389 research outputs found

    Inertia, positive definiteness and p\ell_p norm of GCD and LCM matrices and their unitary analogs

    Get PDF
    Let S={x1,x2,,xn}S=\{x_1,x_2,\dots,x_n\} be a set of distinct positive integers, and let ff be an arithmetical function. The GCD matrix (S)f(S)_f on SS associated with ff is defined as the n×nn\times n matrix having ff evaluated at the greatest common divisor of xix_i and xjx_j as its ijij entry. The LCM matrix [S]f[S]_f is defined similarly. We consider inertia, positive definiteness and p\ell_p norm of GCD and LCM matrices and their unitary analogs. Proofs are based on matrix factorizations and convolutions of arithmetical functions

    Sparse solutions of linear Diophantine equations

    Get PDF
    We present structural results on solutions to the Diophantine system Ay=bA{\boldsymbol y} = {\boldsymbol b}, yZ0t{\boldsymbol y} \in \mathbb Z^t_{\ge 0} with the smallest number of non-zero entries. Our tools are algebraic and number theoretic in nature and include Siegel's Lemma, generating functions, and commutative algebra. These results have some interesting consequences in discrete optimization

    Algebraic Discrete Morse Theory and Applications to Commutative Algebra

    Get PDF
    In dieser Doktorarbeit verallgemeinern wir die Diskrete Morse Theorie von Forman auf eine algebraische Version, die wir Algebraische Diskrete Morse- Theorie nennen. Ziel der Theorie ist es zu einem gegebenem algebraischem Kettenkomplex freier R-Moduln einen Homotopie-äquivalenten Kettenkomplex zu konstruieren, dessen Ränge in den einzelnen homologischen Graden kleiner sind. Die Idee unserer Theorie ist es den Komplex als gerichteten Graphen zu interpretieren, und dann in diesem Graphen nach möglichst großen azyklischen Matchings zu suchen. Mit Hilfe dieser azyklischen Matchings wird ein sogenannter Morse-Graph konstruiert und wir beweisen, dass dessen zugehöriger Kettenkomplex dieselbe Homologie wie der Ausgangskomplex hat. Der Hauptteil der Arbeit besteht aus Anwendungen unserer Theorie in der Kommutativen Algebra. Wir verwenden unser Verfahren zur Konstruktion von minimalen multigraduierten freien Auflösungen verschiedener Moduln. In erster Linie beschäftigen wir uns mit der Konstruktion von minimalen freien Auflösungen des Restklassenkörpers über Quotientenringen aus dem (nicht notwendig kommutativen) Polynomring und einem beliebigen Ideal. Hier bekommen wir für verschiedene Klassen von Ringen neue minimale Auflösungen des Restklassenkörpers. Unter anderem können wir damit eine Vermutung von Sturmfels beweisen und ein Resultat von BACH zur Berechnung der Hochschild-Homologie deutlich verallgemeinern. Für den Fall, dass der Quotientenring aus einem kommutativen Polynomring und einem monomialen Ideal gebildet wird sind wir insbesondere an der Poincare-Betti Reihe interessiert. Bekannt ist, dass in diesem Fall die Poincare-Betti Reihe eine rationale Funktion ist. Eine konkrete Gestalt war jedoch bis jetzt nicht bekannt. Mit Hilfe der Algebraischen Diskreten Morse-Theorie konstruieren wir einen graduierten Vektorraum von dem wir vermuten, dass er als Vektorraum isomorph zur minimalen Auflösung des Körpers ist. Da wir die Hilbertreihe dieses Vektorraums ausrechnen können, bekommen wir eine explizite Gestalt der multigraduierten Poincare-Betti Reihe für solche Ringe. Unsere Form der Poincare-Betti Reihe präzisiert eine Vermutung von Charalambous und Reeves. Wir beweisen unsere Vermutung über die minimale Auflösung des Restklassenkörpers für verschiedene Klassen von monomialen Ringen. Da die Golod-Eigenschaft von monomialen Ringen durch eine spezielle Form der Poincare-Betti Reihe charakterisiert werden kann, bekommen wir mit unserer Gestalt der Poincare-Betti Reihe neue kombinatorische Kriterien für die Golod-Eigenschaft von monomialen Ringen, die nur von den Erzeugern des herausdividierten Ideals abhängen. Ein weiterer Teil der Arbeit beschäftigt sich mit der Konstruktion minimaler Auflösungen von Borel bzw. p-Borel fixed Idealen. Über Auflösungen von p-Borel fixed Idealen war bislang sehr wenig bekannt. Wir beweisen die Existenz von zellulären minimalen Auflösungen für eine neue, relativ große, Klasse von p-Borel fixed Idealen und geben Formeln für deren Poincare-Betti Reihe sowie deren Regularität. Diese Formeln verallgemeinern bestehende Resultate. Zum Schluss werden zwei verwandte Probleme aus der algebraischen Kombinatorik diskutiert. Das erste Problem beschäftigt sich mit Homologien von nilpotenten Lie-Algebren und das zweite behandelte Problem ist die Neggers-Stanley Vermutung über die Unimodalität spezieller Polynome. Für beide Probleme präsentieren wir einige Resultate und Lösungsansätze für den allgemeinen Fall

    Towards an exact adaptive algorithm for the determinant of a rational matrix

    Full text link
    In this paper we propose several strategies for the exact computation of the determinant of a rational matrix. First, we use the Chinese Remaindering Theorem and the rational reconstruction to recover the rational determinant from its modular images. Then we show a preconditioning for the determinant which allows us to skip the rational reconstruction process and reconstruct an integer result. We compare those approaches with matrix preconditioning which allow us to treat integer instead of rational matrices. This allows us to introduce integer determinant algorithms to the rational determinant problem. In particular, we discuss the applicability of the adaptive determinant algorithm of [9] and compare it with the integer Chinese Remaindering scheme. We present an analysis of the complexity of the strategies and evaluate their experimental performance on numerous examples. This experience allows us to develop an adaptive strategy which would choose the best solution at the run time, depending on matrix properties. All strategies have been implemented in LinBox linear algebra library

    Algebraic Discrete Morse Theory and Applications to Commutative Algebra

    Get PDF
    In dieser Doktorarbeit verallgemeinern wir die Diskrete Morse Theorie von Forman auf eine algebraische Version, die wir Algebraische Diskrete Morse- Theorie nennen. Ziel der Theorie ist es zu einem gegebenem algebraischem Kettenkomplex freier R-Moduln einen Homotopie-äquivalenten Kettenkomplex zu konstruieren, dessen Ränge in den einzelnen homologischen Graden kleiner sind. Die Idee unserer Theorie ist es den Komplex als gerichteten Graphen zu interpretieren, und dann in diesem Graphen nach möglichst großen azyklischen Matchings zu suchen. Mit Hilfe dieser azyklischen Matchings wird ein sogenannter Morse-Graph konstruiert und wir beweisen, dass dessen zugehöriger Kettenkomplex dieselbe Homologie wie der Ausgangskomplex hat. Der Hauptteil der Arbeit besteht aus Anwendungen unserer Theorie in der Kommutativen Algebra. Wir verwenden unser Verfahren zur Konstruktion von minimalen multigraduierten freien Auflösungen verschiedener Moduln. In erster Linie beschäftigen wir uns mit der Konstruktion von minimalen freien Auflösungen des Restklassenkörpers über Quotientenringen aus dem (nicht notwendig kommutativen) Polynomring und einem beliebigen Ideal. Hier bekommen wir für verschiedene Klassen von Ringen neue minimale Auflösungen des Restklassenkörpers. Unter anderem können wir damit eine Vermutung von Sturmfels beweisen und ein Resultat von BACH zur Berechnung der Hochschild-Homologie deutlich verallgemeinern. Für den Fall, dass der Quotientenring aus einem kommutativen Polynomring und einem monomialen Ideal gebildet wird sind wir insbesondere an der Poincare-Betti Reihe interessiert. Bekannt ist, dass in diesem Fall die Poincare-Betti Reihe eine rationale Funktion ist. Eine konkrete Gestalt war jedoch bis jetzt nicht bekannt. Mit Hilfe der Algebraischen Diskreten Morse-Theorie konstruieren wir einen graduierten Vektorraum von dem wir vermuten, dass er als Vektorraum isomorph zur minimalen Auflösung des Körpers ist. Da wir die Hilbertreihe dieses Vektorraums ausrechnen können, bekommen wir eine explizite Gestalt der multigraduierten Poincare-Betti Reihe für solche Ringe. Unsere Form der Poincare-Betti Reihe präzisiert eine Vermutung von Charalambous und Reeves. Wir beweisen unsere Vermutung über die minimale Auflösung des Restklassenkörpers für verschiedene Klassen von monomialen Ringen. Da die Golod-Eigenschaft von monomialen Ringen durch eine spezielle Form der Poincare-Betti Reihe charakterisiert werden kann, bekommen wir mit unserer Gestalt der Poincare-Betti Reihe neue kombinatorische Kriterien für die Golod-Eigenschaft von monomialen Ringen, die nur von den Erzeugern des herausdividierten Ideals abhängen. Ein weiterer Teil der Arbeit beschäftigt sich mit der Konstruktion minimaler Auflösungen von Borel bzw. p-Borel fixed Idealen. Über Auflösungen von p-Borel fixed Idealen war bislang sehr wenig bekannt. Wir beweisen die Existenz von zellulären minimalen Auflösungen für eine neue, relativ große, Klasse von p-Borel fixed Idealen und geben Formeln für deren Poincare-Betti Reihe sowie deren Regularität. Diese Formeln verallgemeinern bestehende Resultate. Zum Schluss werden zwei verwandte Probleme aus der algebraischen Kombinatorik diskutiert. Das erste Problem beschäftigt sich mit Homologien von nilpotenten Lie-Algebren und das zweite behandelte Problem ist die Neggers-Stanley Vermutung über die Unimodalität spezieller Polynome. Für beide Probleme präsentieren wir einige Resultate und Lösungsansätze für den allgemeinen Fall
    corecore