26,615 research outputs found

    What Users Ask a Search Engine: Analyzing One Billion Russian Question Queries

    Full text link
    We analyze the question queries submitted to a large commercial web search engine to get insights about what people ask, and to better tailor the search results to the users’ needs. Based on a dataset of about one billion question queries submitted during the year 2012, we investigate askers’ querying behavior with the support of automatic query categorization. While the importance of question queries is likely to increase, at present they only make up 3–4% of the total search traffic. Since questions are such a small part of the query stream and are more likely to be unique than shorter queries, clickthrough information is typically rather sparse. Thus, query categorization methods based on the categories of clicked web documents do not work well for questions. As an alternative, we propose a robust question query classification method that uses the labeled questions from a large community question answering platform (CQA) as a training set. The resulting classifier is then transferred to the web search questions. Even though questions on CQA platforms tend to be different to web search questions, our categorization method proves competitive with strong baselines with respect to classification accuracy. To show the scalability of our proposed method we apply the classifiers to about one billion question queries and discuss the trade-offs between performance and accuracy that different classification models offer. Our findings reveal what people ask a search engine and also how this contrasts behavior on a CQA platform

    Portals and university libraries

    Get PDF
    Section 2: Chapter 8Postprin

    An artefact repository to support distributed software engineering

    Get PDF
    The Open Source Component Artefact Repository (OSCAR) system is a component of the GENESIS platform designed to non-invasively inter-operate with work-flow management systems, development tools and existing repository systems to support a distributed software engineering team working collaboratively. Every artefact possesses a collection of associated meta-data, both standard and domain-specific presented as an XML document. Within OSCAR, artefacts are made aware of changes to related artefacts using notifications, allowing them to modify their own meta-data actively in contrast to other software repositories where users must perform all and any modifications, however trivial. This recording of events, including user interactions provides a complete picture of an artefact's life from creation to (eventual) retirement with the intention of supporting collaboration both amongst the members of the software engineering team and agents acting on their behalf

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars
    corecore