating that a symmetric matrix M
is positive-semidefinite if and only if the determinant of each principal minor of M (i.e., each upper
upper left h-by-h corner of M) is non-negative. Let Ah,x = (ah,x,i,j)i,j∈[h] be a h× h matrix such that:
(i) ah,x,i,j = x if i = j; (ii) ah,x,i,j = 1 if (i, j) 6= (1, 1), and, either i = 1, or j = 1; (iii) ah,x,i,j = 0 otherwise.
We have that each principal minor of matrix Q is of type Ah,

√
d for some h ∈ [d + 1]. Thus, it is

sufficient showing that the determinant of matrix Ah,
√

d, denoted as Det(Ah,
√

d), is non-negative for
any h ∈ [d + 1].

We first show by induction on integers h ≥ 1 that Det(Ah,x) = xh − (h − 1) · xh−2 for any
fixed x ∈ R. If h = 0 we trivially get Det(Ah,x) = x = xh − (h − 1) · xh−2. Now, we assume that
Det(Ah,x) = xh − (h− 1)xh−2 holds for some h ≥ 1, and we show that Det(Ah+1,x) = xh+1 − h · xh−1.
We get Det(Ah+1,x) = x ·Det(Ah,x)− xh−1 = x(xh − (h− 1)xh−2)− xh−1 = xh+1− h · xh−1, where the
first equality comes from the Laplace expansion for computing the determinant, and the second
equality comes from the inductive hypothesis.

By using the fact that Det(Ah,x) = xh − (h − 1) · xh−2 holds for any x ∈ R and any integer
h ≥ 1, we have that Det(Ah,

√
d) = (

√
d)h − (h − 1)(

√
d)h−2 ≥ 0 for any h ∈ [d + 1], where the

last inequality holds since quantity xh − (h− 1)xh−1 is always non-negative for any x ≥
√

h− 1 if
h ≤ d + 1. Thus each principal minor of Q has a non-negative determinant, and the claim follows.

Lemma A2. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f) = 18a2 − a(b + c + 51d− e− f) +

50b f + 50ce− 34bc + 119d2 − 51d + e + f − 238e f . For any (a, b, c, d, e, f) ∈ Z6
≥0 such that a ≥ b + c and

d ≥ e + f , it holds that θ(a, b, c, d, e, f) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f) to take values in the set of non-negative real numbers.

We first show that, in such an extended scenario, θ attains its minimum for 6-tuples (a, b, c, d, e, f)
such that b = c and e = f . Consider to this aim the 6-tuple (a, b, b + h, d, e, e + k), where h, k ∈ R.
By definition of θ, we get θ(a, b + h

2 , b + h
2 , d, e + k

2 , e + k
2) = θ(a, b, b + h, d, e, e + k)− 17h2−50hk+119k2

2 ≤
θ(a, b, b + h, d, e, e + k)− (4h−10k)2

2 ≤ θ(a, b, b + h, d, e, e + k).
Hence, we do not lose in generality by restricting to 6-tuples of non-negative real values

(a, b, b, d, e, e) such that a ≥ 2b and d ≥ 2e. In this case θ becomes 18a2 − a(2b + 51d− 2e)− 34b2 +

100be + 119d2 − 51d − 238e2 + 2e. Consider the two partial derivatives δθ
δb = 100e − 2a − 68b and

δθ
δe = 2(a + 50b + 1− 238e). Since they are linear and decreasing in b and e, respectively, it follows that
θ is minimized at one of the following four cases: b = 0 ∧ e = 0, b = 0 ∧ e = d

2 , b = a
2 ∧ e = 0 and

b = a
2 ∧ e = d

2 .
In the first case, θ becomes 18a2 − 51ad + 119d2 − 51d. Since δθ

δa = 36a− 51d, θ is minimized at
a = 17d

12 . By substituting, θ becomes 1
8 (663d2 − 408d) which is always non-negative for any d ∈ Z.

In the second case, θ becomes 36a2 − 100ad + 119d2 − 100d. Since δθ
δa = 36a− 50d, θ is minimized

at a = 25d
18 . By substituting, θ becomes 1

9 (223d2 − 450d) which is always non-negative for any d ∈
Z \ {1, 2}.

In the third case, θ becomes 17
2 (a2 − 6ad + 14d2 − 6d). Since δθ

δa = 17(a− 3d), θ is minimized at
a = 3d. By substituting, θ becomes 17

2 (5d2 − 6d) which is always non-negative for any d ∈ Z \ {1}.

59

Algorithms 2020, 13, 261

In the fourth case, θ becomes 1
2 (17a2− 50ad+ 119d2− 100d). Since δθ

δa = 17a− 25d, θ is minimized
at a = 25d

17 . By substituting, θ becomes 1
17 (699d2 − 850d) which is always non-negative for any

d ∈ Z \ {1}.
Hence, in order to complete the proof, we are left to settle the following cases: (a, 0, 0, 1, 0, 0),

(a, 0, 0, 2, 1, 1), (a, 0, 0, 1, 1, 0), (a, 0, 0, 1, 0, 1), (a, a
2 , a

2 , 1, 1, 0), (a, a
2 , a

2 , 1, 0, 1) and (a, a
2 , a

2 , 1, 0, 0).
In the case (a, 0, 0, 1, 0, 0), θ becomes 18a2 − 51a + 68 which is always non-negative for any a ∈ R.

In the case (a, 0, 0, 2, 1, 1), θ becomes 18a2 − 100a + 138 which is always non-negative for any a ∈ Z.
In the cases (a, 0, 0, 1, 1, 0) and (a, 0, 0, 1, 0, 1), θ becomes 18a2 − 50a + 69 which is always non-negative
for any a ∈ R. In the cases (a, a

2 , a
2 , 1, 1, 0) and (a, a

2 , a
2 , 1, 0, 1), θ becomes 17a2−50a+138

2 which is always
non-negative for any a ∈ R. Finally, in the case (a, a

2 , a
2 , 1, 0, 0), θ becomes 17

2 (a2 − 6a + 8) which is
always non-negative for any a ∈ Z \ {3}. Hence, we are only left to consider the case (3, b, c, 1, 0, 0) for
which θ becomes 77− 34bc− 3(b + c). Since b + c ≤ 3, it holds that 77− 34bc− 3(b + c) ≥ 68− 34bc
which is always non-negative since bc ≤ 2 for any b, c ∈ Z≥0 such that b + c ≤ 3.

Lemma A3. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = a2− 3ad+ 5d2− 3d. For any (a, d) ∈ Z2

≥0
such that d 6= 1, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 2a− 3d, λ is minimized at a = 3

2 d. By substituting, we get 11d2 − 12d which is
non-negative for any d ∈ Z \ {1}.

Lemma A4. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = a2 − 6ad + 14d2 − 6d. For any

(a, d) ∈ Z2
≥0 such that d 6= 1, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 2a − 6d, λ is minimized at a = 3d. By substituting, we get 5d2 − 6d which is

non-negative for any d ∈ Z \ {1}.

Lemma A5. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 20a2 − 84ad + 259d2 − 168d. For any

(a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 40a− 84d, λ is minimized at a = 21

10 d. By substituting, we get 61d2 − 60d which is
non-negative for any d ∈ Z.

Lemma A6. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 13a2 − 21ad + 35d2 − 21d. For any

(a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 26a− 21d, λ is minimized at a = 21

26 d. By substituting, we get 197d2 − 156d which is
non-negative for any d ∈ Z.

Lemma A7. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f) = 7a2 + 3a(2b + 2c− 5d− 2e−

2 f) + 21b f + 21ce− 42bc + 35d2 − 15d− 6e− 6 f . For any (a, b, c, d, e, f) ∈ Z6
≥0 such that a ≥ b + c and

d ≥ e + f , it holds that θ(a, b, c, d, e, f) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f) to take values in the set of non-negative real numbers. Since δθ

δc = 3(2a− 14b + 7e) and
δθ
δ f = 3(7b− 2a− 2), θ is minimized at one of the following four cases: c = 0∧ f = 0, c = 0∧ f = d− e,
c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = 7a2 + 3a(2b− 5d− 2e)+ 35d2− 15d− 6e. Since δθ
δb = 6a, θ is minimized

at b = 0 which yields θ = 7a2 − 3a(5d + 2e) + 35d2 − 15d− 6e. Since δθ
δe = −6(a + 1), θ is minimized

at e = d which yields θ = 7(a2 − 3ad + 5d2 − 3d). The claim then follows for any d 6= 1 by applying
Lemma A3. For the leftover tuples of the form (a, 0, 0, 1, 1, 0), we get θ = 7(a2 − 3a + 2) which is
always non-negative for any a ∈ Z.

60

Algorithms 2020, 13, 261

In the second case, we get θ = 7a2 + 3a(2b− 7d) + 7(3b(d− e) + 5d2 − 3d). Since δθ
δb = 3(2a +

7(d− e)), θ is minimized at b = 0, which yields θ = 7(a2 − 3ad + 5d2 − 3d). The claim then follows
for any d 6= 1 by applying Lemma A3. For the leftover tuples of the form (a, 0, 0, 1, e, 1− e), we get
θ = 7(a2 − 3a + 2) which is always non-negative for any a ∈ Z.

In the third case, we get θ = 13a2 − 3a(14b + 5(d− e)) + 42b2 − 21be + 35d2 − 15d− 6e. Since
δθ
δe = 3(5a− 7b− 2), θ is minimized at either e = 0 or e = d. For e = d, we get θ = 13a2 − 42ab +
42b2 − 21bd + 35d2 − 21d. Since δθ

δb = −21(2a − 4b + d), θ is minimized at b = 2a+d
4 . This yields

θ = 20a2 − 84ad + 259d2 − 168d and the claim then follows by applying Lemma A5. For e = 0, we
get θ = 13a2 − 3a(14b + 5d) + 42b2 + 35d2 − 15d. Since δθ

δb = 42(2b − a), θ is minimized at b = a
2

which yields θ = 5(a2 − 6ad + 14d2 − 6d) and the claim then follows for any d 6= 1 by applying
Lemma A4. For the leftover tuples of the form (a, a

2 , a
2 , 1, 0, 0), we get θ = 5

2 (a2 − 6a + 8) which is
always non-negative for any a ∈ Z \ {3}. Hence, we are still left to prove what happens for the tuples
of the form (3, b, 3− b, 1, 0, 0). In this case, we get θ = 42b2 − 126b + 92 which is always non-negative
for any b ∈ Z.

In the fourth case, we get θ = 13a2 − 21a(2b + d − e) + 7(6b2 + 3b(d − 2e) + 5d2 − 3d). Since
δθ
δe = 21(a− 2b), θ is minimized at either e = 0 or e = d. For e = 0, we get θ = 13a2 − 21a(2b + d) +
7(6b2 + 3bd + 5d2 − 3d). Since δθ

δb = −21(2a− 4b− d), θ is minimized at either b = 0 or b = 2a−d
4 .

The first case yields θ = 13a2 − 21ad + 35d2 − 21d and the claim then follows by applying Lemma A6,
while the second one yields θ = 20a2−84ad+259d2−168d

8 and the claim then follows by applying Lemma A5.
For e = d, we get θ = 13a2 − 41ab + 7(6b2 − 3bd + 5d2 − 3d). Since δθ

δb = −21(2a − 4b + d), θ is

minimized at b = 2a+d
4 which yields θ = 20a2−84ad+259d2−168d

8 and the claim then follows by applying
Lemma A5.

Lemma A8. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 3−

√
7

2 a2 + (1 +
√

7 − 2d)a + (3 +√
7)(d2

2 − d). For any (a, d) ∈ Z2
≥0 \ {(0, 1), (1, 1), (1, 2)}, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = (3 +

√
7)a− 2d + 1 +

√
7, λ is minimized at either a = 0 or a = 2d−1−

√
7

3+
√

7
.

In the first case, λ becomes 3−
√

7
2 d(d− 2) which is always non-negative for any d ∈ Z≥0 \ {1}.

In the second case, λ becomes 1
2 (3(
√

7 − 1)d2 + 2d(
√

7 − 7) +
√

7 − 5) which is always

non-negative for any d ∈ Z≥0 \ {1, 2}. For the leftover case d = 2, λ becomes 3−
√

7
2 a2 + (

√
7− 3)a

which is always non-negative for any a ∈ Z \ {1}. For the other case d = 1, λ becomes
3−
√

7
2 a2 + (

√
7− 1)a− 3+

√
7

2 which is always non-negative for any a ∈ Z \ {0, 1}.

Lemma A9. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f) = a2(3−

√
7)− a(2d− 1−

√
7) +

2bc(
√

7− 3) + 2(b f + ce) + (d2 − d)(3 +
√

7)− 2(3 +
√

7)e f . For any (a, b, c, d, e, f) ∈ Z6
≥0 such that

a ≥ b + c and d ≥ e + f , it holds that θ(a, b, c, d, e, f) ≥ 0.

Proof. Note first, that for 6-tuples of the form (0, b, c, 1, e, f), it holds that θ = 0, since a = 0 ⇒ b =

c = 0 and d = 1⇒ e f = 0, for 6-tuples of the form (1, b, c, 1, e, f), it holds that θ = 2(1 + b f + ce) > 0,
since a = d = 1 ⇒ bc = e f = 0, and for 6-tuples of the form (1, b, c, 2, e, f), it holds that θ =

2b f + 2ce− 2(3 +
√

7)e f + 2(3 +
√

7) ≥ 0, since d = 2 ⇒ e f ≤ 1. Hence, in the sequel of the proof,
we avoid to consider the cases a = 0∧ d = 1, a = d = 1 and a = 1∧ d = 2.

At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f) to take values in the set of non-negative real numbers. Since it holds that δθ

δc = 2(b(
√

7−
3) + e) and δθ

δ f = 2(b− (
√

7 + 3)e), θ is minimized at one of the following four cases: c = 0 ∧ f = 0,
c = 0∧ f = d− e, c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = (3−
√

7)a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d). The claim follows
by applying Lemma A8, since θ ≥ λ.

61

Algorithms 2020, 13, 261

In the second case, we get θ = (3−
√

7)a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d) + 2(d− e)(b−
(3 +

√
7)e). Since δθ

δb = 2(d− e), θ is minimized at b = 0, which yields θ = (3−
√

7)a2 + (
√

7 + 1−
2d)a + (3 +

√
7)(d2 − d)− 2(d− e)(3 +

√
7)e. Since δθ

δe = 4(3 +
√

7)e− 2d(3 +
√

7), θ is minimized for

e = d
2 . In this case, θ becomes (3−

√
7)a2 + (

√
7 + 1− 2d)a + (3 +

√
7)(d2

2 − d). The claim follows by
applying Lemma A8, since θ ≥ λ.

In the third case, we get θ = (3−
√

7)a2 +(
√

7+ 1+ 2e− 2d)a+(3+
√

7)(d2− d)+ 2b2(3−
√

7)+
2b((
√

7− 3)a− e). Since δθ
δe = 2(a− b), θ is minimized for e = 0, which yields θ = (3−

√
7)a2 + (

√
7+

1− 2d)a + (3 +
√

7)(d2 − d) + 2b2(3−
√

7) + 2ab(
√

7− 3). Since δθ
δb = 4(3−

√
7)b− 2a(3−

√
7), θ is

minimized for b = a
2 . In this case, θ becomes 3−

√
7

2 a2 + (
√

7 + 1− 2d)a + (3 +
√

7)(d2 − d). The claim
follows by applying Lemma A8, since θ ≥ λ.

In the fourth case, we get θ = (3−
√

7)a2 + (
√

7 + 1 + 2e− 2d)a + (3 +
√

7)(d2 − d) + 2b2(3−√
7) + 2(

√
7− 3)ab + 2bd− 4be + 2(3 +

√
7)e2. Since δθ

δb = 4(3−
√

7)b + 2(
√

7− 3)a + 2d− 4e, θ is

minimized at either b = 0 or b = (3−
√

7)a+2e−d
2(3−

√
7)

. For b = 0, θ becomes (3−
√

7)a2 + (
√

7 + 1 + 2e−
2d)a + (3 +

√
7)(d2 − d) + 2(3 +

√
7)e2. Since δθ

δe = 2a− 2(3 +
√

7)d + 4(3 +
√

7)e, θ is minimized

at either e = 0 or e = (3+
√

7)d−a
2(3+

√
7)

. In these two cases, θ becomes, respectively, (3−
√

7)a2 + (
√

7 +

1− 2d)a + (3 +
√

7)(d2 − d) and 3
4 (3−

√
7)a2 + (

√
7 + 1− d)a + (3 +

√
7)(d2

2 − d) which are always

non-negative because of Lemma A8 and the fact that θ ≥ λ. For b = (3−
√

7)a+2e−d
2(3−

√
7)

, θ becomes

3−
√

7
2 a2 + (

√
7+ 1− d)a + (3+

√
7)(3d2

4 − d)− (3+
√

7)de + (3+
√

7)e2. Since δθ
δe = (3+

√
7)(2e− d),

θ is minimized at either e = 0 or e = d
2 . In these two cases, θ becomes, respectively, 3−

√
7

2 a2 +

(
√

7 + 1− d)a + (3 +
√

7)(3d2

4 − d) and 3−
√

7
2 a2 + (

√
7 + 1− d)a + (3 +

√
7)(d2

2 − d) which are always
non-negative because of Lemma A8 and the fact that θ ≥ λ.

Lemma A10. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 49a2 + a(81− 130d) + 211d2 − 211d.

For any (a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 98a− 130d + 81, λ is minimized at either a = 0 or a = 130d−81

98 .
In the first case, λ becomes d(d− 1) which is always non-negative for any d ∈ Z.
In the second case, λ becomes d(3057d − 2537) − 6561

8 which is always non-negative for any
d ∈ Z \ {0, 1}. For the leftover case d = 0, λ becomes 49a2 + 81a, which is non-negative for any a ∈ R.
For the other case of d = 1, λ becomes a(a− 1) which is non-negative for any a ∈ Z.

Lemma A11. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 11a2 + a(81− 68d) + 422d2 − 298d.

For any (a, d) ∈ Z2
≥0, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 222a− 2(68d− 81), λ is minimized at either a = 0 or a = 68d−81

11 .
In the first case, λ becomes d(211d− 149) which is always non-negative for any d ∈ Z.
In the second case, λ becomes d(9d + 3869)− 6561

2 which is always non-negative for any d ∈
Z≥0 \ {0}. For the leftover case of d = 0, λ becomes 11a2 + 162a which is non-negative for any
a ∈ R.

Lemma A12. Let λ : Z2
≥0 → Q be the function such that λ(a, d) = 2321a2 + 422a(81− 65d) + 84817d2 −

89042d. For any (a, d) ∈ Z2
≥0 \ {(0, 1)}, it holds that λ(a, d) ≥ 0.

Proof. Since δλ
δa = 4642a− 422(65d− 81), λ is minimized at either a = 0 or a = 65d−81

11 .
In the first case, λ becomes 84817d2 − 89042d which is always non-negative for any d ∈ Z \ {1}.
In the second case, λ becomes d(5189d + 155296) − 1384371

8 which is always non-negative for
any d ∈ Z≥0 \ {0, 1}. For the leftover case d = 0, λ becomes 11a2 + 162a, which is non-negative for

62

Algorithms 2020, 13, 261

any a ∈ R. For the other case of d = 1, λ becomes a(11a + 32)− 4225
211 which is non-negative for any

a ∈ Z≥0 \ {0}.

Lemma A13. Let θ : Z6
≥0 → Q be the function such that θ(a, b, c, d, e, f) = 49a2 + a(62b + 62c− 68d−

62e− 62 f + 81) + 130b f + 130ce− 422bc + 211d2 − 149d + 162e f − 62e− 62 f . For any (a, b, c, d, e, f) ∈
Z6
≥0 such that a ≥ b + c and d ≥ e + f , it holds that θ(a, b, c, d, e, f) ≥ 0.

Proof. At a first glance, in order to use standard arguments from calculus, we allow the 6-tuples
(a, b, c, d, e, f) to take values in the set of non-negative real numbers. Since it holds that δθ

δc = 62a−
42b + 130e and δθ

δ f = −2(31a − 65b − 81e + 31), θ is minimized at one of the following four cases:
c = 0∧ f = 0, c = 0∧ f = d− e, c = a− b ∧ f = 0 and c = a− b ∧ f = d− e.

In the first case, we get θ = 49a2 + a(62b− 68d− 62e + 81) + 211d2 − 149d− 62e. Since δθ
δe =

−62(a + 1), θ is minimized at e = d, which yields θ = 49a2 + a(62b − 130d + 81) + 211d2 − 211d.
Since δθ

δb = 62a, θ is minimized for b = 0. In this case, θ becomes 49a2 + a(81− 130d) + 211d2 − 211d.
The claim follows by applying Lemma A10.

In the second case, we get θ = 49a2 + a(62b− 130d + 81) + 130b(d− e) + 211d2 + d(162e− 211)−
162e2. Since δθ

δb = 62a + 130(d− e), θ is minimized at b = 0, which yields θ = 49a2 + a(81− 130d) +
211d2 + d(162e− 211)− 162e2. Since δθ

δe = 162d− 324e, θ is minimized at either e = 0 and e = d. In both
cases θ becomes 49a2 + a(81− 130d) + 211d2 − 211d and the claim follows by applying Lemma A10.

In the third case, we get θ = 111a2 − a(422b + 68d− 68e− 81) + 422b2 − 130be + 211d2 − 149d−
62e. Since δθ

δb = −422a + 844b − 130e, θ is minimized at b = 211a+65e
422 , which yields θ = 2321a2 +

422a(3e + 81− 68d) + 89042d2 − 62878d− 4225e2 − 26164e. Since δθ
δe = 1266a− 8450e− 26164, θ is

minimized at either e = 0 or e = d. For e =, θ becomes 11a2 + 2a(81− 68d)+ 422d2− 298d and the claim
follows by applying Lemma A11. For e = d, θ becomes 2321a2 + 422a(81− 65d) + 84817d2 − 89042d
and the claim follows for any 6-tuple (a, b, c, d, e, f) such that (a, d) 6= (0, 1) by applying Lemma A12.
Hence, we are left to consider the 6-tuples of the form (0, 0, 0, 1, e, 0). In this case θ becomes 62(1− e)
which is always non-negative since e ∈ {0, 1}.

In the fourth case, we get θ = 111a2 − a(422b + 130d − 130e − 81) + 422b2 + 130b(d − 2e) +
211d2 + d(162e− 211)− 162e2. Since δθ

δb = −422a + 844b + 130(d− 2e), θ is minimized at either b = 0

or b = 211a−65(d−2e)
422 . For b = 0, θ becomes 111a2− a(130d− 130e− 81)+ 211d2 + d(162e− 211)− 162e2.

Since δθ
δe = 130a + 162d− 324e, θ is minimized at either e = 0 or e = d. In these two cases, θ becomes,

respectively, 111a2 + a(81− 130d) + 211d2 − 211d and 111a2 + 81a + 211d2 − 211d which are always
non-negative because of Lemma A10 and the fact the θ ≥ λ. For b = 211a−65(d−2e)

422 , θ becomes
2321a2 + 422a(81− 65d) + 84817d2 + 2d(42632e− 44521)− 85264e2. Since δθ

δe = 85264d− 170528e, θ

is minimized at either e = 0 or e = d. In both cases, θ becomes 2321a2 + 422a(81− 65d) + 84817d2 −
89042d and the claim follows for any 6-tuple (a, b, c, d, e, f) such that (a, d) 6= (0, 1) by applying
Lemma A12. Hence, we are left to consider the 6-tuples of the form (0, 0, 0, 1, e, 1− e). In this case, θ

becomes 162(1− e) which is always non-negative since e ∈ {0, 1}.

Appendix B. Missing Proofs

Theorem A1 (Claim of Theorem 4). There exist two bidimensional linear congestion games (G, C) and
(G ′, C ′) such that PoA(G, C) ≥ 119

33 under the social cost function Pres and PoA(G ′, C ′) ≥ 35
8 under the social

cost function Perc.

Proof. For the social cost function Pres, consider the game (G, C) depicted in Figure A1a).
First, we show that σ is a pure Nash equilibrium for (G, C), that is, no player can lower her perceived
cost by switching to her optimal strategy. Player 1 is paying 27 · 2 + 46 = 100; by switching to σ∗1 ,
she pays 7 · 4 + 18 · 4 = 100. Player 2 is paying 27 · 2 + 42 + 56 = 152; by switching to σ∗2 , she pays
17 · 4 + 21 · 4 = 152. Player 3 is paying 27 · 2 + 42 = 96; by switching to σ∗3 , she pays 7 · 4 + 17 · 4 = 96.
Player 4 is paying 27 · 2 + 46 + 56 = 156; by switching to σ∗4 , she pays 18 · 4 + 21 · 4 = 156.

63

Algorithms 2020, 13, 261

Player 5 is paying 7 · 3 + 17 · 3 + 21 · 3 = 135; by switching to σ∗5 , she pays 27 · 5 = 135. Player
6 is paying 7 · 3 + 18 · 3 + 21 · 3 = 138; by switching to σ∗6 , she pays 46 · 3 = 138. Player 7 is
paying 7 · 3 + 18 · 3 + 17 · 3 = 126; by switching to σ∗7 , she pays 42 · 3 = 126. Player 8 is paying
18 · 3 + 17 · 3 + 21 · 3 = 168; by switching to σ∗8 , she pays 56 · 3 = 168.

The price of anarchy of (G, C) is then lower bounded by the ratio

100 + 152 + 96 + 156 + 135 + 138 + 126 + 168
25 + 38 + 24 + 39 + 27 + 46 + 42 + 56

=
1071
297

=
119
33

.

For the social cost function Perc, consider the game (G ′, C ′) depicted in Figure A1b). First, we show
that σ is a pure Nash equilibrium for (G ′, C ′), that is, no player can lower her perceived cost by
switching to her optimal strategy. Player 1 is paying 1418 + 958 + 189 · 2 = 2754; by switching
to σ∗1 , she pays 918 · 3 = 2754. Player 2 is paying 616 + 221 + 189 · 2 = 1215; by switching to σ∗2 ,
she pays 405 · 3 = 1215. Player 3 is paying 1418 + 616 + 189 · 2 = 2412; by switching to σ∗3 , she pays
804 · 3 = 2412. Player 4 is paying 958+ 221+ 189 · 2 = 1557; by switching to σ∗4 , she pays 519 · 3 = 1557.
Player 5 is paying (918 + 405 + 804) · 2 = 4254; by switching to σ∗5 , she pays 1418 · 3 = 4254. Player
6 is paying (918 + 519) · 2 = 2874; by switching to σ∗6 , she pays 958 · 3 = 2874. Player 7 is paying
(405 + 519) · 2 = 1848; by switching to σ∗7 , she pays 616 · 3 = 1848. Player 8 is paying 804 · 2 = 1608;
by switching to σ∗8 , she pays 221 · 3 + 189 · 5 = 1608.

By noting that the perceived cost of the first four players is exactly twice their presumed one,
the price of anarchy of (G ′, C ′) is then lower bounded by the ratio

2 · (2754 + 1215 + 2412 + 1557) + 4254 + 2874 + 1848 + 1608
1418 + 958 + 616 + 221 + 189 + 918 + 405 + 804 + 519

=
26460
6048

=
35
8

.

X X

X X X

X

X X

X

X

X

X

X X

X

X

X

X

X

X

X

X

resourcesplayers

27 46 42 56 7 18 17 21latencies

C1

C2

C0

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

resourcesplayers

latencies

C1

C2

C0

1418 958 616 221 189 918 405 804 519

X

X

a) b)

Figure A1. The games depicted in figures (a,b) represent the lower bound instances w.r.t. the social
cost functions Pres and Perc, respectively. Each column in the matrix represents a resource of cost
function `(x) = αx whose coefficient α is reported at the bottom of the column. Each row i in the matrix
models the strategy set of player i as follows: circles represent resources belonging to σi, while crosses
represent resources belonging to σ∗i .

Theorem A2 (Claim of Theorem 6). For any ε > 0, there exist two bidimensional linear congestion games
(G, C) and (G ′, C ′) such that PoS(G, C) ≥ 1+

√
5

2 − ε under the social cost function Pres and PoS(G ′, C ′) ≥
5+
√

17
4 − ε under the social cost function Perc.

Proof. Let (G, C) be a bidimensional linear congestion game such that |C0| = n0 and |C1| = |C2| = n1.
Each player i ∈ C1 ∪ C2 has two strategies σi and σ∗i , while all players in C0 have the same strategy s.

There are three types of resources:

64

Algorithms 2020, 13, 261

• n1 resources ri, i ∈ [n1], each with cost function `ri (x) = n1+2n0+1+γ
2 x, where γ is an arbitrarily

small positive value. Resource ri belongs only to σ∗i ;
• n1(n1 − 1) resources r′i,j, i, j ∈ [n1] with i 6= j, each with cost function `r′ij

(x) = 1
2 x. Resource r′ij

belongs only to σi and to σ∗j ;
• one resource r′′ with cost function `r′′(x) = 1. Resource r′′ belongs to σi for each i ∈ [n1] and to s.

Let σ (resp. σ∗) be the strategy profile in which each player i /∈ C0 plays strategy σi (resp. σ∗i).
The cost of each player i ∈ Cj, with j ∈ {1, 2}, for adopting strategy σi when there are exactly h
players in Cj adopting the strategy played in σ (and thus there are n1 − h players in Cj adopting
the strategy played in σ∗) is costσ(h) = 2n1−h−1

2 + n0 + h. Similarly, the cost of each player i ∈ Cj
for adopting strategy σ∗i when there are exactly h players in Cj adopting the strategy played in σ

is costσ∗(h) = n1+2n0+1+γ
2 + n1+h−1

2 . Since for any h ∈ [n1], it holds that costσ∗(h− 1) > costσ(h),
it follows that σ is the only pure Nash equilibrium for (G, C).

The price of stability of (G, C) is then lower bounded by the following ratio

n1(n1 − 1) + 2n1(n1 + n0) + n0(2n1 + n0)

n1(n1 + 2n0 + 1 + γ) + n1(n1 − 1) + n2
0

,

which, for n0 going to infinity and n1 = 1+
√

5
2 n0, tends to 1+

√
5

2 .
Let (G ′, C ′) be a bidimensional linear congestion game such that C0 = ∅, |C1| = n1 and |C2| = n2.

Each player i ∈ C1 has two strategies σi and σ∗i , while all players in C2 have the same strategy s.
There are three types of resources:

• n1 resources ri, i ∈ [n1], each with cost function `ri (x) = n1+1+γ
2 x, where γ is an arbitrarily small

positive value. Resource ri belongs only to σ∗i ;
• n1(n1 − 1) resources r′i,j, i, j ∈ [n1] with i 6= j, each with cost function `r′ij

(x) = 1
2 x. Resource r′ij

belongs only to σi and to σ∗j ;
• one resource r′′ with cost function `r′′(x) = 1. Resource r′′ belongs to σi for each i ∈ [n1] and to s.

Let σ (resp. σ∗) be the strategy profile in which each player i /∈ C0 plays strategy σi (resp. σ∗i).
The cost of each player i ∈ C1 for adopting strategy σi when there are exactly h players in C1 adopting
the strategy played in σ (and thus there are n1 − h players in C1 adopting the strategy played in σ∗) is
costσ(h) = 2n1−h−1

2 + h. Similarly, the cost of each player i ∈ C1 for adopting strategy σ∗i when there
are exactly h players in C1 adopting the strategy played in σ is costσ∗(h) =

n1+1+γ
2 + n1+h−1

2 . Since for
any h ∈ [n1], it holds that costσ∗(h− 1) > costσ(h), it follows that σ is the only pure Nash equilibrium
for (G ′, C ′).

The price of stability of (G ′, C ′) is then lower bounded by the following ratio

1
2 n1(n1 − 1) + (n1 + n2)

2

1
2 n1(n1 + 1 + γ) + 1

2 n1(n1 − 1) + n2
2

,

which, for n2 going to infinity and n1 = 1+
√

17
4 n2, tends to 1+

√
17

4 .

References

1. Beckmann, M.J.; McGuire, C.B.; Winsten, C.B. Studies in the Economics of Transportation; Yale University Press:
London, UK, 1956.

2. Rosenthal, R.W. A Class of Games Possessing Pure-Strategy Nash Equilibria. Int. J. Game Theory 1973, 2,
65–67. [CrossRef]

3. Wardrop, J.G. Road Paper. Some Theoretical Aspects of Road Traffic Research. Proc. Inst. Civ. Eng. 1952, 1,
325–362. [CrossRef]

4. Wardrop, J.G.; Whitehead, J.I. Correspondence. Some Theoretical Aspects of Road Traffic Research. Proc. Inst.
Civ. Eng. 1952, 1, 767–768. [CrossRef]

65

Algorithms 2020, 13, 261

5. Nash, J.F. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [CrossRef]
[PubMed]

6. Koutsoupias, E.; Papadimitriou, C. Worst-case equilibria. In Proceedings of the 16th International
Symposium on Theoretical Aspects of Computer Science (STACS), LNCS 1653, Trier, Germany,
4–6 March 1999; pp. 404–413.

7. Anshelevich, E.; Dasgupta, A.; Kleinberg, J.; Tardos, E.; Wexler, T.; Roughgarden, T. The Price of Stability for
Network Design with Fair Cost Allocation. SIAM J. Comput. 2008, 38, 1602–1623. [CrossRef]

8. Aland, S.; Dumrauf, D.; Gairing, M.; Monien, B.; Schoppmann, F. Exact Price of Anarchy for Polynomial
Congestion Games. SIAM J. Comput. 2011, 40, 1211–1233. [CrossRef]

9. Awerbuch, B.; Azar, Y.; Epstein, A. The Price of Routing Unsplittable Flow. SIAM J. Comput. 2013, 42, 160–177.
[CrossRef]

10. Bhawalkar, K.; Gairing, M.; Roughgarden, T. Weighted Congestion Games: Price of Anarchy, Universal
Worst-Case Examples, and Tightness. ACM Trans. Econ. Comput. 2014, 2, 14:1–14:23. [CrossRef]

11. Bilò, V. A Unifying Tool for Bounding the Quality of Non-Cooperative Solutions in Weighted Congestion
Games. Theory Comput. Syst. 2018, 62, 1288–1317. [CrossRef]

12. Caragiannis, I.; Flammini, M.; Kaklamanis, C.; Kanellopoulos, P.; Moscardelli, L. Tight Bounds for Selfish
and Greedy Load Balancing. Algorithmica 2011, 61, 606–637. [CrossRef]

13. Christodoulou, G.; Gairing, M. Price of Stability in Polynomial Congestion Games. ACM Trans. Econ. Comput.
2016, 4, 10:1–10:17. [CrossRef]

14. Christodoulou, G.; Gairing, M.; Giannakopoulos, Y.; Spirakis, P.G. The Price of Stability of Weighted
Congestion Games. SIAM J. Comput. 2019, 48, 1544–1582. [CrossRef]

15. Christodoulou, G.; Koutsoupias, E. The Price of Anarchy of Finite Congestion Games. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), Baltimore, MD, USA, 22–24 May 2005;
pp. 67–73,

16. Christodoulou, G.; Koutsoupias, E. On the Price of Anarchy and Stability of Correlated Equilibria of
Linear Congestion Games. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA),
LNCS 3669, Palma de Mallorca, Spain, 3–6 October 2005; pp. 59–70.

17. Christodoulou, G.; Koutsoupias, E.; Spirakis, P.G. On the Performance of Approximate Equilibria in
Congestion Games. Algorithmica 2011, 61, 116–140. [CrossRef]

18. Bilò, V.; Vinci, C. On the Impact of Singleton Strategies in Congestion Games. In Proceedings of the
25th Annual European Symposium on Algorithms (ESA), LIPIcs, Vienna, Austria, 4–6 September 2017;
pp. 17:1–17:14.

19. Roughgarden, T. Intrinsic Robustness of the Price of Anarchy. J. ACM 2015, 62, 32:1–32:42. [CrossRef]
20. Fotakis, D.; Kontogiannis, S.; Spirakis, P. Selfish Unsplittable Flows. Theor. Comput. Sci. 2005, 348, 226–239.

[CrossRef]
21. Harks, T.; Klimm, M. On the Existence of Pure Nash Equilibria in Weighted Congestion Games.

Math. Oper. Res. 2012, 37, 419–436. [CrossRef]
22. Harks, T.; Klim, M.; Möhring, R.H. Characterizing the Existence of Potential Functions in Weighted

Congestion Games. Theory Comput. Syst. 2011, 49, 46–70. [CrossRef]
23. Bilò, V.; Fanelli, A.; Flammini, M.; Moscardelli, L. When Ignorance Helps: Graphical Multicast Cost Sharing

Games. Theor. Comput. Sci. 2010, 411, 660–671. [CrossRef]
24. Bilò, V.; Fanelli, A.; Flammini, M.; Moscardelli, L. Graphical Congestion Games. Algorithmica 2011, 61,

274–297. [CrossRef]
25. Fotakis, D.; Gkatzelis, V.; Kaporis, A.C.; Spirakis, P.G. The Impact of Social Ignorance on Weighted Congestion

Games. Theory Comput. Syst. 2012, 50, 559–578. [CrossRef]
26. Bilò, V.; Flammini, M.; Gallotti, V. On Bidimensional Congestion Games. In Proceedings of the 19th International

Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS 7355, Reykjavik,
Iceland, 30 June–2 July 2012; pp. 147–158.

27. Bilò, V.; Vinci, C. Dynamic Taxes for Polynomial Congestion Games. ACM Trans. Econ. Comput. 2019, 7,
15:1–15:36. [CrossRef]

28. Caragiannis, I.; Kaklamanis, C.; Kanellopoulos, P. Taxes for linear atomic congestion games.
ACM Trans. Algorithms 2010, 7, 13:1–13:31. [CrossRef]

66

Algorithms 2020, 13, 261

29. Bilò, V.; Vinci, C. On Stackelberg Strategies in Affine Congestion Games. Theory Comput. Syst. 2019, 63,
1228–1249. [CrossRef]

30. Fotakis, D. Stackelberg Strategies for Atomic Congestion Games. Theory Comput. Syst. 2010, 47, 218–249.
[CrossRef]

31. Bell, M.G. Hyperstar: A Multi-path Astar Algorithm for Risk Averse Vehicle Navigation. Transp. Res.
Part B Methodol. 2009, 43, 97–107. [CrossRef]

32. Bell, M.G.; Cassir, C. Risk-averse User Equilibrium Traffic Assignment: An Application of Game Theory.
Transp. Res. Part B Methodol. 2002, 36, 671–681. [CrossRef]

33. Yekkehkhany, A.; Murray, T.; Nagi, R. Road Paper. Risk-Averse Equilibrium for Games. arXiv 2020,
arXiv:2002.08414.

34. Yekkehkhany, A.; Nagi, R. Risk-Averse Equilibrium for Autonomous Vehicles in Stochastic Congestion
Games. arXiv 2020, arXiv:2007.09771.

35. Bilò, V.; Moscardelli, L.; Vinci, C. Uniform Mixed Equilibria in Network Congestion Games with Link
Failures. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming
(ICALP), LIPIcs 107, Prague, Czech Republic, 9–13 July 2018; pp. 146:1–146:14.

36. Penn, M.; Polukarov, M.; Tennenholtz, M. Congestion Games with Failures. Discret. Appl. Math. 2011, 159,
1508–1525. [CrossRef]

37. Penn, M.; Polukarov, M.; Tennenholtz, M. Congestion Games with Load-dependent Failures: Identical
Resources. Games Econ. Behav. 2009, 67, 156–173. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

67

algorithms

Article

Algorithmic Aspects of Some Variations of Clique Transversal
and Clique Independent Sets on Graphs

Chuan-Min Lee

����������
�������

Citation: Lee, C.-M. Algorithmic

Aspects of Some Variations of Clique

Transversal and Clique Independent

Sets on Graphs. Algorithms 2021, 14,

22. https://doi.org/10.3390/a

14010022

Received: 9 December 2020

Accepted: 11 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer and Communication Engineering, Ming Chuan University, 5 De Ming Road,
Guishan District, Taoyuan City 333, Taiwan; joneslee@mail.mcu.edu.tw; Tel.: +886-3-350-7001 (ext. 3432);
Fax: +886-3-359-3876

Abstract: This paper studies the maximum-clique independence problem and some variations of the
clique transversal problem such as the {k}-clique, maximum-clique, minus clique, signed clique, and
k-fold clique transversal problems from algorithmic aspects for k-trees, suns, planar graphs, doubly
chordal graphs, clique perfect graphs, total graphs, split graphs, line graphs, and dually chordal
graphs. We give equations to compute the {k}-clique, minus clique, signed clique, and k-fold clique
transversal numbers for suns, and show that the {k}-clique transversal problem is polynomial-time
solvable for graphs whose clique transversal numbers equal their clique independence numbers.
We also show the relationship between the signed and generalization clique problems and present
NP-completeness results for the considered problems on k-trees with unbounded k, planar graphs,
doubly chordal graphs, total graphs, split graphs, line graphs, and dually chordal graphs.

Keywords: clique independent set; clique transversal number; signed clique transversal function;
minus clique transversal function; k-fold clique transversal set

1. Introduction

Every graph G = (V, E) in this paper is finite, undirected, connected, and has at most
one edge between any two vertices in G. We assume that the vertex set V and edge set E of
G contain n vertices and m edges. They can also be denoted by V(G) and E(G). A graph
G′ = (V′, E′) is an induced subgraph of G denoted by G[V′] if V′ ⊆ V and E′ contains all the
edge (x, y) ∈ E for x, y ∈ V′. Two vertices x, y ∈ V are adjacent or neighbors if (x, y) ∈ E.
The sets NG(x) = {y | (x, y) ∈ E} and NG[x] = NG(x)∪ {x} are the neighborhood and closed
neighborhood of a vertex x in G, respectively. The number degG(x) = |NG(x)| is the degree
of x in G. If degG(x) = k for every x ∈ V, then G is k-regular. Particularly, cubic graphs are
an alternative name for 3-regular graphs.

A subset S of V is a clique if (x, y) ∈ E for x, y ∈ S. Let Q be a clique of G. If Q∩Q′ 6= Q
for any other clique Q′ of G, then Q is a maximal clique. We use C(G) to represent the set
{C | C is a maximal clique of G}. A clique S ∈ C(G) is a maximum clique if |S| ≥ |S′|
for every S′ ∈ C(G). The number ω(G) = max{|S| | S ∈ C(G)} is the clique number of G.
A set D ⊆ V is a clique transversal set (abbreviated as CTS) of G if |C ∩ D| ≥ 1 for every
C ∈ C(G). The number τC(G) = min{|S| | S is a CTS of G} is the clique transversal number
of G. The clique transversal problem (abbreviated as CTP) is to find a minimum CTS for a
graph. A set S ⊆ C(G) is a clique independent set (abbreviated as CIS) of G if |S| = 1 or
|S| ≥ 2 and C ∩ C′ = ∅ for C, C′ ∈ S. The number αC(G) = max{|S| | S is a CIS of G} is
the clique independence number of G. The clique independence problem (abbreviated as CIP) is
to find a maximum CIS for a graph.

The CTP and the CIP have been widely studied. Some studies on the CTP and the CIP
consider imposing some additional constraints on CTS or CIS, such as the maximum-clique
independence problem (abbreviated as MCIP), the k-fold clique transversal problem (abbreviated
as k-FCTP), and the maximum-clique transversal problem (abbreviated as MCTP).

69

Algorithms 2021, 14, 22

Definition 1 ([1,2]). Suppose that k ∈ N is fixed and G is a graph. A set D ⊆ V(G) is a k-fold
clique transversal set (abbreviated as k-FCTS) of G if |C ∩ D| ≥ k for C ∈ C(G). The number
τk

C(G) = min{|S| | S is a k-FCTS of G} is the k-fold clique transversal number of G. The k-FCTP
is to find a minimum k-FCTS for a graph.

Definition 2 ([3,4]). Suppose that G is a graph. A set D ⊆ V(G) is a maximum-clique transversal
set (abbreviated as MCTS) of G if |C ∩ D| ≥ 1 for C ∈ C(G) with |C| = ω(G). The number
τM(G) = min{|S| | S is an MCTS of G} is the maximum-clique transversal number of G. The
MCTP is to find a minimum MCTS for a graph. A set S ⊆ C(G) is a maximum-clique independent
set (abbreviated as MCIS) of G if |C| = ω(G) for C ∈ S and C ∩ C′ = ∅ for C, C′ ∈ S. The
number αM(G) = max{|S| | S is an MCIS of G} is the maximum-clique independence number of
G. The MCIP is to find a maximum MCIS for a graph.

The k-FCTP on balanced graphs can be solved in polynomial time [2]. The MCTP has
been studied in [3] for several well-known graph classes and the MCIP is polynomial-time
solvable for any graph H with τM(H) = αM(H) [4]. Assume that Y ⊆ R and f : X → Y
is a function. Let f (X′) = ∑x∈X f (x) for X′ ⊆ X, and let f (X) be the weight of f . A CTS
of G can be expressed as a function f whose domain is V(G) and range is {0, 1}, and
f (C) ≥ 1 for C ∈ C(G). Then, f is a clique transversal function (abbreviated as CTF) of G and
τC(G) = min{ f (V(G)) | f is a CTF of G}. Several types of CTF have been studied [4–7].
The following are examples of CTFs.

Definition 3. Suppose that k ∈ N is fixed and G is a graph. A function f is a {k}-clique
transversal function (abbreviated as {k}-CTF) of G if the domain and range of f are V(G) and
{0, 1, 2, . . . , k}, respectively, and f (C) ≥ k for C ∈ C(G). The number τ

{k}
C (G) = min{ f (V(G)) |

f is a {k}-CTF of G} is the {k}-clique transversal number of G. The {k}-clique transversal problem
(abbreviated as {k}-CTP) is to find a minimum-weight {k}-CTF for a graph.

Definition 4. Suppose that G is a graph. A function f is a signed clique transversal function
(abbreviated as SCTF) of G if the domain and range of f are V(G) and {−1, 1}, respectively, and
f (C) ≥ 1 for C ∈ C(G). If the domain and range of f are V(G) and {−1, 0, 1}, respectively, and
f (C) ≥ 1 for C ∈ C(G), then f is a minus clique transversal function (abbreviated as MCTF) of G.
The number τs

C(G) = min{ f (V(G)) | f is an SCTF of G} is the signed clique transversal number
of G. The minus clique transversal number of G is τ−C (G) = min{ f (V(G)) | f is an MCTF of G}.
The signed clique transversal problem (abbreviated as SCTP) is to find a minimum-weight SCTF for
a graph. The minus clique transversal problem (abbreviated as MCTP) is to find a minimum-weight
MCTF for a graph.

Lee [4] introduced some variations of the k-FCTP, the {k}-CTP, the SCTP, and the
MCTP, but those variations are dedicated to maximum cliques in a graph. The MCTP on
chordal graphs is NP-complete, while the MCTP on block graphs is linear-time solvable [7].
The MCTP and SCTP are linear-time solvable for any strongly chordal graph G if a strong
elimination ordering of G is given [5]. The SCTP is NP-complete for doubly chordal graphs [6]
and planar graphs [5].

According to what we have described above, there are very few algorithmic results
regarding the k-FCTP, the {k}-CTP, the SCTP, and the MCTP on graphs. This motivates
us to study the complexities of the k-FCTP, the {k}-CTP, the SCTP, and the MCTP. This
paper also studies the MCTP and MCIP for some graphs and investigates the relationships
between different dominating functions and CTFs.

Definition 5. Suppose that k ∈ N is fixed and G is a graph. A set S ⊆ V(G) is a k-tuple
dominating set (abbreviated as k-TDS) of G if |S ∩ NG[x]| ≥ 1 for x ∈ V(G). The number
γ×k(G) = min{|S| | S is a k-TDS of G} is the k-tuple domination number of G. The k-tuple
domination problem (abbreviated as k-TDP) is to find a minimum k-TDS for a graph.

70

Algorithms 2021, 14, 22

Notice that a dominating set of a graph G is a 1-TDS. The domination number γ(G) of G
is γ×1(G).

Definition 6. Suppose that k ∈ N is fixed and G is a graph. A function f is a {k}-dominating
function (abbreviated as {k}-DF) of G if the domain and range of f are V(G) and {0, 1, 2, . . . , k},
respectively, and f (NG[x]) ≥ k for x ∈ V(G). The number γ{k}(G) = min{ f (V(G)) | f is a
{k}-DF of G} is the {k}-domination number of G. The {k}-domination problem (abbreviated as
{k}-DP) is to find a minimum-weight {k}-DF for a graph.

Definition 7. Suppose that G is a graph. A function f is a signed dominating function (abbreviated
as SDF) of G if the domain and range of f are V(G) and {−1, 1}, respectively, and f (NG[x]) ≥ 1
for x ∈ V(G). If the domain and range of f are V(G) and {−1, 0, 1}, respectively, and f (NG[x]) ≥
1 for x ∈ V(G), then f is a minus dominating function (abbreviated as MDF) of G. The number
γs(G) = min{ f (V(G)) | f is an SDF of G} is the signed domination number of G. The minus
domination number of G is γ−(G) = min{ f (V(G)) | f is an MDF of G}. The signed domination
problem (abbreviated as SDP) is to find a minimum-weight SDF for a graph. The minus domination
problem (abbreviated as MDP) is to find a minimum-weight MDF for a graph.

Our main contributions are as follows.

1. We prove in Section 2 that γ−(G) = τ−C (G) and γs(G) = τs
C(G) for any sun G. We

also prove that γ×k(G) = τk
C(G) and γ{k}(G) = τ

{k}
C (G) for any sun G if k > 1.

2. We prove in Section 3 that τ
{k}
C (G) = kτC(G) for any graph G with τC(G) = αC(G).

Then, τ
{k}
C (G) is polynomial-time solvable if τC(G) can be computed in polynomial

time. We also prove that the SCTP is a special case of the generalized clique transversal
problem [8]. Therefore, the SCTP for a graph H can be solved in polynomial time if the
generalized transversal problem for H is polynomial-time solvable.

3. We show in Section 4 thatγ×k(G) = τk
C(G) and γ{k}(G) = τ

{k}
C (G) for any split graph

G. Furthermore, we introduce H1-split graphs and prove that γ−(H) = τ−C (H) and
γs(H) = τs

C(H) for any H1-split graph H. We prove the NP-completeness of SCTP
for split graphs by showing that the SDP on H1-split graphs is NP-complete.

4. We show in Section 5 that τ
{k}
C (G) for a doubly chordal graph G can be computed in

linear time, but the k-FCTP is NP-complete for doubly chordal graphs as k > 1. Notice
that the CTP is a special case of the k-FCTP and the {k}-CTP when k = 1, and thus
τC(G) = τ1

C(G) = τ
{1}
C (G) for any graph G.

5. We present other NP-completeness results in Sections 6 and 7 for k-trees with un-
bounded k and subclasses of total graphs, line graphs, and planar graphs. These
results can refine the “borderline” between P and NP for the considered problems
and graphs classes or their subclasses.

2. Suns

In this section, we give equations to compute τ
{k}
C (G), τk

C(G), τs
C(G), and τ−C (G) for

any sun G and show that τ
{k}
C (G) = γ{k}(G), τk

C(G) = γ×k(G), τs
C(G) = γs(G), and

τ−C (G) = γ−(G).
Let p ∈ N and G be a graph. An edge e ∈ E(G) is a chord if e connects two non-

consecutive vertices of a cycle in G. If C has a chord for every cycle C consisting of more
than three vertices, G is a chordal graph. A sun G is a chordal graph whose vertices can
be partitioned into W = {wi | 1 ≤ i ≤ p} and U = {ui | 1 ≤ i ≤ p} such that (1) W is an
independent set, (2) the vertices u1, u2, . . . , up of U form a cycle, and (3) every wi ∈ W is
adjacent to precisely two vertices ui and uj, where j ≡ i + 1 (mod p). We use Sp = (W, U, E)
to denote a sun. Then, |V(Sp)| = 2p. If p is odd, Sp is an odd sun; otherwise, it is an even
sun. Figure 1 shows two suns.

71

Algorithms 2021, 14, 22

Figure 1. (a) The sun S3. (b) A sun S4.

Lemma 1. For any sun Sp = (W, U, E), τ2
C(Sp) = p and τ3

C(Sp) = 2p.

Proof. It is straightforward to see that U is a minimum 2-FCTS and W ∪U is a minimum
3-FCTS of Sp. This lemma therefore holds.

Lemma 2. Suppose that k ∈ N and k > 1. Then, τ
{k}
C (Sp) = dpk/2e for any sun Sp =

(W, U, E).

Proof. Let i, j ∈ {1, 2, . . . p} such that j ≡ i + 1 (mod p). Since every wi ∈ W is adjacent
to precisely two vertices ui, uj ∈ U, NSp [wi] = {wi, ui, uj} is a maximal clique of Sp.
By contradiction, we can prove that there exists a minimum {k}-CTF f of Sp such that
f (wi) = 0 for wi ∈W. Since f (NSp [wi]) ≥ k for 1 ≤ i ≤ p, we have

τ
{k}
C (Sp) =

p

∑
i=1

f (ui) =
∑

p
i=1 f (NSp [wi])

2
≥ pk

2
.

Since τ
{k}
C (Sp) is a nonnegative integer, τ

{k}
C (Sp) ≥ dpk/2e.

We define a function h : W ∪ U → {0, 1, . . . , k} by h(wi) = 0 for every wi ∈ W,
h(ui) = dk/2e for ui ∈ U with odd index i and h(ui) = bk/2c for every ui ∈ U with
even index i. Clearly, a maximal clique Q of Sn is either the closed neighborhood of some
vertex in W or a set of at least three vertices in U. If Q = NSp [wi] for some wi ∈ W, then
h(Q) = dk/2e+ bk/2c = k. Suppose that Q is a set of at least three vertices in U. Since
k ≥ 2, h(Q) ≥ 3 · bk/2c ≥ k. Therefore, h is a {k}-CTF of Sp. We show the weight of h is
dpk/2e by considering two cases as follows.

Case 1: p is even. We have

h(V(Sp)) =
p

∑
i=1

h(ui) =
p
2
· (dk/2e+ bk/2c) = pk

2
.

Case 2: p is odd. We have

h(V(Sp)) =
p

∑
i=1

h(ui) =
(p− 1)

2
· k + dk/2e = dpk/2e.

Following what we have discussed above, we know that h is a minimum {k}-CTF of
Sn and thus τ

{k}
C (Sp) = dpk/2e.

Lemma 3. For any sun Sp = (W, U, E), τ−C (Sp) = τs
C(Sp) = 0.

72

Algorithms 2021, 14, 22

Proof. For 1 ≤ i ≤ p, NSp [wi] is a maximal clique of Sp. Let h be a minimum SCTF of Sp.
Then, τs

C(Sp) = h(V(Sp)). Note that h(NSp [wi]) ≥ 1 for 1 ≤ i ≤ p. We have

h(V(Sp)) =
p

∑
i=1

h(NSp [wi])−
p

∑
i=1

h(ui) ≥ p−
p

∑
i=1

h(ui).

Since ∑
p
i=1 h(ui) ≤ p, we have τs

C(Sp) ≥ 0. Let f be an SCTF of Sp such that f (ui) = 1
and f (wi) = −1 for 1 ≤ i ≤ p. The weight of f is 0. Then f is a minimum SCTF of Sp.
Hence, τ−C (Sp) = 0 and τs

C(Sp) = 0. The proof for τ−C (G) = 0 is analogous to that for
τs

C(G) = 0.

Theorem 1 (Lee and Chang [9]). Let Sp be a sun. Then,

(1) γ−(Sp) = γs(Sp) = 0;
(2) γ{k}(Sp) = dpk/2e;
(3) γ×1(Sp) = dp/2e, γ×2(Sp) = p and γ×3(Sp) = 2p.

Corollary 1. Let Sp be a sun. Then,

(1) γ−(Sp) = τ−C (Sp) = γs(Sp) = τs
C(Sp) = 0;

(2) γ{k}(Sp) = τ
{k}
C (Sp) = dpk/2e for k > 1;

(3) γ×2(Sp) = τ2
C(Sp) = p and γ×3(Sp) = τ3

C(Sp) = 2p.

Proof. The corollary holds by Lemmas 1–3 and Corollary 1.

3. Clique Perfect Graphs

Let G be the set of all induced subgraphs of G. If τC(H) = αC(H) for every H ∈ G,
then G is clique perfect. In this section, we study the {k}-CTP for clique perfect graphs and
the SCTP for balanced graphs.

Lemma 4. Let G be such a graph that τC(G) = αC(G). Then, τ
{k}
C (G) = kτC(G).

Proof. Assume that D is a minimum CTS of G. Then, |D| = τC(G). Let x ∈ V(G) and let
f be a function whose domain is V(G) and range is {0, 1, . . . , k}, and f (x) = k if x ∈ D;
otherwise, f (x) = 0. Clearly, f is a {k}-CTF of G. We have τ

{k}
C (G) ≤ kτC(G).

Assume that f is a minimum-weight {k}-CTF of G. Then, f (V(G)) = τ
{k}
C (G) and

f (C) ≥ k for every C ∈ C(G). Let S = {C1, C2, . . . , C`} be a maximum CIS of G. We know
that |S| = ` = αC(G) and ∑`

i=1 f (Ci) ≤ f (V(G)). Therefore, kτC(G) = kαC(G) = k` ≤
∑`

i=1 f (Ci) ≤ f (V(G)) = τ
{k}
C (G). Following what we have discussed above, we know

that τ
{k}
C (G) = kτC(G).

Theorem 2. If a graph G is clique perfect, τ
{k}
C (G) = kτC(G).

Proof. Since G is clique perfect, τC(G) = αC(G). Hence, the theorem holds by Lemma 4.

Corollary 2. The {k}-CTP is polynomial-time solvable for distance-hereditary graphs, balanced
graphs, strongly chordal graphs, comparability graphs, and chordal graphs without odd suns.

Proof. Distance-hereditary graphs, balanced graphs, strongly chordal graphs, comparabil-
ity graphs, and chordal graphs without odd suns are clique perfect, and the CTP can be
solved in polynomial time for them [10–14]. The corollary therefore holds.

Definition 8. Suppose that R is a function whose domain is C(G) and range is {0, 1, . . . , ω(G)}.
If R(C) ≤ |C| for every C ∈ C(G), then R is a clique-size restricted function (abbreviated as

73

Algorithms 2021, 14, 22

CSRF) of G. A set D ⊆ V(G) is an R-clique transversal set (abbreviated as R-CTS) of G if R is a
CSRF of G and |D ∩ C| ≥ R(C) for every C ∈ C(G). Let τR(G) = min{|D| | D is an R-CTS
of G}. The generalized clique transversal problem (abbreviated as GCTP) is to find a minimum
R-CTS for a graph G with a CSRF R.

Lemma 5. Let G be a graph with a CSRF R. If R(C) = d(|C|+ 1)/2e for every C ∈ C(G), then
τs

C(G) = 2τR(G)− n.

Proof. Assume that D is a minimum R-CTS of G. Then, |D| = τR(G). Let x ∈ V(G) and
let f be a function of G whose domain is V(G) and range is {−1, 1}, and f (x) = 1 if x ∈ D;
otherwise, f (x) = −1. Since |D ∩ C| ≥ d(|C|+ 1)/2e for every C ∈ C(G), there are at
least d(|C|+ 1)/2e vertices in C with the function value 1. Therefore, f (C) ≥ 1 for every
C ∈ C(G), and f is an SCTF of G. Then, τs

C(G) ≤ 2τR(G)− n.
Assume that h is a minimum-weight SCTF of G. Clearly, h(V(G)) = τs

C(G). Since
h(C) ≥ 1 for every C ∈ C(G), C contains at least d(|C|+ 1)e/2 vertices with the function
value 1. Let D = {x | h(x) = 1, x ∈ V(G)}. The set D is an R-CTS of G. Therefore,
2τR(G)− n ≤ 2|D| − n = τs

C(G). Hence, we have τs
C(G) = 2τR(G)− n.

Theorem 3. The SCTP on balanced graphs can be solved in polynomial time.

Proof. Suppose that a graph G has n vertices v1, v2, . . . , vn and ` maximal cliques C1, C2, . . . ,
C`. Let i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . , n}. Let M be an `× n matrix such that an element
M(i, j) of M is one if the maximal clique Ci contains the vertex vj, and M(i, j) = 0 otherwise.
We call M the clique matrix of G. If the clique matrix M of G does not contain a square
submatrix of odd order with exactly two ones per row and column, then M is a balanced
matrix and G is a balanced graph. We formulae the GCTP on a balanced graph G with a
CSRF R as the following integer programming problem:

minimize ∑n
i=1 xi

subject to MX ≥ C





where C = (R(C1), R(C2), . . . , R(C`)) is a column vector and X = (x1, x2, . . . , xn) is a
column vector such that xi is either 0 or 1. Since the matrix M is balanced, an optimal 0–1
solution of the integer programming problem above can be found in polynomial time by
the results in [15]. By Lemma 5, we know that the SCTP on balanced graphs can be solved
in polynomial time.

4. Split Graphs

Let G be such a graph that V(G) = I ∪C and I ∩C = ∅. If I is an independent set and
C is a clique, G is a split graph. Then, every maximal of G is either C itself, or the closed
neighborhood NG[x] of a vertex x ∈ I. We use G = (I, C, E) to represent a split graph.
The {k}-CTP, the k-FCTP, the SCTP, and the MCTP for split graphs are considered in this
section. We also consider the {k}-DP, the k-TDP, the SDP, and the MDP for split graphs.

For split graphs, the {k}-DP, the k-TDP, and the MDP are NP-complete [16–18], but
the complexity of the SDP is still unknown. In the following, we examine the relationships
between the {k}-CTP and the {k}-DP, the k-FCTP and the k-TDP, the SCTP and the SDP,
and the MCTP and the MDP. Then, by the relationships, we prove the NP-completeness
of the SDP, the {k}-CTP, the k-FCTP, the SCTP, and the MCTP for split graphs. We first
consider the {k}-CTP and the k-FCTP and show in Theorems 4 and 5 that τk

C(G) = γ×k(G)

and τ
{k}
C (G) = γ{k}(G) for any split graph G. Chordal graphs form a superclass of split

graphs [19]. The cardinality of C(G) is at most n for any chordal graph G [20]. The following
lemma therefore holds trivially.

Lemma 6. The k-FCTP, the {k}-CTP, the SCTP, and the MCTP for chordal graphs are in NP.

74

Algorithms 2021, 14, 22

Theorem 4. Suppose that k ∈ N and G = (I, C, E) is a split graph. Then, τk
C(G) = γ×k(G).

Proof. Let S be a minimum k-FCTS of G. Consider a vertex y ∈ I. By the structure of G,
NG[y] is a maximal clique of G. Then, |S ∩ NG[y]| ≥ k. We now consider a vertex x ∈ C.
If C 6∈ C(G), then there exists a vertex y ∈ I such that NG[y] = C ∪ {y}. Clearly, NG[y] ⊆
NG[x] and |S ∩ NG[x]| ≥ |S ∩ NG[y]| ≥ k. If C ∈ C(G), then |S ∩ NG[x]| ≥ |S ∩ C| ≥ k.
Hence, S is a k-TDS of G. We have γ×k(G) ≤ τk

C(G).
Let D be a minimum k-TDS of G. Recall that the closed neighborhood of every vertex

in I is a maximal clique. Then, D contains at least k vertices in the maximal clique NG[y]
for every vertex y ∈ I. If C 6∈ C(G), D is clearly a k-FCTS of G. Suppose that C ∈ C(G). We
consider three cases as follows.

Case 1: y ∈ I \ D. Then, |D ∩ C| ≥ |D ∩ NG(y)| ≥ k. The set D is a k-FCTS of G.
Case 2: y ∈ I ∩ D and x ∈ NG(y) \ D. Then, the set D′ = (D \ {y}) ∪ {x} is still a

minimum k-TDS and |D′ ∩ C| ≥ |D′ ∩ NG(y)| ≥ k. The set D′ is a k-FCTS of G.
Case 3: I ⊆ D and NG[y] ⊆ D for every y ∈ I. Then, |D ∩ C| ≥ |D ∩ NG(y)| ≥ k− 1.

Since C ∈ C(G), there exists x ∈ C such that y 6∈ NG(x). If NG(x) ∩ I = ∅, then NG[x] = C
and |D ∩ C| = |D ∩ NG[x]| ≥ k. Otherwise, let y′ ∈ NG(x) ∩ I. Then, x ∈ D and
|D ∩ C| ≥ |D ∩ NG(y)|+ 1 ≥ k. The set D is a k-FCTS of G.

By the discussion of the three cases, we have τk
C(G) ≤ γ×k(G). Hence, we obtain that

γ×k(G) ≤ τk
C(G) and τk

C(G) ≤ γ×k(G). The theorem holds for split graphs.

Theorem 5. Suppose that k ∈ N and G = (I, C, E) is a split graph. Then, τ
{k}
C (G) = γ{k}(G).

Proof. We can verify by contradiction that G has a minimum-weight {k}-CTF f and a
minimum-weight {k}-DF g of G such that f (y) = 0 and g(y) = 0 for every y ∈ I. By the
structure of G, NG[y] ∈ C(G) for every y ∈ I. Then, f (NG[y]) ≥ k and g(NG[y]) ≥ k. Since
f (y) = 0 and g(y) = 0, f (NG(y)) ≥ k and g(NG(y)) ≥ k.

For every y ∈ I, NG(y) ⊆ C and f (C) ≥ f (NG(y)) ≥ k. For every x ∈ C, f (NG[x]) ≥
f (C) ≥ k. Therefore, the function f is also a {k}-DF of G. We have γ{k}(G) ≤ τ

{k}
C (G).

We now consider g(C) for the clique C. If C 6∈ C(G), the function g is clearly a {k}-CTF
of G. Suppose that C ∈ C(G). Notice that g is a {k}-DF and g(y) = 0 for every y ∈ I.
Then, g(C) = g(NG[x]) ≥ k for any vertex x ∈ C. Therefore, g is also a {k}-CTF of G.
We have τ

{k}
C (G) ≤ γ{k}(G). Following what we have discussed above, we know that

τ
{k}
C (G) = γ{k}(G).

Corollary 3. The {k}-CTP and the k-FCTP are NP-complete for split graphs.

Proof. The corollary holds by Theorems 4 and 5 and the NP-completeness of the {k}-DP
and the k-TDP for split graphs [16,18].

A graph G is a complete if C(G) = {V(G)}. Let G be a complete graph and let
x ∈ V(G). The vertex set V(G) is the union of the sets {x} and V(G) \ {x}. Clearly, {x} is
an independent set and V(G) \ {x} is a clique of G. Therefore, complete graphs are split
graphs. It is easy to verify the Lemma 7.

Lemma 7. If G is a complete graph and k ∈ N, then

(1) τk
C(G) = γ×k(G) = k for k ≤ n;

(2) τ
{k}
C (G) = γ{k}(G) = k;

(3) τ−C (G) = γ−(G) = 1;

(4) τs
C(G) = γs(G) =

{
1 if n is odd;
2 otherwise.

75

Algorithms 2021, 14, 22

For split graphs, however, the signed and minus domination numbers are not nec-
essarily equal to the signed and minus clique transversal numbers, respectively. Figure 2
shows a split graph G with τs

C(G) = τ−C (G) = −3. However, γs(G) = γ−(G) = 1. We
therefore introduce H1-split graphs and show in Theorem 6 that their signed and minus
domination numbers are equal to the signed and minus clique transversal numbers, respec-
tively. H1-split graphs are motivated by the graphs in [17] for proving the NP-completeness
of the MDP on split graphs. Figure 3 shows an H1-split graph.

Figure 2. A split graph G with τs
C(G) = τ−C (G) = −3.

Definition 9. Suppose that G = (I, C, E) is a split graph with 3p + 3`+ 2 vertices. Let U, S, X,
and Y be pairwise disjoint subsets of V(G) such that U = {ui | 1 ≤ i ≤ p}, S = {si | 1 ≤ i ≤ `},
X = {xi | 1 ≤ i ≤ p + `+ 1}, and Y = {yi | 1 ≤ i ≤ p + `+ 1}. The graph G is an H1-split
graph if V(G) = U ∪ S ∪ X ∪Y and G entirely satisfies the following three conditions.

(1) I = S ∪Y and C = U ∪ X.
(2) NG(yi) = {xi} for 1 ≤ i ≤ p + `+ 1.
(3) |NG(si) ∩U| = 3 and NG(si) ∩ X = {xi} for 1 ≤ i ≤ `.

Figure 3. A split graph G with one of its partitions indicated.

Theorem 6. For any H1-split graph G = (I, C, E), τs
C(G) = γs(G) and τ−C (G) = γ−(G).

Proof. We first prove τs
C(G) = γs(G). Let G = (I, C, E) be an H1-split graph. As stated in

Definition 9, I can be partitioned into S = {si | 1 ≤ i ≤ `} and Y = {yi | 1 ≤ i ≤ p+ `+ 1},
and C can be partitioned into U = {ui | 1 ≤ i ≤ p} and X = {xi | 1 ≤ i ≤ p + `+ 1}.
Assume that f is a minimum-weight SDF of G. For each yi ∈ Y, |NG[yi]| = 2 and yi is
adjacent to only the vertex xi ∈ X. Then, f (xi) = f (yi) = 1 for 1 ≤ i ≤ p + `+ 1. Since
C = U ∪ X and |U| = p, we know that f (C) = f (U) + f (X) ≥ (−p) + (p + `+ 1) ≥ `+ 1.

76

Algorithms 2021, 14, 22

Notice that f (NG[y]) ≥ 1 and NG[y] ∈ C(G) for every y ∈ I. Therefore, f is also an SCTF
of G. We have τs

C(G) ≤ γs(G).
Assume that h is a minimum-weight SCTF of G. For each yi ∈ Y, |NG[yi]| = 2 and yi is

adjacent to only the vertex xi ∈ X. Then, h(xi) = h(yi) = 1 for 1 ≤ i ≤ p + `+ 1. Consider
the vertices in I. Since NG[y] ∈ C(G) for every y ∈ I, h(NG[y]) ≥ 1. We now consider the
vertices in C. Recall that C = U ∪ X. Let ui ∈ U. Since |U| = p and |S| = `, we know that
h(NG[ui]) = h(U) + h(X) + h(NG[ui] ∩ S) ≥ (−p) + (p + `+ 1) + (−`) ≥ 1. Let xi ∈ X.
Then, h(NG[xi]) = h(U) + h(X) + h(yi) + h(si) ≥ (−p) + (p + ` + 1) + 1− 1 ≥ ` + 1.
Therefore, h is also an SDF of G. We have γs(G) ≤ τs

C(G).
Following what we have discussed above, we have τs

C(G) = γs(G). The proof for
τ−C (G) = γ−(G) is analogous to that for τs

C(G) = γs(G). Hence, the theorem holds for any
H1-split graphs.

Theorem 7. The SDP on H1-split graphs is NP-complete.

Proof. We reduce the (3,2)-hitting set problem to the SDP on H1-split graphs. Let U = {ui |
1 ≤ i ≤ p} and let C = {C1, C2, . . . , C`} such that Ci ⊆ U and |Ci| = 3 for 1 ≤ i ≤ `.
A (3,2)-hitting set for the instance (U, C) is a subset U′ of U such that |Ci ∩U′| ≥ 2 for
1 ≤ i ≤ `. The (3,2)-hitting set problem is to find a minimum (3,2)-hitting set for any
instance (U, C). The (3,2)-hitting set problem is NP-complete [17].

Consider an instance (U, C) of the (3,2)-hitting set problem. Let S = {si | 1 ≤ i ≤ `},
X = {xi | 1 ≤ i ≤ p + `+ 1}, and Y = {yi | 1 ≤ i ≤ p + `+ 1}. We construct an H1-split
graph G = (I, C, E) by the following steps.

(1) Let I = S ∪Y be an independent set and let C = U ∪ X be a clique.
(2) For each vertex si ∈ S, a vertex u ∈ U is connected to si if u ∈ Ci.
(3) For 1 ≤ i ≤ p + `+ 1, the vertex yi is connected to the vertex xi.
(4) For 1 ≤ i ≤ `, the vertex si is connected to the vertex xi.

Let τh(3, 2) be the minimum cardinality of a (3,2)-hitting set for the instance (U, C).
Assume that U′ is a minimum (3,2)-hitting set for the instance (U, C). Then, |U′| = τh(3, 2).
Let f be a function whose domain is V(G) and range is {−1, 1}, and f (v) = 1 if v ∈
X ∪ Y ∪ U′ and f (v) = −1 if v ∈ S ∪ (U \ U′). Clearly, f is an SDF of G. We have
γs(G) ≤ 2(p + `+ 1) + |U′| − `− (p− |U′|) = p + `+ 2τh(3, 2) + 2.

Assume that f is minimum-weight SDF of G. For each yi ∈ Y, |NG[yi]| = 2 and yi is
adjacent to only the vertex xi ∈ X. Then, f (xi) = f (yi) = 1 for 1 ≤ i ≤ p + `+ 1. For any
vertex v ∈ X ∪ Y ∪U, f (NG[v]) ≥ 1 no matter what values the function f assigns to the
vertices in U or in S. Consider the vertices in S. By the construction of G, degG(si) = 4
and |NG[si]| = 5 for 1 ≤ i ≤ `. There are at least three vertices in NG[si] with the function
value 1. If f (NG[si]) = 5, then there exists an SDF g of G such that g(si) = −1 and
g(v) = f (v) for every v ∈ V(G) \ {si}. Then, g(V(G)) < f (V(G)). It contradicts the
assumption that the weight of f is minimum. Therefore, there exists a minimum-weight
SDF h of G such that h(si) = −1 for 1 ≤ i ≤ `. Notice that NG(si) = Ci ∪ {xi} for
1 ≤ i ≤ `. There are at least two vertices in Ci with the function value 1. Then, the
set U′ = {u ∈ U | h(u) = 1} is a (3,2)-hitting set for the instance (U, C). We have
p + `+ 2τh(3, 2) + 2 ≤ p + `+ 2|U′|+ 2 = γs(G).

Following what we have discussed above, we know that γs(G) = p+ `+ 2τh(3, 2) + 2.
Hence, the SDP on H1-split graphs is NP-complete.

Corollary 4. The SCTP and the MCTP on split graphs are NP-complete.

Proof. The corollary holds by Theorems 6 and 7 and the NP-completeness of the MDP on
split graphs [17].

77

Algorithms 2021, 14, 22

5. Doubly Chordal and Dually Chordal Graphs

Assume that G is a graph with n vertices x1, x2, . . . , xn. Let i ∈ {1, 2, . . . , n} and let
Gi be the subgraph G[V(G) \ {x1, x2, . . . xi−1}]. For every x ∈ V(Gi), let Ni[x] = {y |
y ∈ (NG[x] \ {x1, x2, . . . , xi−1})}. In Gi, if there exists a vertex xj ∈ Ni[xi] such that
Ni[xk] ⊆ Ni[xj] for every xk ∈ Ni[xi], then the ordering (x1, x2, . . . , xn) is a maximum
neighborhood ordering (abbreviated as MNO) of G. A graph G is dually chordal [21] if and
only if G has an MNO. It takes linear time to compute an MNO for any dually chordal
graph [22]. A graph G is a doubly chordal graph if G is both chordal and dually chordal [23].
Lemma 8 shows that a dually chordal graph is not necessarily a chordal graph or a clique
perfect graph. Notice that the number of maximal cliques in a chordal graph is at most
n [20], but the number of maximal cliques in a dually chordal graph can be exponential [24].

Lemma 8. For any dually graph G, τC(G) = αC(G), but G is not necessarily clique perfect
or chordal.

Proof. Brandstädt et al. [25] showed that the CTP is a particular case of the clique r-
domination problem and the CIP is a particular case of the clique r-packing problem. They
also showed that the minimum cardinality of a clique r-dominating set of a dually chordal
graph G is equal to the maximum cardinality of a clique r-packing set of G. Therefore,
τC(G) = αC(G).

Assume that H is a graph obtained by connecting every vertex of a cycle C4 of four
vertices x1, x2, x3, x4 to a vertex x5. Clearly, the ordering (x1, x2, x3, x4, x5) is an MNO and
thus H is a dually chordal graph. The cycle C4 is an induced subgraph of H and does not
have a chord. Moreover, τC(H) = αC(H) = 1, but τC(C4) = 2 and αC(C4) = 1. Hence, a
dually chordal graph is not necessarily clique perfect or chordal.

Theorem 8. Suppose that k ∈ N and k > 1. The k-FCTP on doubly chordal graphs is NP-complete.

Proof. Suppose that G is a chordal graph. Let H be a graph such that V(H) = V(G) ∪ {x}
and E(H) = E(G) ∪ {(x, y) | y ∈ V(G)}. Clearly, H is a doubly chordal graph and we can
construct H from G in linear time.

Assume that S is a minimum (k − 1)-FCTS of G. By the construction of H, each
maximal clique of H contains the vertex x. Therefore, S ∪ {x} is a k-FCTS of H. Then
τk

C(H) ≤ τk−1
C (G) + 1.

By contradiction, we can verify that there exists a minimum k-FCTS D of H such that
x ∈ D. Let S = D \ {x}. Clearly, S is a (k− 1)-FCTS of G. Then τk−1

C (G) ≤ τk
C(H)− 1.

Following what we have discussed above, we have τk
C(H) = τk−1

C (G) + 1. Notice that
τC(G) = τ1

C(G) and the CTP on chordal graphs is NP-complete [14]. Hence, the k-FCTP on
doubly chordal graphs is NP-complete for doubly chordal graphs.

Theorem 9. For any doubly chordal graph G, τ
{k}
C (G) can be computed in linear time.

Proof. The clique r-dominating problem on doubly chordal graphs can be solved in linear
time [25]. The CTP is a particular case of the clique r-domination problem. Therefore, the
CTP on doubly chordal graphs can also be solved in linear time. By Lemmas 4 and 8, the
theorem holds.

6. k-Trees

Assume that G is a graph with n vertices x1, x2, . . . , xn. Let i ∈ {1, 2, . . . , n} and let
Gi be the subgraph G[V(G) \ {x1, x2, . . . xi−1}]. For every x ∈ V(Gi), let Ni[x] = {y |
y ∈ (NG[x] \ {x1, x2, . . . , xi−1})}. If Ni[xi] is a clique for 1 ≤ i ≤ n, then the ordering
(x1, x2, . . . , xn) is a perfect elimination ordering (abbreviated as PEO) of G. A graph G is
chordal if and only if G has a PEO [26]. A chordal graph G is a k-tree if and only if either
G is a complete graph of k vertices or G has more than k vertices and there exists a PEO

78

Algorithms 2021, 14, 22

(x1, x2, . . . , xn) such that Ni[xi] is a clique of k vertices if i = n− k + 1; otherwise, Ni[xi]
is a clique of k + 1 vertices for 1 ≤ i ≤ n − k. Figure 4 shows a 2-tree with the PEO
(v1, v2, . . . , v13).

Figure 4. A 2-tree H.

In [3], Chang et al. showed that the MCTP is NP-complete for k-trees with unbounded
k by proving γ(G) = τM(G) for any k-tree G. However, Figure 4 shows a counterexample
that disproves γ(G) = τM(G) for any k-tree G. The graph H in Figure 4 is a 2-tree with the
perfect elimination ordering (v1, v2, . . . , v13). The set {v5, v10} is the minimum dominating
set of H and the set {v5, v10, v11} is a minimum MCTS of H. A modified NP-completeness
proof is therefore desired for the MCTP on k-tree with unbounded k.

Theorem 10. The MCTP and the MCIP are NP-complete for k-trees with unbounded k.

Proof. The CTP and the CIP are NP-complete for k-trees with unbounded k [8]. Since every
maximal clique in a k-tree is also a maximum clique [27], an MCTS is a CTS and an MCIS is
a CIS. Hence, the MCTP and the MCIP are NP-complete for k-trees with unbounded k.

Theorem 11. The SCTP is NP-complete for k-trees with unbounded k.

Proof. Suppose that k1 ∈ N and G is a k1-tree with |V(G)| > k1. Let C(G) = {C1, C2, . . . , C`}.
Since G is a k1-tree, |Ci| = k1 + 1 for 1 ≤ i ≤ `.

Let Q be a clique with k1 + 1 vertices. Let H be a graph such that V(H) = V(G) ∪Q
and E(H) = E(G) ∪ {(x, y) | x, y ∈ Q} ∪ {(x, y) | x ∈ Q, y ∈ V(G)}. Let Xi = Ci ∪ Q be
a clique for 1 ≤ i ≤ `. Clearly, C(H) = {Xi | 1 ≤ i ≤ `}. Let k2 = 2k1 + 1. Then, H is a
k2-tree and |Xi| = k2 + 1 = 2k1 + 2 for 1 ≤ i ≤ `. Clearly, we can verify that there exists a
minimum-weight SCTF h of H of such that h(x) = 1 for every x ∈ Q. Then, Ci = Xi \ Q
contains at least one vertex x with h(x) = 1 for 1 ≤ i ≤ `. Let S = {x | x ∈ V(H) \ Q
and h(x) = 1}. Then, S is a CTS of G. Since τs

C(H) = |Q| + 2|S| − |V(G)|, we have
|Q|+ 2τC(G)− |V(G)| ≤ τs

C(H).
Assume that D is a minimum CTS of G. Let f be a function of H whose domain is V(H)

and range is {−1, 1}, and (1) f (x) = 1 for every x ∈ Q, (2) f (x) = 1 for every x ∈ D, and
(3) f (x) = −1 for every x ∈ V(G) \D. Each maximal clique of H has at least k1 + 2 vertices
with the function value 1. Therefore, f is an SCTF. We have τs

C(H) ≤ |Q|+ 2τC(G)− |V(G)|.
Following what we have discussed above, we know that τs

C(H) = |Q|+ 2τC(G)− |V(G)|.
The theorem therefore holds by the NP-completeness of the CTP for k-trees [8].

Theorem 12. Suppose that κ ∈ N the κ-FCTP is NP-complete on k-trees with unbounded k.

Proof. Assume that k1 ∈ N and G is a k1-tree with |V(G)| > k1. Let H be a graph such
that V(H) = V(G) ∪ {x} and E(H) = E(G) ∪ {(x, y) | y ∈ V(G)}. Clearly, H is a (k1 + 1)-
tree and we can construct H in linear time. Following the argument analogous to the
proof of Theorem 8, we have τκ

C(H) = τκ−1
C (G) + 1. The theorem therefore holds by the

NP-completeness of the CTP for k-trees [8].

Theorem 13. The SCTP and κ-FCTP problems can be solved in linear-time for k-trees with fixed k.

79

Algorithms 2021, 14, 22

Proof. Assume that κ ∈ N and G is a graph. The κ-FCTP is the GCTP with the CSRF R
whose domain is C(G) and range is {κ}. By Lemma 5, τs

C(G) can be obtained from the
solution to the GCTP on a graph G with a particular CSRF R. Since the GCTP is linear-time
solvable for k-trees with fixed k [8], the SCTP and κ-FCTP are also linear-time solvable for
k-trees with fixed k.

7. Planar, Total, and Line Graphs

In a graph, a vertex x and an edge e are incident to each other if e connects x to
another vertex. Two edges are adjacent if they share a vertex in common. Let G and H
be graphs such that each vertex x ∈ V(H) corresponds to an edge ex ∈ E(G) and two
vertices x, y ∈ V(H) are adjacent in H if and only if their corresponding edges ex and ey
are adjacent in G. Then, H is the line graph of G and denoted by L(G). Let H′ be a graph
such that V(H′) = V(G) ∪ E(G) and two vertices x, y ∈ V(H′) are adjacent in H if and
only if x and y are adjacent or incident to each other in G. Then, H′ is the total graph of G
and denoted by T(G).

Lemma 9 ([28]). The following statements hold for any triangle-free graph G.

(1) Every maximal clique of L(G) is the set of edges of G incident to some vertex of G.
(2) Two maximal cliques in L(G) intersect if and only if their corresponding vertices (in G) are

adjacent in G.

Theorem 14. The MCIP is NP-complete for any 4-regular planar graph G with the clique
number 3.

Proof. Since |C(G)| = O(n) for any planar graph G [29], the MCIP on planar graphs is in
NP. Let G be the class of triangle-free, 3-connected, cubic planar graphs. The independent
set problem remains NP-complete even when restricted to the graph class G [30]. We
reduce this NP-complete problem to the MCIP for 4-regular planar graphs with the clique
number 3 as follows.

Let G ∈ G and H = L(G). Clearly, we can construct H in polynomial time. By
Lemma 9, we know that H is a 4-regular planar graph with ω(H) = 3 and each maximal
clique is a triangle in H.

Assume that D = {x1, x2, . . . , x`} is an independent set of G of maximum cardinality.
Since G ∈ G, degG(x) = 3 for every x ∈ V(G). Let ei1 , ei2 , ei3 ∈ E(G) have the vertex xi in
common for 1 ≤ i ≤ `. Then, ei1 , ei2 , ei3 form a triangle in H. Let Ci be the triangle formed
by ei1 , ei2 , ei3 in H for 1 ≤ i ≤ `. For each pair of vertices xj, xk ∈ D, xj is not adjacent to xk
in G. Therefore, Cj and Ck in H do not intersect. The set {C1, C2, . . . , C`} is an MCIS of H.
We have α(G) ≤ αM(H).

Assume that S = {C1, C2, . . . , C`} is a maximum MCIS of H. Then, each Ci ∈ S is a
triangle in H. Let Ci be formed by ei1 , ei2 , ei3 in H for 1 ≤ i ≤ `. Then, ei1 , ei2 , ei3 are incident
to the same vertex in G. For 1 ≤ i ≤ `, let ei1 , ei2 , ei3 ∈ E(G) have the vertex xi in common.
For each pair of Cj, Ck ∈ S, Cj and Ck do not intersect. Therefore, xj is not adjacent to xk in
G. The set {x1, x2, . . . , x`} is an independent set of G. We have αM(H) ≤ α(G).

Hence, α(G) = αM(H). For k ∈ N, we know that α(G) ≥ k if and only if αM(G) ≥ k.

Corollary 5. The MCIP is NP-complete for line graphs of triangle-free, 3-connected, cubic pla-
nar graphs.

Proof. The corollary holds by the reduction of Theorem 14.

Theorem 15. The MCIP problem is NP-complete for total graphs of triangle-free, 3-connected,
cubic planar graphs.

Proof. Since |C(G)| = O(n) for a planar graph G, the MCIP on planar graphs is in NP. Let
G be the classes of traingle-free, 3-connected, cubic planar graphs. The independent set

80

Algorithms 2021, 14, 22

problem remains NP-complete even when restricted to the graph class G [30]. We reduce
this NP-complete problem to MCIP for for total graphs of triangle-free, 3-connected, cubic
planar graphs. as follows

Let G ∈ G and H = T(G). Clearly, we can construct H in polynomial time. By
Lemma 9, we can verify that H is a 6-regular graph with ω(H) = 4.

Assume that D = {x1, x2, . . . , x`} is an independent set of G of maximum cardinality.
Since G ∈ G, degG(x) = 3 for every x ∈ V(G). Let ei1 , ei2 , ei3 ∈ E(G) have the vertex xi in
common. Then, xi, ei1 , ei2 , ei3 form a maximum clique in H. Let Ci be the maximum clique
formed by xi, ei1 , ei2 , ei3 in H for 1 ≤ i ≤ `. For each pair of vertices xj, xk ∈ D, xj is not
adjacent to xk in G. Therefore, Cj and Ck in H do not intersect. The set {C1, C2, . . . , C`} is
an MCIS of H. We have α(G) ≤ αM(H).

Assume that S = {C1, C2, . . . , C`} is a maximum MCIS of H. By the construction of H,
each Ci ∈ S is formed by three edge-vertices in E(G) and their common end vertex in V(G).
Let xi ∈ V and ei1 , ei2 , ei3 ∈ E(G) in H such that Ci is formed by vi, ei1 , ei2 , ei3 for 1 ≤ i ≤ `.
For each pair of Cj, Ck ∈ C, Cj and Ck do not intersect. Therefore, xj is not adjacent to xk in
G. The set {x1, x2, . . . , x`} is an independent set of G. We have αM(H) ≤ α(G).

Hence, α(G) = αM(H). For k ∈ N, we know that α(G) ≥ k if and only if αM(H) ≥
k.

Funding: This research is supported by a Taiwanese grant under Grant No. NSC-97-2218-E-130-002-MY2.

Acknowledgments: We are grateful to the anonymous referees for their valuable comments and
suggestions to improve the presentation of this paper.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Dahlhaus, E.; Kratochvíl, J.; Manuel, P.D.; Miller, M. Transversal partitioning in balanced hypergraphs. Discret. Math. 1997, 79,

75–89. [CrossRef]
2. Dahlhaus, E.; Manuel, P.D.; Miller, M. Maximum h-colourable subgraph problem in balanced graphs. Inf. Process. Lett. 1998, 65,

301–303. [CrossRef]
3. Chang, M.-S.; Kloks, T.; Lee, C.-M. Maximum clique transversals. In Proceedings of the 27th International Workshop on

Graph-Theoretic Concepts in Computer Science, Boltenhagen, Germany, 14–16 June 2001; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2001; Volume 2204, pp. 32–43.

4. Lee, C.-M. Variations of maximum-clique transversal sets on graphs. Ann. Oper. Res. 2010, 181, 21–66. [CrossRef]
5. Lee, C.-M.; Chang, M.-S. Signed and minus clique-transversal function on graphs. Inf. Process. Lett. 2009, 109, 414–417. [CrossRef]
6. Wang, H.; Kang, L.; Shan, E. Signed clique-transversal functions in graphs. Int. J. Comput. Math. 2010, 87, 2398–2407. [CrossRef]
7. Xu, G.; Shan, E.; Kang, L.; Chang, T.C.E. The algorithmic complexity of the minus clique-transversal problem. Appl. Math. Comput.

2007, 189, 1410–1418.
8. Chang, M.S.; Chen, Y.H.; Chang, G.J.; Yan, J.H. Algorithmic aspects of the generalized clique transversal problem on chordal

graphs. Discret. Appl. Math. 1996, 66, 189–203.
9. Lee, C.-M.; Chang, M.-S. Variations of Y-dominating functions on graphs. Discret. Math. 2008, 308, 4185–4204. [CrossRef]
10. Balachandran, V.; Nagavamsi, P.; Rangan, C.P. Clique transversal and clique independence on comparability graphs. Inf. Process.

Lett. 1996, 58, 181–184. [CrossRef]
11. Lee, C.-M.; Chang, M.-S. Distance-hereditary graphs are clique-perfect. Discret. Appl. Math. 2006, 154, 525–536. [CrossRef]
12. Bonomo, F.; Durán, G.; Lin, M.C.; Szwarcfiter, J.L. On balanced graphs. Math. Program. 2006, 105, 233–250. [CrossRef]
13. Lehel, J.; Tuza, Z. Neighborhood perfect graphs. Discret. Math. 1986, 61, 93–101. [CrossRef]
14. Chang, G.J.; Farber, M.; Tuza, Z. Algorithmic aspects of neighborhood numbers. SIAM J. Discret. Math. 1993, 6, 24–29. [CrossRef]
15. Fulkerson, D.R.; Hoffman, A.; Oppnheim, R. On balnaced matrices. Math. Program. Study 1974, 1, 120–132.
16. Argiroffo, G.; Leoni, V.; Torres, P. On the complexity of {k}-domination and k-tuple domination in graphs. Inf. Process. Lett. 2015,

115, 556–561. [CrossRef]
17. Faria, L.; Hon, W.-K.; Kloks, T.; Liu, H.-H.; Wang, T.-M.; Wang, Y.-L. On complexities of minus domination. Discret. Optim. 2016,

22, 6–19. [CrossRef]
18. Liao, C.-S.; Chang, G.J. k-tuple domination in graphs. Inf. Process. Lett. 2003, 87, 45–50. [CrossRef]
19. Brandstädt, A.; Le, V.B.; Spinrad, J.P. Graph Classes–A Survey, SIAM Monographs on Discrete Math and Applications; Society for

Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999.
20. Fulkerson, D.R.; Gross, O. Incidence matrices and interval graphs. Pac. J. Math. 1965, 15, 835–855. [CrossRef]

81

Algorithms 2021, 14, 22

21. Brandstädt, A.; Dragan, F.F.; Chepoi, V.D.; Voloshin, V.I. Dually chordal graphs. SIAM J. Discret. Math. 1998, 11, 437–455.
[CrossRef]

22. Dragan, F.F. HT-graphs: Centers, connected r-domination, and Steiner trees. Comput. Sci. J. Mold. 1993, 1, 64–83.
23. Moscarini, M. Doubly chordal graphs, Steiner trees, and connected domination. Networks 1993, 23, 59–69. [CrossRef]
24. Prisner, E.; Szwarcfiter, J.L. Recognizing clique graphs of directed and rooted path graphs. Discret. Appl. Math. 1999, 94, 321–328.

[CrossRef]
25. Brandstädt, A.; Chepoi, V.D.; Dragan, F.F. Clique r-domination and clique r-packing problems on dually chordal graphs. SIAM J.

Discret. Math. 1997, 10, 109–127. [CrossRef]
26. Rose, D.J. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 1970, 32, 597–609. [CrossRef]
27. Patil, H.P. On the structure of k-trees. J. Comb. Inf. Syst. Sci. 1986, 11, 57–64.
28. Guruswami, V.; Rangan, C.P. Algorithmic aspects of clique-transversal and clique-independent sets. Discret. Appl. Math. 2000,

100, 183–202. [CrossRef]
29. Wood, D.R. On the maximum number of cliques in a graph. Graphs Comb. 2007, 23, 337–352. [CrossRef]
30. Uehara, R. NP-Complete Problems on a 3-Connected Cubic Planar Graph and Their Applications; Technical Report TWCU-M-0004;

Tokyo Woman’s Christian University: Tokyo, Japan, 1996.

82

algorithms

Article

A Quasi-Hole Detection Algorithm for Recognizing
k-Distance-Hereditary Graphs, with k < 2

Serafino Cicerone

����������
�������

Citation: Cicerone, S. A Quasi-Hole

Detection Algorithm for Recognizing

k-Distance-Hereditary Graphs, with

k < 2. Algorithms 2021, 14, 105.

https://doi.org/10.3390/a14040105

Academic Editor: Frank Werner

Received: 10 February 2021

Accepted: 23 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila,
I-67100 L’Aquila, Italy; serafino.cicerone@univaq.it

Abstract: Cicerone and Di Stefano defined and studied the class of k-distance-hereditary graphs, i.e.,
graphs where the distance in each connected induced subgraph is at most k times the distance in the
whole graph. The defined graphs represent a generalization of the well known distance-hereditary
graphs, which actually correspond to 1-distance-hereditary graphs. In this paper we make a step
forward in the study of these new graphs by providing characterizations for the class of all the
k-distance-hereditary graphs such that k < 2. The new characterizations are given in terms of both
forbidden subgraphs and cycle-chord properties. Such results also lead to devise a polynomial-time
recognition algorithm for this kind of graph that, according to the provided characterizations, simply
detects the presence of quasi-holes in any given graph.

Keywords: distance-hereditary graphs; stretch number; recognition problem; forbidden subgraphs;
hole detection

1. Introduction

Distance-hereditary graphs have been introduced by Howorka [1], and are defined as
those graphs in which every connected induced subgraph is isometric; that is, the distance
between any two vertices in the subgraph is equal to the one in the whole graph. Therefore,
any connected induced subgraph of any distance-hereditary graph G “inherits” its distance
function from G. Formally:

Definition 1 (from [1]). A graph G is a distance-hereditary graph if, for each connected induced
subgraph G′ of G, the following holds: dG′(x, y) = dG(x, y), for each x, y ∈ G′.

This kind of graph have been rediscovered many times (e.g., see [2]). Since their
introduction, dozens of papers have been devoted to them, and different kinds of char-
acterizations have been found: metric, forbidden subgraphs, cycle/chord conditions,
level/neighborhood conditions, generative, and more (e.g., see [3]). Among such results,
the generative properties resulted as the most fruitful for algorithmic applications, since
they allowed researchers to efficiently solve many combinatorial problems in the class of
distance-hereditary graphs (e.g., see [4–9]).

From an applicative point of view, distance-hereditary graphs are mainly attractive
due to their basic metric property. For instance, these graphs can model unreliable com-
munication networks [10,11] in which vertex failures may occur: at a given time, if sender
and receiver are still connected, any message can be still delivered without increasing the
length of the path used to reach the receiver.

Since in communication networks this property could be considered too restrictive,
in [12] the class of k-distance-hereditary graphs has been introduced. These graphs can model
unreliable networks in which messages can eventually reach the destination traversing a
path whose length is at most k times the length of a shortest path computed in absence
of vertex failures. The minimum k a network guarantees regardless the failed vertices is
called stretch number. Formally:

83

Algorithms 2021, 14, 105

Definition 2 (from [12]). Given a real number k ≥ 1, a graph G is a k-distance-hereditary
graph if, for each connected induced subgraph G′ of G, the following holds: dG′(x, y) ≤
k · dG(x, y), for each x, y ∈ G′.

The class of all the k-distance-hereditary graphs is denoted by DH(k). Concerning
this class of graphs, the following relationships hold:

• DH(1) coincides with the class of distance-hereditary graphs;
• DH(k1) ⊆ DH(k2), for each k1 ≤ k2.

Additional results about the class hierarchy DH(k) can be found in [13,14]. It is worth
to notice that this hierarchy is fully general; that is, for each arbitrary graph G there exists a
number k such that G ∈ DH(k). It follows that the stretch number of G, denoted as s(G),
is the smallest number t such that G belongs to DH(t). In [12], it has been shown that the
stretch number s(G) of any connected graph G can be computed as follows:

• the stretch number of any pair {u, v} of distinct vertices is defined as sG(u, v) =
DG(u, v)/dG(u, v), where DG(u, v) is the length of any longest induced path between
u and v, and dG(u, v) is the distance between the same pair of vertices;

• s(G) = max{u,v} sG(u, v).

It follows that for any non-trivial graph G with n ≥ 4 vertices, by simply maximizing
D(u, v) and minimizing d(u, v), we get s(G) ≤ (n− 2)/2. From the above relationship
about s(G), we get that the stretch number is always a rational number. Interestingly, it has
been shown that there are some rational numbers that cannot be stretch numbers. Formally,
a positive rational number t is called admissible stretch number if there exists a graph G
such that s(G) = t. The following result characterizes which numbers are admissible
stretch numbers.

Theorem 1 (from [14]). A rational number t is an admissible stretch number if and only if
t = 2− 1

i , for some integer i ≥ 1, or t ≥ 2.

Apart from the interesting general results found for the classes DH(k), the original
motivation was studying how (if possible) to extend the known algorithmic results from
the base class, namely DH(1), to DH(k) for some constant k > 1. According to Theorem 1,
in this work we are interested in studying the class containing each graph G such that
s(G) < 2. Since this class contains graphs with stretch number strictly less than two,
throughout this paper it will be denoted by sDH(2).

Results. In this work, we provide three results for the class sDH(2), namely two
different characterizations and a recognition algorithm (notice that the characterizations
have already been presented in [13] but with omitted proofs). The first characterization
is based on listing all the minimal forbidden subgraphs for each graph in the class. It is
interesting to observe the similarity with the corresponding result for the class DH(1):

• (adapted from [2]) G ∈ DH(1) if and only if the following graphs are not induced
subgraphs of G:

– holes Hn, for each n ≥ 5;
– cycles C5 with cd(C5) = 1;
– cycles C6 with cd(C6) = 1.

• (this paper) G ∈ sDH(2) if and only if the following graphs are not induced subgraphs
of G:

– holes Hn, for each n ≥ 6;
– cycles C6 with cd(C6) = 1;
– cycles C7 with cd(C7) = 1;
– cycles C8 with cd(C8) = 1.

84

Algorithms 2021, 14, 105

Here we used the notion of “chord distance” cd(C) to express the position of possible
chords within any cycle C (see Section 2 for a formal definition). Notice that in [14] a similar
result has been provided for the generic class DH(2− 1

i), i > 1.
The second result is a characterization based on a cycle-chord property. As in the

previous case, notice the similarity with the corresponding result for the class DH(1):

• (from [12]) G ∈ DH(1) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 5, of G;
• (this paper) G ∈ sDH(2) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 6, of G.

The last result is a recognition algorithm for graphs belonging to sDH(2) that works
in O(n2m2) time and O(m2) space. Basically, this algorithm exploits the result based on
the cycle-chord property and, as a consequence, simply detects quasi-holes in any graph.
A quasi-hole is any cycle with at least five vertices and chord-distance at most one (i.e.,
all the possible chords of the cycle must be incident to the same vertex). This algorithm
is obtained by adapting the algorithm provided in [15] for detecting holes (i.e., any cycle
with at least five vertices and no chords).

Outline. The paper is organized as follows. In Section 2, we introduce notation and
basic concepts used throughout the paper. Sections 3 and 4 are devoted to providing the
characterization based on minimal forbidden subgraphs and cycle-chord conditions for
graphs in sDH(2), respectively. In Section 5, we provide the algorithm for detecting quasi-
holes and hence to solve the recognition problem for the class sDH(2). Finally, Section 6
provides some concluding remarks.

2. Notation and Basic Concepts

We consider finite, simple, loop-less, undirected, and unweighted graphs G = (V, E)
with vertex set V and edge set E. A subgraph of G is a graph having all its vertices and edges
in G. Given S ⊆ V, the induced subgraph G[S] of G is the maximal subgraph of G with vertex
set S. Given u ∈ V, NG(u) denotes the set of neighbors of u in G, and NG[u] = NG(u)∪ {u}.

A sequence of pairwise distinct vertices (x0, x1, . . . , xk) is a path in G if (xi, xi+1) ∈ E
for 0 ≤ i < k; vertex xi, for each 0 < i < k, is an internal vertex of that path. A chord of a path
is any edge joining two non-consecutive vertices in the path, and a path is an induced path
if it has no chords. We denote by Pk any induced path with k ≥ 3 vertices (e.g., an induced
path on three vertices is denoted as P3 whereas an induced path on four vertices is denoted
as P4). Two vertices x and y are connected in G if there exists a path (x, . . . , y) in G. A graph
is connected if every pair of vertices is connected.

A cycle in G is a path (x0, x1, . . . , xk−1) where also (x0, xk−1) ∈ E. Two vertices xi and
xj are consecutive in the cycle (x0, x1, . . . , xk−1) if j = (i + 1) mod k or i = (j + 1) mod k.
A chord of a cycle is an edge joining two non-consecutive vertices in the cycle. We denote
by Ck any cycle with k ≥ 3 vertices, whereas Hk denotes a hole, i.e., a cycle Ck, k ≥ 5,
without chords. The chord distance of a cycle Ck is denoted by cd(Ck) and is defined as the
minimum number of consecutive vertices in Ck such that every chord of Ck is incident
to some of such vertices (see Figure 1 for an example of chord distance). We assume
cd(Hk) = 0.

The length of any shortest path between two vertices x and y in a graph G is called
distance and is denoted by dG(x, y). Moreover, the length of any longest induced path
between them is denoted by DG(x, y). If x and y are distinct vertices, we use the symbols
pG(x, y) and PG(x, y) to denote any shortest and any longest induced path between x
and y, respectively. Sometimes, when no ambiguity occurs, we also use pG(x, y) and
PG(x, y) to denote the sets of vertices belonging to the corresponding paths. If dG(x, y) ≥ 2,
then {x, y} is a cycle-pair if there exist two induced paths pG(x, y) and PG(x, y) such that
pG(x, y) ∩ PG(x, y) = {x, y}. In other words, if {x, y} is a cycle-pair, then there exist
induced paths pG(x, y) and PG(x, y) such that the vertices in pG(x, y) ∪ PG(x, y) form a
cycle in G; this cycle is denoted by G[x, y]. In Figure 1 {v3, v6} is a cycle-pair that induces
the cycle (v3, v4, v5, v6, v1); in particular, G[v3, v6] is induced by pG(v3, v6) = (v3, v1, v6)
and PG(v3, v6) = (v3, v4, v5, v6). We use the symbol S(G) to denote the set containing all
pairs {u, v} of connected vertices that induce the stretch number of G, namely S(G) =

85

Algorithms 2021, 14, 105

{{x, y} : sG(x, y) = s(G)}. The following lemma states that cycle-pairs are useful to
determine the stretch number.

v3

v4

v2v1

v5

v6

Figure 1. The chord distance of this C6 graph is two because: (i) vertices v1 and v2 are consecutive in
the cycle, (ii) every chord is incident to one of such vertices, and (iii) there is no other set with less
than two vertices with the same properties.

Lemma 1 (from [12]). Let G be a graph such that s(G) > 1. The following relationships hold:

(i) dG(u, v) ≥ 2 for each pair {u, v} such that {u, v} ∈ S(G),
(ii) there exists a cycle-pair {u, v} that induces the stretch number of G, that is {u, v} ∈ S(G).

This lemma suggests that studying s(G) concerns the analysis of cycles in G. In partic-
ular, if {u, v} is a cycle-pair that belongs to S(G), then the cycle G[u, v] is called inducing-
stretch cycle for G. In Figure 1, the represented graph G belongs to DH(3/2); moreover,
both {v3, v5} and {v3, v6} are cycle-pairs in S(G), and (v1, v3, v4, v5, v6) is the correspond-
ing inducing-stretch cycle.

3. A Characterization Based on Forbidden Subgraphs

A well known characterization based on minimal forbidden subgraphs has been provided
for the class of distance-hereditary graphs.

Theorem 2 (from [2]). A graph G is a distance-hereditary graph if and only if it does not contain,
as an induced subgraph, any of the following graphs: the hole Hn, n ≥ 5, the house, the fan, and the
domino (cf. Figure 2).

Figure 2. The minimal forbidden subgraphs of distance-hereditary graphs: from left to right, the hole,
the house, the fan, and the domino. Dashed lines represent paths of length at least one.

This result can be easily reformulated, and simplified, by using the notion of chord
distance. In particular, it is possible to characterize in a compact way all the forbidden
subgraphs by using just the notion of chord distance as follows:

• G is a distance-hereditary graph if and only if the following graphs are not induced subgraphs
of G:

(i) Hn, for each n ≥ 5;
(ii) cycles C5 with cd(C5) = 1;
(iii) cycles C6 with cd(C6) = 1.

It is worth to notice that in this way we do not consider the minimal subgraphs only
(cf. Figure 3).

86

Algorithms 2021, 14, 105

Figure 3. The forbidden subgraphs of DH(1) expressed according to the notion of chord distance.
Dashed lines represent paths of length at least one. Dotted lines represent chords that may or may
not exist.

In the following we provide a characterization similar to that of Theorem 2 for
any graph G ∈ sDH(2). Before giving such a result, we need to recall the following
technical lemma.

Lemma 2. Let G be a graph and let G[x, y] be an inducing-stretch cycle of G defined by the induced
paths PG(x, y) = (x, u1, u2, . . . , up−1, y) and pG(x, y) = (x, v1, v2, . . . , vq−1, y). If d(x, y) ≥ 3
then v1 must be incident to chords of the cycle G[x, y].

Proof. Since G[x, y] is an inducing-stretch cycle of G, then s(G) = p
q . If v1 is not incident

to any chords of G[x, y], then the induced paths PG(v1, y) = (v1, x, u1, u2, . . . , up−1, y) and

pG(v1, y) = (v1, v2, . . . , vq−1, y) imply sG(v1, y) = p+1
q−1 > p

q , a contradiction.

Let G be any graph. According to Lemma 1, let us consider an inducing-stretch
cycle G[x, y] of G. Assume that G[x, y] is formed by the vertices of the induced paths
PG(x, y) = (x, u1, u2, . . . , up−1, y) and pG(x, y) = (x, v1, v2, . . . , vq−1, y). Since PG(x, y)
and pG(x, y) are induced paths, each chord of G[x, y] (if any) joins vertices vi and uj,
with 1 ≤ i ≤ q− 1 and 1 ≤ j ≤ p− 1. When some vertex vi is incident to chords of G[x, y],
we denote by (vi, uli) and (vi, uri) the leftmost and rightmost chords of vi, respectively.
Formally, the indices li and ri are defined as follows:

• li = min{i′ | 1 ≤ i′ ≤ p− 1 and (vi, ui′) is a chord of G[x, y]}
• ri = max{i′ | 1 ≤ i′ ≤ p− 1 and (vi, ui′) is a chord of G[x, y]}

Theorem 3. Let G be a graph. G ∈ sDH(2) if and only if the following graphs are not induced
subgraphs of G:

(i) Hn, for each n ≥ 6;
(ii) cycles C6 with cd(C6) = 1;
(iii) cycles C7 with cd(C7) = 1;
(iv) cycles C8 with cd(C8) = 1.

Proof. (⇒) Each provided hole and cycle has stretch number greater or equal to 2,
and hence it cannot be an induced subgraph of G.

(⇐) We prove that if s(G) ≥ 2, then G contains one of the subgraphs in items (i), (ii), (iii),
or (iv), or G contains a proper induced subgraph G′ such that s(G′) ≥ 2. In the latter
case, we can recursively apply to G′ the following proof.
According to Lemma 1, consider an inducing-stretch cycle G[x, y] of G and assume

it is formed by the vertices of the induced paths PG(x, y) = (x, u1, u2, . . . , up−1, y) and
pG(x, y) = (x, v1, v2, . . . , vq−1, y). Notice that, since PG(x, y) and pG(x, y) are induced
paths, each possible chord of G[x, y] joins vertices vi and uj, with 1 ≤ i ≤ q − 1 and
1 ≤ j ≤ p− 1.

Since p
q ≥ 2 by hypotheses, then q ≥ 2 by Item (i) of Lemma 1, and hence p ≥ 4.

According to the value of q, we analyze two different cases:

q = 2: In this case, if G[x, y] is chordless, then it corresponds to a hole as described in
Item (i). If the chord distance of G[x, y] is equal to 1, all chords are incident to v1.
According to p, we have:

87

Algorithms 2021, 14, 105

p = 4: G[x, y] corresponds to the cycle in Item (ii);
p = 5: G[x, y] corresponds to the cycle in Item (iii);
p = 6: G[x, y] corresponds to the cycle in Item (iv);
p ≥ 7: Let (v1, ul1) be the leftmost chord of v1. If l1 ≥ 4 the cycle (v1, x, u1, u2, . . . , ul1)

corresponds to the cycle in Item (i). When l1 ≤ 3, consider the subgraph G′

induced by the vertices in the cycle (v1, ul1 , ul1+1, . . . , up−1, y). The induced
paths P′ = (ul1 , ul1+1, . . . , up−1, y) and p′ = (ul1 , v1, y) provide the following
lower bound for sG′ :

sG′(ul1 , y) ≥ p−l1
2 ≥ 7−3

2 = 2.

Hence, G′ is a proper subgraph of G with s(G′) ≥ 2. The statement follows by
recursively applying to G′ this proof.

q ≥ 3: In this case, according to Lemma 2, v1 must be incident to chords. We now analyze
two cases with respect to the value of r1, (v1, ur1) being the rightmost chord of v1:

r1 ≥ 4: Consider the subgraph G′′ induced by the vertices in the cycle
(v1, x, u1, u2, . . . , ur1). In this case, the induced paths P′′ = (x, u1, u2, . . . , ur1)
and p′′ = (x, v1, ur1) provide the following lower bound for sG′′ : sG′′(x, ur1) ≥
r1/2 ≥ 2. Hence, G′′ is a proper subgraph of G with s(G′′) ≥ 2. The statement
follows by recursively applying to G′′ this proof.

r1 ≤ 3: in this case the induced paths P′′′ = (v1, ur1 , ur1+1, . . . , up−1, y) and p′′′ =
(v1, v2, . . . , vq−1, y) provide the following lower bound for sG(v1, y):

sG(v1, y) ≥ p−2
q−1 .

Since p−2
q−1 ≥

p
q is equivalent to p

q ≥ 2 (which holds by hypothesis), then the subgraph
G′′′ induced by the vertices in both P′′′ and p′′′ is a proper subgraph of G with stretch
p∗/q∗ ≥ 2 and q∗ = q− 1. Hence, the statement follows by recursively applying to G′′′

this proof.
This concludes the proof.

Figures 3 and 4 summarize the characterizations based on forbidden subgraphs for
classes DH(1) and sDH(2), respectively. Figure 5 provides the list of all the minimal
forbidden subgraphs of any graph in sDH(2).

Figure 4. The forbidden subgraphs of graphs having stretch number less than 2. Dashed (dot-
ted, respectively) lines represent paths of length at least one (chords that may or may not exist,
respectively).

88

Algorithms 2021, 14, 105

Figure 5. The minimal forbidden subgraphs of any graph with stretch number less than 2. Dashed
lines represent paths of length at least one.

4. A Characterization Based on Cycle-Chord Conditions

For the class of distance-hereditary graphs, Howorka provided the following well
known characterization based on cycle-chord conditions.

Theorem 4 (from [1]). Let G be a graph. G ∈ DH(1) if and only if each cycle Cn, n ≥ 5, of G
has two crossing chords.

In [12], this result has been reformulated in terms of chord distance:

Theorem 5 (from [12]). Let G be a graph. G ∈ DH(1) if and only if cd(Cn) > 1 for each cycle
Cn, n ≥ 5, of G.

In the remainder of this section, we provide a similar characterization for graphs
belonging to sDH(2).

Lemma 3. Let G be a graph. If s(G) = 2 then G contains, as induced subgraph, a cycle C6 with
chord distance at most 1.

Proof. According to Lemma 1, consider an inducing-stretch cycle G[x, y] of G. Since
s(G) = 2, assume that G[x, y] is formed by the vertices of the induced paths PG(x, y) =
(x, u1, u2, . . . , u2s−1, y) and pG(x, y) = (x, v1, v2, . . . , vs−1, y), with s ≥ 2.

If s = 2 then the proof is concluded. In fact, cycle G[x, y] has 6 vertices and every
chord of G[x, y] (if any) is incident to v1.

In the remainder of the proof assume s ≥ 3. In this case, according to Lemma 2, v1 is
incident to chords of G[x, y]. Let (v1, ur1) be the rightmost chord incident to v1. We analyze
different cases according to the value of r1.

• Assume r1 > 4. In this case, the induced paths (x, u1, u2, . . . , ur1) and (x, v1, ur1)
provide a stretch number sG(x, ur1) ≥ r1

2 > 2, a contradiction.
• Assume r1 ≤ 2. In this case, the induced paths (v1, ur1 , ur1+1, . . . , u2s−1, y) and

(v1, v2, . . . , vs−1, y) provide the following lower bound on sG(v1, y):

sG(v1, y) ≥ 2s− r1 + 1
s− 1

≥ 2s− 2 + 1
s− 1

= 2 +
1

s− 1
.

89

Algorithms 2021, 14, 105

This contradicts s(G) = 2.

It follows that either r1 = 4 or r1 = 3. In the first case the cycle (v1, x, u1, u2, u3, u4)
represents the requested cycle C6: chords of G[x, y] (if any) are all incident to v1. In the
second case consider the induced paths (v1, ur1 , ur1+1, . . . , u2s−1, y) and (v1, v2, . . . , vs−1, y).
These paths induce the following lower bound on sG(v1, y):

sG(v1, y) ≥ 2s− r1 + 1
s− 1

=
2s− 3 + 1

s− 1
= 2.

Hence, the above paths induce a proper subgraph G′ of G with stretch number 2.
Hence, this proof can be recursively applied to G′.

Lemma 4. Let G be a graph. s(G) ≥ 2 if and only if G contains, as an induced subgraph, a cycle
Cn, n ≥ 6, with chord distance at most 1.

Proof. (⇐) Trivial.
(⇒) If s(G) = 2, then it is sufficient to use Lemma 3. Now, let us assume that s(G) =

p/q > 2 such that p and q are coprime. By Lemma 1, if G[x, y] is an inducing-stretch
cycle of G, according to the hypotheses, we may assume that G[x, y] is formed by
the vertices of the induced paths PG(x, y) = (x, u1, u2, . . . , up·s−1, y) and pG(x, y) =
(x, v1, v2, . . . , vq·s−1, y), with s ≥ 1.
If d(x, y) = 2, then G[x, y] contains at least 6 vertices and all its chords (if any) are

incident to v1. Then, G[x, y] corresponds to the requested cycle.
In the remainder, assume that d(x, y) ≥ 3. In this case, by Lemma 2, vertex v1 is

incident to chords of G[x, y]: let (v1, ur1) be the rightmost chord incident to it.
If r1 ≤ 3, then the two induced paths (v1, ur1 , ur1+1, . . . , up·s−1, y) and

(v1, v2, . . . , vq·s−1, y) provide the following lower bound for sG(v1, y):

sG(v1, y) ≥ p · s− r1 + 1
q · s− 1

.

Now we show that
p · s− r1 + 1

q · s− 1
>

p
q

. (1)

It can be easily observed that Equation (1) is equivalent to

p
q
> r1 − 1. (2)

Since r1 ≤ 3 and p/q > 2 by hypothesis, then Equation (2) holds. This implies that
sG(v1, y) > p/q, a contradiction.

Then, it follows that r1 ≥ 4. In this case, C = (x, u1, u2, . . . , ur1 , v1) is an induced cycle
with r1 + 2 ≥ 6 vertices and chord distance at most 1 (In C, all the possible chords are
incident to v1). This concludes the proof.

This lemma can be reformulated so that it directly provides a characterization for the
graphs under consideration.

Theorem 6. Let G be a graph. G ∈ sDH(2) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 6,
of G.

Compare Theorems 5 and 6 to observe the similarity between the cycle-chord charac-
terizations of graphs with stretch number equal to 1 and graphs with stretch number less
than 2, respectively.

90

Algorithms 2021, 14, 105

5. Recognition Algorithm

The distance-hereditary graphs, i.e., graphs in DH(1), can be recognized in linear
time [16], while the recognition problem for the generic class DH(k), k not fixed, is co-NP-
complete [12]. For small and fixed values of k, in [14] a partial answer to this basic problem
is given. In particular, Lemma 1 states that for k < 2, only specific rational numbers
may act as stretch numbers. In [14], a characterization for each class DH(2− 1/i), i > 1,
has been provided, and such a characterization led to a polynomial time algorithm for the
recognition problem for the class DH(2− 1/i), with fixed i > 1. Unfortunately, the running
time of this algorithm is bounded by O(n3i+2).

In this section, we propose a polynomial-time algorithm for solving the recognition
problem for the class sDH(2) according to the following approach. Lemma 4 provides a
characterization for all graphs not belonging to sDH(2). It is based on detecting whether a
given graph G contains or not an induced cycle Cn, n ≥ 6, with chord distance at most 1.
Now, assume that we have an algorithm A returning true if and only if a given graph G
contains such a cycle. Then, to recognize whether G ∈ sDH(2) we can simply use A on G
and certify the membership if and only if A return false. In the remainder of this section we
show that such an algorithm A can be defined.

5.1. An Existing Hole Detection Algorithm

We remind that Hk denotes a hole, i.e., a chordless cycle with k ≥ 5 vertices. In [15],
Nikolopoulos and Palios provided the following result about the hole detection problem.

Theorem 7 (from [15]). Given any connected graph G = (V, E) with |V| = n and |E| = m, it
is possible to determine whether G contains a hole in O(m2) time and O(nm) space.

They also extended their result to larger versions of holes.

Corollary 1 (from [15]). Let G = (V, E) be a connected graph with |V| = n and |E| = m, and
let k ≥ 5 be a constant. It is possible to determine whether G contains a hole on at least k vertices in
O(nmp−1) time and O(mp−1) space if k = 2p, and in O(n + mp) time and O(nmp−1) space if
k = 2p + 1.

Therefore, according to this corollary, it is possible to check whether G contains a hole
Hk, with k ≥ 6 vertices, in O(nm2) time and O(m2) space.

5.2. Quasi-Hole Detection Algorithm

We call quasi-hole any cycle Ck such that k ≥ 5 and cd(Ck) ≤ 1. In what follows, we
show that the hole-detection algorithms recalled in Theorem 7 and Corollary 1 can be
adapted to detect quasi-holes in any connected graph G. This adapted version is called
QuasiHoleDetection and it is described in pseudo-code as shown in Algorithms 1 and 2.
The strategy behind QuasiHoleDetection is based on the following result:

Lemma 5. A connected graph G contains a quasi-hole if and only if there exists a cycle (v0, v1, . . . , v`),
` ≥ 4, in G such that each path (vi, vi+1, vi+2, vi+3), i = 1, . . . , `− 3, is a P4 of G.

Proof. (⇒) If G contains a quasi-hole Ck then the vertices of Ck form a cycle fulfilling the
conditions of the statement (where v0 is the only vertex incident to possible chords of
the cycle).

(⇐) Suppose that G admits cycles as described in the statement, and let C = (v0, v1, . . . , v`)
be the shortest among such cycles. We now show that (i) C has at least 5 vertices and
(ii) cd(C) ≤ 1:

(i) Since C fulfills the conditions of the statement, then C contains at least 5 vertices;
(ii) Suppose by contradiction that cd(C) > 1. Then, there must exist chords (vi, vj) with

both vi and vj different from v0. To each chord (vi, vj) not incident on v0, we associate

91

Algorithms 2021, 14, 105

a “length” defined as length(vi, vj) = |j− i|. Now, let (vl , vr), with l < r, be a chord
with minimum length. By definition, 0 < l < r ≤ ` holds. Since (vl , vl+1, vl+2, vl+3)
is a P4, then r ≥ l + 4, and hence C′ = (vl , vl+1, . . . , vr) results to be a cycle with
at least 5 vertices. Moreover, between vi and vj, for each l ≤ i < i + 2 ≤ j ≤ r,
(i, j) 6= (l, r), cannot exist an edge, otherwise it would be a chord with length smaller
than length(vl , vr).

Since C′ is a cycle with at least 5 vertices and with chord distance zero, then it
contradicts the fact that C is the shortest among the cycles fulfilling the conditions of the
statement. Hence, cd(C) ≤ 1.

Since both the properties at points (i) and (ii) hold, it follows that C is a quasi-hole.

Algorithm 1: A quasi-hole detection algorithm.
Algorithm: QuasiHoleDetection

Input : a connected undirected graph G = (V, E)
Output : “true” if G contains a quasi-hole, “false” otherwise.

1 calculate the adjacency matrix M[] of G ;
2 foreach v1 ∈ V do
3 set each entry of the arrays walked_P3[] and AP[] to 0;
4 base← v1;
5 AP[v1]← 1;
6 foreach (v2, v3) ∈ E do
7 if (v1, v2) ∈ E and v1 6= v3 then
8 AP[v2]← 1;
9 Visit(base, v1, v2, v3);

10 AP[v2]← 0;
11 end
12 if (v1, v3) ∈ E and v1 6= v2 then
13 AP[v3]← 1;
14 Visit(base, v1, v3, v2);
15 AP[v3]← 0;
16 end
17 end
18 AP[v1]← 0;
19 end
20 print “false”.

The above lemma is used by the provided algorithm for the detection of quasi-holes
in G. To this end, we associate to G a directed graph G+ defined as follows:

• {vabc | (a, b, c) is a P3 in the graph G} is the vertex set of G+;
• {(vabc, vbcd) | (a, b, c, d) is a P4 in the graph G} is the edge set of G+.

If (a, b, c) is a path P3 of G, then both the vertices vabc and vcba belong to G+. In a
similar way, if (a, b, c, d) is a path P4 of G, then the edges (vabc, vbcd) and (vdcb, vcba) must be
contained in G+. Hence, visiting G+ is equivalent to proceeding along P4s of G. It follows
that the conditions of Lemma 5 on G can be verified by performing a revised DFS on G+

(cf. [17]). In turn, the following lemma holds:

Lemma 6. Let G be any connected graph, and let G+ be its associated directed graph. By performing
a DFS on G+, if the DFS-path is vu0u1u2 , vu1u2u3 , . . . , vuk−2uk−1uk , where ui 6= uj for each 0 ≤ i <
j < k and uk = u` for some ` such that 0 ≤ ` < k, then u`, u`+1, . . . , uk−1 are vertices forming a
cycle in G that fulfill Lemma 5. Conversely, if G contains a quasi-hole, the DFS on G+ will meet a
sequence of vertices in G+ whose corresponding P3s in G produce a path as the path (v1, v2, . . . , v`)
in the cycle as in Lemma 5.

92

Algorithms 2021, 14, 105

Algorithm 2: A recursive procedure used by QuasiHoleDetection to perform
an adapted DFS.

Procedure: procedure Visit

Input : four vertices base, u1, u2, and u3 of G

1 AP[u3]← 1;
2 walked_P3[(u1, u2), u3]← 1;
3 foreach (u3, u4) ∈ E \ {(u3, u2)} do
4 if u4 = base then
5 if AP.size ≥ 5 then

// the active path determines a quasi-hole
6 print “true” ;
7 exit;
8 else
9 break

10 end
11 else
12 if (u2, u4) 6∈ E and (u1 = base or (u1, u4) 6∈ E) then

// here, when u1 6= base, (u1, u2, u3, u4) forms a P4 in G
13 if AP[u4] = 1 then

// the active path determines a hole
14 print “true” ;
15 exit;
16 end
17 if walked_P3[(u2, u3), u4] = 0 then
18 Visit(base, u2, u3, u4);
19 end
20 end
21 end
22 end
23 AP[u3]← 0;

By following the same strategy used in [15], to reduce the space complexity required
by G+, the DFS on G+ is simulated by performing a revised DFS directly on G. This revised
DFS on G is implemented by Algorithm QuasiHoleDetection (cf. Figure 1).

At Line 1, the algorithm computes the adjacency matrix M[] of G from its adjacency-
list (we assume that G is provided as input according to this representation). M[] is used
to check the adjacency in constant time. At Line 2, each vertex v1 of G is checked against
the following possible role: v1 belongs to a quasi-hole C and all the chords of C, if any, are
adjacent to v1. To perform this check, at Line 6 we consider each edge (v2, v3) in G: if this
edge, along with (v1, v2) (cf. Line 7) or (v1, v3) (cf. Line 12), form a path with three vertices,
then the algorithm tries to extend this path into the requested cycle by recursively calling
the Procedure Visit (see Algorithm 2).

Visit works according to Lemma 5: in any step, it attempts to extend a path P3 defined
by (u1, u2, u3) into P4s of the form (u1, u2, u3, u4); then, for each such P4, the procedure
proceeds by extending the P3 formed by (u2, u3, u4) into P4s of the form (u2, u3, u4, u5), and
so on. In this situation, the active-path is first extended from (u1, u2, u3) to (u1, u2, u3, u4),
then to (u1, u2, u3, u4, u5) and so on. In case of backtracking, the last vertex is removed of
the current active-path. By proceeding in this way, two cases may occur:

• the initial vertex v1 (called base in the algorithm) is added again to the active-path
(cf. Line 4). If the length of the active-path is 5 or more (cf. Line 5), then the graph
contains a cycle fulfilling the conditions of Lemma 5 and hence a quasi-hole is found;

93

Algorithms 2021, 14, 105

• at the end of the active-path there is a vertex different from base but already inserted in
the active-path (cf. Lines 12–13). In this case, again the conditions of Lemma 5 apply,
but now we are sure that a hole is found.

It is worth to remark that the ongoing active-path P on G and the ongoing DFS-path
P+ on G+ contain exactly the same vertices: the elements of P correspond to the vertices of
the P3s associated with the elements of P+ (in P, the repeated vertices of G in adjacent P3s
are present only once).

We now explain the role of the additional data structures AP[·] and walked_P3[(·, ·), ·].
The former is an auxiliary array of size n used to check if a vertex appears in the “active
path” computed so far; given u, AP[u] is equal to 1 if u appears in the active path, 0
otherwise. Concerning the latter, during the visit on G+, vertices that correspond to path
P3s of G are recorded so that they are not “visited” again. The entry walked_P3[(u1, u2), u3]
equals one if and only if the vertices u1, u2, u3 induce (u1, u2, u3) as a path P3 of G already
encountered during the DFS, otherwise it equals zero. Since walked_P3[(·, ·), ·] has entries
walked_P3[(u1, u2), u3] and walked_P3[(u2, u1), u3] for each edge (u1, u2) ∈ E and for each
u3 ∈ V, then its size is 2m · n. Notice that Visit registers the entry of walked_P3[] at the
beginning, thus avoiding another execution on the same path P3. In this way, Visit() is
executed exactly once for each path P3 of G.

Notice that the description of Visit() assures that starting from a P3 formed by
(u1, u2, u3) we proceed to a P3 formed by (u2, u3, u4) only if (u1, u2, u3, u4) is a path P4
of G. The only exception is when u1 coincides with the starting vertex v1 selected at
Line 2 by QuasiHoleDetection: in such a case (u1, u2, u3, u4) may have chords from u1.
For this purpose, the initial vertex v1 is assigned to the variable base (cf. Line 4 of the main
algorithm) and it is later passed to Visit (cf. Lines 9 and 14 of the main algorithm).

We can now provide the following statement:

Theorem 8. Given any connected graph G = (V, E) with |V| = n and |E| = m, it is possible to
determine whether G contains a quasi-hole in O(nm2) time and O(nm) space.

Proof. According to the above description of QuasiHoleDetection, its correctness follows
from Lemmas 5 and 6, and from the inherent execution of DFS on G+. In the remainder of
the proof we analyze the complexity of the algorithm about the required time and space.

As G is a connected graph, we get n = O(m). Concerning the data structures used by
the algorithm, we assume that from any edge (v1, v2) it is possible to access in constant time
both its endpoints; alike, from any entry in the adjacency matrix M[] of G corresponding
to v1 and v2 it is possible to access in constant time the edge (v1, v2).

Consider first the time complexity of performing the revised DFS of G. The visit starts
at Line 6, and proceeds by recursive calls to Visit. This recursive procedure checks each
path (u1, u2, u3) of G which is a P3 and tries to extend it into a P4 of the form (u1, u2, u3, u4).
Notice that each set of vertices {u1, u2, u3, u4} where (u1, u2, u3) is a P3 and u4 is adjacent
to u3 is uniquely characterized by the ordered pair ((u1, u2), (u3, u4)) where (u1, u2) and
(u3, u4) are ordered pairs of adjacent vertices in G. Hence, the time required to perform
the whole visit according to the recursive executions of Visit is O(m2). We can now
determine the time complexity of QuasiHoleDetection. Step at Line 1 clearly takes O(n2)
time. The subsequent loop at Line 2 is repeated O(n) times, and for each step the algorithm
requires O(nm) time for the initialization at Line 3 and, as described before, O(m2) time
for visiting G according to the recursive calls to Visit.

It follows that the final time complexity is O(nm2). The algorithm requires O(nm)
space: O(n) and O(nm) for the arrays AP[] and walked_P3[], respectively, and O(n2) for
the adjacency matrix M[] and the adjacency-list used to represent G.

5.3. Detecting Quasi-Hole on at Least k Vertices

As in [15], the strategy described above to define a quasi-hole detection algorithm
can be generalized to built algorithms for the detection of quasi-holes on at least k ver-

94

Algorithms 2021, 14, 105

tices, with k ≥ 5. For any input graph G, we consider the following family of directed
graphs G(t):

• {vu1u2···ut−1 | (u1, u2, . . . , ut−1) is an induced path Pt−1 in G} is the vertex set of G(t),
• {(vu1u2···ut−1 , vu2u3···ut) | (u1, u2, . . . , ut) is an induced path Pt in G} is the edge set of G(t).

By definition, G ≡ G(2) and G+ ≡ G(4) where G+ is the direct graph associated to
G in Section 5.2. Therefore, in the same way that running DFS on G+ ≡ G(4) allowed us
to detect quasi-holes (on at least five vertices), running DFS on G(k−1) allows us to detect
(extended) quasi-holes on at least k vertices, for each constant k ≥ 5. This is ensured by the
following statement, which represents a generalization of Lemma 5:

Lemma 7. Given a constant k ≥ 5, a graph G contains a quasi-hole on at least k vertices if and
only if G contains a cycle (u0, u1, . . . , ut), with t ≥ k− 1, such that (ui, ui+1, . . . , ui+k−2) is an
induced path Pk−1 of G for each i = 1, 2, . . . , t− k + 2.

Lemmas 6 and 7 induce the following statement:

Corollary 2. Let G be a connected graph and let k ≥ 5 be a constant. Assume that a DFS is
executed on G(k−1), the directed graph associated to G. If the active path computed by the DFS is
vu0u1···uk−3 , vu1u2···uk−2 , . . . , vur−k+3ur−k+4···ur , where ui 6= uj for all 0 ≤ i < j < r, and ur = up
for some p such that 0 ≤ p < r, then up, up+1, . . . , ur−1 are vertices forming a cycle in G that
fulfill the conditions of Lemma 7. Conversely, if G contains a quasi-hole on at least k vertices,
the DFS on G(k−1) will meet a sequence of vertices whose associated Pk−2s in G form a path as the
path (u1, u2, . . . , ut) in the cycle of Lemma 7.

Additionally, in this situation we do not build G(k−1) since we implicitly run DFS
on this associated graph. In particular, we process each unvisited Pk−2 of G as fol-
lows: we try to extend the induced path Pk−2 formed by (u0, u1, . . . , uk−3) into Pk−1s
of the form (u0, u1, . . . , uk−3, uk−2); then, for each such Pk−1, we proceed by extending the
Pk−2 (u1, u2, . . . , uk−2) into Pk−1s, and so on. Since there exist O(ma) induced paths on 2a
vertices and O(nma) on 2a + 1 vertices, and it requires O(k) time to detect whether a vertex
extends a Pk−1 into a Pk, we have the following corollary:

Corollary 3. Let G = (V, E) be a connected graph with |V| = n and |E| = m, and let k ≥ 5
be a constant. By implicitly running DFS on G(k−1) it is possible to detect whether G contains a
quasi-hole on at least k vertices in O(n2mp−1) time when k = 2p, and in O(n2 + nmp) time when
k = 2p + 1.

The space required is O(mp−1) when k = 2p, and O(nmp−1) when k = 2p + 1.
According to Lemma 4 and Corollary 3, we finally get the following result:

Theorem 9. Let G = (V, E) be a connected graph with |V| = n and |E| = m. It is possible to
recognize whether G ∈ sDH(2) in O(n2m2) time and O(m2) space.

6. Conclusions

In this paper, we studied the class sDH(2). It contains each graph G with stretch
number less than two, that is s(G) < 2. These graphs form a superclass of the well studied
distance-hereditary graphs, which corresponds to graphs with stretch number equal to
one.

For the class sDH(2) we provided: (1) a characterization based on listing all the mini-
mal forbidden subgraphs, (2) a characterization based on cycle-chord properties, and (3)
a recognition algorithm that works in O(n2m2) time and O(m2) space. This algorithm
exploits the result based on the cycle-chord property to detects quasi-holes in a graph; it is
a simple adaptation of the algorithm provided in [15] for detecting holes.

95

Algorithms 2021, 14, 105

The characterizations found seem to suggest that the graphs in sDH(2) and those in
DH(1) may be really similar in structure and hence properties. As a consequence, it would
be interesting to determine whether the class sDH(2) can be also characterized according
to generative operations (we remind that the generative properties resulted as the most
fruitful for devising efficient algorithms for distance-hereditary graphs). This problem has
been partially addressed in [18,19].

On the contrary, Theorem 1 could suggest that graphs with stretch number greater or
equal to two may have a completely different structure with respect to those in DH(1).

Another possible extension of this work could be to investigate in the class sDH(2)
other specific combinatorial problems that have been solved in the class of distance-
hereditary graphs.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Howorka, E. Distance-hereditary graphs. Q. J. Math. 1977, 28, 417–420.
2. Bandelt, H.J.; Mulder, H.M. Distance-hereditary graphs. J. Comb. Theory Ser. B 1986, 41, 182–208.
3. Brandstädt, A.; Le, V.B.; Spinrad, J.P. Graph Classes: A Survey; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 1999.
4. Brandstädt, A.; Dragan, F.F. A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs.

Networks 1998, 31, 177–182.
5. Chang, M.S.; Hsieh, S.Y.; Chen, G.H. Dynamic Programming on Distance-Hereditary Graphs. In International Symposium on

Algorithms and Computation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1350,
pp. 344–353.

6. Gioan, E.; Paul, C. Dynamic distance hereditary graphs using split decomposition. In International Symposium on Algorithms and
Computation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4835, pp. 41–51.

7. Lin, C.; Ku, K.; Hsu, C. Paired-Domination Problem on Distance-Hereditary Graphs. Algorithmica 2020, 82, 2809–2840,
doi:10.1007/s00453-020-00705-7.

8. Nicolai, F.; Szymczak, T. Homogeneous sets and domination: A linear time algorithm for distance-hereditary graphs. Networks
2001, 37, 117–128.

9. Rao, M. Clique-width of graphs defined by one-vertex extensions. Discret. Math. 2008, 308, 6157–6165.
10. Cicerone, S.; Di Stefano, G.; Flammini, M. Compact-Port Routing Models and Applications to Distance-Hereditary Graphs.

J. Parallel Distrib. Comput. 2001, 61, 1472–1488, doi:10.1006/jpdc.2001.1728.
11. Esfahanian, A.H.; Oellermann, O.R. Distance-hereditary graphs and multidestination message-routing in multicomputers.

J. Comb. Math. Comb. Comput. 1993, 13, 213–222.
12. Cicerone, S.; Di Stefano, G. Graphs with bounded induced distance. Discret. Appl. Math. 2001, 108, 3–21, doi:10.1016/S0166-

218X(00)00227-4.
13. Cicerone, S. Characterizations of Graphs with Stretch Number less than 2. Electron. Notes Discret. Math. 2011, 37, 375–380,

doi:10.1016/j.endm.2011.05.064.
14. Cicerone, S.; Di Stefano, G. Networks with small stretch number. J. Discret. Algorithms 2004, 2, 383–405, doi:10.1016/j.jda.2004.04.002.
15. Nikolopoulos, S.D.; Palios, L. Detecting Holes and Antiholes in Graphs. Algorithmica 2007, 47, 119–138, doi:10.1007/s00453-006-

1225-y.
16. Hammer, P.L.; Maffray, F. Completely separable graphs. Discret. Appl. Math. 1990, 27, 85–99.
17. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; The MIT Press and McGraw-Hill Book

Company: New York, NY, USA, 2001.
18. Cicerone, S. Using Split Composition to Extend Distance-Hereditary Graphs in a Generative Way—(Extended Abstract).

In International Conference on Theory and Applications of Models of Computation; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6648, pp. 286–297; doi:10.1007/978-3-642-20877-5_29.

19. Cicerone, S. On Building Networks with Limited Stretch Factor. In Web, Artificial Intelligence and Network Applications, Proceedings
of the Workshops of the 34th International Conference on Advanced Information Networking and Applications, AINA, Caserta, Italy, 15–17
Aprli 2020 ; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1150, pp.
926–936; doi:10.1007/978-3-030-44038-1_84.

96

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-1541-0

	Binder1.pdf
	Cover-front.pdf
	Book.pdf

	blank page.pdf
	Book.pdf

	Binder1
	Cover-back.pdf

