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Michael Jöllenbeck

aus Marburg/Lahn

Marburg/Lahn, Januar 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Philipps-Universität Marburg

https://core.ac.uk/display/147497951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vom Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg als Dissertation
angenommen am: 25.04.2005

Erstgutachter: Professor Dr. Volkmar Welker
Zweitgutachter: Professor Dr. Tim Römer
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The following text is a PhD thesis in Algebraic Combinatorics. It consists of
two parts and an appendix. In the first part, ”Algebraic Discrete Morse Theory
and Applications to Commutative Algebra”, we generalize Forman’s Discrete
Morse theory and give several applications to problems in commutative algebra.

In the second part we present results on two related problems in Algebraic
Combinatorics, namely ”Homology of Nilpotent Lie Algebras of Finite Type”
and the ”Neggers-Stanley Conjecture”.

The appendix consists of the German abstract, acknowledgments, curricu-
lum vitae, and the declaration of authorship.





Part 1

Algebraic Discrete
Morse Theory and
Applications to
Commutative Algebra





Chapter 1

Introduction

In linear algebra there is the fundamental concept of linear independence. The
situation turns out to be simple due to the fact that all vector spaces V over
a field k are free k-modules. In particular, the two conditions “maximal inde-
pendent” and “minimal generating” for a set of vectors are equivalent.

The concept of dependence of polynomials p1, . . . , pr ∈ S := k[x1, . . . , xn] is
more complex. For example the conditions “maximal independent” and “min-
imal generating” are not equivalent anymore.

In order to measure dependence of polynomials, one considers free reso-
lutions of the ideal 〈p1, . . . , pr〉ES, especially minimal free resolutions. Even
though minimal free resolutions always exist, even in the monomial case, it is
still an open problem to explicitly construct a minimal free resolution in general.

For monomial ideals there exist many explicit free resolutions, but they are
mostly not minimal. One central idea of our work is to extract from a given
free resolution of a monomial ideal a minimal resolution, by dividing out acyclic
subcomplexes.

In commutative algebra one considers, besides minimal resolutions of mono-
mial ideals, many other invariants, for example regularity, Poincaré-Betti series,
Ext, Tor, which are calculated as well by the homology of chain complexes of
free R-modules. Often we are in the situation that the homology of a given
chain complex calculates an invariant, but the complex is very large in the
sense that there exist homotopy-equivalent chain complexes such that the mod-
ules have a smaller rank. For example, the homology of the Taylor resolution
of a monomial ideal tensored with the field k calculates the Betti numbers,
but if one had the minimal resolution at hand, this calculation would be more
efficient. Theoretically, one can minimize each chain complex by dividing out
acyclic subcomplexes, but in praxis there does not exist any efficient algorithm
which minimizes a given chain complex. The concept of cellular resolutions is
a good tool for minimizing free resolutions with topological arguments, namely
Forman’s Discrete Morse theory (see [21], [22]). The main idea is that a given
cellular resolution can be made smaller by finding a so-called acyclic matching
on the supporting CW-complex. This method was studied by Batzies in his
PhD thesis (see [4]). But this concept is limited. First, the theory only works

5



6 1. Introduction

if the given chain complex is supported by a regular CW-complex, which is
not always the case in applications. Moreover, it is still an open problem if
any monomial ideal admits a minimal cellular resolution. But even if the given
chain complex is supported by a regular CW-complex, it can happen that, af-
ter applying Discrete Morse theory once, the resulting Morse complex is not
minimal and the CW-complex is not regular anymore. This obstructs a further
application of this theory.

In this thesis we define an algebraic version of Forman’s Discrete Morse
theory. We call this generalization ”Algebraic Discrete Morse theory”. It gen-
eralizes the idea of “matching down” given chain complexes to smaller ones
from the realm of cellular chain complexes to all algebraic chain complexes.
Another advantage of this theory over the Discrete Morse theory for cellular
resolutions is the fact that it can be applied iteratively.

We apply our method to several problems in commutative algebra. Similar
to Discrete Morse theory for cellular resolutions, one major field of application
for Algebraic Discrete Morse theory is finding minimal resolutions of monomial
ideals in the commutative polynomial ring. For example, in this thesis we are
able to give new minimal resolutions for a subclass of p-Borel fixed ideals.

Another field of applications are minimal resolutions of the residue class
field k∼=A/m over standard graded k-algebras A, where m is the unique graded
maximal ideal in A. Once we have found a minimal resolution of k, it allows
us to calculate the multigraded Hilbert and Poincaré-Betti series. For example
we were able to specify and prove a conjecture about the Poincaré-Betti series
made by Charalambous and Reeves (see [13]). We get new connections between
Hilbert and Poincaré-Betti series and find interesting corollaries for the Golod
property.

The generalization of Forman’s theory and the application to resolutions of
the field k is a joint work with Volkmar Welker and appears in [36]. The results
about Hilbert and Poincaré-Betti series, as well as the corollaries for the Golod
property, can be found in my paper [35].

Finally, we want to mention that the generalization of Forman’s Discrete
Morse theory to an algebraic version was independently developed by Sköldberg
in a preprint from 2004 (see [41]).

The structure of Part I of this thesis is as follows:

In Chapter 2 we give a short introduction to the tools of commutative algebra
which are used in this thesis. We define the concept of free multigraded reso-
lutions and cellular resolutions. We further define the multigraded Hilbert and
Poincaré-Betti series and show how they are connected to each other. In the
second paragraph we list some particular chain complexes, namely

• The Taylor and Scarf resolution for monomial ideals.

• The poset resolution for monomial ideals.

• The Koszul complex K• with respect to a regular sequence f1, . . . , fr.

• The Bar and the normalized Bar resolution.

• The Hochschild and normalized Hochschild resolution.
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In the last paragraph we introduce the Eagon complex. We recall how it is
constructed and define the Massey operations on the Koszul homology. We
show that if all Massey operations vanish, the differential of the Eagon complex
can be built from using this fact. In this case, the Eagon complex defines a
minimal multigraded free resolution of the residue class field k. We introduce
the Golod property and recall that Golodness is equivalent to the fact that the
Poincaré-Betti series of k takes a specific form.

In Chapter 3 we develop the generalization of Forman’s Discrete Morse
theory. In fact, it is a generalization of the approach of Chari [15] using acyclic
matchings on the directed cell graph of the CW-complex. We view any algebraic
chain complex as a directed, weighted graph and show that a method similar
to Discrete Morse theory can be applied in order to minimize the graph. We
obtain a smaller complex, which is homotopic to the original complex.
In the third paragraph of Chapter 3 we show that the normalized Bar resolution,
as well as the normalized Hochschild resolution, can be obtained by an acyclic
matching from the Bar, resp. the Hochschild, resolution.

Chapter 4 up to Chapter 6 contain the applications.

In Chapter 4 we apply our method to resolutions of monomial ideals. In
its first paragraph we consider acyclic matchings on the Taylor resolution of
monomial ideals. This paragraph is essentially a preparation for Chapter 6,
where we use these results in order to prove our conjecture about the minimal
free resolution of the residue class field k and about the form of the multigraded
Poincaré-Betti series.

• We develop a special sequence of acyclic matchings on the Taylor res-
olution for any monomial ideal such that the resulting Morse complex
- though not explicitly constructed - is minimal. Moreover, some addi-
tional properties of this resolution will be used in Chapter 6. We call
such a sequence a standard matching and prove that it always exists.

• For monomial ideals generated in degree two, we show via Algebraic
Discrete Morse theory that there exists a subcomplex of the Taylor
resolution consisting of all those subsets of the generating system of
the ideal which contain no broken circuit, which defines a resolution of
the ideal. Here a subset of the generating system contains no broken
circuit if and only if the associated graph fulfills this property. The
associated graph has vertices 1, . . . , n and two vertices i, j are joined
by an edge if and only if xixj lies in the subset.
We denote this subcomplex with Tnbc.

• For Stanley Reisner ideals of the order complex of a partially ordered
set, we construct on the subcomplex Tnbc a matching which in general
is not acyclic. Thus, the Morse complex is not necessarily defined. But
if we use the same notation as for acyclic matchings, the critical cells
with respect to this matching still help us to calculate the Poincaré-
Betti series of k over the Stanley Reisner ring k[∆].

• We introduce two new properties for monomial ideals depending on the
minimal generating system, namely the gcd-condition and the strong
gcd-condition.
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An acyclic matching on the Taylor resolution for ideals satisfying the
strong gcd-condition is constructed. From the structure of the resulting
Morse complex - though not explicitly constructed - we draw corollaries
on the Golod property of the quotient ring (see Chapter 6).

In the second paragraph we apply our theory to the poset resolution of
monomial ideals. First we show that this resolution can be obtained from the
Taylor resolution by an acyclic matching. We then construct several acyclic
matchings in order to minimize this resolution and turn these procedures into
effective algorithms, which produce rather small cellular resolutions from the
poset resolution. We finally discuss which properties of the partially ordered
set imply minimality of the resolution.

In Paragraph 3 of Chapter 4 we consider Borel and p-Borel fixed ideals.
Minimal resolutions for Borel ideals are well known (see [19], [2]), even cellular
resolutions for this type of ideals were constructed (see [4]). In the first part
we construct for principal Borel fixed ideals a new minimal cellular resolution
which is a generalization of the hypersimplical resolution, introduced by Batzies
[4] in order to get cellular resolutions of powers of the maximal ideal.
In the second part we develop via Algebraic Discrete Morse theory new minimal
resolutions for classes of p-Borel fixed ideals. Minimal resolutions for p-Borel
fixed ideals are only known in the case where the ideal is also Cohen-Macaulay
(see [2]). In [4] it is proved that this resolution is even cellular. We prove the
existence of minimal cellular resolutions for a larger class of p-Borel fixed ideals.
In addition, we give a recursive formula for the calculation of the multigraded
Poincaré-Betti series. Finally, we calculate the regularity of the above men-
tioned subclass of p-Borel fixed ideals, which reproves and generalizes known
results on the regularity.

Chapter 5 contains the following applications, which are in joint work with
Volkmar Welker (see [36]).
We construct minimal resolutions of the residue class field k, viewed as an A-
module, where A = k〈x1, . . . , xn〉/a is the quotient ring of the (not necessarily
commutative) polynomial ring R := k〈x1, . . . , xn〉 divided by an ideal a. We
choose a Gröbner basis of the ideal a and define an acyclic matching on the
normalized Bar resolution. In the first paragraph we consider the case where R
is commutative. We give another description of the Morse complex, which can
be viewed as a generalization of the Anick resolution [1] to the commutative
case. We prove minimality if the initial ideal is either generated in degree two or
a complete intersection. Finally, we draw some corollaries on the multigraded
Poincaré-Betti series.
In the second paragraph we generalize our results of the first paragraph to the
case where R is not commutative. In this case, the Morse complex is isomorphic
to the Anick resolution. This result was also obtained by Sköldberg (see [41]),
but in addition we prove minimality in special cases, which proves the rationality
of the Poincaré-Betti series for these cases. In the section ”Examples” we discuss
three interesting examples including a proof of a conjecture by Sturmfels [42].
In the last paragraph we apply the acyclic matching, developed in the first
two paragraphs, to the Hochschild complex. Again, we obtain minimality in
some special cases, which allows to calculate the Hochschild homology with
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coefficients in k. In addition, we give for some cases an explicit description of
the minimal resolution, which reproves and generalizes a result obtained in [9].

Chapter 6 discusses the multigraded Poincaré-Betti series of monomial rings.
The contents of this chapter coincides with my article [35].
We view the field k as an A-module, where A = S/a is the quotient of the
commutative polynomial ring S = k[x1, . . . , xn] divided by a monomial ideal a,
and ask for an explicit form of the multigraded Poincaré-Betti series P A

k (x, t) :=
∑

i,α dimk

(
TorA

i (k, k)α

)
xα ti. Backelin proved in 1982 [3] that in this case the

multigraded Poincaré-Betti series is always a rational function, but an explicit
description is still not known. In the case where the Taylor resolution of a is
minimal, Charalambous and Reeves gave in 1995 an explicit form of P A

k (x, t)
(see [13]). They conjectured that in general the series has a similar form. With
our standard matching on the Taylor resolution, developed in Chapter 4, we
formulate a conjecture about the minimal free resolution of k as an A-module,
which we prove for several types of algebras A. This conjecture gives an explicit
form of the Poincaré-Betti series, which specifies and implies the conjecture by
Charalambous and Reeves. With the Euler characteristic we get in addition an
explicit form of the multigraded Hilbert series of A and a general connection
between these two series.

In the first paragraph we formulate our conjecture and draw the above
corollaries. In the next paragraph we construct a new graded commutative
polynomial ring depending on the standard matching and prove that this ring
is as an algebra isomorphic to the Koszul homology. This result will later be
used in the proof of our conjecture.
Using the matching, constructed in Chapter 4, on the Taylor resolution for
Stanley Reisner ideals of a partially ordered set, we can prove in the third
paragraph our conjecture about the Poincaré-Betti series of k over the Stanley
Reisner ring k[∆].
In Paragraph 4 we use the results obtained in the second paragraph and prove
the conjecture about the minimal resolution of k in the case where the ideal a

is generated in degree two. We prove our conjecture for some further classes
of algebras A. In the last part of this paragraph we justify our conjecture: We
generalize the Massey operations on the Koszul homology in order to get an
explicit description of the Eagon complex. We then define an acyclic matching
on the Eagon complex. If the resulting Morse complex is minimal, one only
has to find an isomorphism to the conjectured complex, and the conjecture is
proved. In general, we do not have a good description of the minimized Eagon
complex. Therefore, we cannot construct this isomorphism. But we present an
approach to construct this isomorphism. This approach justifies our conjecture.

In the last paragraph we get, under the assumption of the conjecture, some
corollaries on the Golod property of monomial rings. For example, if our conjec-
ture is true, a ring is Golod if and only if the product on the Koszul homology
vanishes, which is a strong simplification of the definition of Golodness. We
further prove, under the assumption of the conjecture that ideals satisfying the
strong gcd-condition are Golod (we call an ideal a Golod if S/a is Golod). In
fact, we conjecture that this is an equivalence. This means that in the monomial
case Golodness is a purely combinatoric condition on the generating system of
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the ideal. In particular, if true, Golodness does not depend on the characteristic
of k.

Finally, we give a new criterion for ideals generated in degree l ≥ 2 to be
Golod. This result does not depend on our conjecture and generalizes a theo-
rem proved by Herzog, Reiner, and Welker [29].

Using Algebraic Discrete Morse theory, in [41] Sköldberg calculates the ho-
mology of the nilpotent Lie algebra generated by {x1, . . . , xn, y1, . . . , yn, z} with
the only nonvanishing Lie bracket being [z, xi] = yi over a field of character-
istic 2. Note that Lie algebra studied by Sköldberg is quasi-isomorphic to the
Heisenberg Lie algebra. This shows how large is the field of applications of
Algebraic Discrete Morse theory. We believe that there are still many open
problems which can be solved with our theory. Another interesting application
is currently studied by Jan Brähler: In his Diplomarbeit, he applies Algebraic
Discrete Morse theory to the chain complex calculating the Grassmann homol-
ogy of a field k. Results in this direction relate to the algebraic k-theory of k.
Clearly, our theory has its limits and finding a suitable matching can be an
unsurmountable task. For example, we tried to calculate the homology of the
nilpotent part of the Lie algebra associated to the root system An (see Part 2,
Chapter 2), but in this case we were not able to find a ”good” acyclic matching.
The main difficulties of the theory are first to find a ”good” acyclic matching,
then to prove acyclicity, and finally to have a ”good” control over the differential
of the Morse complex.



Chapter 2

Basics from
Commutative Algebra

In this chapter we introduce some basic tools from Commutative Algebra which
are used in this thesis. In the first paragraph we introduce the general theory
of free and cellular resolutions of R-modules. In the second paragraph we
introduce some examples of chain complexes and explain their applications.
The last paragraph considers the Eagon complex and its applications. We
explain the Eagon resolution, the Massey operations on the Koszul homology
of R, and the Golod property for R. Finally, we outline the connections between
these objects and properties.

Throughout this chapter let

R =
⊕

α∈Nn

Rα = (R,m, k)

be a standard Nn-graded (not necessarily commutative) Noetherian k-algebra
with unique graded maximal ideal

m =
⊕

α∈Nn\{0}

Rα

and k = R0 = R/m the residue class field. It is clear that the set of units of R
is given by k = R0. Let

M =
⊕

α∈Zn

Mα

be a Zn-graded left R-module.
The grading induces a degree function deg : R→ Nn (resp. deg : M → Zn) for
R (resp. M).

In the whole thesis all modules we consider are left R-modules and we denote
for a natural number n ∈ N the set {1, 2, . . . , n} by [n]. An abstract simplex
∆([n]) is the set of subsets of [n]:

∆([n]) :=
{
J ⊂ [n]

}
.

11



12 2. Basics from Commutative Algebra

1. Free Resolutions of R-Modules

In this paragraph we introduce Zn-graded free R resolutions of left R-modules
M and multigraded Hilbert and Poincaré-Betti series. We explain the defini-
tions and give some basic properties. For more details see for example [18].

Definition 1.1. A Zn-graded chain complex C• = (C•, ∂) of free Zn-graded
R-modules is a family Ci =

⊕
α∈Zn(Ci)α, i ≥ 0, of free Zn-graded R-modules

together with R-linear maps ∂i : Ci → Ci−1, i ≥ 1 such that

(1) ∂i ◦ ∂i+1 = 0 for all i ≥ 1 and

(2) the maps ∂i are homogeneous, i.e. deg(∂i(m)) = deg(m) = α for all
m ∈ (Ci)α and all α ∈ Zn.

The maps ∂i are called differentials. We write Zi =
⊕

α∈Zn(Zi)α := Ker(∂i)
for the module of cycles and Bi =

⊕
α∈Zn(Bi)α := Im(∂i+1) for the module of

boundaries of the complex C•.
The homology Hi(C•) =

⊕
α∈Zn(Hi)α is defined to be the quotient of the cycles

Zi and the boundaries Bi.

In addition to the grading deg ∈ Zn, we sometimes also consider the total
degree degt(m) := |deg(m)| ∈ Z, where | · | is the sum over the coordinates of
α ∈ Zn, i.e. |α| =

∑n
i=1 αi. Then an Nn-graded ring R admits a decomposition

of the following form and is called a bigraded ring:

R =
⊕

i∈N

⊕

α∈Zn

|α|=i

Rα.

Clearly, the bigrading of R induces a bigrading on all R-modules and all chain
complexes of free R-modules. For simplification from now on we do not anymore
specify the grading (or bigrading) and speak just of multigraded rings (modules,
chain complexes, etc.)

We write R(−α) for the ring R as an R-module, shifted with α ∈ Zn, i.e.

R(−α) =
⊕

β∈Nn

Rα+β .

For a multigraded chain complex C• we then write

C• : · · · →
⊕

α∈Zn

R(−α)βi,α →
⊕

α∈Zn

R(−α)βi−1,α → · · · .

Definition 1.2. A multigraded chain complex C• is called a multigraded R-free
resolution of M if

(1) Hi(C•) = 0 for all i ≥ 1 and

(2) H0(C•) := Coker(∂1) = C0/ Im(∂1)∼=M .

We say that a multigraded free resolution is minimal if ∂i(Ci) ∈ mCi−1 for
all i ≥ 1.
If for a multigraded chain complex we fix for each module Ci a basis Bi, then
we can write the differential for eα ∈ Bi in terms of the basis:

∂(eα) =
∑

eβ∈Bi−1

[eα : eβ] eβ ,
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where [eα : eβ] ∈ R.
Then it is easy to prove that the following criterion for minimality holds.

Proposition 1.3. The resolution C• is minimal if and only if the differential
has no unit as coefficient, i.e. [eα, eβ ] 6∈ R∗ = R0 = k for all eα, eβ ∈ B. �

The following corollary provides the main source of interest in minimal
multigraded free resolutions:

Corollary 1.4. If C• is a multigraded minimal R-free resolution of an R-
module M such that Ci =

⊕
α∈Zn R(−α)βi,α , then

TorR
i (M,k)α

∼=Hi(C• ⊗R k)α ∼= kβi,α .

In particular, dimk(TorR
i (M,k)α) = βi,α. �

1.1. Cellular Resolutions. Here we give a very short introduction to the
concept of cellular resolutions. For more detail see [6], where this concept was
introduced for the first time, and [4].

Let X be a CW-complex and X∗ = ∪iX
(i)
∗ the set of cells (X

(i)
∗ is the set

of cells of dimension i). On this set we define a partial order by σ ≺ τ , for
σ, τ ∈ X∗, off for the topological cells σ, τ we have that σ lies in the closure of τ
(σ ⊂ τ). If (P,≺) is a partially ordered set and gr : X∗ → P an order-preserving
map, we call the tuple (X, gr) a P -graded CW-complex.

The homology H•(X,R) of the CW-complex X with coefficients in R is
defined as the homology of the cellular chain complex C•(X), where the mod-
ules Ci are the free R-modules generated by the cells of dimension i, and the
differential is given by

∂(eσ) =
∑

τ⊂σ

[σ : τ ]eτ ,

where [σ : τ ], for an i-cell σ, is the topological degree of the map

Si−1 f∂σ→ X(i−1) πτ→ Si−1.

Here Si−1 denotes the (i− 1)-sphere, X (i−1) the (i− 1)-skeleton of X, f∂σ the
characteristic map, and πτ the canonical projection. For more details of the
homology of CW-complexes see [48].

Definition 1.5. A Zn-graded R-free resolution C• of M is called a cellular
resolution if there exists a Zn-graded CW-complex (X, gr) such that

(1) for each α ∈ Zn, i ≥ 0 there exists a basis
{
cσ
∣∣σ ∈ X

(i)
∗ and gr(σ) = α

}

of (Ci)α,

(2) for each σ ∈ X
(i)
∗ we have:

∂i(cσ) =
∑

σ�τ∈X
(i−1)
∗

[σ : τ ]xgr(σ)−gr(τ)cτ ,

where [σ : τ ] is the coefficient in the cellular chain complex.

The concept of cellular resolutions is very useful since one can try to mini-
mize cellular resolutions with topological arguments and for ideals which admit
minimal cellular resolutions the concept gives information about possible Betti
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numbers. These questions have been studied by Batzies in [4]. He used For-
man’s Discrete Morse theory to deduce from a given cellular resolution a mini-
mal resolution and showed for many classes of ideals that they admit a minimal
cellular resolution. In general, it is still an open problem if every monomial
ideal admits a cellular minimal resolution. The resolutions which we construct
in Chapter 4 are all cellular.

The problem of this approach is that one only can minimize cellular resolu-
tions supported by a regular CW-complex. Our idea was to generalize Forman’s
theory to arbitrary chain complexes (see Chapter 3) and apply it to several
problems in Commutative Algebra.

1.2. Hilbert and Poincaré-Betti Series. In this section we introduce the
Hilbert and Poincaré-Betti series for multigraded k-algebras R. Here we assume
that all modules are bigraded and have a decomposition into their graded parts
of the following form:

M =
⊕

i∈N

⊕

α∈Nn

|α|=i

Mi,α.

Definition 1.6. (1) The multigraded Hilbert series HilbR
M (x, t) of M is

given by

HilbR
M (x, t) :=

∑

i∈N

α∈Nn

dimk

(
Mi,α

)
xα ti.

(2) The multigraded Poincaré-Betti series P R
M (x, t) is given by

PR
M (x, t) :=

∑

i∈N

α∈Nn

dimk

(
TorR

i (M,k)α

)
xα ti.

IfR is clear from the context, we sometimes write PM (x, t) (resp. HilbM (x, t))
instead of PR

M (x, t) (resp. HilbR
M (x, t)).

For a long time it was an open problem if these series are rational functions.
For the Poincaré-Betti series PR

k (x, t) it was first proved by Golod, if the ring

R is Golod (see [24]), in 1982 Backelin [3] proved the rationality for P R
k (x, t) if

R is the quotient of a commutative polynomial ring by a monomial ideal. An
explicit form of PR

k (x, t) for this case is studied in Chapter 6.
Sturmfels showed in 1998 [40] that if R is the quotient of a commutative poly-
nomial ring by a special binomial ideal, then P R

k (x, t) is irrational.

If R is the quotient of a (non-)commutative polynomial ring by an ideal a,
it is still open in which cases the Poincaré-Betti series is rational. In Chapter
5.2 we come back to this question.

The Hilbert series HilbR(x, t) of a commutative polynomial ring divided by
an ideal a is always rational. In the non-commutative case, it is also still open
in which cases it is rational. But there exist examples for which the Hilbert
series is irrational.
In Chapter 5.2 we prove the rationality of the Hilbert series HilbR(x, t) and
Poincaré-Betti series PR

k (x, t) if R = k〈x1, . . . , xn〉/a and a admits a quadratic
Gröbner basis.
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We finally want to give a relation between the Hilbert and the Poincaré-
Betti series for Koszul rings.

Definition 1.7. A ring R is called Koszul if the (multigraded) minimal res-
olution of k – viewed as quotient of R by the maximal ideal m – is linear,
i.e.

dimk

(
TorR

i (k, k)α

)
=

{
6= 0 , |α| = i+ 1
0 , |α| 6= i+ 1.

Theorem 1.8. If R is Koszul, then

HilbR(x, t)PR
k (x,−t) = 1.

Proof. Let C• be a minimal free resolution of k. Since R is Koszul, we have

Ci =
⊕

j∈N

βi,α⊕

α∈Nn

|α|=j

R(−α) =

βi,α⊕

α∈Nn

|α|=i

R(−α)

and therefore

HilbCi
(x, t) =

∑

α∈Nn

|α|=i

βi,α HilbR(−α)(x, t) =
∑

α∈Nn

|α|=i

βi,αx
α ti HilbR(x, t).

Calculating the Euler characteristic of C• we get:

1 =
∑

i≥0

(−1)i HilbCi
(x, t)

=
∑

i≥0

(−1)i
∑

α∈Nn

|α|=i

βi,αx
α ti HilbR(x, t)

=
∑

i≥0

∑

α∈Nn

|α|=i

βi,α (−t)ixα HilbR(x, t)

= PR
k (x,−t)HilbR(x, t).

�

A general relation between the Hilbert and the Poincaré-Betti series is stud-
ied in Chapter 6.

2. Examples for Chain Complexes in Commutative Algebra

In this paragraph we introduce some chain complexes which we use in this thesis.
For each example, we only give the definition and some basic applications. For
more detail see the given references.

2.1. Taylor and Scarf Complex. (see [18]) Let S := k[x1, . . . , xn] be the
commutative polynomial ring and aES a monomial ideal in S with mini-
mal monomial generating system MinGen(a) = {m1, . . . ,ml}. For a subset

I ⊂ MinGen(a) we write mI := lcm
{
m ∈ I

}
for the least common mul-

tiple of the monomials in I. For simplification we sometimes may regard
J ⊂ MinGen(a) as subset of the index set [l].

The Taylor complex T• is given by
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(1) Ti is the free S-module with basis eJ indexed by J ⊂ [l] with |J | = i
for i ≥ 1,

(2) T0 = S,

(3) the differential ∂i : Ti → Ti−1 is given by

∂i(eJ ) =

i∑

r=1

(−1)r+1 mJ

mJ\{jr}
eJ\{jr}

in case J = {j1 < . . . < ji}. It is easy to see that T• is a complex.

Proposition 2.1. The Taylor complex is a free resolution of S/a as S-module,
called the Taylor resolution. Moreover, the Taylor resolution is a cellular reso-
lution supported by the simplex ∆ = ∆(MinGen(a)) = ∆([l]). �

In the simplex ∆ each face σ has a multidegree given by the corresponding
least common multiple mσ. Let ∆S ⊂ ∆ be the subcomplex of ∆ consisting of
those faces σ such that no other face τ ∈ ∆S exists with mσ = mτ .
The Scarf complex S• is given by

(1) Si is the free S-module with basis eσ indexed by σ ∈ S with |σ| = i
for i ≥ 0,

(2) the differential ∂i : Si → Si−1 is given by

∂i(eσ) =
∑

τ∈σ
|τ |=i−1

ε(σ, τ)
mσ

mτ
eτ ,

where ε(σ, τ) = ±1 and depends on the orientation of ∆.
Again, it is easy to see that S• is a subcomplex of the Taylor complex, but in
general it is not a resolution. Directly from the definition we get:

Proposition 2.2. The Scarf complex is cellular (supported by the simplicial
complex ∆S) and if it is a free resolution of S/a as S-module, then it is even a
minimal resolution, called the Scarf resolution. �

2.2. Poset Resolution for a Monomial Ordered Family. (see [39]) In
this section we introduce a resolution which is induced by a partially ordered
set. This resolution was first introduced by [39].

Again, let S := k[x1, . . . , xn] be the commutative polynomial ring and aES
a monomial ideal in S and B ⊂ S a set of monomials such that a = 〈B〉.

Definition 2.3. We say that B is a monomial ordered family if there exists
a partially ordered set P := (P,≺) on the ground set [|B|] and a bijection
f : P → B such that

(OM) for any two monomials m,n ∈ B there exists a monomial w ∈ B such
that
(a) f−1(w) � f−1(m), f−1(n) and
(b) w| lcm(m,n).

Note that B does not have to be a minimal generating system of a (for
example, if MinGen(a) is a minimal monomial generating system of a, then
B := {mJ

∣∣J ⊂ MinGen(a)} - the set of all least common multiples - ordered by
divisibility is a monomial ordered family).
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Let ∆ := ∆(P ) be the order complex of the poset P . For a chain σ ∈ ∆

with σ = i1 < . . . < ir ∈ ∆, i1, . . . , ir ∈ P , we set mσ := lcm
{
f(i1), . . . , f(ir)

}
.

We define the complex C(P )• as follows

(1) Ci is the free S-module with basis eσ indexed by σ ∈ ∆(P ) with |σ| = i
for i ≥ 0,

(2) the differential ∂i : Ci → Ci−1 is given by

∂i(eσ) =
∑

τ∈σ
|τ |=i−1

ε(σ, τ)
mσ

mτ
eτ ,

where ε(σ, τ) = ±1 and depends on the orientation of ∆.

Proposition 2.4. The complex C(P )• is a free cellular resolution of S/〈B〉 as
an S-module, called the poset resolution.

Proof. By definition the resolution is supported by the complex ∆(P ). The
assertion follows then by Lemma 3.3.2 of [5]. �

Clearly, the resolution can only be minimal if B is a minimal generating sys-
tem for 〈B〉, but even then the resolution is in general not minimal. In Chapter
4 we minimize this resolution via Algebraic Discrete Morse theory (ADMT). A
second proof of Proposition 2.2 via ADMT is also given in Chapter 4.

If B is the set of lcm’s of the minimal generating system, ordered by inclu-
sion, then the poset resolution coincides with the lcm-resolution, introduced by
Batzies [4].

2.3. Koszul Complex. (see [18]) Let R be a standard Nn-graded ring and
x1, . . . , xr ∈ R a regular sequence in R.
The complex KR

• (x1, . . . , xr) is defined as follows

(1) Ki is the free R-module with basis eI indexed by I ⊂ [r] with |I| = i
for i ≥ 0,

(2) the differential ∂i : Ki → Ki−1 of eI with I = {j1 < . . . < ji} is given
by

∂i(eI) =
i∑

l=1

(−1)l+1 xjl
eI\{jl}.

The complex K• is called the Koszul complex of R with respect to the sequence
x1, . . . , xr. If the sequence is given from the context, we sometimes write KR

for the Koszul complex. We will need the following simple proposition:

Proposition 2.5. If R = k[x1, . . . , xn]/a is the commutative polynomial ring
divided by an ideal, then the Koszul complex with respect to the sequence x1, . . . , xn

has homology H0(K
R) = k.

If R = k[x1, . . . , xn], then KR with respect to the sequence x1, . . . , xn is a min-
imal multigraded R-free resolution of k. �
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2.4. Bar Resolution. (see [47]) Let M be an R-module. Define

Bi := R⊗k(i+1) ⊗k M.

Then the complex

· · · Bi → Bi−1 → · · · → B0 = R⊗kM →M → 0

with differential

r1 ⊗ r2 ⊗ . . .⊗ ri+1 ⊗m 7→
i∑

j=1

(−1)j+1r1 ⊗ . . .⊗ rjrj+1 ⊗ . . .⊗ ri+1 ⊗m

+(−1)ir1 ⊗ . . .⊗ ri ⊗ ri+1m

is a free resolution of the R-module M , called the Bar resolution.
If we write R̃ = Coker(k → R), where k → R is the map sending 1 to 1, and

define NBi := R⊗
(
R̃ ⊗ i

)
⊗M , then the complex

· · · NBi → NBi−1 → · · · → NB0 = R⊗kM →M → 0

with differential

r0 ⊗ r̃1 ⊗ . . .⊗ r̃i ⊗m 7→ r0r̃1 ⊗ r̃2 ⊗ . . .⊗ r̃i

+

i−1∑

j=1

(−1)j r0 ⊗ r̃1 . . .⊗ r̃j r̃j+1 ⊗ . . .⊗ r̃i ⊗m

+(−1)ir0 ⊗ r̃1 ⊗ . . .⊗ r̃i−1 ⊗ r̃i m

is an R-free resolution of M , called the normalized Bar resolution. A proof that
the normalized Bar resolution can be derived from the Bar resolution is given
in Chapter 3.3.

We consider the special case M = k. Since R⊗k k∼=R we get in this case
for the resolutions:

Bi = R⊗(i+1),

with differential

r1 ⊗ r2 ⊗ . . .⊗ ri+1 7→
i∑

j=1

(−1)j+1r1 ⊗ . . .⊗ rjrj+1 ⊗ . . .⊗ ri+1

+(−1)iε(ri+1)r1 ⊗ . . .⊗ riri+1,

where

ε(ri+1) :=

{
1 , ri+1 ∈ k
0 , else,

and

NBi = R⊗ R̃ ⊗ i

with differential

r0 ⊗ r̃1 ⊗ . . .⊗ r̃i 7→ r0r̃1 ⊗ r̃2 ⊗ . . .⊗ r̃i

+

i−1∑

j=1

(−1)j r0 ⊗ r̃1 . . .⊗ r̃j r̃j+1 ⊗ . . .⊗ r̃i.

Finally, we consider Bar and normalized Bar resolutions for k-algebras. Let A
be a k-algebra and let W be a basis of A as a k-vectorspace such that 1 ∈W .
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Lemma 2.6. The Bar resolution is in this case given by

Bi :=
⊕

w1,...,wi∈W

A [w1| . . . |wi]

with differential

∂([w1| . . . |wi]) = w1 [w2| . . . |wi]

+
i−1∑

j=1

(−1)j

{
a0 [w1| . . . |wj−1|1|wj+2| . . . |wi]+∑

l al [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

}

if wjwj+1 = a0 +
∑

l al w
′
l, with a0, al ∈ k and w′

l ∈W \ {1}.
The normalized Bar resolution is in this case given by

NBi :=
⊕

w1,...,wi∈W\{1}

A [w1| . . . |wi]

with differential

∂([w1| . . . |wi]) = w1 [w2| . . . |wi]

+

i−1∑

j=1

(−1)j
∑

l

al [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

if wjwj+1 = a0 +
∑

l al w
′
l, with a0, al ∈ k and w′

l ∈W \ {1}.

Proof. Identifying [w1| . . . |wi] with 1⊗w1 ⊗ . . .⊗wi proves the assertion. �

In the case R = k〈x1, . . . , xn〉/a, where R is the (not necessarily commu-
tative) polynomial ring divided by an ideal a = 〈f1, . . . , fk〉 such that the set
{f1, . . . , fk} is a reduced Gröbner basis with respect to a fixed degree-monomial
order ≺ (for example degree-lex or degree-revlex), one can choose for the basis
W \ {1} the set G of standard monomials of degree ≥ 1.

2.5. Acyclic Hochschild Complex. (see [7]) Let R be a commutative ring
and A an R-algebra which is projective as an R-module. The acyclic Hochschild
complex is defined as follows. For n ≥ −1 we write Sn(A) for the left A⊗RA

op-
module

A⊗R . . .⊗RA︸ ︷︷ ︸
n+2 copies

,

where A⊗RA
op acts via

(µ⊗ γ∗)(λ0 ⊗ . . .⊗λn+1) = (µλ0)⊗λ1 ⊗ . . .⊗λn ⊗(λn+1γ).

We define the maps

b′n : Sn(A) → Sn−1(A)

λ0 ⊗ . . .⊗λn+1 7→
n∑

i=0

(−1)iλ0 ⊗ . . .⊗λiλi+1 ⊗ . . .⊗λn+1,

sn : Sn−1(A) → Sn(A)

λ0 ⊗ . . .⊗λn 7→ λ0 ⊗ . . .⊗λn ⊗ 1.



20 2. Basics from Commutative Algebra

Then b′n−1 ◦ b
′
n = 0 and b′n+1 ◦ sn+1 − sn ◦ b′n = id and therefore S•(A) is exact.

If we write S̃n(A) for the module

A⊗R . . .⊗RA︸ ︷︷ ︸
n+2 copies

,

we have an isomorphism Sn(A)∼=(A⊗Aop)⊗ S̃n(A) as (A⊗Aop)-modules. Since
A is R-projective it follows that Sn(A) is a projective (A⊗Aop)-module, and
therefore S•(A) is a projective resolution of A as an (A⊗Aop)-module.
The complex S•(A) is called the acyclic Hochschild complex.

The acyclic Hochschild complex is used to define the Hochschild (co-)homo-
logy of an (A⊗kA

op)-module M . Here, we only want to give a short definition
for A-bimodules. For more details see [7].

Let M be a A-bimodule. We regard it as a right A⊗Aop-module via
a(µ⊗ γ∗) = γaµ. The Hochschild homology HHn(A,M) of A with coefficients
in M is defined to be the homology of the Hochschild complex

Sn(A,M) := M ⊗A⊗Aop Sn(A).

The Hochschild cohomology HHn(A,M) of A with coefficients in M is defined
to be the cohomology of the cochain complex

Sn(A,M) := HomA⊗Aop(Sn(A),M).

Proposition 2.7 (see [7]).

HHn(A,M) ∼= TorA⊗Aop

n (M,A)

HHn(A,M) ∼= Extn
A⊗Aop(M,A)

This Lemma shows that it is useful to minimize the acyclic Hochschild
complex in order to calculate the Hochschild homology of the k-algebra A with
coefficients in k, where A = 〈x1, . . . , xn〉/a is a (non-commutative) polynomial
ring. We do this in Chapter 5.3. For this special case we finally want to give
another description of the acyclic Hochschild complex.

Let A be a k-algebra and let W be a basis of A as a k-vector space such
that 1 ∈W . The acyclic Hochschild complex

HCA : · · ·
∂i+1
→ Ci

∂i→Ci−1
∂i−1
→ · · ·

∂2→C1
∂1→C0 = k

with respect to W is then given by:

(1) Ci is the free (A⊗k A)-module with basis [w1| . . . |wi], w1, . . . , wi ∈W ,

(2) the differential ∂i is given by

∂i([w1| . . . |wi]) = (w1 ⊗ 1) [w2| . . . |wi] + (−1)i(1⊗wi) [w1| . . . |wi−1]

+

i−1∑

j=1

(−1)j

(
a0 [w1| . . . |wj−1|1|wj+2| . . . |wi]

+
∑

l al [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

)

if wjwj+1 = a0 +
∑

l al w
′
l, with a0, al ∈ k and w′

l ∈W \ {1}.

In this case the normalized acyclic Hochschild complex NHC is defined by
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(1) Ci is the free (A⊗k A)-module with basis [w1| . . . |wi], w1, . . . , wi ∈
W \ {1},

(2) the differential ∂i is given by

∂i([w1| . . . |wi]) = (w1 ⊗ 1) [w2| . . . |wi] + (−1)i(1⊗wi) [w1| . . . |wi−1]

+
i−1∑

j=1

(−1)j

(∑

l

al [w1| . . . |wj−1|w
′
l|wj+2 . . . |wi]

)

if wjwj+1 = a0 +
∑

l al w
′
l, with a0, al ∈ k and w′

l ∈W \ {1}.

A proof of the acyclic normalized Hochschild complex is given in Chapter 3.3.

3. Eagon Complex and the Golod Property

In the first section of this paragraph we introduce a resolution of the residue
class field k = R/m over R, called the Eagon resolution, discovered by Eagon
(see [26]). In the second section we introduce the Massey operations on the
Koszul homology and the Golod property of R. We show that the following
three conditions are equivalent:

(1) The Eagon complex is minimal.

(2) All Massey operations vanish.

(3) The ring R is Golod.

For the whole paragraph we follow the notes in [26].

This paragraph is a preparation for Chapter 6, where we generalize the
Massey operations in order to get a more explicit description of the Eagon
complex. We then define an acyclic matching on the Eagon complex and the
resulting Morse complex helps us to explain our conjecture about the minimal
resolution of k over R = S/a, where a ⊂ S is a monomial ideal in the commu-
tative ring of polynomials. This conjecture has interesting consequences for the
Golod property of monomial rings.

3.1. The Eagon Resolution. Let K• be any complex of free R-modules of
finite type such that Hi(K•) is a k-vector space for each i > 0 and H0(K•)∼= k.
For example, the Koszul complex K• = KR

• satisfies these constraints. We
denote with Z(K•) the set of cycles and with B(K•) the set of boundaries of
K•.
Let Xi, i ≥ 0, be free R-modules such that Xi ⊗ k∼=Hi(K•). We define a
sequence of complexes inductively. Y 0 = K• and d0 is the differential of the
complex K•. Assuming Y n is defined, we set

Y n+1
i := Y n

i+1 ⊕ Y n
0 ⊗Xi if i > 0,

Y n+1
0 := Y n

1 .

Now we define the differential d1 on Y 1
i = Ki+1 ⊕K0 ⊗Xi: Since K0 ⊗ Xi is

free (hence projective), there exists a map α : K0 ⊗Xi → Zi(K) making the
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diagram

K0 ⊗Xi

d0

��

α

uujjjjjjjjjjjjjjjj

Zi(K•)
π // Hi(K•) ' k⊗Xi

commute. Then for x ∈ K0 and y ∈ Xi we define

d1(x⊗ y) = α(x⊗ y) ∈ Zi(K•).

By definition we have d1 ◦ d1 = 0 and d1(Y 1
i ) = Zi(K•).

We continue this process by induction:

Lemma 3.1. Assume that dn has been defined on Y n such that Hi(Y
n)∼=H0(Y

n)⊗Xi.
Then one can define dn+1 on Y n+1 such that Hi(Y

n+1)∼=H0(Y
n+1)⊗Xi.

Proof. As above there exists a map α : Y n
0 ⊗Xi → Zi(K•) making the diagram

Y n
0 ⊗Xi

dn

��

α

ttiiiiiiiiiiiiiiiiiii

Zi(Y
n)

π // Hi(Y
n) ' H0(Y

n)⊗Xi

commute. This implies the following commutative diagram:

0 0 0

0 // B0(Y
n)⊗Xi

//

OO

Y n
0 ⊗Xi

α

%%KKKKKKKKKK
//

OO

Hi(Y
n) //

OO

0

0 // Zi(Y
n+1) //

OO

Y n+1
i

//

OO

Zi(Y
n) //

OO

0

0 // Zi+1(Y
n) //

OO

Y n
i+1

//

OO

Bi(Y
n) //

OO

0

0

OO

0

OO

0

OO

The rows are exact and the last two columns are exact. Therefore, the 9-lemma
from homological algebra tells us that the first column is exact. By construction
we have Zi+1(Y

n) = Bi(Y
n+1). Now we have in addition the exactness of

0 // B0(Y
n+1) // Y n+1

0
// H0(Y

n+1) // 0

0 // Z1(Y
n) // Y n

1
// B0(Y

n) // 0.

Since B0(Y
n+1) = Z1(Y

n) and Y n+1
0 = Y n

1 , we get B0(Y
n)∼=H0(Y

n+1) and
the exactness of the first column implies Hi(Y

n+1)∼=H0(Y
n+1)⊗Xi and we

are done. �
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Criterion 3.2. To make the diagram

Y s
0 ⊗Xi ' Y s−1

1 ⊗Xi

ds−1

��

α

ttiiiiiiiiiiiiiiiiiii

Zi(Y
s)

π // Hi(Y
s) ' B0(Y

s−1) ⊗Xi

commutative, it is enough to define for n⊗ f ∈ Y s
0 ⊗Xi the map α such that

α(n⊗ f) = (m, ds−1(n)⊗ f), with m ∈ Y s−1
i+1 and

ds−1(m) + ds−1
(
ds−1(n)⊗ f

)
= 0.

Proof. Since Hi(Y
s) ' B0(Y

s−1) ⊗Xi, the assertion follows. �

Corollary 3.3. The complex

· · · // Y n+1
0

dn+1
// Y n

0
dn

// · · · // Y 1
0

d1
// Y 0

0
π // k

is an R-free resolution of k, called the Eagon resolution.

Proof. By construction we have dn+1(Y n+1
i ) ⊂ Y n

i , therefore the complex is

well defined. Since Y n
0 = Y n−1

1 , we have Z0(Y
n) = Z1(Y

n−1). The exactness
follows since Z1(Y

n−1) = B0(Y
n). �

3.2. The Massey Operations and the Golod Property. In this section we
introduce the Massey operations. From now on let K• be the Koszul complex.
The Massey operations are defined by induction. Let z1, z2 ∈ Z(K•) be two
cycles in the complex K•. Then their product z1z2 is again a cycle and the
class of z1z2 in H(K•) only depends on the classes of z1 and z2 in H(K•). This
product makes H(K•) into a ring. Then γ(z1, z2) := [z1][z2] is a well defined
product on the homology H(K•) and we call it the first Massey operation.
Now assume that the first Massey operation vanishes for all cycles z1, z2 ∈
Z(K•). Then there exist elements g(z1, z2) ∈ K• such that d0(g(z1, z2)) = z1z2.
Let z1, z2, z3 ∈ Z(K•) be three cycles. Then it is straightforward to prove that

γ(z1, z2, z3) := z1 g(z2, z3) + (−1)deg(z1)+1 g(z1, z2) z3

is again a cycle and the class of γ(z1, z2, z3) inH(K•) only depends on the classes
of the cycles z1, z2, z3 in H(K•). Therefore, γ(z1, z2, z3) induces a well defined
operation on the homology H(K•). We call γ(z1, z2, z3) the ternary Massey
operation on H(K•). We go on by induction. Assume that the (n− 1)th order
Massey operation is given by

γ(z1, . . . , zn−1) := z1 g(z2, . . . , zn−1)

+(−1)
Pn−3

j=1 (deg(zj)+1) g(z1, . . . , zn−2) zn−1

+

n−3∑

j=2

(−1)
Pj−1

i=1 (deg(zi)+1) g(z1, . . . , zj) g(zj+1, . . . , zn−1)

and that the class of γ(z1, . . . , zn−1) in H(K•) only depends on the classes of
z1, . . . , zn−1 in H(K•).
If the (n−1)th order Massey operation vanishes for all cycles z1, . . . , zn−1, then
there exist elements g(z1, . . . , zn−1) such that d(g(z1, . . . , zn−1)) = γ(z1, . . . , zn−1).
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We then define the n-th order Massey operation for cycles z1, . . . , zn ∈ Z(K•)
by

γ(z1, . . . , zn) := z1 g(z2, . . . , zn)

+(−1)
Pn−2

j=1 (deg(zj)+1) g(z1, . . . , zn−1) zn

+

n−2∑

j=2

(−1)
Pj−1

i=1 (deg(zi)+1) g(z1, . . . , zj) g(zj+1, . . . , zn).

Again, it is straightforward to prove that γ(z1, . . . , zn) is a cycle and that the
class of γ(z1, . . . , zn) in H(K•) only depends on the classes of z1, . . . , zn in
H(K•) and therefore the operation γ(z1, . . . , zn) on the homology H(K•) is
well defined.

The Massey operations helps us to give an explicit description of the Eagon
complex:

Theorem 3.4. If all Massey operations vanish, then the differential of the
Eagon complex is given by

ds
(
c⊗ z1 ⊗ . . .⊗ zn

)
:= d0(c)⊗ z1 ⊗ . . .⊗ zn

+(−1)deg(c) c z1 ⊗ . . .⊗ zn

+

n∑

j=2

(−1)
Pj−1

i=1 (deg(zi)+1) c g(z1, . . . , zj)⊗ zj+1 ⊗ . . .⊗ zn.

In particular, the Eagon complex is a minimal (multigraded) R-resolution of the
residue class field k.

Proof. We have to define the maps α such that the diagram below commutes.

Y s
0 ⊗Xi ' Y s−1

1 ⊗Xi

ds−1

��

α

ttiiiiiiiiiiiiiiiiiii

Zi(Y
s)

π // Hi(Y
s) ' B0(Y

s−1) ⊗Xi

By Criterion 3.2 we can define for n⊗ f ∈ Y s
0 ⊗Xi the map α(n⊗ f) =

(m, ds−1(n)⊗ f), with m ∈ Y s−1
i+1 and ds−1(m) + ds−1

(
ds−1(n)⊗ f

)
= 0.

Assume that for c⊗ z1 ⊗ z2 ⊗ . . .⊗ zr ∈ Y s−1 we have

ds−1
(
c⊗ z1 ⊗ z2 ⊗ . . .⊗ zr

)

= d0(c)⊗ z1 ⊗ z2 ⊗ . . .⊗ zr + (−1)deg(c) c z1 ⊗ z2 ⊗ . . .⊗ zr

+
r∑

j=2

(−1)
Pj−1

i=1 (deg(zi)+1) c g(z1, . . . , zj)⊗ zj+1 ⊗ . . .⊗ zr.

For (c⊗ z1 ⊗ z2 ⊗ . . .⊗ zr)⊗ zr+1 we define

m :=

{
(−1)deg(c)(−1)

Pr
i=1(deg(zi)+1) c g(z1, . . . , zr, zr+1) , r > 0

(−1)deg(c)c zr+1 , r = 0.

Now consider ds−1(m):

ds−1(m) = (−1)deg(c)(−1)
Pr

i=1(deg(zi)+1) d0(c) g(z1, . . . , zr, zr+1)

+ (−1)
Pr

i=1(deg(zi)+1) c γ(z1, . . . , zr, zr+1).
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Since ds−1ds−1 = 0, we have for ds−1
(
ds−1(c⊗ z1 ⊗ z2 ⊗ . . .⊗ zr)⊗ zr+1

)
:

ds−1
(
ds−1(c⊗ z1 ⊗ z2 ⊗ . . .⊗ zr)⊗ zr+1

)

= (−1)deg(d0(c))(−1)
Pr

i=1(deg(zi)+1)d0(c) g(z1, . . . , zr, zr+1)

+(−1)deg(z1)(−1)
Pr

i=2(deg(zi)+1) c z1 g(z2, . . . , zr, zr+1)

+
r−1∑

j=2

{
(−1)

Pj−1
i=1 (deg(zi)+1)(−1)deg(g(z1 ,...,zj))(−1)

Pr
i=j+1(deg(zi)+1)

c g(z1, . . . , zj)g(zj+1, . . . , zr, zr+1)

+(−1)
Pr−1

i=1 (deg(zi)+1)(−1)deg(g(z1,...,zr)) c g(z1, . . . , zr) zr+1

= (−1)deg(d0(c))(−1)
Pr

i=1(deg(zi)+1)d0(c) g(z1, . . . , zr, zr+1)

+(−1)(−1)
Pr

i=1(deg(zi)+1) c γ(z1, . . . , zr, zr+1)

since deg(g(z1, . . . , zj)) = −1+
∑j

i=1(deg(zj)+1). Therefore, our map α is well
defined and the desired form of the differential follows. The Eagon complex is
in this case minimal since no coefficient of the differential lies in the field k. �

We now come to the Golod property of monomial rings. This property was
introduced in order to prove that the Poincaré-Betti series is rational. This
class was the first class for which one could prove the rationality.

Definition 3.5. We call a ring R a Golod ring, if all Massey operations on the
Koszul homology H•(K

R) vanish.

We have the following equivalence:

Theorem 3.6. The following statements are equivalent:

(1) The Eagon complex is a minimal multigraded R-free resolution of k.

(2) All Massey operations on the Koszul homology H•(K
R) vanish.

(3) The ring R is a Golod ring.

(4) The multigraded Poincaré-Betti series of R is given by

PR
k (x, t) =

HilbK• ⊗R k(x, t)

1 − t
∑

i,α βi,α xα ti
,

where βi,α = dimk

(
(Hi(K

R))α
)
.

Proof. (2) ⇒ (1) follows from Theorem 3.4, (2) ⇔ (3) is the definition of a
Golod ring, and (4) ⇔ (1) follows by counting basis elements in the Eagon
resolution. Thus, we only have to proof (1) ⇒ (2):
Since this is a very long and technical, but not so difficult proof we forbear from
doing it here and give just a sketch of it. The reader can find the full proof
in [26]. With the same arguments as in Criterion 3.2 one can assume that for
y ∈ Y n

0 and x ∈ Xi the differential (resp. the map α) is given by

α(y⊗x) = dy⊗x+ (−1)nβ(y, x),

where β(y, x) ∈ Y n−1
i+1 . Then one can prove the following statements:

. If the Eagon complex is minimal, then one can choose β(y, x) ∈ Y 0 =
K ([26], Theorem 4.1.2).
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. If one can choose β(y, x) ∈ K and m2K ∩B(K) ⊂ mB(K), then the
Eagon complex is minimal ([26], Theorem 4.1.3).

. The Koszul complex with respect to the sequence x1, . . . , xn satisfies
m2K ∩B(K) ⊂ mB(K).

. It is possible to choose β(y, x) such that for λ ∈ K, β(λy, x) = λβ(y, x).
It follows that for λ ∈ Ki, w ∈ Y n

j we have ([26], Lemma 4.2.1)

(3.1) d(λw) = (dλ)w + (−1)iλdw.

. Show that dβ(y, x) = β(dy, x) ∈ B(K) and identify (using (3.1) and
induction) β(dy, x) with the Massey operations ([26], Theorem 4.2.2).

Clearly, these statements imply the equivalence of (1) and (2). �

In general, the Eagon complex is not minimal, but it gives an upper bound
for the Poincaré-Betti series:

Corollary 3.7. With the notation from Theorem 3.6 we have for the multi-
graded Poincaré-Betti series:

PR
k (x, t) ≤

HilbK• ⊗R k(x, t)

1 − t
∑

i,α βi,α xα ti
.

Equality holds if and only if R is a Golod ring. �

We have the following criterion for Golodness:

Proposition 3.8. Let S be a k-basis of H•(K). If for any z1, z2 ∈ S we have
z1 · z2 = 0, then R is a Golod ring.

Proof. We define the modules Xi :=
⊕

z∈S
deg(z)=i

R ez. Remember from Cri-

terion 3.2 that in order to calculate the differential of the Eagon complex
it is enough to define the map α : Y s

0 ⊗Xi → Zi(Y
s) such that for any

n⊗ f ∈ Y s
0 we have α(n⊗ f) = (m, ds−1(n)⊗ f), with m ∈ Y s−1

i+1 and ds−1(m)+

ds−1
(
ds−1(n)⊗ f

)
= 0. We define m as follows. Let n⊗ ez ∈ Y s

0 .

m :=

{
(−1)deg(n)n · z , if n ∈ Y 0

S = Ks,
0 , else.

Assume that for c⊗ ez1 ⊗ ez2 ⊗ . . .⊗ ezr ∈ Y s−1 we have

ds−1
(
c⊗ ez1 ⊗ ez2 ⊗ . . .⊗ ezr

)
= d0(c)⊗ ez1 ⊗ ez2 ⊗ . . .⊗ ezr

+ (−1)deg(c) c z1 ⊗ ez2 ⊗ . . .⊗ ezr .

Let n⊗ f :=
(
c⊗ ez1 ⊗ ez2 ⊗ . . .⊗ ezr

)
⊗ ez ∈ Y s ⊗Xi. We have to prove that

ds−1(m) + ds−1
(
ds−1(n)⊗ f

)
= 0. First case r > 0. Then m equals to 0 and

therefore ds−1(m) = 0. We have:

ds−1
(
ds−1

(
c⊗ ez1 ⊗ . . .⊗ ezr

)
⊗ ez

)

= ds−1
(
d0(c)⊗ ez1 ⊗ . . .⊗ ezr ⊗ ez + (−1)deg(c) c · z1 ⊗ ez2 ⊗ . . .⊗ ezr ⊗ ez

)

= (−1)deg(d0(c)) d0(c) z1 ⊗ ez2 ⊗ . . .⊗ ezr ⊗ ez

+(−1)deg(c)d0(c) z1 ⊗ ez2 ⊗ . . .⊗ ezr ⊗ ez

+(−1)deg(c)+deg(z1)c z1 z2 ⊗ ez3 ⊗ . . .⊗ ezr ⊗ ez



3. Eagon Complex and the Golod Property 27

= 0

since z1 z2 = 0 and deg(c) = deg(d0(c)) + 1.
Now assume r = 0. Then n⊗ f := c⊗ ez. By definition we have m :=
(−1)deg(c)c z. It follows:

ds−1(m) = (−1)deg(c)d0(c) z,

ds−1(ds−1(c)⊗ ez) = ds−1(d0(c)⊗ ez) = (−1)deg(d0(c)).

This proves that the differential of the Eagon complex is given by Equation
(3.2). Clearly, the differential contains no coefficient in k and therefore the
resolution is minimal. By Theorem 3.6 the ring R is Golod. �

We finally consider the case where R := S/a is the quotient algebra of the
commutative polynomial ring S := k[x1, . . . , xn] and a ⊂ S is a monomial ideal.
In this case we get:

Corollary 3.9. The ring A is a Golod ring if and only if the multigraded
Poincaré-Betti series has the following form

PA
k (x, t) :=

∏n
i=1(1 + t xi)

1 − t
∑

i,α βi,α xα ti
,

where βi,α := dimk

(
TorS

i (A, k)α

)
. �





Chapter 3

Algebraic Discrete
Morse Theory

In this chapter we derive an algebraic version of Discrete Morse theory as de-
veloped by Forman (see [21], [22]). Our theory is a generalization of results
from [5] and an almost identical theory has been developed independently by
Sköldberg [41]. Our applications require a slightly more general setting than
the one covered in [41].

The contents of this chapter can also be found in our article [36].

1. Algebraic Discrete Morse Theory

Let R be a ring and C• = (Ci, ∂i)i≥0 be a chain complex of free R-modules Ci.
We choose a basis X =

⋃
i≥0Xi such that Ci '

⊕
c∈Xi

R c. From now on we
write the differentials ∂i with respect to the basis X in the following form:

∂i :





Ci → Ci−1

c 7→ ∂i(c) =
∑

c′∈Xi−1

[c : c′] · c′.

Given the complex C• and the basis X, we construct a directed, weighted
graph G(C•) = (V,E). The set of vertices V of G(C•) is the basis V = X and
the set E of (weighted) edges is given by the rule

(c, c′, [c : c′]) ∈ E :⇔ c ∈ Xi, c
′ ∈ Xi−1, and [c : c′] 6= 0.

We often omit the weight and write c → c′ to denote an edge in E. Also by
abuse of notation we write e ∈ G(C•) to indicate that e is an edge in E.

Definition 1.1. A finite subset M ⊂ E of the set of edges is called an acyclic
matching if it satisfies the following three conditions:

(1) (Matching) Each vertex v ∈ V lies in at most one edge e ∈ M.

(2) (Invertibility) For all edges (c, c′, [c : c′]) ∈ M the weight [c : c′] lies in
the center of R and is a unit in R.

29
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(3) (Acyclicity) The graph GM(V,EM) has no directed cycles, where EM

is given by

EM := (E \M) ∪

{(
c′, c,

−1

[c : c′]

)
with (c, c′, [c : c′]) ∈ M

}
.

For an acyclic matching M on the graph G(C•) = (V,E) we introduce the
following notation, which is an adaption of the notation introduced in [21] to
our situation.

(1) We call a vertex c ∈ V critical with respect to M if c does not lie in
an edge e ∈ M; we write

XM
i := {c ∈ Xi | c critical }

for the set of all critical vertices of homological degree i.

(2) We write c′ ≤ c if c ∈ Xi, c
′ ∈ Xi−1, and [c : c′] 6= 0.

(3) Path(c, c′) is the set of paths from c to c′ in the graph GM(C•).

(4) The weight w(p) of a path p = c1 → · · · → cr ∈ Path(c1, cr) is given
by

w(c1 → . . . → cr) :=
r−1∏

i=1

w(ci → ci+1),

w(c→ c′) :=





−
1

[c : c′]
, c ≤ c′,

[c : c′] , c′ ≤ c.

(5) We write Γ(c, c′) =
∑

p∈Path(c,c′)

w(p) for the sum of weights of all paths

from c to c′.

Now we are in position to define a new complex CM
• , which we call the Morse

complex of C• with respect to M. The complex CM
• = (CM

i , ∂Mi )i≥0 is defined
by

CM
i :=

⊕
c∈XM

i

R c,

∂Mi :





CM
i → CM

i−1

c 7→
∑

c′∈XM
i−1

Γ(c, c′)c′, .

Theorem 1.2. CM
• is a complex of free R-modules and is homotopy-equivalent

to the complex C•; in particular, for all i ≥ 0

Hi(C•) ∼= Hi(C
M
• ).

The maps defined below give a chain homotopy between C• and CM
• :

f :





C• → CM
•

c ∈ Xi 7→ f(c) :=
∑

c′∈XM
i

Γ(c, c′)c′,
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g :





CM
• → C•

c ∈ XM
i 7→ gi(c) :=

∑

c′∈Xi

Γ(c, c′)c′.

The proof of Theorem 1.2 is given in the next paragraph. Note that if C• is
the cellular chain complex of a regular CW-complex and X is the set of cells of
the regular CW-complex, then Algebraic Discrete Morse theory is the part of
Forman’s [21] Discrete Morse theory which describes the impact of a discrete
Morse matching on the cellular chain complex of the CW-complex.

Sometimes it is useful to consider the same construction for matchings which
are not acyclic. Clearly, Theorem 1.2 does not hold anymore for CM

• if M is
not acyclic. In general, there is not even a good definition of the differentials
∂M. But for calculating invariants it is sometimes useful to consider CM

• for
matchings that are not acyclic. In these cases one considers just the graded
vectorspace CM

• .

Finally we would like to generalize the construction of the Morse complex
to infinite acyclic matchings:
Note, that the definition of an acyclic matching makes perfect sense also for
infinite sets of edges. But if M is an infinite acyclic matching then Γ(c, c′)
may no longer be well defined in case the set of paths from c to c′ is infinite.
Moreover, we indeed use finiteness in our proof of Theorem 1.2 since we use
induction on the cardinality of the acyclic matching.

In order to be able to formulate a result similar to Theorem 1.2 for infinite
acyclic matchings we have to introduce an additional finiteness condition:

Let C• be a complex and M an infinite acyclic matching. Clearly the

matching M induces a finite matching on each finite subcomplex C f
• of C•.

Therefore, we make the following definition:

Definition 1.3 (Finiteness). Let C• be a complex of free R-modules and let
M be an infinite acyclic matching. We say that M defines a Morse matching
if there exists a sequence of finite subcomplexes Di := (D•)i, i ≥ 0 of C• such
that:

(1) Di is a subcomplex of Di+1, for all i ≥ 0.

(2) C• = colimi≥0Di.

(3) (Di)
M is a subcomplex of (Di+1)

M.

Note that the last condition implies Γ(c, c′) < ∞ and thus the conclusion of
Theorem 1.2 still holds for those infinite Morse matchings.

In our applications all complexes are multigraded by α ∈ Nn and the α-
graded part of C• is finite. Therefore the subcomplexes Di, defined by

Di :=

i⊕

j=0

⊕

α∈Nn

|α|=j

(C•)α
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are finite subcomplexes. It is easy to see that for multigraded complexes whose
graded parts are of finite rank any acyclic matching fulfills the additional finite-
ness condition with the sequence Di. This indeed holds for all complexes in our
applications.

Therefore we get:

Theorem 1.4. Let C• be a Nn-graded complex of free R-modules such that
(C•)α is a finite subcomplex for all α ∈ Nn. Then the conclusion of Theorem
1.2 still holds for infinite acyclic matchings M.

In the following chapters we will use the conclusions of Theorem 1.2 and
1.4 in order to construct minimal resolutions without explicitly referring to the
theorems.

2. Proof of Theorem 1.2

We write Γ↓(c, c
′) (resp. Γ↑(c, c

′)) for the sum of the weights of all those paths

from c to c′ for which the first step c → c1 satisfies c ∈ XM
i and c1 ∈ XM

i−1

(resp. c′ ∈ XM
i+1). In most cases it will be clear from the context, e.g. if c is

critical, whether the first step increases or decreases dimension. Still for the
sake of readability we will always equip Γ with the respective arrow.

From now on we assume always that M satisfies the three conditions.

We first prove that the Morse differential satisfies ∂M
i ◦ ∂Mi+1 = 0.

Lemma 2.1. Let M ⊂ E be an acyclic matching on G(C•) = (V,E). Then

(P1) ∂M is a differential (i.e. ∂M ◦ ∂M = 0).

(P2) For (α, β, [α : β]) ∈ M with α ∈ Xi+1, β ∈ Xi we have for all c ∈ XM
i−1:

Γ↓(β, c) =
∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c).

Proof. The proof is by induction over the cardinality of M. In order to prove
the induction, we assume that both properties are satisfied for smaller match-
ings.

Let M = {(α, β, [α : β])} be a matching of cardinality 1.

Property (P2):

0 = ∂2(α) =
∑

c′∈XM
i

[α : c′]∂(c′) + [α : β]∂(β)

=
∑

c∈Xi−1


 ∑

c′∈XM
i

[α : c′][c′ : c]


 c+

∑

c∈Xi−1

[α : β][β : c]c

= −[α : β]
∑

c∈Xi−1


 ∑

c′∈XM
i

(
−

1

[α : β]

)
[α : c′][c′ : c]


 c+

∑

c∈Xi−1

[α : β][β : c]c
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= −[α : β]
∑

c∈Xi−1

∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c)c +
∑

c∈Xi−1

[α : β][β : c]c

= [α : β]
∑

c∈Xi−1


[β : c] −

∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c)


 c

= [α : β]
∑

c∈Xi−1


Γ↓(β, c) −

∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c)


 c.

Since [α : β] ∈ Z(R)∩R∗ is not a zero-divisor and the critical cells are linearly
independent, we get the desired result:

Γ↓(β, c) −
∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c) = 0.

Property (P1): Let c ∈ XM
i+1 be a critical cell. We have to distinguish three

cases. Note that the validity of property (P2) has been established above.

Case 1: (∂M)2(c) = ∂2(c). Since ∂ is a differential, we are done.

Case 2: There exist elements β ∈ Xi and c 6= α ∈ Xi+1 with [c : β] 6= 0 and
{(α, β, [α : β])} = M. Then we have:

(∂M)2(c) =
∑

β 6=c′≤c

[c : c′]∂M(c′) + [c : β](−
1

[α : β]
)
∑

c′∈XM
i

c′ 6=β

[α : c′]∂M(c′)

=
∑

β 6=c′≤c

∑

c′′≤c′

[c : c′][c′ : c′′]c′′

+[c : β](−
1

[α : β]
)
∑

c′∈XM
i

c′ 6=β

∑

c′′≤c′

[α : c′][c′ : c′′]c′′

=
∑

c′′∈XM
i−1


 ∑

β 6=c′≤c

[c : c′][c′ : c′′]

+[c : β](−
1

[α : β]
)
∑

c′∈XM
i

c′ 6=β

[α : c′][c′ : c′′]


 c′′

=
∑

c′′∈XM
i−1



∑

β 6=c′≤c

[c : c′][c′ : c′′] + [c : β]
∑

c′∈XM′
i

c′ 6=β

Γ↑(β, c
′)Γ↓(c

′, c′′)


 c′′

(P2)
=

∑

c′′∈XM
i−1


 ∑

β 6=c′≤c

[c : c′][c′ : c′′] + [c : β]Γ↓(β, c
′′)


 c′′

=
∑

c′′∈Xi−1


∑

c′≤c

[c : c′][c′ : c′′]


 c′′ = ∂2(c) = 0.
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Case 3: There exist elements β ∈ Xi and α ∈ Xi−1 with [c : β] 6= 0 and
{(β, α, [β : α])} = M.
Since ∂2(c) = 0, we have

0 =
∑

c′≤c

[c : c′][c′ : α]

= [c : β][β : α] +
∑

c′≤c

c′ 6=β

[c : c′][c′ : α]

= [β : α]


[c : β] +

∑

c′≤c

c′ 6=β

1

[β : α]
[c : c′][c′ : α]


 .

Since [β : α] ∈ Z(R) ∩R∗ is not a zero-divisor, it follows

[c : β] =
∑

c′≤c

c′ 6=β

(
−

1

[β : α]

)
[c : c′][c′ : α].(2.1)

This observation allows us to deduce the desired result:

(∂M)2(c) =
∑

c′≤c

c′ 6=β

[c : c′]∂M(c′)

=
∑

c′≤c

c′ 6=β

∑

c′′≤c′

c′′ 6=α

[c : c′][c′ : c′′]c′′

+
∑

c′′≤β

c′′ 6=α



∑

c′≤c

c′ 6=β

[c : c′][c′ : α]

(
−

1

[β : α]

)



︸ ︷︷ ︸
=[c:β] by (2.1)

[β : c′′]c′′

=
∑

c′≤c

c′ 6=β

∑

c′′≤c′

c′′ 6=α

[c : c′][c′ : c′′]c′′

+
∑

c′′≤β

c′′ 6=α

[c : β][β : c′′]c′′

=
∑

c′≤c

∑

c′′≤c′

c′′ 6=α

[c : c′][c′ : c′′]c′′ = 0 since ∂2 = 0.

We now assume properties (P1) and (P2) for matchings of cardinality ≤ n.
Let M be an acyclic matching of cardinality n+ 1, and M′ := M\ {(α, β, [α :

β])} with α ∈ XM′

i+1 and β ∈ XM′

i . Then α, β are critical with respect to M′,
and by induction M′ satisfies (P1) and (P2).

Property (P2):

0 = (∂M
′
)2(α) =

∑

c′∈XM′
i

∑

c≤α

[α : c]Γ↑(c, c
′)∂M

′
(c′)
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= [α : β]∂M
′
(β) +

∑

c′∈XM′
i

c′ 6=β

∑

c≤α

[α : c]Γ↑(c, c
′)∂M

′
(c′)

= [α : β]∂M
′
(β) +

∑

c′∈XM′
i

c′ 6=β

Γ↓(α, c
′)∂M

′
(c′)

= [α : β]



∑

c′≤β

[β : c′]
∑

c∈XM′
i−1

Γ↑(c
′, c)c




+
∑

c′∈XM′
i

c′ 6=β

Γ↓(α, c
′)
∑

c∈XM′
i−1

Γ↓(c
′, c)c

= [α : β]



∑

c∈XM′
i−1

Γ↓(β, c)c




−[α : β]
∑

c∈XM′
i−1

(
−

1

[α : β]

) ∑

c′∈XM′
i

c′ 6=β

Γ↓(α, c
′)Γ↓(c

′, c)c

= [α : β]
∑

c∈XM
i−1

(Γ↓(β, c) −
∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c))c.

Since the critical cells are linearly independent and [α : β] is a unit, we get
the desired result:

Γ↓(β, c) −
∑

c′∈X
(i)
M

Γ↑(β, c
′)Γ↓(c

′, c) = 0

Property (P1): Let c ∈ XM
i+1 be a critical cell. In order to prove the first

statement, we have, as in the case of cardinality 1, to distinguish three cases:

Case 1: (∂M)2(c) = (∂M
′
)2(c). Since by induction (∂M

′
)2 = 0, we are done.

Case 2: There exist elements c 6= α ∈ XM′

i+1 and β ∈ XM′

i with [c : β] 6= 0 and
(α, β, [α : β]) ∈ M. Then we have:

∂M(c) =
∑

c′∈XM
i

[c : β]Γ↑(β, c
′)c′ +

∑

c′∈XM
i

Γ↓(c, c
′)c′,

where the last sum is over all paths which do not go through β. It follows

(∂M)2(c) =
∑

c′∈XM
i

[c : β]Γ↑(β, c
′)∂M(c′) +

∑

c′∈XM
i

Γ↓(c, c
′)∂M(c′)

=
∑

c′′∈XM
i−1

[c : β]


 ∑

c′∈XM
i

Γ↑(β, c
′)Γ↓(c

′, c′′)


 c′′ +

∑

c′′∈XM
i−1

Γ↓(c, c
′′)c′′

=
∑

c′′∈XM
i−1

[c : β]Γ↓(β, c
′′)c′′ +

∑

c′′∈XM
i−1

Γ↓(c, c
′′)c′′

=
∑

c′′∈XM′
i−1

Γ↓(c, c
′′)c′′ = 0 since by induction ∂M

′
◦ ∂M

′
= 0.
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Case 3: There exist elements β ∈ XM′

i and α ∈ XM′

i−1 with [c : β] 6= 0 and
(β, α, [β : α]) ∈ M. Then we have

(∂M)2(c) =
∑

c′∈XM
i

c′ 6=β

Γ↓(c, c
′)∂M(c′)

=
∑

c′′ 6=α



∑

c′∈XM
i

c′ 6=β

Γ↓(c, c
′)[c′ : α]

(
−

1

[β : α]

)

Γ↓(β, c

′′)c′′

+
∑

c′′ 6=α



∑

c′∈XM
i

c′ 6=β

Γ↓(c, c
′)Γ↓(c

′, c′′)


 c′′, where Γ↓(c

′, c′′) does not go through α

(∗)
=

∑

c′′ 6=α

Γ↓(c, β)Γ↓(β, c
′′)c′′ +

∑

c′′ 6=α




∑

c′∈XM
i−1

c′ 6=β

Γ↓(c, c
′)Γ↓(c

′, c′′)


 c′′

=
∑

c′′ 6=α




∑

c′∈XM′
i

Γ↓(c, c
′)Γ↓(c

′, c′′)


 c′′

= 0 since (∂M
′
)2 = 0.

In (∗) we use the fact Γ↓(c, β) =
∑

c′∈XM
i

c′ 6=β

Γ↓(c, c
′)

(
−

1

[β : α]

)
[c′ : α], which holds

with the same argument as in (2.1). �

In the following, we show that the Morse complex is homotopy-equivalent to
the original complex. Thereby, it will be possible to minimize a complex of free
R-modules by means of Algebraic Discrete Morse theory.

Let (C(X,R), ∂) be a complex of free R-modules, M ⊂ E a matching on
the associated graph G(C(X,R)) = (V,E), and (C(XM, R), ∂M) the Morse
complex. We consider the following maps:

f : C(X,R) → C(XM, R)(2.2)

c ∈ Xi 7→ f(c) :=
∑

c′∈XM
i

Γ(c, c′)c′,

g : C(XM, R) → C(X,R)(2.3)

c ∈ XM
i 7→ gi(c) :=

∑

c′∈Xi

Γ(c, c′)c′,

χ : C(X,R) → C(X,R)(2.4)

c ∈ Xi 7→ χi(c) :=
∑

c′∈Xi+1

Γ(c, c′)c′.
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Then:

Lemma 2.2. The maps f and g are homomorphisms of complexes of free R-
modules. In particular,

(C1) ∂M ◦ f = f ◦ ∂,

(C2) ∂ ◦ g = g ◦ ∂M.

Lemma 2.3. The maps g and f define a chain homotopy. In particular,

(H1) gi ◦ fi − id = ∂ ◦ χi+1 + χi ◦ ∂, i.e. it is null-homotopic,

(H2) fi ◦ gi − id = 0; in particular, f ◦ g is null-homotopic.

Corollary 2.4 (Thm. 1.2). C(XM, R) is a complex of free R-modules and

Hi(C(X,R), R) = Hi(C(XM, R), R) for all i ≥ 0.

Proof. This is an immediate consequence of Lemma 2.3. �

Proof of Lemma 2.2: Property (C1): Let c ∈ Xi. Then:

(
∂M ◦ f

)
(c) = ∂M


 ∑

c′∈XM
i

Γ↑(c, c
′)c′


 =

∑

c′′∈XM
i−1

∑

c′∈XM
i

Γ↑(c, c
′)Γ↓(c

′, c′′)c′′

and (
f ◦ ∂

)
(c) = f

(∑
c′≤c[c : c′]c′

)

=
∑

c′′∈XM
i−1

∑

c′≤c

[c : c′]Γ↑(c
′, c′′)c′′

=
∑

c′′∈XM
i−1

Γ↓(c, c
′′).

Using Lemma 2.1 (P2) the assertion now follows.

Property (C2): Let c ∈ XM
i . Then:

(
∂ ◦ g

)
(c) =

∑

c′′≤c

[c : c′′]c′′ +
∑

c′∈Xi

Γ↓(c, c
′)
∑

c′′≤c′

[c′ : c′′]c′′

=
∑

c′′∈XM
i−1

Γ↓(c, c
′′)c′′

︸ ︷︷ ︸
(A)

+
∑

c′∈Xi

Γ↓(c, c
′)

∑

c′′≤c′

(c′′,β,[c′′:β])∈M

[c′ : c′′]c′′

︸ ︷︷ ︸
(B)

+
∑

c′∈Xi

Γ↓(c, c
′)

∑

c′′≤c′

(β,c′′,[β:c′′])∈M

[c′ : c′′]c′′

︸ ︷︷ ︸
(C)

.
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We have (C) = 0: Fix c′′ ∈ Xi−1 and β ∈ Xi such that (β, c′′, [β : c′′]) ∈ M.
Then:

∑

c′∈Xi

Γ↓(c, c
′)[c′ : c′′] =

∑

c′ 6=β

Γ↓(c, c
′)[c′ : c′′]c′′ + Γ↓(c, β)[β : c′′]c′′

=
∑

c′ 6=β

Γ↓(c, c
′)[c′ : c′′]c′′

+

(
Γ↓(c, c

′′)

(
−

1

[β : c′′]

))
[β : c′′]c′′

= Γ↓(c, c
′′)c′′ − Γ↓(c, c

′′)c′′ = 0.

On the other hand:

(
g ◦ ∂M

)
(c) = g




∑

c′∈XM
i−1

Γ↓(c : c′)c′




=
∑

c′∈XM
i−1

Γ↓(c, c
′)c′

︸ ︷︷ ︸
(A)

+
∑

c′∈XM
i−1

∑

c′′∈Xi−1
(c′′,β,[c′′:β])∈M

Γ↓(c, c
′)Γ↓(c

′, c′′)c′′

︸ ︷︷ ︸
(D)

.

We will verify (B) = (D): Consider the matching M′ \ {(c′′, β, [c′′, β])}. Since

c′′ and β are critical cells in M′, it follows by Lemma 2.1 (P1) (i.e. (∂M
′
)2 = 0)

that

0 =
∑

c′∈XM′
i−1

c′ 6=c′′

Γ↓(c, c
′)Γ↓(c

′, β) + Γ↓(c, c
′′)[c′′ : β].

Multiplying by
(
− 1

[c′′.β]

)
yields:

∑

c′∈XM
i−1

Γ↓(c, c
′)Γ↓(c

′, c′′) =
∑

c′∈Xi

Γ↓(c, c
′)[c′ : c′′].

Thus (B) = (D). �

Proof of Lemma 2.3: Property (H2): Let c ∈ XM
i . The map g sends c to a

sum over all c′ ∈ Xi that can be reached from c. Since c is critical, c′ can be
reached from c if either c = c′ or there is a c′′ ∈ Xi−1 such that (c′, c′′, [c′ : c′′]) ∈
M. Moreover,

f(c) = 0 if there is a c′ ∈ Xi−1 such that (c, c′, [c : c′]) ∈ M.

Since f and g are R-linear, it follows that
(
fi ◦ gi

)
(c) = fi(c). From fXM = id

we infer the assertion.

Property (H1): We distinguish three cases.
Case 1: Assume c is critical. Then

(
gi ◦ fi − id

)
(c) = gi(c) − c =

∑

c′∈Xi
(c′,β,[c′:β])∈M

Γ↓(c, c
′)c′.
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Moreover, χi(c) = 0, in particular,
(
∂ ◦ χi

)
(c) = 0.

χ(∂(c)) = χ


∑

c′≤c

[c : c′]c′




=
∑

c′≤c

[c : c′]
∑

c′′∈Xi

Γ↑(c
′, c′′)c′′

=
∑

c′′∈Xi
(c′′,β,[c′:β])∈M

Γ↓(c, c
′′)c′′ = (gi ◦ fi − id)(c).

Case 2: There is an α ∈ Xi−1 such that (c, α, [c : α]) ∈ M. Then χ(c) = 0 and
(gi ◦ fi − id)(c) = − id(c) = −c. Moreover,

χ(∂(c)) = χ


∑

c′≤c

[c : c′]c′




=
∑

c′≤c

[c : c′]
∑

c′′∈Xi

Γ↑(c
′, c′′)c′′

= [c : α]

(
−

1

[c : α]

)
c

+
∑

c′≤c

c′ 6=α

[c : c′]
∑

c′′∈Xi
c′′ 6=α

Γ↑(c
′, c′′)c′′ + [c : α]

∑

c′′∈Xi

Γ↑(α, c
′′)c′′.

Since

Γ↑(α, c
′′) =

(
−

1

[c : α]

)∑

c′≤c

c′ 6=α

[c : c′]Γ↑(c
′, c′′),

the assertion follows.

Case 3: There is an α ∈ Xi+1 such that (α, c, [α : c]) ∈ M. Then:

(
gi ◦ fi − id

)
(c) = −c+

∑

c′∈XM
i

Γ↑(c, c
′)c′

︸ ︷︷ ︸
(A)

+
∑

c′′∈Xi
(c′′,β,[c′′:β])∈M

∑

c′∈XM
i

Γ↑(c, c
′)Γ↓(c

′, c′′)c′′

︸ ︷︷ ︸
(B)

.

On the other hand:

∂χ(c) = ∂


 ∑

c′∈Xi+1

Γ↑(c, c
′)c′




=
∑

c′∈Xi+1

Γ↑(c, c
′)
∑

c′′≤c′

[c′ : c′′]c′′
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=
∑

c′′≤α

(
−

1

[α : c]

)
[α : c′′]c′′

+
∑

c′ 6=α

Γ↑(c, c
′)
∑

c′′≤c′

[c′ : c′′]c′′

= −c+ (A) +
∑

c′′∈Xi
(c′′,β,[c′′:β])∈M

∑

c′ 6=α

Γ↑(c, c
′)
∑

c′′≤c′

[c′ : c′′]c′′

︸ ︷︷ ︸
(C)

+
∑

c′′∈Xi
(β,c′′,[β:c′′])∈M

∑

c′ 6=α

Γ↑(c, c
′)
∑

c′′≤c′

[c′ : c′′]c′′

︸ ︷︷ ︸
(D)

and

χ∂(c) = χ


∑

c′≤c

[c : c′]c′




=
∑

c′′∈Xi
(c′′,β,[c′′:β])∈M

∑

c′≤c

[c : c′]Γ↑(c
′, c′′)c′′

=
∑

c′′∈Xi
(c′′,β,[c′′:β])∈M

Γ↓(c, c
′′)c′′

︸ ︷︷ ︸
(E)

.

We show:

(a) (D) = 0,

(b) (E) + (C) = (B).

Assertion (a); Fix c′′ ∈ Xi and β ∈ Xi+1 such that (β, c′′, [β : c′′]) ∈ M. Then:

∑

c′∈Xi+1

Γ↑(c, c
′)[c′ : c′′]

=
∑

c′ 6=β

Γ↑(c, c
′)[c′ : c′′]c′′ + Γ↑(c, β)[β : c′′]

=
∑

c′ 6=β

Γ↑(c, c
′)[c′ : c′′]c′′

+
(
Γ↑(c, c

′′)
(
− 1

[β:c′′]

))
[β : c′′]c′′

= Γ↑(c, c
′′)c′′ − Γ↑(c, c

′′)c′′ = 0.

Assertion (b); Let c′′ ∈ Xi and β ∈ Xi−1 such that (c′′, β, [c′′ : β]) ∈ M.
Consider the matching M′ = M\ {(c′′, β, [c′′ : β])}. Then by Lemma 2.1 (P2)

∑

c′∈XM′
i

Γ↑(c, c
′)Γ↓(c

′, β) = Γ↓(c, β).
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Since c′′ is critical with respect to M′, it follows that
∑

c′∈XM′
i

c′ 6=c′′

Γ↑(c, c
′)Γ↓(c

′, β) + Γ↑(c, c
′′)[c′′ : β] = Γ↓(c, β).

Multiplying the equation with
(
− 1

[c′′:β]

)
yields

∑

c′∈XM
i

Γ↑(c, c
′)Γ↓(c

′, c′′) =
∑

c′∈Xi+1

Γ↑(c, c
′)[c′ : c′′] + Γ↓(c, c

′′),

where paths are taken with respect to the matching M. Hence (B) = (C) +
(E). �

3. Normalized Bar and Hochschild Resolution via ADMT

In this paragraph we give a proof of the normalized Bar and Hochschild resolu-
tion in the case where A is a k-Algebra and W a basis of A as a k-vector space
such that 1 ∈W (the proofs still holds if A is an R-algebra, which is projective
as an R-module, where R is a commutative ring). Let M be an R-module.
Remember that the Bar resolution of M is given by

(1) Bi is the free (A⊗kM)-module with basis [w1| . . . |wi], w1, . . . , wi ∈W .

(2) The differential ∂i is given by

∂([w1| . . . |wi]) = (w1 ⊗ 1) [w2| . . . |wi]

+
i−1∑

j=1

(−1)j

(
(a0 ⊗ 1) [w1| . . . |wj−1|1|wj+2| . . . |wi]

+
∑

l(al ⊗ 1) [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

)

+(−1)i (1⊗wi) [w1| . . . |wi−1],

if wjwj+1 = a0 +
∑

l al w
′
l with a0, al ∈ k and w′

l ∈W .

Proposition 3.1 (Normalized Bar Resolution). There is an acyclic matching
M on the Bar resolution BA with respect to W such that the corresponding
Morse complex BM is given by:

(1) BM
i is the free (A⊗M)-module with basis [w1| . . . |wi], w1, . . . , wi ∈

W \ {1}.

(2) The Mores differential ∂Mi is given by

∂M([w1| . . . |wi]) = (w1 ⊗ 1) [w2| . . . |wi]

+

i−1∑

j=1

(−1)j
∑

l

(al ⊗ 1) [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

+(−1)i(1⊗wi) [w1| . . . |wi−1]

if wjwj+1 = a0 +
∑

l al w
′
l with a0, al ∈ k and w′

l ∈W \ {1}.

In particular, BM = NB is the normalized Bar resolution.

Proof. We define the matching M by

[w1| . . . |wl|wl+1| . . . |wi] → [w1| . . . |wlwl+1| . . . |wi] ∈ M
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if wl := min(j | wj = 1), wl′ := max(j | wr = 1 for all l ≤ r ≤ j), and l′ − l
is odd. The invertibility is given since in both cases the coefficient in the
differential is ±1:

∂([w1| . . . |wl|wl+1| . . . |wi] = ±1 [w1| . . . |wlwl+1| . . . |wi].

It is easy to see that the other conditions of an acyclic matching are satisfied
as well. The critical cells are exactly the desired basis elements and an ele-
ment [w1| . . . |wi] for which wj = 1 for some j is never mapped to an element
[w1| . . . |wi], with wj 6= 1 for all j. This implies the formula for the Morse
differential. �

Proposition 3.2 (Normalized Acyclic Hochschild Complex). There is an acyclic
matching M on the acyclic Hochschild complex HCA of A such that the corre-
sponding Morse complex HCM is given by:

(1) CM
i is the free (A⊗k A)-module with basis [w1| . . . |wi], w1, . . . , wi ∈

W \ {1}.

(2) The Morse differential ∂Mi is given by

∂i([w1| . . . |wi]) = (w1 ⊗ 1) [w2| . . . |wi] + (−1)i(1⊗wi) [w1| . . . |wi−1]

+

i−1∑

j=1

(−1)j

(∑

l

al [w1| . . . |wj−1|w
′
l|wj+2| . . . |wi]

)

if wjwj+1 = a0 +
∑

l al w
′
l with a0, al ∈ k and w′

l ∈W \ {1}.

In particular, HCM is the normalized acyclic Hochschild complex.

Proof. The proof is essentially identical to the proof of Proposition 3.1. �



Chapter 4

Free Resolutions of
Monomial Ideals

1. Algebraic Discrete Morse Theory on the Taylor Resolution

In this paragraph we consider acyclic matchings on the Taylor resolution. First,
we introduce a standard matching, which we use in Chapter 6 in order to for-
mulate and prove our conjecture about the minimal multigraded free resolution
of the residue class field and to calculate the multigraded Poincaré-Betti series
PA(x, t). Then Section 1.2 considers the Taylor resolution for monomial ideals
which are generated in degree two. The resolutions of those ideals are important
for the proof of our conjecture in the case where A is Koszul (see Chapter 6.4).
Next, we give a matching on the Taylor resolution of Stanley Reisner ideals of
the order complex of a partially ordered set, which we use in Chapter 6 in order
to calculate the multigraded Hilbert and Poincaré-Betti series.
Finally, we introduce the (strong) gcd-condition for monomial ideals and give a
special acyclic matching on the Taylor resolution for this type of ideals, which
are in connection with the Golod property of monomial rings (see Chapter 6.5).

1.1. Standard Matching on the Taylor Resolution. Let S = k[x1, . . . , xn]
be the commutative polynomial ring over a field k of arbitrary characteristic
and aES a monomial ideal.

The basis of the Taylor resolution is given by the subsets I ⊂ MinGen(a)
of the minimal monomial generating system MinGen(a) of the ideal a. For
a subset I ⊂ MinGen(a) we denote by mI the least common multiple of the
monomials in I, mI := lcm

(
m ∈ I

)
.

On this basis we introduce an equivalence relation: We say that two mono-
mials m,n ∈ I with I ⊂ MinGen(a) are equivalent if gcd(m,n) 6= 1 and write
m ∼ n. The transitive closure of ∼ gives us an equivalence relation on each
subset I. We denote by cl(I) := #I/ ∼ the number of equivalence classes of I.

Based on the Taylor resolution, we define a product by

I · J =

{
0 , gcd(mI ,mJ) 6= 1
I ∪ J , gcd(mI ,mJ ) = 1.

43
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Then the number cl(I) counts the factors of I with respect to the product
defined above.

The aim of this section is to introduce an acyclic matching on the Taylor
resolution which preserves this product.

We call two subset I, J ⊂ MinGen(a) a matchable pair and write I → J if
|J |+ 1 = |I|, mJ = mI , and the differential of the Taylor complex maps I to J
with coefficient [I, J ] 6= 0.

Let I → J be a matchable pair in the Taylor resolution with cl(I) = cl(J) =
1 such that no subset of J is matchable. Then define

M11 := {I
·
∪ K → J

·
∪ K for each K with gcd(mK ,mI) = gcd(mK ,mJ ) = 1}.

For simplification we write I ∈ M11 if there exists a subset J with I → J ∈ M11

or J → I ∈ M11. It is clear that this is an acyclic matching. Furthermore,
the differential changes in each homological degree in the same way and for

two subsets I,K with gcd(mI ,mK) = 1 we have I
·
∪ K ∈ M11 ⇐⇒ I ∈

M11 or K ∈ M11. Because of these facts, we can repeat this matching M11

on the resulting Morse complex. This gives us a sequence of acyclic matchings,
which we denote by M1 :=

⋃
i≥1 M1i. If no repetition is possible, we reach a

resolution with basis given by some subsets I ⊂ MinGen(a) with the following
property: If we have a matchable pair I → J where I has a higher homological
degree than J , then cl(I) ≥ 1 and cl(J) ≥ 2. We now construct the second
sequence:
Let I → J be a matchable pair in the resulting Morse complex with cl(I) =
1, cl(J) = 2 such that no subset of J is matchable. Then define

M2 := {I
·
∪ K → J

·
∪ K for each K with gcd(mK ,mI) = gcd(mK ,mJ) = 1}.

With the same arguments as before this defines an acyclic matching, and a
repetition is possible. The third sequence starts if no repetition of M2 is possible
and is given by a matchable pair I → J in the resulting Morse complex with
cl(I) = 1, cl(J) = 3 such that no subset of J is matchable. Then define

M3 := {I
·
∪ K → J

·
∪ K for each K with gcd(mK ,mI) = gcd(mK ,mJ) = 1}.

Since every matchable pair is of the form I
·
∪ K → J

·
∪ K with mI = mJ ,

gcd(mI ,mK) = 1, and cl(I) = 1, cl(J) ≥ 1, we finally reach with this procedure
a minimal resolution of the ideal a as S-module. Let M be the union of all
matchings. As before we write I ∈ M if there exists a subset J with I →
J ∈ M or J → I ∈ M. Then the minimal resolution has a basis given by
MinGen(a) \M.
We give a matching of this type a special name:

Definition 1.1 (standard matching). A sequence of matchings M :=
⋃

i≥1 Mi

is called a standard matching on the Taylor resolution if all the following holds:

(1) M is graded, i.e. for all edges I → J in M we have mI = mJ ,

(2) TM
• is minimal, i.e. for all edges I → J in TM

• we have mI 6= mJ ,

(3) Mi is a sequence of acyclic matchings on the Morse complex T
M<i
•

(M<i :=
⋃i−1

j=1 Mj , T
M<1
• = T•),
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(4) for all I → J ∈ Mi we have

cl(J) − cl(I) = i− 1,

|J | + 1 = |I|,

(5) there exists a set Bi ⊂ Mi such that

(a) Mi = Bi∪

{
I ∪K → J ∪K

∣∣∣∣
K with gcd(mI ,mK) = 1

and I → J ∈ Bi

}
and

(b) for all I → J ∈ Bi we have cl(I) = 1 and cl(J) = i.

The construction above shows that a standard matching always exists. For
a standard matching we have two easy properties, which we will need in Para-
graph 2 of Chapter 6:

Lemma 1.2. Let M and M′ be two different standard matchings. Then

(1) for all i ≥ 1 we have

1 +
∑

I 6∈M<i

(−1)cl(I)mIt
cl(I)+|I| = 1 +

∑

I 6∈M′
<i

(−1)cl(I)mIt
cl(I)+|I|,

(2) if I, J 6∈ M, gcd(mI ,mJ ) = 1, and I ∪ J ∈ M, then there exists a set
K with |K| = |I| + |J | + 1, cl(K) = 1, and (I ∪ J → K) ∈ M.

Proof. The result follows directly from the definition of a standard matching.
�

If the ideal is generated in degree two, every standard matching ends after
the second sequence: Assume that we have a matchable pair I → J such that
cl(I) = 1 and cl(J) ≥ 3. Then J has at least three subsets J = J1 ∪ J2 ∪ J3

such that gcd(mJi
,mJi′

) = 1, i, i′ = 1, 2, 3. Since I and J have the same
multidegree and cl(I) = 1, there would exist a generator u ∈ MinGen(a) such
that gcd(mJi

, u) 6= 1 for i = 1, 2, 3. But u is a monomial of degree two, which
makes such a situation impossible.
In this case we have

Lemma 1.3. If every standard matching ends after the second sequence, i.e.
M = M1 ∪M2, then

∑

I 6∈M1

(−1)cl(I)mIt
cl(I)+|I| =

∑

I 6∈M

(−1)cl(I)mIt
cl(I)+|I|.

Proof. By definition an edge I → J matched by the second sequence has
the property |I| = |J | + 1 and cl(I) = cl(J) − 1 and mI = mJ . Therefore,

(−1)cl(I)mIt
cl(I)+|I| = −

(
(−1)cl(J)mJt

cl(J)+|J |
)
, which proves the assertion. �

1.2. Resolutions of Monomial Ideals Generated in Degree Two. Let
aES be a monomial ideal with minimal monomial generating system MinGen(a)
such that for all monomials m ∈ MinGen(a) we have deg(m) = 2. We assume,
in addition, that a is squarefree. This is no restriction since via polarization we
get similar results for the general case.

First we fix a monomial order ≺. We introduce the following notation: To
each subset I ⊂ MinGen(a) we associate an undirected graph GI = (V,E) on
the ground set V = [n], by setting {i, j} ∈ E if the monomial xixj lies in I.
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We call a subset I an nbc-set if the associated graph GI = (V,E) contains no
broken circuit, i.e. there exists no edge {i, j} such that

(1) E ∪ {{i, j}} contains a circuit c and

(2) xixj = max≺

{
xi′xj′

∣∣ {i′, j′} ∈ c
}
.

Proposition 1.4. There exists an acyclic matching M1 on the Taylor resolu-
tion such that

(1) M1 is the first sequence of a standard matching,

(2) the resulting Morse complex TM1
• is a subcomplex of the Taylor reso-

lution and

(3) TM1
• has a basis indexed by the nbc-sets.

Proof. Let Z be a circuit in T• of maximal cardinality. Let xixj := max≺{Z}.
We then define

M1,0 :=
{

(Z ∪ I) → ((Z \ {xixj}) ∪ I)
∣∣∣ I ∈ T• with Z ∩ I = ∅

}
.

It is clear that I is an acyclic matching and the resulting Morse complex TM1,0

is a subcomplex of the Taylor resolution.
Now let Z1 be a maximal circuit in TM1,0 and let xνxl := max≺{Z1}. We then
define

M1,1 :=
{

(Z1 ∪ I) → ((Z1 \ {xνxl}) ∪ I)
∣∣∣ I ∈ TM1,0 with Z1 ∩ I = ∅

}
.

We only have to guarantee that (Z1 ∪ I) 6∈ M1,0.
Assume (Z1 ∪ I) ∈ M1,0. Since (Z1 \ {xνxl}) ∪ I 6∈ M1,0, we see that xνxl 6=
xixj and xνxl ∈ Z. But then W := Z ∪ (Z1 \ {xνxl}) is a circuit, which
is a contradiction to the maximality of Z. Therefore, M1,1 is a well defined
acyclic matching and the resulting Morse complex is a subcomplex of the Taylor
resolution.
If we continue this process, we reach a subcomplex TM1 of the Taylor resolution
with a basis indexed by all nbc-sets. It is clear that M1 :=

⋃
i M1,i satisfies

all conditions of the first sequence of a standard matching. Furthermore, if I
is an nbc-set and mI = mI\{m}, then it follows that cl(I) = cl(I \ {m}) − 1
(otherwise we would have a circuit). This implies that M1 is exactly the first
sequence of a standard matching. �

We denote by Tnbc the resulting Morse complex.

Corollary 1.5. Let aES be a monomial ideal generated in degree two. We
denote with nbci the number of nbc-sets of cardinality i − 1. Then for the
Betti number of a we have the inequality βi ≤ nbci.

1.3. Resolution of Stanley Reisner Ideals of a Partially Ordered Set.
In this section we give a (not acyclic) matching on the subcomplex Tnbc in
the case where a = J∆(P ) is the Stanley Reisner ideal of the order complex
of a partially ordered set (P,≺). In this case a is generated in degree two by
monomials xixj where {i, j} is an antichain in P . For simplification we assume
that P = [p] = {1, . . . , p} and the order ≺ preserves the natural order, i.e.
i ≺ j ⇒ i < j, where < is the natural order on the natural numbers N. Then
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the minimal monomial generating system MinGen(a) of the Stanley Reisner
ideal is given by

MinGen(a) :=
{
xixj

∣∣∣ i < j and i 6≺ j
}
.

Since MinGen(a) consists of monomials of degree two, we can work on the sub-
complex Tnbc of the Taylor resolution, where Tnbc is constructed with respect
to the lexicographic order such that x1 � x2 � . . . � xn.

First we introduce some notation:

Definition 1.6. A subset I ⊂ MinGen(a) is called a sting-chain if there exists
a sequence of monomials xi1xi2 , xi2xi3 , . . . , xiν−1xiν ∈ I with

(1) 1 ≤ i1 < . . . < iν ≤ n,

(2) i1 = min{j with xj divides lcm(mI)},

(3) iν = max{j with xj divides lcm(mI)},

(4) for all monomials xrxs ∈ I with r < s exists an index 1 ≤ j ≤ ν − 1
such that either
(a) xrxs = xijxij+1 or
(b) r = ij , s < ij+1, and xsxij+1 6∈ I or
(c) r > ij , s = ij+1, and ij ≺ r (i.e. xijxr 6∈ a).

Let B be the set of all chains of sting-chains:

B :=

{
(I1, . . . , Il)

∣∣∣∣
Ij sting-chain for all j = 1, . . . , l and

max(Ij) < min(Ij+1) for all j = 1, . . . , l − 1

}
,

where
max(I) := max{i | xi divides lcm(mI)}
min(I) := min{i | xi divides lcm(mI)}.

Note that a sting-chain is not necessarily an nbc-set. For example, the set
{xixl, xνxl, xjxl} with i < ν < j < l is a sting-chain, if xixν , xixj 6∈ a, but it
contains a broken circuit if xνxj ∈ a. But with an identification of those sets
we get the following Proposition:

Proposition 1.7. There exists a matching M2 (not necessary acyclic) on the
complex Tnbc such that

(1) there exists a bijection between the sets I ∈ TM2
nbc

and the chains of
sting-chains I ∈ B,

(2) for I → I ′ ∈ M2 we have
(a) lcm(mI) = lcm(mI′) and
(b) cl(I) = cl(I ′) − 1 and |I| = |I ′| + 1.

Proof. For a set I ∈ Tnbc \ B let xixνxjxl be the maximal monomial with
respect to the lexicographic order such that i < ν < j < l and at least one of
the following conditions is satisfied:

(1) xixj, xνxl ∈ I and xixl 6∈ I,

(2) xixl, xνxj ∈ I.

Case xixj , xνxl ∈ I: Because of the transitivity of the order ≺ on P we have
either xixν ∈ a or xνxj ∈ a.
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. Assume xixν ∈ a. Since xixνxjxl is the maximal monomial satisfying
one of the conditions above, it follows that if I ∪ {xixν} contains a
broken circuit, then I \ {xixν} contains a broken circuit as well. We
set(

(I \ {xixν})
·
∪ J

)
→
(
(I ∪ {xixν})

·
∪ J

)
∈ M2

for all J with gcd(lcm(I), lcm(J)) = 1.

. If xixν 6∈ a, then xνxj ∈ a. Again, we have that if I ∪ {xνxj} contains
a broken circuit, then I \ {xνxj} contains a broken circuit as well. In
this case we set(
(I \ {xνxj})

·
∪ J

)
→
(
(I ∪ {xνxj})

·
∪ J

)
∈ M2

for all J with gcd(lcm(I), lcm(J)) = 1.

Case xixl, xνxj ∈ I: Again, the transitivity implies xixν ∈ a or xνxl ∈ a and
xixj ∈ a or xjxl ∈ a:

. Assume xixν ∈ a. As above we have that if I ∪ {xixν} contains a
broken circuit, then I \ {xixν} contains a broken circuit as well. We
set(

(I \ {xixν})
·
∪ J

)
→
(
(I ∪ {xixν})

·
∪ J

)
∈ M2

for all J with gcd(lcm(I), lcm(J)) = 1.

. If xixν 6∈ a, then xνxl ∈ a. Assume xixj ∈ a. Then again we have that
if I ∪ {xixj} contains a broken circuit, then I \ {xixj} also contains a
broken circuit. In this case we set(

(I ∪ {xixj})
·
∪ J

)
→
(
(I \ {xixj})

·
∪ J

)
∈ M2

for all J with gcd(lcm(I), lcm(J)) = 1.

. Now assume xixν , xixj 6∈ a, then xνxl, xjxl ∈ a. Assume further that
xjxl 6∈ I. Then we set
(
(I ∪ {xνxl})

·
∪ J

)
→
(
(I \ {xνxl})

·
∪ J

)
∈ M2

for all J with gcd(lcm(I), lcm(J)) = 1.

. Finally, we have to discuss the case xixν , xixj 6∈ a and xjxl ∈ I. Then
the set I cannot be matched because adding xνxl would give a circuit
and by removing xjxl we get a set which is already matched. We
identify these sets with the sets containing xixl, xνxl, xjxl instead of
xixl, xνxj , xjxl. Therefore, this case gives us all sets which are sting-
chains but not nbc-sets.

With the identification we can say that an nbc-set I 6∈ M satisfies the
following two properties, which are exactly the properties of I ∈ B:

(1) If there exist i < ν < j < l such that xixj , xνxl ∈ I, then xixl ∈ I and
xνxj, xjxl 6∈ I and xixν 6∈ a.

(2) There exist no i < ν < j < l such that xixl, xνxj ∈ I.

�
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Note that TM2 is not a resolution (not even a complex), but we need it
because of the following corollary, which will be important in Paragraph 3 of
Chapter 6.

Corollary 1.8. Let a be a monomial ideal generated in degree two and M =
M1 ∪ M2 a standard matching on the Taylor resolution. With the notation
above we get:

(1.1)

∑

I 6∈M1

(−1)cl(I)mIt
cl(I)+|I| =

∑

I 6∈M

(−1)cl(I)mIt
cl(I)+|I|

=
∑

I nbc-set

(−1)cl(I)mIt
cl(I)+|I|.

If a is the Stanley Reisner ideal of the order complex of a partially ordered set
P , then

(1.2) (1.1) =
∑

I 6∈B

(−1)cl(I)mIt
cl(I)+|I|.

Proof. Lemma 1.3 implies the first equality and the second equality follows
by Proposition 1.4. If a is the Stanley Reisner ideal of the order complex of a
partially ordered set P , then Proposition 1.7 together with the proof of Lemma
1.3 imply Equation (1.2). �

1.4. The gcd-Condition. In this section we introduce the gcd-condition. Let
aES be a monomial ideal in the commutative polynomial ring and MinGen(a)
a minimal monomial generating system.

Definition 1.9 (gcd-condition). (1) We say that a satisfies the gcd-con-
dition, if for any two monomials m,n ∈ MinGen(a) with gcd(m,n) = 1
there exists a monomial m,n 6= u ∈ MinGen(a) with u | lcm(m,n);

(2) We say that a satisfies the strong gcd-condition if there exists a linear
order ≺ on MinGen(a) such that for any two monomials m ≺ n ∈
MinGen(a) with gcd(m,n) = 1 there exists a monomial m,n 6= u ∈
MinGen(a) with m ≺ u and u | lcm(m,n).

Example 1.10. Let a = 〈x1x2, x2x3, x3x4, x4x5, x1x5〉 be the Stanley Reisner
ideal of the triangulation of the 5-gon. Then a satisfies the gcd-condition, but
not the strong gcd-condition.

Proposition 1.11. Let a be a monomial ideal which satisfies the strong gcd-
condition. Then there exists an acyclic matching M on the Taylor resolution
such that for all MinGen(a) ⊃ I 6∈ M we have cl(I) = 1. We call the resulting
Morse complex Tgcd.

Proof. Assume MinGen(a) = {m1 ≺ m2 ≺ . . . ≺ ml}. We start with m1. Let
mi0 ∈ MinGen(a) be the smallest monomial such that gcd(m1,mi0) = 1. Then
there exists a monomial m1 ≺ u0 ∈ MinGen(a) with u0 | lcm(m1,mi0). Then
we define

M0 :=
{(

{m1,mi0 , u0} ∪ I
)
→
(
{m1,mi0} ∪ I

) ∣∣∣ I ⊂ MinGen(a)
}
.

It is clear that this is an acyclic matching and that the Morse complex TM0
• is

a subcomplex of the Taylor resolution.
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Now let mi1 be the smallest monomial 6= mi0 such that gcd(m1,mi1) = 1. Then
there exists a monomial m1 ≺ u1 ∈ MinGen(a) with u1 | lcm(m1,mi1) and we
define

M1 :=
{(

{m1,mi1 , u1} ∪ I
)
→
(
{m1,mi1} ∪ I

) ∣∣∣ I ⊂ MinGen(a)
}
.

Again, it is straightforward to prove that M1 is an acyclic matching on TM0

and that the Morse complex is a subcomplex of the Taylor resolution. We repeat
this process for all m1 ≺ mi with gcd(m1,mi) = 1 and we reach a subcomplex
TMm1 , Mm1 =

⋃
i Mi, of the Taylor resolution which satisfies the following

condition: For all remaining subsets I ⊂ MinGen(a) \Mm1 we have:

(1) m1 ∈ I ⇒ cl(I) = 1,

(2) m1 6∈ I ⇒ cl(I) ≥ 1.

We repeat now this process with the monomial m2. Here we have to guar-
antee that for a set {m2,mi} ∪ I the corresponding set {m2,mi, ui} ∪ I, with
gcd(m2,mi) = 1 and m2 ≺ ui and ui | lcm(m2,mi), is not matched by the first
sequence Mm1 . Since all sets J ∈ Mm1 satisfy m1 ∈ J , this would be the case
if either ui = m1 or m1 ∈ I. The first case is impossible since m1 ≺ m2 ≺ ui.
In second case we have cl

(
{m2,mi} ∪ I

)
= 1. We define:

M2 :=

{(
{m2,mi, u2} ∪ I

)
→
(
{m2,mi} ∪ I

) ∣∣∣∣
I ⊂ MinGen(a) \Mm1

and cl
(
{m2,mi} ∪ I

)
≥ 2

}
.

Condition (1) implies then that M2 is a well defined sequence of acyclic match-
ings. Since we make this restriction, the resulting Morse complex is not anymore
a subcomplex of the Taylor resolution, but we have still the following fact: For
all remaining subsets I ⊂ MinGen(a) \

(
Mm1 ∪Mm2

)
we have:

(1) m1 ∈ I ⇒ cl(I) = 1,

(2) m2 ∈ I ⇒ cl(I) = 1,

(3) m1,m2 6∈ I ⇒ cl(I) ≥ 1.

We apply this process to all monomials. Then we finally reach a complex with
the desired properties. �

2. Algebraic Discrete Morse Theory for the Poset Resolution

In this paragraph we consider a monomial ideal a = 〈B〉ES = k[x1, . . . , xn] in
the commutative polynomial ring generated by a monomial ordered family B.
In the first section we prove that the poset resolution can be obtained by an
acyclic matching from the Taylor resolution. Then we develop several acyclic
matchings on the poset resolution in order to minimize it. We define two algo-
rithms which produce from the poset resolution a rather small - and sometimes
minimal - cellular resolution. The quality of these resolutions depends strongly
on the underlying partially ordered set. We discuss the properties of a ”good”
underlying partially ordered set in the second subsection. We consider the spe-
cial case where B is the set of lcm’s of a minimal monomial generating system
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and the underlying poset is the lcm-lattice ordered by divisibility. We show
how one can optimize the lcm-lattice in order to get better results.

2.1. ADMT for the Poset Resolution. Let B be a monomial ordered fam-
ily, P = (P,≺) the partially ordered set corresponding to B, and ∆(P ) the
order complex of P . Recall the poset resolution from Chapter 2.2.2:
We define the complex C(P )• as follows:

(1) For i ≥ 0, let Ci be the free S-module with basis eσ indexed by σ ∈
∆(P ) with |σ| = i,

(2) the differential ∂i : Ci → Ci−1 is given by

∂i(eσ) =
∑

τ∈σ
|τ |=i−1

ε(σ, τ)
mσ

mτ
eτ ,

where ε(σ, τ) = ±1 depends on the orientation of ∆(P ).

Proposition 2.1 (see [39]). The complex C(P )• is a free cellular resolution of
S/〈B〉 as an S-module, called the poset resolution.

We want to show that the complex C(P )• can be obtained from the Taylor
resolution by an acyclic matching. This will give a new proof of Proposition
2.1. In order to do so, we have to introduce some notation for partially ordered
sets:

For any partially ordered set P = (P,≺) we have a rank-function defined
by

rank(m) := max
{
j ≥ 0

∣∣∣ there exist n1, . . . , nj ∈ P with n1 ≺ . . . ≺ nj ≺ m
}
.

We write Pi ⊂ P for the set of elements of rank i.

Furthermore, we need a total order on the powerset P(P ) of P . In order to
define this, we first define a total order on the powerset P(Pi) of Pi:
For this we fix bijections

(2.1) gi : Pi → [|Pi|].

To each U ⊂ Pi we associate a monomial mU :=
∏

j∈gi(U) xj in the polynomial

ring k[x1, . . . , x|Pi|]. Set m∅ := 1. For two subsets Ui, Vi ⊂ Pi we say that

Ui ≺Pi
Vi ⇔ mUi

<deg lex mVi
.

It is clear that ≺Pi
is a total order on P(Pi). We use this order to define a total

order on the powerset of P : For two subsets U = ]iU ∩ Pi and V = ]iV ∩ Pi

we say that

U ≺P V :⇔ U ∩ Pj ≺Pj
V ∩ Pj where j = min

{
i ≥ 0

∣∣∣ U ∩ Pi 6= V ∩ Pi},

Since ≺Pi
is a total order for all i, it is clear that ≺P is a total order as well.

The fact that we have a total order on the powerset of P implies that there
exists a unique maximal (with respect to ≺P) antichain AU in any subset U ⊂ P ,
namely

AU := max
≺P

{
V ⊂ U

∣∣∣∣
V antichain of P with respect
to the order of P and |V | ≥ 2

}
.
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Note that this definition of AU implies the fact that U is a chain if and only if
AU is empty.

From now on let B be a monomial ordered family and P = (P,≺), with
f : P → B, the corresponding partial order. In this case, we assume that the
bijections (2.1) preserve the lexicographic order:

gi(w) < gi(w
′) ⇐⇒ f(w) <lex f(w′) for all w,w′ ∈ Pi.

Lemma 2.2. For any nonchain U ⊂ P there exists an element wU ∈ P such
that

(1) wU � v for all v ∈ AU and

(2) f(wU) divides lcm
(
f(AU )

)
.

Let wAU
∈ P be the minimum, with respect to the lexicographic order on the

corresponding elements in B, of all wU .

Proof. The proof is by induction on the cardinality of AU : For |AU | = 2
it is the definition of a monomial ordered family. Assume |AU | ≥ 3. Fix any
element v0 ∈ AU . By induction there exists an element w̃ ∈ P with w̃ � v for all
v ∈ AU \ {v0} and w̃ | lcm(AU \ {v0}). By the definition of a monomial ordered
family there exists an element wU ∈ P with wU > v0, w̃ and wU | lcm(v0, w̃).
Clearly, wU satisfies the desired properties. �

We are now in position to prove Proposition 2.1:

Proof of Proposition 2.1. Let T• be the Taylor resolution of the ideal 〈B〉.
Note that B does not have to be a minimal generating system. The Taylor
resolution is taken over the set B and is supported by the simplicial complex
∆(B). We identify the basis of T• with the subsets U ⊂ P . We then define the
acyclic matching on the Taylor resolution by

M :=
{(
U ∪ {wAU

}
)
→
(
U \ {wAU

)
}
∣∣∣ U ⊂ P such that AU 6= ∅

}
.

Since f(wAU
) divides lcm

(
f(AU )

)
, we have

lcm
(
f(U ∪ {wAU

)
)

= lcm
(
f(U \ {wAU

})
)
,

which provides invertibility. For the matching property it is sufficient to prove
that for a subset U in P with ∅ 6= AU we have AU∪{wAU

} = AU\{wAU
}.

Let B be the maximal antichain of U ∪ {wAU
}. If wAU

6∈ B, we have B = AU .
Assume now that wAU

lies in B: It follows that B ∩ AU = ∅. Since AU is also
an antichain of U ∪ {wAU

}, the maximality of B implies B �P AU . Therefore,
there exists an index i such that the following holds:

(1) B ∩ Pi 6= ∅,

(2) AU ∩ Pj = ∅ and B ∩ Pj = ∅ for all j < i,

(3) Bi �Pi
Ai,

(4) wAU
6∈ B ∩ Pi.

Let b be an element of B ∩ Pi. Since {b, wAU
} is an antichain and wAU

� v
for all v ∈ AU , it follows that C := {b} ∪ AU is an antichain of U ∪ {wAU

}
and an antichain of U \ {wAU

}. By construction we have C �P AU , which is a
contradiction to the maximality of AU .
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Finally we have to prove acyclicity: Let σn := Un ∪ {wAUn
} and τn := Un,

with wAUn
6∈ Un. Assume there exists a directed cycle in the Morse graph GM:

σn → τ1 → σ1 · · · τn−1 → σn−1 → τn → σn

For simplification we write Ai instead of AUi
. It follows that

(2.2) τ1 = U1 = σn \ {u} =
(
Un ∪ {wAn}

)
\ {u}.

(Case 1) u 6∈ An. Then clearly A1 = An, and the minimality of wAn implies
wAn = wA1 . Since wA1 6∈ U1, Equation (2.2) implies u = wAn = wA1

and we have σ1 = σn and τ1 = τn.

(Case 2) u ∈ An. Assume that wAn 6= wA1 (otherwise go to (Case 1)). It follows

that σ1 =
(
Un∪{wAn , wA1}

)
\{u}. Since we have a cycle, there exists

a position i with σi \ τi = {u}. It follows u � v for all v ∈ Ai and
u| lcm

(
f(Ai)

)
. Since An is the maximal antichain, it follows u 6∈ An,

which is a contradiction.

Note that in the Taylor complex the differential maps a subset U ∈ P which
is a chain only to chains U ′ ∈ P . Therefore, the Morse differential equals the
original differential, and we are done. �

Now we apply ADMT again to this complex in order to minimize it. For
simplification we identify the monomial set B with the corresponding poset
P = (P,≺) and write m ∈ P for a monomial m ∈ B. We denote with ≺t any
linear extension of the order ≺. We introduce the following definition:

Definition 2.3. A chain σ = m1 ≺ · · · ≺ mk ∈ P is called

(1) minimal at mi (or minimal at rank i) if
(a) mi divides lcm(σ \ {mi}) and
(b) for all monomials n ∈ P with mi−1 ≺ n ≺ mi+1 and n| lcm(σ \

{mi}) we have mi ≺t n,

(2) minimal if there exists 1 ≤ i ≤ k such that σ is minimal at rank i.

A monomial n is called minimal with respect to σ and the monomial mi+1 if

(1) mi| lcm(σ \ {mi}) and n| lcm(σ \ {mi}) and

(2) the chain σ[n/mi
] := m1 ≺ · · · ≺ mi−1 ≺ n ≺ mi+1 ≺ · · · ≺ mk is

minimal at rank i.

We define an acyclic matching Mi for i = 1, . . . , rank(P ):

Proposition 2.4. The set

Mi :=

{
σ → σ \ {mi}

∣∣∣∣
σ = m1 ≺ . . . ≺ mi ≺ . . . ≺ mk, i ≤ k ≤ rank(P ),

minimal at mi

}

is for all 1 ≤ i ≤ rank(P ) an acyclic matching. The Morse complex is cellular,
supported by a regular CW-complex, and for the remaining chains σ1 = m1 ≺
· · · ≺ mk we have

(1) σ is not minimal at mi,

(2) there exists no monomial n ∈ P with mi−1 ≺ n ≺ mi and n|lcm(σ).
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Proof. The invertibility follows from Definition 2.3. The minimality at mi

proves the matching property: Assume we have σ → σ \ {mi} ∈ Mi.

(Case 1) σ \ {mi} → σ \ {mi,mi+1} ∈ Mi. Then mi+1 is minimal with respect
to σ \ {mi} and mi+2. But since mi ≺ mi+1, it follows that σ \ {mi}
is not minimal at mi+1.

(Case 2) σ ∪ n → σ ∈ Mi. Then mi−1 ≺ n ≺ mi is minimal with respect to
σ ∪ n and mi. With analogous arguments we have that n is minimal
with respect to σ and mi+1. This is a contradiction to the minimality
of mi.

For the acyclicity we again assume a directed cycle in the kth homological
degree:

σ1 → τ1 → · · · → τn−1 → σn → τn → σ1,

with |σi| = k and |τi−1| = k − 1. Assume further that σ1 = m1 ≺ · · · ≺ mk,
τn = σ1 \ {mi} and τ1 = σ1 \ {mj}, j 6= i. It is obvious that the minimality of
mi and the fact that, by passing to a higher homological degree cell, the only
changing monomial is the monomial at the ith position imply that such a cycle
is not possible.

It is clear that the remaining chains satisfy the desired condition. Since
C•(P ) is supported by a regular CW-complex, the Morse complex is also sup-
ported by a CW-complex (see [4]). For the regularity of the CW-complex we
only have to prove that all coefficients of the Morse differential ∂M are ±1.
This follows, since there is a unique directed path from each chain to another
chain, which again follows by the minimality of the monomial mi and the fact
that, by passing to a higher homological degree cell, only the monomial at the
ith position changes. �

In order to give an explicit description of the Morse complex with respect
to Mi, we make the following definition:

Definition 2.5. A chain σ is called critical with respect to Mi if

(1) σ is not minimal at position i and

(2) there is no monomial n ∈ P with mi−1 ≺ n ≺ mi and n|lcm(σ).

Theorem 2.6. The Morse complex with respect to Mi is given by:

CMi
n :=

⊕

σ critical
|σ|=n

S σ

with the differential

dj(σ) :=





lcm(σ)
lcm(σ\{mj})

σ \ {mj} , σ \ {mj} critical

(−1)i+1
i+1∑

k=1
k 6=i

(−1)kdk(σ[n/mi
]) , j = i, mi| lcm(σ \ {mi}) and

n minimal w.r.t. σ and mi+1

0 , else,

(2.3) ∂n(σ) :=

n∑

j=1

(−1)j dj(σ).
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Here σ[n/mi
] denotes the chain σ \ {mi} ∪ {n}.

Proof. The critical chains are exactly the remaining basis elements after ap-
plying the acyclic matching Mi from Proposition 2.1. The differential coincides
with the definition of the Morse differential. �

Remark 2.7. Note that the second part of the definition of critical chains
(Definition 2.5) implies that redundant monomials in B are not critical 0-chains
with respect to M1. Therefore, the 0-chains critical with respect to the acyclic
matching M1 are in one-to-one correspondence with the minimal generating
system.

Clearly, in general the Morse complex with respect to Mi is still far away
from being minimal. We define two algorithms in order to get a resolution
which is close to the minimal resolution. We proceed as follows:

• If the underlying poset P has rank N , then apply the acyclic matching

Mi to the Morse complex C
M1∪...∪Mi−1
• for all i = 1, . . . , N . Here

we run into problems with the matching property. In order to keep
the matching property, we match in Mi only those chains which are
critical with respect to the matching M1 ∪ . . . ∪Mi−1.

• As in the first case, we apply the acyclic matchings iteratively, but we
slightly change the definition of the matchings Mi to

M′
i :=

{
σ → σ \ {mi}

∣∣∣ σ minimal at mi w.r.t. M1 ∪ . . . ∪Mi−1

}
.

Algorithm 1:
For a partially ordered set of rank N we define the acyclic matching as follows:

Mi :=

{
σ → σ \ {mi}

∣∣∣∣
σ minimal at mi

σ, σ \ {mi} critical w.r.t. M1 ∪ . . . ∪Mi−1

}
,

M := M1 ∪ . . . ∪MN .

Let σ = m1 ≺ . . . ≺ mn be minimal at mi. Then we want to match
σ → σ \ {mi}. Assume σ \ {mi} is matched by an acyclic matching Mj with
j < i. If σ \ {mi} is minimal at mj, then σ is also minimal at mj and therefore
not critical. If there exists a monomial mj−1 ≺ n ≺ mj such that

(
σ \ {mi}

)
∪

{n} →
(
σ\{mi}

)
∈ Mj , then it follows σ∪{n} → σ ∈ Mj . Thus, the matching

property holds.
Now assume there exists a monomial mi−1 ≺ n ≺ mi such that n is minimal
w.r.t. σ ∪ {n} and mi. In this case we want to match σ ∪ {n} → σ. Assume
σ ∪ {n} is already matched by an acyclic matching Mj with j < i.

(Case 1) j < i− 1 and σ ∪ {n} is minimal at mj. Then σ is also minimal at mj

and therefore matched by Mj.

(Case 2) There exists a monomial mj−1 ≺ u ≺ mj with σ ∪ {n, u} → σ ∪ {n} ∈
Mj. Then we have σ ∪ {u} → σ ∈ Mj.

In both cases the matching property holds. The only case where we get a
problem is if σ∪{n} is matched by the matching Mi−1 and σ∪{n} is minimal
at mi−1, hence mi−1 is minimal w.r.t. σ ∪ {n} and n.
These facts give rise to the following definition of critical chains:
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Definition 2.8. A chain σ = m1 ≺ · · · ≺ mk is called critical if

(1) σ is not minimal and

(2) for an index 1 ≤ i ≤ k − 1 and a monomial mi ≺ n ≺ mi+1 such that
σ ∪ {n} is minimal at n, we have σ ∪ {n} is minimal at mi.

We get the following resolution:

Theorem 2.9. The complex (CM
• , ∂) with

Cn =
⊕

σ critical
|σ|=n

S σ

with differential as defined in Equation (2.3) defines a free cellular resolution
of the ideal a := 〈 B 〉 which is supported by a regular CW-complex.

Proof. We only have to prove that the matching M defined above is a well
defined acyclic matching. The matching property as well as the invertibility is
given by definition. By Proposition 2.4 each matching Mi is acyclic.
We prove that M1 ∪ . . . ∪ Mi is acyclic for all i = 1, . . . , N . Consider the
following path:

σ1 → τ1 → σ2 → τ2 → . . .→ σn−1 → τn−1 → σn

with σj in homological degree k and τj in homological degree k − 1. We prove
the following fact:

(∗) For all j = 1, . . . , n we have:
If σj = m1 ≺ . . . ≺ mk, then there exists an index l such that ml

divides lcm
(
σj \ {ml}

)
and σj+1 = m1 ≺ . . . ≺ ml−1 ≺ u ≺ ml+1 ≺

. . . ≺ mk, where u is the smallest monomial between ml−1 and ml+1

dividing lcm(σj) and ml, u is an antichain in P with u ≺t ml.

Clearly, this proves acyclicity since by passing from the chain σ1 to the chain
τ1 we leave out one monomial m, which can never be inserted again along the
path. Therefore, we get σn 6= σ1.

In order to prove property (∗), we consider a step in the path.
Let σj := m1 ≺ . . . ≺ ml ≺ . . . ≺ mk and τj = m1 ≺ . . . ≺ ml−1 ≺ ml+1 ≺

. . . ≺ mk. By passing to the chain σj+1 we insert at position l̃ a monomial u.

Assume l̃ < l. In this case we can also insert the monomial u in the chain σj ,

which is impossible, since σj is matched with τj−1. Therefore, we get l̃ ≥ l.
Since we apply the matchings Mi inductively, we have to apply Ml. This means
that we insert a monomial u with ml−1 ≺ u ≺ ml+1 and u ≺t ml. If u ≺ ml,
then the chain σj is matched with σj ∪ {u}, which is impossible. Therefore,
{ml, u} is an antichain, and we are done. �

Algorithm 2:
This algorithm proceeds similar to Algorithm 1 but defines matchings M′

i with
respect to the Morse complex of the preceding matchings. We have to introduce
a new notion of minimal chains:

Definition 2.10. Let σ = m1 ≺ · · · ≺ mk ∈ ∆(P )M
′
<i be a chain in P and

∆(P )M
′
<i the set of critical chains with respect to M′

<i := M′
1 ∪ . . . ∪M′

i−1.
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(1) σ is called minimal at mi with respect to M′
<i if

(a) mi| lcm(σ \ {mi}) and
(b) for all n ∈ P with mi−1 ≺ n ≺ mi+1 and n| lcm(σ \ {mi}) and

σ[n/mi
] ∈ ∆(P )M

′
<i we have mi ≺t n.

(2) σ is called relatively minimal if there exists an index 1 ≤ i ≤ k such
that σ is minimal at mi w.r.t. M′

<i.

(3) A monomial n is called relatively minimal with respect to σ and mi+1

if
(a) mi| lcm(σ \ {mi}), n| lcm(σ \ {mi}) and

(b) σ[n/mi
] ∈ ∆(P )M

′
<i and

(c) σ[n/mi
] is minimal at n with respect to M′

<i.

We construct the following matching:

M′
i :=

{
σ → σ \ {mi}

∣∣∣ σ relatively minimal at mi

}

and set M′ := M′
1 ∪ . . . ∪ M′

N . By construction the matching property as
well as the invertibility is satisfied. In order to describe the critical chains, we
introduce the following definition:

Definition 2.11. A chain σ = m1 ≺ · · · ≺ mk is called relatively critical if

(1) σ is not relatively minimal and

(2) for an index 1 ≤ i ≤ k and a monomial mi ≺ n ≺ mi+1, n ∈ B such
that σ∪{n} is minimal at n w.r.t. M′

<i+1, we have σ∪{n} is minimal
at mi with respect to M′

<i.

With the same proof as for Theorem 2.9 we get

Theorem 2.12. The complex (CM′

• , ∂) defined by

Cn =
⊕

σ relatively critical
|σ|=n

S σ,

dj(σ) :=





lcm(σ)
lcm(σ\{mj})

σ \ {mj} , σ \ {mj} rel. critical

0 , σ \ {mj} rel. minimal

(−1)i+1
i+1∑

k=1
k 6=i

(−1)k dk(σ[n/mi
]) , j = i, mi| lcm(σ \ {mi}), and

n rel. min. w.r.t. σ and mi+1,

∂(σ) :=
n∑

j=1

(−1)j dj(σ)

is a free cellular resolution of the ideal a = 〈B〉 supported by a regular CW-
complex. �

The disadvantage of this resolution is that the relatively critical chains can-
not be calculated directly from the partially ordered set P . But the resolution
is much smaller than the resolution constructed by Algorithm 1.
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Example 2.13. Consider the Stanley Reisner ideal a of a triangulation of the
real projective plane:

a :=

〈
x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6,
x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6

〉

The computer algebra system “Macaulay2” [25] calculates the following Betti
numbers:

in characteristic 2: (1, 7, 15, 10, 1)
in characteristic 0: (0, 6, 15, 10, 1)

We choose as underlying partially ordered set the lcm-lattice ordered by divisi-
bility. As linear extension we take the opposite lexicographic order, i.e. m ≺ n
iff m �lex n. We get resolutions with the following ranks:

Algorithm 1: (3, 14, 20, 10, 1)
Algorithm 2: (2, 10, 17, 10, 1)

If we choose the lcm-lattice ordered by divisibility as underlying partially
ordered set, we can apply the following matching on the Morse complexes of
the algorithms above.

Since we have chosen the lcm-lattice, the multidegree of a chain is given by
its top element. Suppose we have in the resulting Morse complex two chains
σ, τ with the same top element such that σ maps to τ . Then it follows that
the coefficient is ±1. It is easy to see that in this situation the chain τ is non-
saturated, i.e. there exists a monomial n | lcm(τ) such that τ ∪ {n} is again a
chain.
Consider the Morse complex constructed by Algorithm 1 or 2. Assume σ is
a critical cell which is non-saturated and there exists no non-saturated chain
σ′ such that lcm(σ) = lcm(σ′). Then there exists a chain τ such that τ → σ,
with coefficient ±1. Let τσ be the smallest (w.r.t ≺) minimal chain τ with the
desired properties and define

M′′ := {τσ → σ}.

We do this for all non-saturated chains σ such that there is no other non-
saturated chain σ′ with lcm(σ) = lcm(σ′). This defines an acyclic matching
since for each multidegree α we have at most one matched pair τσ → σ with
deg(σ) = α.
Note that the resulting Morse complex is still cellular.

Example 2.14 (Continuation of Example 2.13). If we apply this matching to
the Morse complex constructed by Algorithm 2, we get a resolution with ranks
(2, 8, 15, 10, 1).

Remark 2.15. (1) Both algorithms construct cellular free resolutions of
the ideal a which are supported by regular CW complexes. Since
we start in both cases with the acyclic matching M1, the 0-cells of
the CW complexes are in one-to-one correspondence with the minimal
monomial generating system.

(2) The quality of the resolutions constructed by Algorithm 1 or 2 depends
on the chosen underlying partially ordered set. If aES is any mono-
mial ideal with minimal monomial generating system MinGen(a), then
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one can always take the lcm-lattice ordered by divisibility. In this case
the poset resolution coincides with the lcm-resolution introduced by
Batzies [4].
Here our algorithms produce resolutions “close” to the minimal reso-
lution.

If one chooses for P a totally ordered set (i.e. one chain), then the
poset resolution coincides with the Taylor resolution. In this case the
quality of the resolution depends on the position of the monomials in
the chain. For example, if a is generated by monomials m1,m2,m3,m4,
then the algorithms on P := {m1 ≺ m2 ≺ m3 ≺ m4} might give better
resolutions than on P ′ := {m2 ≺ m4 ≺ m1 ≺ m3}.

(3) The poset resolution can be slightly generalized to the following reso-
lution:

Let P be a partially ordered set and B ⊂ S a set of monomials
such that there is a bijection f : P → B. Let ∆ := ∆(P ) be the order
complex of P . Define

∆≤α :=
{
σ = p1 ≺ . . . ≺ pr

∣∣∣ deg
(
f(pi)

)
≤ α, i = 1, . . . , r

}
.

By [4] we have that ∆ supports a cellular resolution of the ideal 〈B〉ES
if and only if Hi(∆≤α) = 0 for all i ≥ 1 and α ∈ Nn.
On this resolution we can also apply our algorithm.

We will discuss the question of a “good” underlying partially ordered set
for the general case in the next section.

2.2. What is a “good” underlying partially ordered set P ?
The quality of the resolutions constructed by our algorithms depends heavily
on the chosen partial order on the generating set B and its linear extension.
Clearly, the best result would be a minimal resolution.

From now on we consider a partially ordered set P such that for any chain
σ = m1 ≺ . . . ≺ mk we have lcm(σ) 6= lcm(σ \ {mk}). For example, the
lcm-lattice satisfies this property.

In this case, Algorithm 1 constructs a minimal resolution if all critical chains
are saturated. We introduce the following property:

Definition 2.16. We say that a partially ordered set (P,≺) with linear exten-
sion ≺t satisfies property (∗) if for any three monomials m1 ≺ m2 ≺ m3 ∈ P
satisfying

m1 ≺ m3 not minimal,
m1 ≺ m2 ≺ m3 minimal at m2

we have m1 ≺ m2 ≺ m3 not minimal at m1.

Proposition 2.17. Assume the underlying partially ordered set P satisfies
property (∗). Then the Morse complex constructed by Algorithm 1 is a min-
imal free resolution of the ideal a = 〈B〉.

Proof. Property (∗) implies that all critical chains are saturated. Therefore, a
critical chain of length j has a top element different from that of a critical chain
of length j − 1. Since the multidegree is given by the top element, it follows
that the resolution is minimal. �
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Remark 2.18. In the cases where the Taylor resolution is minimal or the Scarf
complex is a resolution, property (∗) implies that Algorithm 1, applied to the
poset resolution with respect to the lcm-lattice, constructs a minimal resolution.

The following example shows the dependence on the linear extension:

Example 2.19. Consider the ideal a := 〈x2x3x6, x2x4x5, x2x5x6〉. Let P be
the lcm-lattice. We choose as linear extension the lexicographic order. If we
write elements of the same rank in increasing order from left to right, we get
the following Hasse diagram:

x2x3x4x5x6

vvnnnnnnnnnnnn

��
x2x4x5x6

�� ((PPPPPPPPPPPP
x2x3x5x6

vvnnnnnnnnnnnn

''OOOOOOOOOOO

x2x5x6 x2x4x5 x2x3x6

In this case, Algorithm 1 constructs a minimal resolution. But if we take for
the linear extension the opposite order, we get the following Hasse diagram:

x2x3x4x5x6

vvnnnnnnnnnnnn

��
x2x3x5x6

�� ++WWWWWWWWWWWWWWWWWWWWWWW
x2x4x5x6

�� ''OOOOOOOOOOO

x2x3x6 x2x4x5 x2x5x6

In this case, the chain x2x3x4x5x6 � x2x4x5 is critical and we have

x2x3x4x5x6 � x2x4x5x6 � x2x5x6
±1
→ x2x3x4x5x6 � x2x4x5.

Therefore, the resolution constructed by Algorithm 1 is not minimal.

By removing superfluous elements in P we get the next improvement of the
results of our algorithms:

Definition 2.20. Let P be the underlying partially ordered set and u ∈ P a
redundant monomial, i.e. 〈P 〉 = 〈P \ {u}〉. If

Hi

(
∆≤α

(
P \ {u}

)
, k
)

= 0

for all i ≥ 1 and all α ∈ Nn, then we pass over to P := P \ {u}. We repeat this
for all redundant elements in P .
Note that the order of the removed elements might be important. In order to
define a unique reduced poset Pr, we always remove the largest (with respect to
the linear extension) redundant monomial satisfying the above properties.

By Remark 2.15 (3) we can apply our algorithms to the poset resolution
with respect to the reduced poset Pr.

Example 2.21. Consider the Stanley Reisner ideal of the 5-gon

a := 〈x1x3, x1x4, x2x4, x2x5, x3x5〉.
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If we take the reduced lcm-lattice, with linear extension given by extending the
rank function by ordering each rank from left to right,

x1x2x3x4x5

sshhhhhhhhhhhhhhhhhhhh

wwooooooooooo

�� ''OOOOOOOOOOO

++VVVVVVVVVVVVVVVVVVVV

x1x3x5

�� --[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ x1x3x4

xxrrrrrrrrrr

��

x1x2x4

wwooooooooooo

��

x2x4x5

wwooooooooooo

��

x2x3x5

xxrrrrrrrrrr

��
x1x3 x1x4 x2x4 x2x5 x3x5

then Algorithm 1 constructs a minimal resolution.

In general, the problem of finding a “good” underlying partially ordered set
with a ”good” linear extension is not easier than finding a minimal resolution.
But the advantage of our algorithms is that they construct cellular resolutions.

We think that this gives a new approach for the proof of the conjecture that
any monomial ideal admits a minimal cellular resolution:

Given a monomial ideal aES with minimal generating system MinGen(a).

. Find a partial order on P := MinGen(a) satisfying the property (OM)
(i.e. for any two monomials m,n ∈ P there exists a monomial w ∈ P
such that w � m,n and w| lcm(m,n)).
If such an order does not exist, add redundant monomials to P until
there exists an order ≺ satisfying (OM).

. Pass to the reduced partially ordered set Pr. Note that in the definition
of the reduced partially ordered set Pr the characteristic of k plays a
role.

. Find a linear extension such that P satisfies property (∗).

Then the Morse complex constructed by Algorithm 1 is a minimal cellular
resolution of a.

We think that there is a large field for further research in this direction. For
example:

. For which classes of ideals does there exist an underlying partially or-
dered set P such that Algorithm 1 or 2 constructs a minimal resolution
?

. Does there exist further criteria on the partially ordered set P , such
that Algorithm 1 or 2 constructs a minimal resolution ?

. Given two monomial ideals aES and bES with underlying partially
ordered sets Pa and Pb, does there exist a poset operation depending
on Pa and Pb which constructs a “good” underlying partially ordered
set P for
. the sum a + bES ?
. the intersection a ∩ bES ?
. the product ideal 〈MinGen(a) · MinGen(b)〉E S ?
. the union 〈MinGen(a) ∪ MinGen(b)〉E S ?
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3. Minimal Resolution and Regularity of Principal (p-)Borel
Fixed Ideals

In this paragraph we develop minimal resolutions for principal Borel and p-
Borel fixed ideals. The resolutions are derived with a single acyclic matching
from the Taylor resolution and therefore supported by a CW-complex (see [4]).
In addition we calculate the regularity of these type of ideals.

3.1. Cellular Minimal Resolution for Principal Borel Fixed Ideals.
Throughout this paragraph let S := k[x1, . . . , xn] be the commutative ring
of polynomials and aES a monomial ideal. In this paragraph we develop a
minimal cellular resolution for principal Borel fixed ideals. A minimal resolution
and the regularity is known for general Borel fixed ideals (see for example [19]).
Even a cellular minimal resolution is known (the Lyubeznik resolution is in
this case a minimal cellular resolution [5]). We give another minimal cellular
resolution for this type of ideals, which is a generalization of the hypersimplex
resolution of powers of the maximal homogeneous ideal developed by Batzies
[4].

Definition 3.1. A monomial ideal aES is called Borel fixed, or stable, if for
any monomial m ∈ a and any xi | m we have

(3.1) Sji(m) =
xj m

xi
∈ a for all j < i.

Remark 3.2. For a Borel fixed ideal aES there exists a unique set G :=
{m1, . . . ,ml} of monomials such that G is a minimal Borel-generating System
of the ideal a, in the sense that any monomial m ∈ a has a decomposition
m = u v such that v is constructed from a monomial mr in G by iterative
applications of rule (3.1), i.e. there exist indices i1, . . . , il and j1, . . . , jl with
jk < ik for k = 1, . . . , l such that v = Sj1i1(. . . (Sjlil(mr)) . . .). The minimality
of G requires that the ideal a′ Borel-generated by a proper subset G ′ of G is a
proper subideal of a.
We call G the Borel-generating system of a.

Definition 3.3. A Borel fixed ideal aES is called principal Borel fixed if the
Borel-generating system consists of one monomial, i.e. G = {m} for m ∈ S.

Lemma 3.4. Let aES be a principal Borel fixed ideal with G := {xi1
1 · · · xin

n }.
Then

a =
n∏

j=1

Ij

where

Ij :=

{
〈x1, . . . , xj〉

ij , ij > 0
1 , ij = 0.

Proof. The lemma is a direct consequence of Remark 3.2. �

We now give a generalization of the hypersimplex resolution introduced
by Batzies [4]. This resolution will be used to construct a minimal cellular
resolution for principal Borel fixed ideals.

We first recall the definition of a hypersimplicial complex from [4]:
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Definition 3.5 (see [4]). Let Cn
d be the polytopal CW-complex with

∆n := n · ∆d−1 = {(y1, . . . , yd) ∈ Rd |
d∑

i=1

yi = n, yi ≥ 0, i = 1, . . . , d}

as underlying space and CW-complex structure induced by intersection with
the cubical CW-complex structure on Rd given by the integer lattice Zd. That
is the closed cells of Cn

d are given by all hypersimplices

Cα,J := conv


α+

∑

j∈J

εjej

∣∣∣∣∣∣
εj ∈ {0, 1},

∑

j∈J

εj = n− |α|




with α ∈ Nd, J ⊂ {1, . . . , d}, |α| =
∑d

i=1 αiei the ith unit vector in Rd, either
subject to the conditions |α| = n and J = ∅ or the condition 1 ≤ n−|α| ≤ |J |−1.
The CW-complex is multigraded by setting lcm(Cα,J) := α+

∑
j∈J ej. We refer

to Cn
d as the hypersimplicial complex.

Example 3.6. Consider the ideal 〈x1, x2〉
2 = 〈x2

1, x1x2, x
2
2〉. The hypersimpli-

cial complex consists of the following cells:

C(2,0),∅ |α| = 2, J = ∅
C(1,1),∅ |α| = 2, J = ∅
C(0,2),∅ |α| = 2, J = ∅

C(1,0),{1,2} 1 ≤ 2 − |α| ≤ |J | − 1
C(0,1),{1,2} 1 ≤ 2 − |α| ≤ |J | − 1

It is easy to see that in this case the hypersimplicial complex defines a minimal
free resolution of the ideal 〈x1, x2〉

2.

The unit vectors ei, i = 1, . . . , n, of Rn induce an orientation on the hy-
persimplicies by setting e1 < . . . < en. We call this orientation the canonical
orientation.

Lemma 3.7 (see [4]). Considering canonical orientations of these hypersim-
plices and denoting J = {j0 < . . . < jr}, Jν := J \ {jν} the differential of Cn

d is
given by

∂Cα,J :=
∑r

ν=0(−1)ν(Cα,Jν − Cα+ejν ,Jν ) if 2 ≤ n− |α| ≤ |J | − 2,

∂Cα,J :=
∑r

ν=0(−1)νCα,Jν if 1 = n− |α| ≤ |J | − 2,

∂Cα,J :=
∑r

ν=0(−1)ν+1Cα+ejν ,Jν if 2 ≤ n− |α| = |J | − 1,

∂Cα,{j0,j1} := Cα+ej1
,∅ − Cα+ej0

,∅ if 1 = n− |α|,

∂Cα,∅ = 0 if |α| = n.

Proposition 3.8 (see [4]). Cn
d defines a multigraded cellular free resolution of

〈x1, . . . , xd〉
n. �

Now consider the Borel fixed ideal

a := 〈x1, . . . , xd1〉
a1 · · · 〈x1, . . . , xdk

〉ak ES
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with d1 < . . . < dk and aj ∈ N \ {0}. We set for all j = 1, . . . , dk

βj :=

k∑

l=1
dl≥j

al.

We consider the subcomplex of the hypersimplicial complex C a1+...+ak

dk
consist-

ing of the hypersimplices Cα,J satisfying one of the following conditions:

(1) |α| = a1 + . . . + ak, J = ∅, and
∑dk

j=i αj ≤ βi for all i = 1, . . . , dk,

(2) 1 ≤ a1 + . . .+ ak − |α| ≤ |J | − 1 and for i = 1, . . . , dk we have

dk∑

j=i

γj ≤ βi

where γ = α+
∑

j∈J ej .

We denote this subcomplex with SCβ1

dk
.

Lemma 3.9. The complex SCβ1

dk
with the differential inherited from the hyper-

simplicial complex Cβ1

dk
is a subcomplex of Cβ1

dk
.

Proof. It is easy to see that if Cα,J is a hypersimplex satisfying Condition
(1) or Condition (2), then any face of Cα,J satisfies one of the Conditions (1),
(2). �

We want to prove that the subcomplex SCβ1

dk
defines a cellular resolution

for the ideal a := 〈x1, . . . , xd1〉
a1 · · · 〈x1, . . . , xdk

〉ak ES. In order to do so, we
define the following intersection of halfspaces

H≤β :=



(y1, . . . , ydk

) ∈ Rdk

∣∣∣∣∣∣

dk∑

j=i

yj ≤ βi, i = 1, . . . , dk



 .

Clearly, every hypersimplex Cα,J of the subcomplex SCβ1

dk
lies in H≤β. Further-

more, it is easy to see that no other hypersimplex Cα,J of the complex Cβ1

dk
lies

in H≤β. Therefore, we have

SCβ1

dk
= Cβ1

dk
∩H≤β.

We are now in position to prove the following proposition:

Proposition 3.10. The subcomplex SCβ1

dk
defines a multigraded cellular free

resolution of

a = 〈x1, . . . , xd1〉
a1〈x1, . . . , xd2〉

a2 · · · 〈x1, . . . , xdk
〉ak .

Proof. First we calculate the zero-cells. These cells are given by

Cα,∅ = {α}

satisfying
∑dk

j=i αj ≤ βi for all i = 1, . . . , dk. Clearly, the vectors α satisfying
these properties are in one-to-one correspondence with the minimal generators
of a.
By Proposition 2.2.3 of [5], SCβ1

dk
= Cβ1

dk
∩H≤β supports a cellular resolution of
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a if and only if Hi

((
Cβ1

dk
∩H≤β

)
≤γ
, k
)

= 0 for all i ≥ 1 and γ ∈ Rdk .

Note that

(Cβ1

dk
)≤γ = ∆n ∩

{
(y1, . . . , ydk

) ∈ Rdk | yi ≤ γi, i = 1, . . . , dk

}

is contractible or empty for all γ ∈ Zdk (see [4]). Furthermore, (Cβ1

dk
)≤γ is

convex. Therefore, the intersection of (Cβ1

dk
)≤γ with the convex set H≤β does

not change homology. It follows

Hi

((
SCβ1

dk

)
≤γ

)
= 0 for all γ ∈ Rdk .

Proposition 2.2.3 of [5] implies the assertion. �

Using Formans theory, Batzies defined in [4] a Morse-matching for the com-
plex Cn

d such that the resulting Morse complex is a minimal cellular multigraded
resolution of 〈x1, . . . , xd〉

n (see Proposition 4.3.1 of [4]). The acyclic matching
M given in [4] is defined by

(3.2) Cα,J → Cα+emax J ,J\{max J} ∈ M

for all α ∈ Ndκ , J ⊂ [dκ], such that 2 ≤ n−|α| ≤ |J |−1 and max J ≥ maxα :=
max{i ∈ [dκ] | αi 6= 0}.

From the definition of SCβ1

dk
it follows that if Cα,J (resp. Cα+emax J ,J\{max J})

lies in SCβ1

dk
, then Cα+emax J ,J\{max J} (resp. Cα,J) lies in SCβ1

dk
. Therefore,

the matching M described by (3.2) is a well defined acyclic matching for our

subcomplex SCβ1

dk
.

Denote with C̃β1

dk
(resp. S̃C

β1

dk
) the resulting Morse complex. With the same

proof as for Proposition 3.10 of [4] we get the following theorem:

Theorem 3.11. The complex S̃C
β1

dk
defines a minimal multigraded cellular free

resolution of

a = 〈x1, . . . , xd1〉
a1〈x1, . . . , xd2〉

a2 · · · 〈x1, . . . , xdk
〉ak .

�

3.2. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals.
In this section we develop a minimal cellular resolution for a class of p-Borel
fixed ideals. This class includes the class of principal Cohen-Macaulay p-Borel
fixed ideals. A minimal free resolution for Cohen-Macaulay p-Borel fixed ideals
was first given by Aramova and Herzog [2]. Batzies proved in [4] that the
resolution from [2] is even a cellular resolution.
In addition, we calculate the regularity of our class of p-Borel fixed ideals and
give a formula for the multigraded Poincaré-Betti series P S

S/a
(x, t). The formula

for the regularity is in terms of the minimal monomial generating system and
hence can be applied to any p-Borel fixed ideal. We conjecture that this formula
gives a lower bound for the regularity for general p-Borel fixed ideals. Our
formula is a generalization of results obtained in [2] and [20].

Let p ∈ N be a prime. Define the partial order ≤p on N by setting a ≤p b
if and only if the p-adic expansions a =

∑s
i=0 ai p

i, 0 ≤ ai ≤ p − 1, and
b =

∑s
i=0 bi p

i, 0 ≤ bi ≤ p− 1, fulfill ai ≤ bi for all i = 1, . . . , s.
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Definition 3.12. A monomial ideal aES is called p-Borel fixed if for all mono-
mials m ∈ a and all variables xi ∈ S we have

(3.3) xl
i | m, x

l+1
i 6 | m, j < i, and κ ≤p l ⇒ Sκ

ji(m) :=

(
xj

xi

)κ

m ∈ a.

It is known that this property only needs to be checked for the minimal
monomial generating system of a (see [2]).

Remark 3.13. As for Borel fixed ideals, there exists for each p-Borel fixed ideal
a unique set G = {m1, . . . ,mr} such that G generates the ideal a minimally, in
the sense that any monomial m ∈ a has a decomposition m = u v such that v
is constructed from a monomial in G by iterative applications of rule (3.3) to a
monomial mr ∈ G (i.e. there exist numbers i1, . . . , il, j1, . . . , jl, and κ1, . . . , κl

with jt < it, t = 1, . . . , l such that v = Sκ1
j1i1

(. . . (Sκl

jlil
(mr)) . . .)) and such that

each proper subset G ′ of G generates a proper subideal a′ of a. Again, we call
G the Borel-generating system of a.

Definition 3.14. A p-Borel fixed ideal a is called principal p-Borel fixed if G
consists of only one monomial, i.e. G = {m}.

Lemma 3.15. If aES is a principal p-Borel fixed ideal, then there exists a
family of principal Borel fixed ideals It, t = 1, . . . , T , and numbers 0 ≤ r1 <
r2 < . . . < rT such that

a =
T∏

j=1

I
[prj ]
j

where I [q] is the Frobenius power of an ideal, that is, if I is generated by
m1, . . . ,mr, then I [q] is generated by mq

1, . . . ,m
q
r.

Proof. Assume G = {xa1
1 · · · xan

n }. Let ai =
∑li

j=0 aij p
j be the p-adic expansion

of ai. We define ideals Ij for j = 1, . . . , n:

Ij :=

n∏

i=0

〈x1, . . . , xi〉
aij ,

where we set 〈x1, . . . , xi〉
aij := 〈1〉 if aij = 0. Then it is straightforward to check

(see [2]) that

a =

maxn
i=1(li)∏

j=1

I
[pj ]
j .

Deleting the factors I
[pj ]
j = 〈1〉[p

j ] = 〈1〉 = S and relabeling the ideals Ij gives
the numbers T and 0 ≤ r1 < . . . < rT . By Lemma 3.4 the ideals Ij are principal
Borel fixed. �

In general, the ideal a =
∏T

j=1 I
[prj ]
j with 0 ≤ r1 < . . . < rT and Ij Borel

fixed for j = 1, . . . , T is clearly p-Borel fixed. But it should be mentioned that
not any p-Borel fixed ideal has such a decomposition.
From now on we consider the following class of p-Borel fixed ideals:

(3.4) a =
T∏

j=1

I
[prj ]
j with





0 ≤ r1 < . . . < rT

deg(Ij) < prj+1−rj , j = 1, . . . , T − 1

Ij Borel fixed, j = 1, . . . , T

.
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For an ideal aES with minimal monomial generating system MinGen(a)
we define the total degree of a by

deg(a) := max
{

deg(m)
∣∣ m ∈ MinGen(a)

}
.

We further define for all i = 1, . . . , n

degi(a) := max
{
l
∣∣ xl

i divides a generator of a
}
.

Note that if a is of type (3.4), we have for all i = 1, . . . , T

i∑

j=1

deg(Ij) p
rj ≤

i∑

j=1

(prj+1−rj − 1)prj = pri+1 − pr1 < pri+1 .

Aramova and Herzog find in [2] explicit minimal free resolutions of principal
p-Borel fixed ideals which are Cohen-Macaulay, i.e. a is generated by the power
of a single variable G = {xd

i }. Batzies proved in [4] that the resolution given in
[2] is even cellular.

We develop a minimal cellular resolution for p-Borel fixed ideals a of type
(3.4) such that the factors Ij are principal Borel fixed for all j = 1, . . . , T .
Clearly, this includes the case considered in [2] and [4]. In addition, we calculate
regularity and the Poincaré-Betti series P S

S/a
(x, t) for these ideals.

We proceed by defining an acyclic matching on the Taylor resolution of a

such that the Morse complex is minimal. Since the Taylor resolution is cellular,
it follows by [5] that the Morse complex is cellular, too. In order to do so, we
have to introduce the following notation:

Notation:

(1) I<t :=
t−1∏

i=1

Ii, I>t :=
T∏

i=t+1

Ii,

I
[p]
<t :=

t−1∏

i=1

I
[pri ]
i , I

[p]
>t :=

T∏

i=t+1

I
[pri ]
i .

(2) M(u) := max
{
i
∣∣ xi divides u

}
.

(3) For a monomial u ∈ S we define mi(u) := min {l > i | xl divides u}.

(4) For all j = 1, . . . , T let

supp(Ij) :=
{
i
∣∣ xi divides u for some u ∈ Ij

}
.

(5) For a set W := {j1 < . . . < jκ} ⊂ {1, . . . , n} we define the monomials
xt,max(W ), xt,min(W ) ∈ k[xj1 , . . . , xjκ ] =: k[W ] such that xt,max(W )

and xt,min(W ) divide a generator of I
[p]
<t and for all monomials m ∈

k[W ] dividing a generator of I
[p]
<t we have either

• deg(m) < deg(xt,max(W )) (resp. deg(m) < deg(xt,min(W ))) or
• deg(m) = deg(xt,max(W )) (resp. deg(m) = deg(xt,min(W ))) and
m � xt,max(W ) (resp. m � xt,min(W )),

where ≺ is the reverse lexicographic order.

(6) For j ∈ {1, . . . , n} we define the p-Borel fixed ideal

I
[p]
<t(j) := 〈u ∈ k[x1, . . . , xj−1] with u xt,max({j, . . . , n}) ∈ I

[p]
<t〉.
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(7) We introduce the p-reverse lexicographic order:

m =
T∏

i=1

upri

i ≺t n =
T∏

i=1

vpri

i

if and only if there exists an index j such that ui = vi for all i > j and
uj ≺ vj .

Remark 3.16. If a is Cohen-Macaulay, i.e. a =
∏T

i=1

(
〈x1, . . . , xd〉

ai
)[pri ]

, then
we have always

xt,max({j1 < . . . < jκ}) = xb
j1 ,

xt,min({j1 < . . . < jκ}) = xb
jl

where b =
∑t−1

i=1 ai p
ri and l = max

{
j ∈ {j1, . . . , jκ}

∣∣ j ≤ d
}
.

If a is of type (3.4) such that the ideals Ij are principal Borel fixed we have

xt,max({j1 < . . . < jκ}) = xb
j1 with b =

t−1∑

i=1
j1∈supp(Ii)

degi(Ii)p
ri .

From now on we assume that a is of type (3.4) such that in addition the ideals
Ij are principal Borel fixed. This implies that each generator in Ij has the same
degree. We have the following decomposition:

Lemma 3.17. Let v ∈ I
[p]
<t be a monomial generator and W := {j1 < . . . <

jκ} ⊂ {1, . . . , n}. Then there exists a monomial v ′ dividing v such that

(1) M(v′) < j1 and

(2) v′ xt,max(W ) and v′ xt,min(W ) are generators of I
[p]
<t,

For a monomial v ∈ I
[p]
<t we let ṽ be the maximal monomial with respect to the

order ≺t satisfying the properties (1) and (2).

Proof. By definition the monomial v decomposes uniquely into a product v =

v1 · · · vt−1 such that vj ∈ I
[prj ]
j . For all ideals Ij such that supp(Ij)∩W = ∅, the

rule (3.3) implies M(vj) < j1. In the other case, we construct new monomials
v′i such that M(v′i) < j1.
Assume supp(Ij) ∩W 6= ∅. By definition Ij has the form

Ij = 〈x1, . . . , xl1〉
a1 · · · 〈x1, . . . , xlκ〉

aκ .

Therefore, vj admits a decomposition vj = vj1 · · · vjκ with vjs ∈ 〈x1, . . . , xls〉
as .

If ls < j1, we set v′js := vjs, else we set v′js := 1. We then define v′j :=

v′j1 · · · v
′
js and v′ := v′1 · · · v

′
t−1. By construction we have v′ | v and M(v′) < j1.

Finally, the definition of xt,max and xt,min implies that v′xt,min and v′xt,max are

generators of the ideal I
[p]
<t. �

3.2.1. Construction of the acyclic matching.
We construct the matching on the Taylor resolution of a.

The construction of the matching is technical and proceed in six steps. In
order to allow the reader to keep tract of the critical cells we provide a descrip-
tion of the remaining critical cells after each construction step.
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Let B :=
{
v0 u

prt

0 u, . . . , vκ u
prt

κ u
}

be a basis element of the Taylor resolu-

tion such that vi ∈ I
[p]
<t, ui ∈ It for i = 1, . . . , κ, and u ∈ I

[p]
>t. We assume that

the elements vi u
prt

i u are in increasing order with respect to the order ≺t.

Now we define a monomial w ∈ a and set

B ∪ {w} → B \ {w} ∈ M.

Step 1: Let 0 < R ≤ κ be the smallest index such that there exists an index
j < M(uR) with either αj > βj +1 or βj > αj +1, where u0 = xα and uR = xβ.
In order to fulfill the matching property, we take the smallest index j with the
desired properties.

(1) If αj > βj + 1, we set w := vR

(
xj uR

xM(uR)

)prt

u. Then w divides lcm(B)

since the degree of xj in w is the degree of xj in vR plus prt + βj p
rt .

Since deg(vR) < prt , we finally get that the degree of xj in w is smaller
than prt + prt + βj p

rt ≤ αjp
rt .

(2) If βj > αj + 1, we set w := v0

(
xj u0

xM(u0)

)prt

u and with the same argu-

mentation we get w | lcm(B).

The critical cells in homological degree κ+ 1 ≥ 1 are given by

Bκ+1 :=
{
v0 u

prt

0 u, . . . , vκ u
prt

κ u
}

such that either ui = u0 or ui = u0
xi1

···xir

xj1
···xjr

for some i1 < i2 < . . . < ir and

j1, . . . , jr. Note that the indices j1, . . . , jr are not necessarily pairwise different,
consider for example p = 11, u0 = x2

1x
2
2x

2
3x

2
4x5 and u1 = x3

1x
3
2x

3
3. But the

increasing order implies ir < jr ≤M(u0).

Step 2: Let B :=
{
v0 u

prt

0 u, . . . , vκ u
prt

κ u
}

be a critical cell. We define α :=

deg
(

lcm
{
u0, . . . , uκ

})
. Let i0 be the smallest index such that the exponent

of xi0 in u0 is smaller than αi0 . Let j be the smallest index such that uj = u0

and vj 6= ṽj xt,max({i0}). We set

w := ṽj xt,max({i0}) u
prt

j u.

Since M(ṽj) < i0, ṽj | vj, and xt,max({i0}) = xb
i0

with b < prt , we have w |
lcm(B).

The critical cells in homological degree l0 + κ ≥ 1 are then given by

Bl0+κ :=

{
v01 xt,max({i0}) u

pt

0 u, . . . , v0l0 xt,max({i0}) u
pt

0 u,

v1 u
prt

1 u, . . . , vκ u
prt

κ u

}

with v01, . . . , v0l0 ∈ I
[p]
<t(i0), i0 is the smallest index such that the exponent

of xi0 in u0 is smaller than αi0 , where α := deg
(

lcm
{
u0, . . . , uκ

})
. For

all j = 1, . . . , κ we have uj = u0
xν1 ···xνr

xµ1 ···xµr
, for some ν1 < . . . < νr and

µ1, . . . , µr ≤M(u0) with νr < µr.
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Step 3: Let 1 ≤ R ≤ κ be the smallest index such that uR = u0
xi1

···xir

xj1
···xjr

for

some i1 < i2 < . . . < ir, j1, . . . , jr, and r > 2. Since r > 2, ir < jr ≤ M(u0),
and i0 ≤ i1, there exists an index l such that i0 < il < jr ≤M(u0). Therefore,

we can define w := v01 xt,max({i0})
(

xil
u0

xM(u0)

)prt

u. By construction we have

w | lcm(B).

The critical cells in homological degree l0 + κ ≥ 1 are now given by

Bl0+κ :=

{
v01 xt,max({i0}) u

prt

0 u, . . . , v0l0 xt,max({i0}) u
prt

0 u,

v1 u
prt

1 u, . . . , vκ u
prt

κ u

}

with v01, . . . , v0l0 ∈ I
[p]
<t(i0) such that for all j = 1, . . . , κ we have uj = u0

xνj

xµj

for some νj < µj ≤M(u0) and we have i0 = min
{
νj

∣∣ uj = u0
xνj

xµj
, j = 1, . . . , κ

}
.

Step 4: Let B be a critical cell from Step 3 such that uj ∈
{

xνj
u0

xµj
| νj < µj

}

and i0 := min
{
νj | 1 ≤ j ≤ κ

}
. We set R := min

{
νj > i0 | 1 ≤ j ≤ κ

}
, where

we set R := 0 and xR := 1 if all νj equal.
Case R > 0.

(1) Let uj =
xνj

u0

xµj
such that νj = i0 and vj 6= ṽjxt,min({R,µj}). We

define the monomial by w := ṽj xt,min({R,µj}) u
prt

j u. Since ṽj | vj ,

M(ṽj) < R, deg(xt,min({R,µj}) < prt , and uj = u0
xνj

u0

xµj
, we have

clearly w | lcm(B).

(2) If uj =
xνj

u0

xµj
with νj > i0 and vj 6= ṽj xt,min({i0, µj}), we define w :=

ṽj xt,min({i0, µj}) u
prt

j u, with M(ṽj) < i0. Since ṽj | vj, M(ṽj) < i0,

i0 < νj, and uj = u0
xνj

u0

xµj
, we have clearly w | lcm(B).

(3) If neither (1) nor (2) is satisfied, we know that vj = ṽj xt,min({i0, µj}).
If there exists an index j such that µj < M(u0), we define

w := ṽj xt,min({i0,M(u0)})

(
xνj

u0

xM(u0)

)prt

u.

We always take the smallest index j with the desired properties.
Clearly, we have w | lcm(B).

Case R = 0.

(1) Let uj =
xi0

u0

xµj
such that vj 6= ṽj xt,min({µj}). We define the mono-

mial w by w := ṽj xt,min({µj}) u
prt

j u. Since ṽj | vj, M(ṽj) < µj ,

deg(xt,min({µj}) < prt , and uj = u0
xνj

u0

xµj
, we have clearly w | lcm(B).

(2) If (1) is not satisfied, we have vj = ṽj xt,min({µj}) for all j. By
definition of mi0(u0) we have µj ≥ mi0(u0) for all µj . If there exists
an index j such that µj > mi0(u0), we define

w := ˜̃vj xt,min({mi0(u0)})

(
xi0u0

xmi0
(u0)

)prt

u
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with ˜̃vj | ṽj and M(˜̃vj) < mi0(u0).
Again, it is easy to see that w | lcm(B).

The critical cells in homological degree l0 + l1 ≥ 1 (resp. l0 + . . . + lκ ≥ 1) are
now given by
Type I:

Bl0+l1 =





v0κ xt,max({i1})u
prt

0 u, κ = 1, . . . , l0,

v1κ xt,min({mi1(u0)})

(
xi1

u0

xmi1
(u0)

)prt

u, κ = 1, . . . , l1





with v01, . . . , v0l0 ∈ I
[p]
<t(i1) and v11, . . . , v1l1 ∈ I

[p]
<t(mi1(u0)), 1 ≤ i1 < M(u0).

Type II:

Bl0+...+lκ =





v0j xt,max({i1}) u
prt

0 u, j = 1, . . . , l0,

v1j xt,min({i2,M(u0)})
(

xi1
u0

xM(u0)

)prt

u, j = 1, . . . , l1,

v2j xt,min({i1,M(u0)})
(

xi2
u0

xM(u0)

)prt

u, j = 1, . . . , l2,

...

vκj xt,min({i1,M(u0)})
(

xiκ u0

xM(u0)

)prt

u, j = 1, . . . , lκ





with 1 ≤ i1 < . . . < iκ < M(u0), v11, . . . , v1l1 ∈ I
[p]
<t(i2), and vj1, . . . , vjlj ∈

I
[p]
<t(i1) for all j = 0, 2, . . . , κ.

For a fixed index i we assume that the monomials vi1, . . . , vili are in increasing
order with respect to ≺t.

Step 5: Consider a critical cell B of Step 4. For the monomial v11 we construct
the monomial ṽ11 xt,max({i1}) with M(v′11) < i1. If either l0 > 1 or l0 = 1

and v01 6= ṽ11, we define w := ṽ11 xt,max({i1})u
prt

0 u. By construction we have
w | lcm(B).

The critical cells in homological degree l1 +1 ≥ 1 (resp. 1+ l1 + . . .+ lκ ≥ 1)
are now given by
Type I:

B1+l1 =





v xt,max({i1})u
prt

0 u,

v1j xt,min({mi1(u0)})

(
xi1

u0

xmi1
(u0)

)prt

u, j = 1, . . . , l1



 ,

1 ≤ i1 < M(u0) and v11, . . . , v1l1 ∈ I
[p]
<t(mi1(u0)), and

Type II:

B1+l1+...+lκ =





v xt,max({i1}) u
prt

0 u,

v1j xt,min({i2,M(u0)})
(

xi1
u0

xM(u0)

)prt

u, j = 1, . . . , l1,

v2j xt,min({i1,M(u0)})
(

xi2
u0

xM(u0)

)prt

u, j = 1, . . . , l2,

...

vκj xt,min({i1,M(u0)})
(

xiκ u0

xM(u0)

)prt

u, j = 1, . . . , lκ




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with 1 ≤ i1 < . . . < iκ < M(u0), v11, . . . , v1l1 ∈ I
[p]
<t(i2), and vj1, . . . , vjlj ∈

I
[p]
<t(i1) for all j = 2, . . . , κ.

In both cases v = min
{
v′ | v11

∣∣ v′xt,min(i1) is a generator of I
[p]
<t

}
.

For a fixed index i we assume that the monomials vi1, . . . , vili are in increasing
order with respect to ≺t.

Step 6: Consider a critical cell B of Step 5. Let j1 ∈ {2, . . . , κ} be the smallest
index such that either lj1 > 1 or lj1 = 1 and vj11 6= v.

We define w := v xt,min({i1,M(u0)})
( xij1

u0

xM(u0)

)prt

u. Clearly, w | lcm(B).

The critical cells in homological degree l1 +1 ≥ 1 (resp. κ+ l1 ≥ 1) are now
given by
Type I:

B1+l1 =





v xt,max({i1})u
prt

0 u,

vj xt,min({mi1(u0)})

(
xi1

u0

xmi1
(u0)

)prt

u, j = 1, . . . , l1





with 1 ≤ i1 < M(u0) and v1, . . . , vl1 ∈ I
[p]
<t(mi1(u0)) and

Type II:

Bκ+l1 =





v xt,max({i1}) u
prt

0 u,

vj xt,min({i2,M(u0)})
(

xi1
u0

xM(u0)

)prt

u, j = 1, . . . , l1,

v xt,min({i1,M(u0)})
(

xi2
u0

xM(u0)

)prt

u,

...

v xt,min({i1,M(u0)})
(

xiκ u0

xM(u0)

)prt

u





with 1 ≤ i1 < . . . < iκ < M(u0), κ ≥ 2, and v1, . . . , vl1 ∈ I
[p]
<t(i2). In both cases

v = min
{
v′ | v1

∣∣ v′xt,min({i1}) is a generator of I
[p]
<t

}
.

The monomials v1, . . . , vl1 are in increasing order with respect to ≺t.

Proposition 3.18. The matching M defined by the six steps above is a well
defined acyclic matching.

Proof. The matching property as well as the invertibility are satisfied by con-

struction. Now we prove acyclicity. We start with a set B =
{
v0u

prt

0 u, . . . , vκu
prt

κ u
}

in homological degree κ + 1. We assume that the elements viu
prr

i u are in in-
creasing order with respect to the order ≺t.
Assume, that we have a directed cycle with elements in homological degree κ+1
and κ + 2 starting with the element B. In the first step we add a monomial
w1 constructed in Step 1,. . . , Step 6. In the second step we have to remove a

monomial viu
prr

i u from B. In order to have a cycle we have to add this element

again. Since v0u
prt

0 u is the smallest monomial of B, the construction of the
monomials w in Step 1,. . . , Step 6 implies that it can never be added in the

cycle. Hence all sets occurring in the cycle have smallest element v0u
prt

0 u.
The construction of each monomial w in Step 1,. . . , Step 6 depends either on
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the monomial u0 or on the monomials u0 and uj for some j. Now we look at
the cycle:

B → B ∪ {w1} → B ∪ {w1} \ {m1} → · · · .

Assume that w1 is constructed with respect to u0 and ui for some i. If m1 6=
viu

prr

i u then B ∪ {w1} \ {m1} is matched with B \ {m1}. This contradicts
the existence of the cycle. This reasoning shows that the existence of a cycle
implies the existence of a sequence of added monomials v1, . . . , vs such that vi

is constructed with respect to u0 and vi+1 for all i = 1, . . . , s − 1 and vs is
constructed with respect to u0 and v1.

We prove that those sequences cannot exist: Let v1, . . . , vs be a sequence of
added monomials such that vi is constructed with respect to vi+1. The following
table lists the possible situations for these sequences, except Step 1, (1):

v3 v2 v1

Step 5
Step 6

Step 4, R = 0, (ii)
Step 4, R = 0, (i) Step 4 R = 0, (ii)

Step 4, R > 0, (i),(ii) Step 4, R = 0, (ii)
Step 4, R > 0, (iii) Step 6

Step 3 Step 4, R > 0, (iii) Step 6
Step 2 Step 5

Step 1 (2) Step 4, R > 0, (iii) Step 6
Step 1 (2) Step 4, R > 0, (i),(ii) Step 4, R = 0, (ii)

In none of these cases the sequence can consist of more than three monomials.
If the sequence has exactly three monomials, the third monomial differs from
the first monomial. The only step which can be applied more than once is Step
1 (1). But in this case the monomials are in increasing order with respect to
≺t. Therefore, vs can never be constructed with respect to v1. This makes such
a cycle impossible and acyclicity follows. �

3.2.2. Cellular resolutions and Poincaré-Betti series for p-Borel fixed ideals.
In general, the Morse complex with respect to the acyclic matching from Propo-
sition 3.18 is not minimal since the critical cells depend on the monomials

v1, . . . , vl1 ∈ I
[p]
<t(i1). But since the matching is constructed on the Taylor reso-

lution, the Morse complex defines a cellular multigraded resolution of the ideal
a. In the following case, which includes the principal Cohen-Macaulay p-Borel
fixed ideals, the Morse complex is even minimal:

Theorem 3.19. Let a :=
∏T

j=1 I
[prj ]
j be a p-Borel fixed ideal such that Ij =

〈x1, . . . , xlj 〉
aj with aj < prj+1−rj and l1 ≥ l2 . . . ≥ lT .

Then the minimal free resolution of a has the following basis in the ith (i ≥ 2)
homological degree:

Si :=
{

(ut, . . . , uT , {j1 < . . . < ji−1})
∣∣∣ t = 1, . . . , T, uj ∈ Ij , ji−1 < M(ut)

}
.

Moreover the minimal resolution is cellular.



74 4. Free Resolutions of Monomial Ideals

Note that if l1 = . . . = lT , the ideal a is principal Cohen-Macaulay p-Borel
fixed and the sets Si are exactly the basis of the minimal resolution given by
Aramova and Herzog in [2].

Proof. Consider a critical cell B from the matching of Proposition 3.18. In
this case we have

xt,min({i1,M(u0)}) = xt,min({i2,M(u0)}) = xb
M(u0),

xt,min({mi1(u0)}) = xb
mi1

(u0),

xt,max({i1}) = xb
i1

with b =
∑t−1

j=1 aj p
rj . Therefore, it follows v = v1 = . . . = vl1 = 1. This implies

that the Morse complex has basis
Type I:

B2 =



x

b
i1 u

prt

0 u, xb
mi1

(u0)

(
xi1 u0

xmi1
(u0)

)prt

u





and
Type II:

Bκ+1 =

{
xb

i1 u
prt

0 u, xb
M(u0)

(
xi1 u0

xM(u0)

)prt

u, . . . , xb
M(u0)

(
xiκ u0

xM(u0)

)prt

u

}

with i1 < . . . < iκ < M(u0). A multidegree argument then implies that the
Morse complex is minimal.

The basis elements depend only on u0 ∈ I
[p]
t , u ∈ I

[p]
>t, and i1 < . . . < iκ <

M(u0). Since u decomposes uniquely into a product u = uprt+1

t+1 · · · uprT

T with
uj ∈ Ij , it follows that they are in bijection to the tuples (ut, . . . , uT , {i1 <
. . . < iκ}) with the desired properties. This proves the assertion. �

For general principle Borel fixed ideals Ij the Morse complex from 3.18 is
not minimal, but we can still calculate the multigraded Poincaré-Betti series

PS/a(x, τ) :=
∑

i,α

dimκ

(
TorS

i (S/a, κ)α

)
τ i xα.

For this we define

P S/a(x, τ) :=

{
PS/a(x, τ) − 1 , a 6= 〈∅〉
1 , a = 〈∅〉.

We have the following formula to calculate the Poincaré-Betti series:

Theorem 3.20. Let a =
∏T

j=1 I
[prj ]
j be a p-Borel fixed ideal of type (3.4) such

that the ideals Ij are principal Borel fixed. Then the multigraded Poincaré-Betti
series is given by

PS/a(x, τ) = 1 +
∑

u∈MinGen(a)

u τ +
T∑

t=1

∑

u∈G
“

I
[p]
>t

”

∑

ut∈G(It)

u F (ut)

with

F (ut) =
∑

1≤i<M(ut)

(xi ut)
pt

τ P
S/I

[p]
<t(mi(ut))

(x, τ)
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+
∑

1≤i1<...<iκ<M(ut)
κ≥2

(xi1 · · · xiκ ut)
pt

τκ P
S/I

[p]
<t(i2)

(x, τ).

In particular, the minimal resolution is independent of the characteristic of k.

Proof. For the proof, we apply the matching 3.18 inductively. For that we
have to argue that after a single application of the matching we essentially end
up with a situation that allows to apply the matching again. In general, the
Morse complex is not minimal after a single application, since the basis elements

depend on the monomials v1, . . . , vl1 ∈ I
[p]
<t(i0). It is easy to see that I

[p]
<t(i0)

is again a p-Borel fixed ideal. Thus, we can apply the same acyclic matching

on the Taylor resolution of I
[p]
<t(i0) and consider in the original complex only

monomials v1, . . . , vl1 such that {v1, . . . , vl1} is a critical cell with respect to

the acyclic matching on I
[p]
<t(i0). Since these critical cells depend again on some

monomials in I
[p]
<t′(i

′
0), we can go on by induction. The induction is finite since

supp
(
I
[p]
<t′(i

′
0)
)

( supp
(
I
[p]
<t(i0)

)
. Therefore, by applying the acyclic matching

inductively, we reach a minimal cellular multigraded resolution of a. Because
of the induction we are not able to give an explicit form of the resolution, but it
proves that the resolution does not depend on the characteristic of k. Therefore,
we can calculate the Poincaré-Betti series by the desired way. �

The preceding proof admits the following corollary to Theorem 3.20:

Corollary 3.21. The ideal a =
∏T

j=1 I
[prj ]
j of Theorem 3.20 admits a minimal

multigraded cellular resolution. �

We explain the formula in two examples:

Example 3.22. Let p = 2 and a := 〈x2
1, x

2
2〉〈x

4
1, x

4
2, x

4
3〉. Using the computer

algebra system CoCoA [16], we calculate the following minimal resolution:

−→ S3(−12) −→ S4(−8) ⊕ S4(−10) −→ S6(−6).

Our formula gives the following Poincaré-Betti series:

PS/a(x, τ) = 1 +
∑

u∈G(I)

u τ + x2
1 x

2
2 x

4
1 τ

2 + x2
1 x

2
2 x

4
2 τ

2 + x2
1 x

2
2 x

4
3 τ

2 + x4
1 x

4
2 τ

2

+ x4
1 x

4
2 x

4
3 τ

3 + x4
1x

4
3 τ P S/〈x2

1,x2
2〉

(x, τ) + x4
2x

4
3 τ P S/〈x2

1,x2
2〉

(x, τ)

Thus, we obtain the following Poincaré-Betti series:

PS/a(x, τ) = 1 +
(
x(6,0,0) + x(4,2,0) + x(2,4,0) + x(2,0,4) + x(0,6,0) + x(0,2,4)

)
τ

+
(
x(6,2,0) + x(2,6,0) + x(2,2,4) + x(4,4,0)

)
τ2

+
(
x(6,0,4) + x(4,2,4) + x(2,4,4) + x(0,6,4)

)
τ2

+
(
x(6,2,4) + x(2,6,4) + x(4,4,4)

)
τ3.
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Let p = 3 and a := 〈x3
1, x

3
2〉
(
〈x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3〉
)9

. With CoCoA
[16] we calculate the following minimal resolution:

−→ S3(−36) ⊕ S5(−33) −→ S10(−30) ⊕ S3(−27) ⊕ S6(−24) −→ S12(−21).

Our algorithm gives the following basis elements of the minimal resolution:

t = 1, ut = x2 :
i = 1, mi(u) = 2 :

{
x3

2w, x
3
1w}, w ∈ { x2

1, x1x2, x1x3, x
2
2, x2x3, x

3
3 },

t = 2, ut = x1x2 :
i = 1, mi(u) = 2 :

{
x3

1x
9
1x

9
2, x

3
2x

18
1

}
,

t = 2, ut = x2
2 :

i = 1, mi(u) = 2 :
{
x3

1x
18
2 , x

3
2x

9
1x

9
2

}
,

t = 2, ut = x1x3 :
i = 1, mi(u) = 3 :

{
x3

1x
9
1x

9
3, wx

18
1

}
, w ∈ {x3

1, x
3
2},

i = 2, mi(u) = 3 :
{
x3

2x
9
1x

9
3, wx

9
1x

9
2

}
, w ∈ {x3

1, x
3
2},

i = 1, mi(u) = 3 :
{
x3

1x
9
1x

9
3, w1x

18
1 , w2x

18
1

}
, w1,2 ∈ {x3

1, x
3
2},

i = 2, mi(u) = 3 :
{
x3

2x
9
1x

9
3, w1x

9
1x

9
2, w2x

9
1x

9
2

}
, w1,2 ∈ {x3

1, x
3
2},

i1 = 1, i2 = 2, mi(u) = 3 :
{
x3

2x
9
1x

9
3, x

3
2x

18
1 , x

3
1x

9
1x

9
2

}
,

t = 2, ut = x2
3 :

i = 1, mi(u) = 3 :
{
x3

1x
18
3 , wx

9
1x

9
3

}
, w ∈ {x3

1, x
3
2},

i = 2, mi(u) = 3 :
{
x3

2x
18
3 , wx

9
2x

9
3

}
, w ∈ {x3

1, x
3
2},

i = 1, mi(u) = 3 :
{
x3

1x
18
3 , w1x

9
1x

9
3, w2x

9
1x

9
3

}
, w1,2 ∈ {x3

1, x
3
2},

i = 2, mi(u) = 3 :
{
x3

2x
18
3 , w1x

9
2x

9
3, w2x

9
2x

9
3

}
, w1,2 ∈ {x3

1, x
3
2},

i1 = 1, i2 = 2, mi(u) = 3 :
{
x3

1x
18
3 , x

3
2x

9
1x

9
3, x

3
1x

9
2x

9
3

}
,

t = 2, ut = x2x3 :
i = 1, mi(u) = 2 :

{
x3

1x
9
2x

9
3, x

3
2x

9
1x

9
3

}
,

i = 2, mi(u) = 3 :
{
x3

2x
9
2x

9
3, wx

18
2

}
, w ∈ {x3

1, x
3
2},

i = 2, mi(u) = 3 :
{
x3

2x
9
2x

9
3, w1x

18
2 , w2x

18
2

}
, w1,2 ∈ {x3

1, x
3
2},

i1 = 1, i2 = 2, mi(u) = 3 :
{
x3

1x
9
2x

9
3, x

3
2x

9
1x

9
2, x

3
1x

18
2

}
.

Counting basis elements gives the desired Poincaré-Betti series.

3.2.3. Regularity of p-Borel fixed ideals.
Finally, we study the regularity of p-Borel fixed ideals.
Recall that the regularity of an ideal a is the maximal number j such that

TorS
i (S/a, k)i+j 6= 0 for some i ≥ 0.

Let u =
∏n

i=1 x
µi be a monomial in S and µi :=

∑
j µijp

j the p-adic expan-

sion of µi. For a real number x ∈ R denote by bxc the largest integer n ≤ x.
For 1 ≤ κ ≤ n and j ≥ 0 we define

dκj(µ) =

κ∑

i=1

b
µi

pj
c.
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For each κ with µκ 6= 0 we set sκ := blogp µκc and set

Dκ := dκ,sκ(µ)psκ + (κ− 1)(psκ − 1).

Finally, we define the following functions:

Definition 3.23. (1) For a monomial u ∈ S which is not divisible by x1

we set

pa(u) := max
κ:µκ 6=0

{
Dκ

}
.

(2) For a monomial u = xµ1
1 ũ ∈ S such that ũ is not divisible by x1 we set

pa(u) := µ1 + pa(ũ).

(3) For a p-Borel fixed ideal of type (3.4) we define the following function:

pat(a) =:

T∑

j=t+1

deg(Ij)p
rj + max

u∈G(It)
{deg(u) + (M(u) − 1)(prt − 1)},

pa(a) := max
t=1,...,T

{
pat(a)

}
.

The function pa(a) was first introduced by Pardue [38], who conjectured
that if a is p-Borel fixed, Borel-generated by G := {xµ} such that x1 does not
divide xµ, then

reg(a) = pa(xµ).

Herzog and Popescu proved this conjecture in [30]. In addition, they proved
an upper bound for p-Borel ideals a Borel-generated by G := {u1, . . . , ur}.

Theorem 3.24 (see [30]). If a is p-Borel fixed, Borel-generated by G := {u1, . . . , ur},
then

reg(a) ≤ max
{
pa(u1), . . . , pa(ur)

}

and equality holds if a is principal p-Borel fixed.

In [20], Ene, Pfister and Popescu calculate the regularity of p-Borel fixed
ideals in the following case:

Theorem 3.25 (see [20]). Let a be a p-Borel fixed ideal of type (3.4) such

that Ij contains xprj+1−rj−1
m for all j = 1, . . . , T where m := max

(
supp(Ij+1)

)
.

Then

reg(a) = pa(a).

We now give a generalization of Theorem 3.25.

Theorem 3.26. Let a :=
∏T

j=1 I
[prj ]
j be a p-Borel fixed ideal such that Ij =

〈x1, . . . , xlj 〉
aj with aj < prj+1−rj for all j = 1, . . . , T , and l1 ≥ l2 . . . ≥ lT .

Then

reg(a) = pa(a).

Proof. By Theorem 3.19 a basis of TorS
i (S/a, k) is given by

Si−1 :=
{

(ut, . . . , uT , {j1 < . . . < ji−1})
∣∣∣ t = 1, . . . T, uj ∈ Ij, ji−1 < M(ut)

}
,
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where the multidegree is given by

deg
(
(ut, . . . , uT , {j1 < . . . < ji−1})

)
=

T∑

j=t+1

deg(Ij) p
rj +

(
deg(ut)p

rt+(i−1)prt
)
.

Therefore, the basis element (ut, . . . , uT , {j1 < . . . < ji−1}) gives a contribution
to TorS

i−1(S/a, k)i−1+j with

j =
T∑

l=t+1

deg(Il) p
rl +

(
deg(ut)p

rt + (i− 1)(prt − 1)
)
.

Clearly, this becomes maximal if i = M(ut) − 1 and if deg(ut) is maximal.
Taking the maximum over t = 1, . . . , T proves the assertion. �

If a is a p-Borel fixed ideal of type (3.4) such that Ij is principal Borel fixed,
we have the following regularity:

Theorem 3.27. Let a =
∏T

j=1 I
[prj ]
j be a principal p-Borel fixed ideal of type

(3.4) such that the factors Ij are principal Borel fixed. Then

reg(a) = max
t=1,...,T

{
pat(a) + reg

(
I
[p]
<t(2)

)}
≥ pa(a).

Note that it is actually possible to deduce Theorem 3.26 and the equality
in Theorem 3.24 from Theorem 3.27: In the situation of Theorem 3.26 we have
I
[p]
<t(2) = ∅ and therefore reg

(
I
[p]
<t(2)

)
= 0.

If G = {xµ} is the Borel-generating system of a, Lemma 3.15 implies that

reg
(
I
[p]
<t(2)

)
= µ1. Therefore, this reproves the equality of Theorem 3.24:

Corollary 3.28. If a is Borel-generated by G = {xµ}, we have:

reg(a) = max
t=1,...,T

{
pat(a) + reg

(
I
[p]
<t(2)

)}
= pa(a) + µ1.

In particular, if a is Borel-generated by G = {xµ} and x1 does not divide xµ,
we have reg(a) = pa(a) = pa(xµ), which reproves Pardue’s conjecture. �

Proof of Theorem 3.27. The set of critical cells with respect to the matching
constructed in Proposition 3.18 give a basis for TorS

i (S/a, k)i+l. It follows that
we get the following possible l’s:

T∑

j=t+1

deg(Ij)p
rj+ max

ut∈G(It)

(
deg(ut)p

rt+ max
1≤i1<...<iκ<M(ut)

κ≥2

{
κ(prt−1)+reg(I

[p]
<t(i2)

})
,

T∑

j=t+1

deg(Ij)p
rj+ max

ut∈G(It)

(
deg(ut)p

rt+ max
1≤i1<M(ut)

{
(prt−1)+reg(I

[p]
<t(mi1(ut))

})
.

Since reg
(
(I

[p]
<t(i2)

)
< prt , maximality is achieved for κ = M(u) − 1. Then

i2 = 2 and therefore I
[p]
<t(i2) has only one generator, namely xb

1 for some b. It

follows that the regularity of I
[p]
<t is b. Thus we have

T∑

j=t+1

deg(Ij)p
rj + max

ut∈G(It)

(
deg(ut)p

rt + (M(ut) − 1)(prt − 1) + reg(I
[p]
<t(2)

)
.

Taking the maximum over t = 1, . . . , T proves the assertion. �
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Example 3.29. Let p = 2 and a := 〈x1〉
p0

〈x1, x2, x3〉
p1

. Then it follows:
pa(a) = 4 = pa2(a). The program Macaulay 2 [25] calculates reg(a) = 5. Our
formula gives:

reg(a) = max
t=1,2

{
pat(a) + reg

(
I
[p]
<t(2)

)}

= 4 + reg
(
〈x1〉

[p0]
)

= 4 + 1 = 5.

Note that the acyclic matching M from Proposition 3.18 can be applied
in a slightly more general setting. Let a be any p-Borel fixed ideal of type
(3.4). Then Lemma 3.17 does not hold anymore, but one can prove that for
each monomial v there exists a generator v1 such that v1 divides ṽ xt,min(W )
(resp. ṽ xt,max(W )). One can construct the matching in the same way, but
instead of B ∪ {w} → B \ {w} one defines B ∪ {w̃} → B \ {w̃} where w̃ is the
smallest generator of a dividing w. The same arguments as used in the proof
of Proposition 3.18 imply that the matching is still acyclic. In this case, we
cannot anymore describe the critical cells. But we get the same multidegrees
since the smallest generator (with respect to a chosen monomial order) dividing

xju0

xM(u0)
must have the same exponent for xj, otherwise it would divide u0, which

is impossible since u0 is a generator. Furthermore, the induction principle is
still valid, hence we finally reach a minimal resolution, which is cellular since
it comes from the Taylor resolution by a single matching.. Therefore, Theorem
3.20, Corollary 3.21 and Theorem 3.27 are still true in this situation:

Theorem 3.30. If a is any p-Borel fixed ideal of type (3.4), then:

(1) a admits a minimal cellular multigraded resolution.

(2) The multigraded Poincaré-Betti series PS/a(x, τ) is given by the for-
mula of Theorem 3.20.

(3) The regularity is given by

reg(a) = max
t=1,...,T

{
pat(a) + reg

(
I
[p]
<t(2)

)}
.

In particular, the minimal resolution does not depend on the characteristic of
k. �

In general, we would like to conjecture the following:

Conjecture 3.31. If a =
∏T

j=1 I
[prj ]
j is p-Borel fixed such that there exists an

index j with deg(Ij) ≥ prj+1−rj , then

max
t=1,...,T

{
pat(a) + reg

(
I
[p]
<t(2)

)}
≤ reg(a).





Chapter 5

Free Resolution of the
Residue Class Field k

In this chapter, which is submitted under the title “Resolution of the Residue
Class Field via Algebraic Discrete Morse Theory” (see [36]), we provide three
applications of our theory:

In Paragraph 1 we consider resolutions of the field k over a quotient A = S/a
of the commutative polynomial ring S = k[x1, . . . , xn] in n variables by an ideal
a. We construct a free resolution of k as an A-module, which can be seen as a
generalization of the Anick resolution to the commutative case. Our resolution
is minimal if a admits a quadratic Gröbner basis. Also we give an explicit
description of the minimal resolution of k if the initial ideal of a is a complete
intersection.

Paragraph 2 considers the same situation in the non-commutative case. We
apply Algebraic Discrete Morse theory in order to obtain the Anick resolution of
the residue field k over A = k〈x1, . . . , xn〉/a from the normalized Bar resolution,
where k〈x1, . . . , xn〉 is the polynomial ring in n non-commuting indeterminates
and a is a two-sided ideal with a finite Gröbner basis. This result has also
been obtained by Sköldberg [41]. In addition to his results, we prove the
minimality of this resolution when a is monomial or the Gröbner basis consists
of homogeneous polynomials which all have the same degree. In these cases it
follows from our results that the Poincaré-Betti series is rational. In particular,
we get the rationality of the Hilbert series if a admits a quadratic Gröbner basis.

In Paragraph 3 we give a projective resolution of A as an A⊗Aop-module,
where again A = k〈x1, . . . , xn〉/a. Using this resolution we obtain the minimal
resolution of A = k[x1, . . . , xn]/〈f1, . . . fs〉 as an A ⊗ Aop-module when the
initial ideal of 〈f1, . . . , fs〉 is a complete intersection. In case a = 〈f〉, such a
construction was first given by BACH in [9].

81
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1. Resolution of the Residue Field in the Commutative Case

Let A = S/a be the quotient algebra of the commutative polynomial ring S =
k[x1, . . . , xn] in n indeterminates by the ideal aES.

The aim of this paragraph is to deduce via Algebraic Discrete Morse theory
a new free resolution of the residue field k ∼=A/〈x1, . . . , xn〉 as an A-module from
the normalized Bar resolution. We write NBA

• = (Bi, ∂i)i≥ for the normalized
Bar resolution of k over A (see Chapter 2.2.4 or [47]).

From now on let a = 〈f1, . . . , fs〉ES be an ideal, such that the set {f1, . . . , fs}
is a reduced Gröbner basis with respect to a fixed degree-monomial order ‘≺’
(for example degree-lex or degree-revlex). We assume that x1 � x2 � . . . � xn

and we write G for the corresponding set of standard monomials of degree ≥ 1.

It is well known that G ∪{1} is a basis of A as k-vectorspace. Thus, for any
monomial w in S there is a unique representation

w = a1 +
∑

v∈G

avv, a1, av ∈ k,(1.1)

as a linear combination of standard monomials in A.

Since we assume that our monomial order is a refinement of the degree
order on monomials, it follows that av = 0 for |v| > |w|. Here we denote
with |v| the total degree of the monomial v. In this situation we say that v is
reducible to −

∑
v∈G avv. Note that since we use the normalized Bar resolution,

the summand a1 can be omitted.

Using the described reduction process we write the normalized Bar resolu-
tion NBA

• = (Bi, ∂i) as

B0 := A,

Bi :=
⊕

w1,...,wi∈G

A [w1| . . . |wi], i ≥ 1

with differential

∂i([w1| . . . |wi]) = w1 [w2| . . . |wi]

+

i−1∑

j=1

(−1)j
∑

v∈G

ajv [w1| . . . |wj−1|v|wj+2| . . . |wi],

for wjwj+1 = aj,1 +
∑

v∈G ajv ν, with ajv ∈ k,v ∈ G.

The following convention will be convenient. For a monomial w ∈ S we set
m(w) := min{i | xi divides w}. Finally, we think of [w1| . . . |wi] as a vector, and
we speak of wj as the entry in the jth coordinate position.

Now we describe the acyclic matching on the normalized Bar resolution,
which will be crucial for the proof of Theorem 1.6. Since all coefficients in the
normalized Bar resolutions are ±1, condition (Invertibility) of Definition 5.1.1
is automatically fulfilled. Thus, we only have to take care of the conditions
(Matching) and (Acyclicity):

We inductively define acyclic matchings Mj , j ≥ 1, that are constructed
with respect to the jth coordinate position. We start with the leftmost coordi-
nate position j = 1. We set
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M1 :=





[xm(w1)|w
′
1|w2| . . . |wl]

↓
[w1|w2| . . . |wl]

∈ G(NBA
• )
∣∣ w1 = xm(w1)w

′
1



 .

The set of critical cells BM1
l in homological degree l ≥ 1 is given by:

(1) BM1
1 :=

{
[xi]

∣∣∣ 1 ≤ i ≤ n
}
, l = 1,

(2) BM1
l is the set of all [xi|w2|w3| . . . |wl], w2, . . . , wl ∈ G, that satisfy

either
→ i ≤ m(w2) and xiw2 is reducible or
→ i > m(w2).

Assume now j ≥ 2 and Mj−1 is defined. Let BMj−1 be the set of critical
cells left after applying M1 ∪ . . . ∪Mj−1.

Let Ej denote the set of edges inG(NBA
• ) that connect critical cells in BMj−1 .

The following condition on an edge in Ej will define the matching Mj .

Definition 1.1 (Matching Condition). Let

[xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl]
↓

[xi1 |w2| . . . |wj−1|wj |wj+1| . . . |wl]

be an edge in Ej. In particular, wj = u1u2. We say that the edge satisfies the
matching condition if u1 is the maximal monomial with respect to ‘≺’ such that

(i) u1 divides wj ,

(ii) [xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl] ∈ BMj−1 ,

(iii) [xi1 |w2| . . . |wj−1|v1|v2|wj+1| . . . |wl] 6∈ BMj−1 for each v1 | u1, v1 6= u1

and v1v2 = wj.

Mj :=





[xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl]
↓

[xi1 |w2| . . . |wj−1|wj |wj+1| . . . |wl]
∈ Ej satisfying 1.1



 .

We write MinGen(in≺(a)) for the minimal, monomial generating system of
the initial ideal of a with respect to the chosen monomial order ≺. The set of

critical cells B
Mj

l in homological degree l ≥ 1 is given by

(1) B
Mj

1 :=
{

[xi]
∣∣∣ 1 ≤ i ≤ n

}
,

(2) B
Mj

2 consists of elements [xi|w2] such that either w2 = xi′ for some i′

and i > i′ or xiw2 ∈ MinGen(in≺(a)),

(3) B
Mj

l consists of elements [xi|w2| . . . |wj | . . . |wl] ∈ B
Mj−1

l , such that for

each divisor u | wj we have [xi|w2| . . . |wj−1|u| . . . |wl] 6∈ B
Mj−1

l and
one of the following conditions is satisfied:
→ wjwj+1 is reducible or
→ wjwj+1 = uv ∈ G and

• [xi|w2| . . . |wj−1|u|v|wj+2| . . . |wl] ∈ B
Mj−1

l ,
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• u � wj,

• [xi|w2| . . . |wj−1|u
′|v′|wj+2| . . . |wl] 6∈ B

Mj−1

l for each divisor
u′ | u, u′ 6= u and u′v′ = wjwj+1.

We finally set M :=
⋃

j≥1 Mj and we write BM for the set of critical cells
with respect to M.

Lemma 1.2. M is an acyclic matching.

Proof. We have already seen that since all coefficients are ±1, the condition
(Invertibility) of Definition 5.1.1 is automatic. Property (Matching) is satisfied
by definition of M. Now consider an edge in the matching. Then there exists a
coordinate where the degree of the monomial decreases by passing to the higher
homological degree cell. Now since we have chosen a degree-monomial order
along any edge in the graph and for any coordinate, the degree of the monomial
in this positions decreases weakly. Since any cycle must contain a matched edge,
this shows that there cannot be any directed cycles and (Acyclicity) is satisfied
as well. �

1.1. An Anick Resolution for the Commutative Polynomial Ring. In
this section we look closer into the Morse complex corresponding to the acyclic
matching M from Lemma 1.2. For this we choose the degree-lex order as our
fixed monomial order. We write MinGen(in≺(a)) for the minimal, monomial
generating system of the initial ideal of a with respect to degree-lex.

In order to describe the critical cells for the chosen term order, we first
define the concept of a minimal fully attached tuple. Note that the notation
“fully attached” was introduced by Sturmfels (see Example 2.10 and [42]).

Definition 1.3. A pair [w1|w2] is called minimal fully attached if w1 = xm(w1w2)

and w1w2 ∈ MinGen(in≺(a)).

Assume l > 2. An l-tuple [w1| . . . |wl−1|wl] is called minimal fully attached
if [w1| . . . |wl−1] is minimal fully attached, m(w1) ≤ m(wj) for j = 3, . . . , l, and
one of the following conditions is satisfied:

(1) wl−1wl is reducible or

(2) wl−1wl = uv ∈ G with u � wl−1 and [w1| . . . |wl−2|u] is a minimal fully
attached (l − 1)-tuple,

and wl is the minimal monomial such that no divisor w′
l | wl, w

′
l 6= wl, satisfies

one of the two conditions above.

It is easy to see that the basis of the free modules in the Morse complex
NBM

• is given as the set B of words over the alphabet

Σ =
{
[xi1 |xi2 | . . . |xir ]

∣∣∣ 1 ≤ ir < ir−1 < · · · < i1 ≤ n
}
∪

{
[xw2 |w2| . . . |wl]

∣∣∣ [xw2 |w2| . . . |wl] minimal fully attached
}

that contain none of the words:

[xi1 | . . . |xir ][xw2 |w2| . . . |wl], xw2 � xir ,(1.2)
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[xi1 | . . . |xir ][xj1 | . . . |xjs ], xj1 � xir ,(1.3)

[xw2 |w2| . . . |wl][xi1 | . . . |xir ], xi1 ≺ xw2 ,(1.4)

[xw2 |w2| . . . |wl][xv2 |v2| . . . |vl], xv2 ≺ xw2 .(1.5)

In order to be able to identify elements of B as basis elements of the Bar
resolution, we read in a word from B the sequence of letters ‘][’ as ‘|’. If this
convention is applied, then any element of B can be read as some [w1| . . . |wj ]
and corresponds to a basis element in homological degree j. We collect the
elements from B which are of homological degree j in Bj and call an element
of B a fully attached tuple. We claim that there is a bijection between BM

and B preserving the homological degree. To see this, consider a fully attached
tuple [xi1 |w2| . . . |wi]. Then the definition of a fully attached tuple implies that
either w2 = xs with xs � xi1 (resp. i1 > s) or xi1w2 ∈ MinGen(in≺(a)). In the
first case we cut the tuple to [xi1 ][xs|w3| . . . |wi]. If we continue this process, we
obtain

[xi1 |xi2 | . . . |xir ][xv2 |v2| . . . |vs]

with i1 > . . . > ir, xir ≺ xv2 , and xv2v2 ∈ MinGen(in≺(a)). This explains the
rules (1.2) and (1.3). Now consider [xv2 |v2| . . . |vs]. Then the definition of a
fully attached tuple implies that either v3 = xj with xj � xv2 or xm(v3) ≺ xv2 .
In the first case we cut the tuple to

[xv2 |v2][xj |v4| . . . |vi],

otherwise we consider the monomial v4. Then v4 satisfy the same conditions as
v3, so we cut if necessary to

[xv2 |v2|v3][xj |v5| . . . |vi].

By construction [xv2 |v2|v3] is a minimal fully attached tuple and the conditions
for v3 and xj explain the rules (1.4) and (1.5). If we continue this process, we
obtain exactly the words in B.

Remark 1.4. Let L be the language over the alphabet
{

[xw2 |w2| . . . |wl]
∣∣∣ [xw2 |w2| . . . |wl] minimal fully attached

}

that contains none of the words (1.5). To a letter [xi1 |xi2 | . . . |xir ] ∈ Σ with
1 ≤ ir < ir−1 < · · · < i1 ≤ n, we associate the symbol e{ir<ir−1<...<i1}.

For w ∈ BM, such that w = eI1 · · · eIs , rule (1.3) shows that this word is

considered as a basis element of NBM
• , equivalent to the symbol eI1∪...∪Is .

To an arbitrary word w ∈ BM we first associate the word

w1 eI1 w2 eI2 · · ·ws eIs .

The rules (1.2) and (1.4) imply that the sets Ii are pairwise disjoint and in a
decreasing order. Therefore, as a basis element of NBM

• the word w is equivalent
to

eI1∪...∪Is w1w2 · · ·ws.

It follows that we have a degree-preserving bijection between BM and the set
{
eIw

∣∣∣ I ⊂ {1, . . . n} and w ∈ L
}
.
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We will use this fact later in order to calculate the multigraded Poincaré-Betti
series of k over A (see Corollary 1.8).

In order to describe the differential, we introduce three reduction rules for
fully attached tuples. These reduction rules will be based on the unique Gröbner
representation (1.1) which will play the role of the basic set of rules:

R :=

{
v1v2

aw−→ w

∣∣∣∣
v1, v2 ∈ G
v1v2 6∈ G

and
v1 · v2 = a0 +

∑
w∈G aww,

aw ∈ k

}
.

Note that w
0

−→ 0 ∈ R is allowed (it happens if one of the generators fi is a
monomial).

Definition 1.5. Let e1 := [w1| . . . |wi−1|wi|wi+1|wi+2| . . . |wl] be an l-tuple of
standard monomials.

Type I: Assume [w1| . . . |wi] is fully attached. We say e1 can be reduced to
e2 := [w1| . . . |wi−1|vi|vi+1|wi+2| . . . |wl] if
(i) [w1| . . . |wi−1|vi] is fully attached,
(ii) vivi+1 ∈ G,

(iii) wiwi+1
a

−→ vivi+1 ∈ R with a 6= 0.

In this case we write e1
−a
−→1 e2.

Type II: We say that e1 can be reduced to e2 := [w1| . . . |wi−1|v|wi+2| . . . |wl] if

(i) wiwi+1
a

−→ v ∈ R with a 6= 0 and
(ii) e2 is a fully attached (l − 1)-tuple.

In this case we write e1
(−1)ia
−→ 2 e2.

Type III: We say that e1 can be reduced to e2 with coefficient c := w1 (we write

e1
w1→3 e2) if |w2| ≥ 2 and e2 := [xm(w2)|w2/xm(w2)|w3| . . . |wl].

Now let e = [w1| . . . |wl] and f = [v1| . . . |vl−1] be fully attached l- and

(l− 1)-tuples. We say that e can be reduced to f with coefficient c (e
c

−→ f) if
there exists a sequence e = e0, e1, . . . , er−1 and either

(1) an er with er = [u|v1| . . . |vl−1] = [u|f ], such that e0 can be reduced to
er with reductions of Type I and III, i.e.

e0
−a1−→ e1

−a2−→ e2
−a3−→ . . .

−ar−→ er;

in this case we set c := ((−1)r
∏r

i=1 ai) u, or

(2) an er, such that e0 can be reduced to er with reductions of Type I and
III and er can be reduced to f with the reduction of Type II, i.e.

e0
−a1−→ e1

−a2−→ e2
−a3−→ . . .

−ar−→ er
(−1)j b
−→ f ;

in this case we set c := (−1)r+j · b ·
∏r

i=1 ai.

There may be several possible reduction sequences leading from e to f and
the reduction coefficient may depend on the chosen sequence. Therefore, we
define the reduction coefficient [e : f ] to be the sum over all possible sequences.
If there exists no sequence, we set [e : f ] := 0.

The complex F• is then given by

Fj :=
⊕

e∈Bj

Ae,
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∂ : Fi → Fi−1

e 7→
∑

f∈Bi−1

[e : f ] f.

Now we have:

Theorem 1.6. F• = (F•, ∂) is an A-free resolution of the residue field k, which
is minimal if and only if no reduction of Type II is possible.

Proof. The fully attached tuples are exactly the critical cells. The reduction
rules describe the Morse differential: As seen before, we have

∂M([w1| . . . |wl]) := w1[w2| . . . |wl] +

l−1∑

i=1

(−1)i[w1| . . . |wiwi+1| . . . |wl]

If [w2| . . . |wl] 6∈ B, we have [w2| . . . |wl] = ∂([xi2 |w
′
2|w3 . . . |wl]), which is de-

scribed by the reduction of Type III.

For [w1| . . . |wiwi+1| . . . |wl] we have to distinguish three cases:

(Case 1) [w1| . . . |vij | . . . |wl] is critical. Then we have wi−1vij , vijwi+2 reducible
and wi−1u1 viju2 ∈ G for all divisors u1 of vij and u2 of wi+2. This
situation is described by the reduction of Type II.

(Case 2) [w1| . . . |vij | . . . |wl] is matched by a higher degree cell. Then we have
wi−1u1 reducible for vij = u1u2, and for all divisors u′ of u1 the mono-
mial wi−1u

′ lies in G. Then we have

[w1| . . . |vij| . . . |wl] = (−1)i+1[w1| . . . |wi−1|u1|u2|wi+2| . . . |wl],

which is a reduction of Type I.

(Case 3) [w1| . . . |vij | . . . |wl] is matched by a lower degree cell. In this case we
have [w1| . . . |vij| . . . |wl] = 0.

The coefficients of the reductions are exactly the coefficients of the Morse dif-
ferential. Hence the Morse differential induces a sequence of reductions of Type

I and III with either a reduction of Type II or the map er = [v1| . . . |vl]
v1−→

[v2| . . . |vl] at the end, which gives our definition of the reduction coefficient. �

Remark 1.7. In Paragraph 2, we will see that in the non-commutative case
our matching on the normalized Bar resolution gives the Anick resolution (for
the definition, see [1]). Therefore, one can understand the resolution F• as a
generalization of the Anick resolution to the commutative polynomial ring.

If A is endowed with the natural multigrading deg(xi) = ei ∈ Nn, the
multigraded Poincaré-Betti series of k over A is defined to be

PA
k (x, t) :=

∑

i≥0
α∈Nn

dimk(TorA
i (k, k)α)xα ti.

Remark 1.4 implies:

Corollary 1.8. The Poincaré-Betti series of A satisfies

PA
k (x, t) ≤

n∏

i=1

(1 + xi t) F (x, t),
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where F (x, t) :=
∑

w∈Lw t
|w| counts the words w ∈ L. Here w is treated as the

monomial in x1, . . . , xn and |w| denotes the length of w.
The inequality is an inequality between the coefficients of the power series ex-
pansion. �

1.2. Two Special Cases. First, we consider a subclass of the class of Koszul
algebras. It is well known that A = S/a is Koszul if a has a quadratic Gröbner
basis. It is easy to see that in this case the minimal fully attached tuples have
the following form: [xi1 |xi2 | . . . |xir ]. Therefore, a reduction of Type II is not
possible and we get:

Corollary 1.9. If A = S/a and a admits a quadratic Gröbner basis, then the
resolution F• is minimal. �

To get an explicit form of the multigraded Poincaré-Betti series in this case,
one only has to calculate the word-counting function F (x, t) of the language L.
In this case, the multigraded Poincaré-Betti series coincides with the multi-
graded Poincaré-Betti series of S/ in≺(a). Since the Poincaré-Betti series of
monomial rings are studied by us in a larger context in Chapter 6, we do not
give the explicit form here.

The second case, we would like to discuss, is the following:
Let a = 〈f1, . . . , fs〉ES be an ideal, such that f1, . . . , fs is a reduced Gröbner
basis with respect to the degree-lex order and such that the initial ideal in≺(a) is
a complete intersection. Assume fj = mj+

∑
α∈Nn fjαx

α with leading monomial
mj. Since in≺(a) is a complete intersection, there exist exactly s minimal fully

attached tuples, namely ti :=
[
xm(mi)

∣∣∣ mi

xm(mi)

]
for i = 1, . . . , s and mi ∈

MinGen(in≺(a)). The rule (1.5) implies titj ∈ B iff m(mi) ≥ m(mj). It follows
from Remark 1.4 that the set of fully attached i-tuples is in bijection with the
set

Bi :=



eir . . . ei1t

(l1)
j1

. . . t
(lq)
jq

∣∣∣∣∣∣

1 ≤ i1 < . . . < ir ≤ n
1 ≤ j1 < . . . < jq ≤ s
l1, . . . , lq ∈ N and i = r + 2

∑q
t=1 lt



 .

For fj = mj +
∑

α∈Nn fjαx
α we define

Tp(fj) :=
∑

α∈Nn

p=max(supp(α))

fjα
xα

xp
.

We have the following theorem:

Theorem 1.10. Let a = 〈f1, . . . , fs〉ES be an ideal, such that f1, . . . , fs is
a reduced Gröbner basis with respect to the degree-lex order and such that the
initial ideal in≺(a) is a complete intersection, and A := S/a be the quotient
algebra.
Then the following complex is a minimal A-free resolution of the residue class
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field k and carries the structure of a differential-graded algebra:

Fi :=
⊕

1 ≤ i1 < . . . < ir ≤ n
1 ≤ j1 < . . . < jq ≤ s

l1, . . . , lq ∈ N

i = r + 2
∑q

j=1 lj

A eir . . . ei1t
(l1)
j1

. . . t
(lq)
jq

eir . . . ei1
∂
7→

r∑

m=1

(−1)#{ij>im}xim eir . . . êim . . . ei1

t
(l1)
j1

. . . t
(lq)
jq

∂
7→

s∑

m=1

n∑

p=1

Tp(fjm) ept
(l1)
j1

. . . t
(ljm−1)
jm

. . . t
(lq)
jq
,

where t
(0)
ij

:= 1, eiej = −ejei, and eiei = 0. The differential is given by

∂(eir . . . ei1t
(l1)
j1

. . . t
(ls)
js

) = ∂(eir . . . ei1)t
(l1)
j1

. . . t
(ls)
js

+(−1)r eir . . . ei1∂(t
(l1)
j1

. . . t
(ls)
js

).

In particular, we have

PA
k (x, t) =

n∏

i=1

(1 + xi t)

k∏

i=1

(1 −mi t
2)

.

Proof. We only have to calculate the differential: Let [w1| . . . |wl] be a fully
attached tuple, such that wj is either a variable or a minimal fully attached
tuple.
First assume that wj is a variable, i.e. wj = xrj

. We prove that wiwj can be
permuted to wjwi for all i 6= j. If wi is a variable, say wi = xji

, we have by
(1.5) ji > rj it follows |xji

|xjr | → |xji
xrj

| → |xrj
|xji

|. If wi is a minimal fully

attached tuple, i.e. wi =
∣∣∣xm(mi)

∣∣∣ mi

xm(mi)

∣∣∣, we have

∣∣∣∣xm(mi)

∣∣∣∣
mi

xm(mi)

∣∣∣∣xrj

∣∣∣∣ →

∣∣∣∣xm(mi)

∣∣∣∣xrj

mi

xm(mi)

∣∣∣∣→
∣∣∣∣xm(mi)

∣∣∣∣xrj

∣∣∣∣
mi

xm(mi)

∣∣∣∣

→

∣∣∣∣xrj
xm(mi)

∣∣∣∣
mi

xm(mi)

∣∣∣∣→
∣∣∣∣xrj

∣∣∣∣xm(mi)

∣∣∣∣
mi

xm(mi)

∣∣∣∣ .

In the first case we have a reduction with coefficient −1 and in the second case
with coefficient +1. Therefore, it is enough to consider the number of w ′

is,
i < j, which are variables. It follows that wj can be permuted to the left with

coefficient (−1)#{wi | wi variable and wi<lexxrj
}.

Now let wj be a minimal fully attached tuple, i.e. wj =

[
xm(mj)

∣∣∣∣
mj

xm(mj )

]
. Then

we have [
xm(mj )

∣∣∣∣∣
mj

xm(mj )

]
→ −

∑

α

fjα[xα] →
∑

α

fjα

[
xα

∣∣∣∣
xα

xα

]
,
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where xα := xm(xα). Since
[

xα

xα

]
is matched with

[
xβ

∣∣∣ xα

xβxα

]
(where xβ = xm(xβ)

with xβ := xα

xα
) the exponent α decreases successively up to the element [xp]

with p = max(supp(α)). Therefore, we get

(1.6)

[
xm(mj )

∣∣∣∣∣
mj

xm(mj )

]
→

n∑

p=1

Tp(fj)ep.

We now consider the tuple [w1| . . . |wl]. With the same argument as before,
one can check that the minimal fully attached tuple wj can be permuted with
coefficient +1 to the right. After a chain of reductions, we reach the tuple
[wj |w1| . . . |wj−1|wj+1| . . . |wl]. Applying Equation (1.6) we get

[w1| . . . |wl] →
n∑

p=1

Tp(fj)[xp|w1| . . . |ŵj | . . . |wl].

In order to reach a fully attached tuple we have to permute the variable xp to
the correct position. This permutation yields a coefficient

(−1)#{wi | wi variable and wi<lexxp}.

The bijection between the elements eir . . . ei1t
(l1)
j1

. . . t
(lq)
jq

and the fully attached

tuples finally implies the coefficient
(
(−1)#{wi | wi variable and wi<lexxp}

)2
(−1)r = (−1)r.

Therefore, our differential has the desired form

∂(eir . . . ei1 t
(l1)
j1

. . . t
(lq)
jq

)

=

r∑

m=1

(−1)#{ij>im}xim eir . . . êim . . . ei1t
(l1)
j1

. . . t
(lq)
jq

+

q∑

m=1

n∑

p=1
p6=i1,...,ir

(−1)r Tp(fjm) eir · · · ei1ept
(l1)
j1

. . . t
(ljm−1)
jm

. . . t
(lq)
jq
.

It is easy to see that these are all possible reductions. �

If in≺(a) = a, then the preceding result about the Poincaré-Betti series can
be found in [26].

2. Resolution of the Residue Field in the Non-Commutative
Case

In this paragraph we study the same situation as in Paragraph 1 over the
polynomial ring in n non-commuting indeterminates. In this case, the acyclic
matching on the normalized Bar resolution is slightly different to the acyclic
matching in Paragraph 1, and the resulting Morse complex will be isomorphic to
the Anick resolution. These results were independently obtained by Sköldberg
[41]. In addition to Sköldberg’s results, we prove minimality of this resolution
in special cases which give information about the Poincaré-Betti series, and we
give an explicit description of the complex if the two-sided ideal a admits a
(finite) quadratic Gröbner basis, which proves a conjecture by Sturmfels [42].
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Let A = k〈x1, . . . , xn〉/a be the quotient algebra of the polynomial ring in
n non-commuting indeterminates by a two-sided ideal

aE k〈x1, . . . , xn〉.

As before, we assume that a = 〈f1, . . . , fs〉, such that {f1, . . . , fs} is a finite
reduced Gröbner basis with respect to a fixed degree-monomial order ≺. For
an introduction to the theory of Gröbner basis in the non-commutative case,
see [32].

Again, we have for the product of any two standard monomials a unique
(Gröbner) representation of the form:

w · v :=
∑

i

aiwi with ai ∈ k, wi ∈ G, and |w · v| ≥ |wi| for all i,

where G is the corresponding set of standard monomials of degree ≥ 1 and |m|
is the total degree of the monomial m.

The acyclic matching on the normalized Bar resolution is defined as follows:
As in the commutative case, we define Mj by induction on the coordinate
1 ≤ j ≤ n: For j = 1 we set

M1 :=





[xi|w
′
1|w2| . . . |wl]

↓
[w1| . . . |wl]

∈ G(NBA
• )
∣∣ w1 = xiw

′
1



 .

The critical cells with respect to M1 are given by

(1) BM1
1 :=

{
[xi]

∣∣∣ 1 ≤ i ≤ n
}
, l = 1,

(2) BM1
l is the set of all [xi|w2|w3| . . . |wl], w2, w3, . . . , wl ∈ G, such that

xiw2 is reducible.

Assume now j ≥ 2 and Mj−1 is defined. Let BMj−1 be the set of critical
cells left after applying M1 ∪ . . . ∪Mj−1.

Let Ej denote the set of edges inG(NBA
• ) that connect critical cells in BMj−1 .

The following condition on an edge in Ej will define the matching Mj .

Definition 2.1 (Matching Condition). Let

[xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl]
↓

[xi1 |w2| . . . |wj−1|wj |wj+1| . . . |wl]

be an edge in Ej. In particular, wj = u1u2. We say that the edge satisfies the
matching condition if

(i) u1 is a prefix of wj ,

(ii) [xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl] ∈ BMj−1 ,

(iii) [xi1 |w2| . . . |wj−1|v1|v2|wj+1| . . . |wl] 6∈ BMj−1 for each prefix v1 of u1

and v1v2 = wj.

Mj :=





[xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl]
↓

[xi1 |w2| . . . |wj−1|wj |wj+1| . . . |wl]
∈ Ej satisfying 2.1



 .
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The set of critical cells B
Mj

l in homological degree l ≥ 1 is given by

(1) B
Mj

1 :=
{

[xi]
∣∣∣ 1 ≤ i ≤ n

}
,

(2) B
Mj

2 consists of elements [xi1 |w2] with xi1w2 ∈ MinGen(in≺(a)),

(3) B
Mj

l consists of elements [xi1 |w2|w3| . . . |wl] ∈ B
Mj−1

l such that for

each prefix u of wj we have [xi1 |w2| . . . |wj−1|u| . . . |wl] 6∈ B
Mj−1

l and
wjwj+1 is reducible.

We finally set M :=
⋃

j≥1 Mj and we write BM for the set of critical cells
with respect to M.

With the same proof as in Paragraph 1 we get

Lemma 2.2. M defines an acyclic matching. �

2.1. The Anick Resolution. As in the commutative case, we give a second
description of the Morse complex with respect to the acyclic matching from
Lemma 2.2. In this case, this description shows that it is isomorphic to the
Anick resolution [1].

Definition 2.3. Let mi1 , . . . ,mil−1
∈ MinGen(in≺(a)) be monomials, such that

for j = 1, . . . , l − 1 we have mij = uijvijwij with uij+1 = wij and |ui1 | = 1.
Then we call the l-tuple

[ui1 |vi1wi1 |vi2wi2 | . . . |vil−1
wil−1

]

fully attached if for all 1 ≤ i ≤ l−2 and each prefix u of vij+1wij+1 the monomial
vijwiju lies in G. We write Bj := {[w1| . . . |wj ]} for the set of fully attached j-
tuples (j ≥ 2) and B1 := {[x1], . . . , [xn]}.

We define the reduction types (Type I, Type II, and Type III) and the
reduction coefficient [e : f ] for two fully attached tuples e, f in a similar way
as in the commutative case (see Definition 1.5). Now we are able to define the
following complex:

Fj :=
⊕

e∈Bj

Ae,

∂ : Fi → Fi−1

e 7→
∑

f∈Bi−1

[e : f ] f.

Note that the basis elements of Fj are exactly the basis elements in the
Anick resolution (see [1]), therefore, the complex F• is isomorphic to the Anick
resolution. Again, we have:

Theorem 2.4. (F•, ∂) is an A-free resolution of the residue field k over A. If
no reduction of Type II is possible, the resolution (F•, ∂) is minimal.

Proof. The fully attached tuples are exactly the critical cells. The rest is
analogous to the commutative case. �
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If one applies Theorem 2.4 to the ideal 〈xixj−xjxi, a〉, one reaches the com-
mutative case. But in general, the Morse complex with respect to the acyclic
matching from Lemma 2.2 is much larger (with respect to the rank) than the
Morse complex of the acyclic matching developed in Paragraph 1 for commu-
tative polynomial rings.

Since only by reductions of Type II coefficient [e : f ] ∈ k can enter the
resolution, we have:

Proposition 2.5. The following conditions are equivalent:

(1) (F•, ∂) is not minimal.

(2) There exist standard monomials w1, . . . , w4 and minimal generators
mi1 ,mi2 ,mi3 ∈ MinGen(in≺(a)), such that w1w2 = u1mi1 , w2w3 =
u2mi2 , w1w4 = u′1mi3 with u1, u

′
1 suffixes of w1, u2 suffix of w2, and

w2w3 → w4 ∈ R

Proof. (F•, ∂) is minimal iff no reduction of Type II is possible, which is equiv-
alent to the second condition. �

Corollary 2.6. In the following two cases, the resolution (F•, ∂) is a minimal
A-free resolution of k and independent of the characteristic of k.

(1) a admits a monomial Gröbner basis.

(2) The Gröbner basis of a consists of homogeneous polynomials, all of the
same degree.

Proof. If the Gröbner basis consists of monomials, the situation of Proposition
2.5 is not possible. In the other case, there exists a constant l, such that for
all w → v ∈ R we have |w| = |v| = l. Assume there exist standard monomials
w1, . . . , w4 and minimal generators mi1 ,mi2 ,mi3 ∈ MinGen(in≺(a)), such that
w1w2 = u1mi1 , w2w3 = u2mi2 , w1w4 = u′1mi3 with u1, u

′
1 suffixes of w1, u2

suffix of w2, and w2w3 → w4 ∈ R. Then we get |wi| < l for i = 2, 3, 4. On
the other hand, we have w2w3 → w4 ∈ R and therefore |w4| = l. This is a
contradiction. �

2.2. The Poincaré-Betti Series of k. In this section we draw some corol-
laries on the Poincaré-Betti series of k.

Recall the definition of a fully attached l-tuple: There exist leading mono-
mials mi1 , . . . ,mil−1

∈ MinGen(in≺(a)), such that for all j = 1, . . . , l − 1 there
exist monomials uij , vij , wij ∈ G with mij = uijvijwij and uij+1 = wij . It fol-
lows that the fully attached l-tuples are in one-to-one correspondence with l−1
chains of monomials (mi1 , . . . ,mil−1

) with the condition before. We write again
B for the set of all those chains. Now consider the subset

E :=
{

(mi1 , . . . ,mil) ∈ B
∣∣∣ mi1 , . . . ,mil pairwise different

}
⊂ B.

Since we consider only finite Gröbner bases, it is clear that E is finite. We
construct a DFA (deterministic finite automaton, see for example [31]) over
the alphabet E, which accepts B. For each letter f ∈ E we define a state
f . Each state f is a final state. Let S be the initial state and Q be an error
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state. From the state S we go to state f if we read the letter f ∈ E. Let
f1 = (mi1 , . . . ,mil), f2 = (m′

j1
, . . . ,m′

jl′
) ∈ E be two chains of monomials with

corresponding fully attached tuples [wi1 | . . . |wil+1
] and [w′

j1
| . . . |w′

jl′+1
]. Then

we have (f1, f2) ∈ B iff there exists a monomial n ∈ MinGen(in≺(a)) with
n = uw′

j1
and u suffix of wil+1

. In this case, we change by reading f2 from
state f1 to f2. If such a monomial does not exist, we change by reading f2 from
state f1 to the error state Q. The language of this DFA is exactly the set B.
This proves that the basis of our resolution F• is a regular language. Since the
word-counting function of a regular language is always a rational function (see
[31]), we get in particular the following theorem:

Theorem 2.7. For the Poincaré-Betti series of k over the ring A we have

PA
k (x, t) ≤ F (x, t),

where F (x, t) is a rational function. Equality holds iff F• is minimal. �

Corollary 2.8. For the following two cases the Poincaré-Betti series of k over
the ring A is a rational function:

(1) a admits a Gröbner basis consisting of monomials.

(2) The Gröbner basis of a consists of homogeneous polynomials, all of the
same degree.

Proof. The result is a direct consequence of the Theorem 2.7 and Corollary
2.6. �

Corollary 2.9. If a has a quadratic Gröbner basis, then F• is an A-free minimal
linear resolution. Hence A is Koszul and its Hilbert and Poincaré-Betti series
are rational functions. �

2.3. Examples. We finally want to give some examples of the Morse complex
and we verify a conjecture by Sturmfels:

Example 2.10 (Conjecture of Sturmfels (see [42])). Let Λ be a graded sub-
semigroup of Nd with n generators. We write its semigroup algebra over a field
k as a quotient of the free associative algebra

k〈y1, y2, . . . , yn〉/JΛ = k[Λ].

Suppose that the two-sided ideal JΛ possesses a quadratic Gröbner basis G.
The elements in the non-commutative Gröbner basis G are quadratic reduction
relations of the form yiyj → yi′yj′. If w and w′ are words in y1, . . . , yn, then

we write w
j

−→w′ if there exists a reduction sequence of length j from w to
w′. A word w = yi1yi2 · · · yir is called fully attached if every quadratic subword
yijyij+1 can be reduced with respect to G. Let Fr be the free k[Λ]-module with
basis {Ew : w fully attached word of length r}. Let F =

⊕
r≥0 Fr and define

a differential ∂ on F as follows:

∂ : Fr → Fr−1 , Ew 7→
∑

(−1)j xiEw′ ,

where the sum is over all fully attached words w′ of length r − 1 such that

w
j

−→xi w
′ for some i, j. Note that this sum includes the trivial reduction
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w
0

−→w. Then Theorem 2.4 together with Proposition 2.5 implies that (F, ∂) is
a minimal free resolution of k over k[Λ]. �

Example 1 (The twisted cubic curve): The Gröbner basis consists of nine
binomials:

G =

{
ac→ bb, ca→ bb, ad→ cb, da→ cb, bd→ cc,
db→ cc, ba→ ab, bc→ cb, dc → cd

}
.

The minimal free resolution (F, ∂) has the format

· · · · · ·
∂

−→ k[Λ]72
∂

−→ k[Λ]36
∂

−→ k[Λ]18
∂

−→ k[Λ]9
∂

−→ k[Λ]4
∂

−→ k.

One of the 36 fully attached monomials of degree four is adad. It admits three

relevant reductions adad
0

−→ adad , adad
1

−→ cbad and adad
3

−→ bbdb. This
implies

∂(Eadad) = a ·Edad − c · Ebad − b ·Ebdb.

Example 2 (The Koszul complex): Let Λ = Nd. The Gröbner basis G consists
of the relations yiyj → yjyi for 1 ≤ j < i ≤ n. A word w is fully attached
if and only if w = yi1yi2 · · · yir for i1 > i2 > · · · > ir. In this case, ∂(Ew) =∑r

j=1(−1)r−jyijEwj
where wj = yi1 · · · yij−1yij+1 · · · yir . Hence (F, ∂) is the

Koszul complex on n indeterminates.

Example 2.11 (The Cartan complex). If A is the exterior algebra, then F•

with

Fi :=
⊕

1 ≤ j1 < . . . < jr
l1, . . . , lr ∈ N

i =
∑r

t=1 lt

A e
(l1)
i1

. . . e
(lr)
ir

e
(l1)
i1

. . . e
(lr)
ir

→
r∑

t=1

xit e
(l1)
i1

. . . e
(lt−1)
it

. . . e
(lr)
ir

defines a minimal resolution of k as A-module, called the Cartan complex.

Proof. For the exterior algebra A = k(x1, . . . , xn)/〈xixj + xjxi〉 the resolution
F• is by Corollary 2.6 minimal. The set of reduction rules is given by R :=

{x2
i → 0, xixj

−1
−→ xjxi for i < j}. Then the fully attached tuples are exactly

the words

(xi1 , . . . , xi1 , xi2 , . . . , xi2 , . . . , xir , . . . , xir ) with 1 ≤ i1 < . . . < ir ≤ n.

Since xixj is reduced to −xjxi, if i 6= j, and each reduction has factor (−1), we
get for each reduction the coefficient (−1)(−1) = 1. Since xixi is reduced to 0,
the differential follows. �

The following example shows that even in the case where the Gröbner basis
is not finite one can apply our theory:

Example 2.12. Consider the two-side ideal a = 〈x2 − xy〉. By [32] there does
not exist a finite Gröbner basis with respect to degree-lex for a. One can show
that a = 〈xynx−xyn+1 | n ∈ N〉 and that {xynx−xyn+1 | n ∈ N} is an infinite
Gröbner basis with respect to degree-lex.
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If one applies our matching from Lemma 2.2, it is easy to see that the
critical cells are given by tuples of the form

[x|yn1 |x|yn2 |x| . . . |x|ynl |x] and [x|yn1 |x|yn2 |x| . . . |x|ynl ]

with n1, . . . , nl ∈ N.
A degree argument implies that the Morse complex is even a minimal resolution.
Therefore, we get a minimal resolution F• of k over A = k〈x1, . . . xn〉/a.

In this case, this proves that k does not admit a linear resolution and hence
A is not Koszul.

3. Application to the Acyclic Hochschild Complex

Now, let A = k〈x1, . . . , xn〉/〈f1, . . . , fs〉 be the non-commutative (resp. com-
mutative) polynomial ring in n indeterminates divided by a two-sided ideal,
where f1, . . . , fs is a finite reduced Gröbner basis of a = 〈f1, . . . , fs〉 with re-
spect to the degree-lex order. We now give an acyclic matching on the acyclic
Hochschild complex, which is minimal in special cases. Let G be the set of
standard monomials of degree ≥ 1 with respect to the degree-lex order. In this
case, the normalized acyclic Hochschild complex is given by

HCi :=
⊕

w1,...,wi∈G

(A⊗Aop) [w1| . . . |wi]

with differential

∂([w1| . . . |wi]) := (w1 ⊗ 1) [w2| . . . |wi]

+(−1)i(1⊗wi)[w1| . . . |wi−1]

+

i−1∑

j=1

(−1)j

(∑

r

ar[w1| . . . |wj−1|v
j
r |wj+2| . . . |wi]

)

if wjwj+1 is reducible to a0 +
∑

r arv
j
r (if wjwj+1 ∈ G, we set vj

r = wjwj+1).

We apply the same acyclic matching as in Paragraph 2 (resp. Paragraph
1).
Since in addition in this case the differential maps the element [w1| . . . |wi] also
to (−1)i(1⊗wi)[w1| . . . |wi−1] we have to modify the differential:
The reduction rules are the same as in Paragraph 1, except that the reduction
coefficient in Definition 1.5 is (c⊗ 1) instead of c. In order to define the co-

efficient, we say e can be reduced to f with coefficient c (we write e
c

−→ f),
where e = (w1, . . . , wl) and f = (v1, . . . , vl−1) are two fully attached l (resp.
l− 1)-tuples, if there exists a sequence of l-tuples e = e0, e1, . . . , er−1 such that
either there exists:

(1) an l-tuple er = (u, f), such that e0 can be reduced to er with reductions
of Type I and III, i.e.

e0
−a1−→ e1

−a2−→ e2
−a3−→ . . .

−ar−→ er;

in this case we set c := ((−1)r
∏r

i=1 ai) (u⊗ 1), or
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(2) an l-tuple er = (f, u), such that e0 can be reduced to er with reductions
of Type I and III, i.e.

e0
−a1−→ e1

−a2−→ e2
−a3−→ . . .

−ar−→ er;

in this case we set c :=
(
(−1)r+k

∏r
i=1 ai

)
(1⊗ u), or

(3) an l-tuple er, such that e0 can be reduced to er with reductions of
Type I and III and er can be reduced to f with a reduction of Type
II, i.e.

e0
−a1−→ e1

−a2−→ e2
−a3−→ . . .

−ar−→ er
(−1)j b
−→ f ;

in this case we set c := (−1)r+j b
∏r

i=1 ai.

We define the reduction coefficient [e : f ] and the complex F• as in Paragraph 2
(resp. Paragraph 1). With the same proof as in Paragraph 2 (resp. Paragraph
1) we obtain the following theorem:

Theorem 3.1. (F•, ∂) is a free resolution of A as an A⊗Aop-module.
If no reduction of Type II is possible, then (F•, ∂) is minimal. �

Moreover, we get similar results to the results from Paragraph 1, 2 about
minimality of F• and rationality of the Poincaré-Betti series

PA⊗Aop

k (x, t) =
∑

i,α

dimk

(
(Tor

(A⊗Aop)
i (k,A))α

)
xαti

from Paragraph 2 (resp. Paragraph 1).
As in Paragraph 1 we can give an explicit description of the minimal resolution
F• in the following cases:

(1) A = S/〈f1, . . . , fs〉, where S = k[x1, . . . , xn] is the commutative poly-
nomial ring in n indeterminates and fi a reduced Gröbner basis with
respect to the degree-lex order, such that the initial ideal is a complete
intersection (note that in case s = 1 this resolution was first given by
BACH (see [9])).

(2) A = E, where E is the exterior algebra.

Let A = k[x1, . . . , xn]/〈f1, . . . , fs〉 be the commutative polynomial ring in n
indeterminates with fi = xγi +

∑
αi 6=0 fi,αi

xαi , 1 ≤ i ≤ s, a reduced Gröbner
basis with respect to the degree-lex order, such that xγi is the leading term
(since we start with the normalized Hochschild resolution, the condition α 6= 0
is no restriction).

Let G = {xα | xα 6∈ 〈xγ1 , . . . , xγs〉} be the set of standard monomials of de-
gree ≥ 1. We assume that the initial ideal in≺(a) = 〈xγ1 , . . . , xγs〉 is a complete
intersection. With the same arguments as in Theorem 1.10 it follows that F• is
minimal. We use the same notation as [9] and write

T (xi) = (xi ⊗ 1) − (1⊗ xi),

Ti(f)

T (xi)
=

∑

α∈Nn

fα

αi−1∑

j=0

(xα1 · · · xαi−1xj ⊗xαi−1−jxαi+1 · · · xαn).

Under these conditions, we get the following result:
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Theorem 3.2. Let A = S/〈f1, . . . , fs〉 such that the initial ideal in≺(〈f1, . . . , fs〉)
is a complete intersection. Then the following complex is a multigraded minimal
resolution of A as an A⊗Aop-module and carries the structure of a differential-
graded algebra:

Fi :=
⊕

1 ≤ i1 < . . . < ir ≤ n
1 ≤ j1 < . . . < jq ≤ s

l1, . . . , lq ∈ N

i = r + 2
∑q

j=1 lj

A⊗Aop eir . . . ei1t
(l1)
j1

. . . t
(lq)
jq
,

eir . . . ei1
∂
7→

r∑

m=1

(−1)#{ij>im}T (xim) eir . . . êim . . . ei1 ,

t
(l1)
j1

. . . t
(lq)
jq

∂
7→

q∑

m=1

n∑

p=1

Tp(fjm)

T (xp)
ept

(l1)
j1

. . . t
(ljm−1)
jm

. . . t
(lq)
jq
,

where t
(0)
ij

:= 1, eiej = −ejei, and eiei = 0. For the differential we have:

∂(eir . . . ei1t
(l1)
j1

. . . t
(lq)
jq

) = ∂(eir . . . ei1)t
(l1)
j1

. . . t
(lq)
jq

+(−1)r eir . . . ei1∂(t
(l1)
j1

. . . t
(lq)
jq

).

Note that in case A = S/〈f〉 this result was first obtained in [9] and our
complex coincides with the complex given in [9].

Corollary 3.3. Under the assumptions of Theorem 3.2 the Hilbert series of
the Hochschild homology of A with coefficients in k has the form:

HilbHH(A,k)(x, t) =
∑

i,α

dimk

(
(TorA⊗Aop

i (k,A)α

)
xα ti

=

n∏

i=1

(1 + xi t)

∏k
i=1(1 − xγit2)

.

If a is the zero-ideal, we get with the same arguments the following special
case:

Corollary 3.4. Let A = k[x1, . . . , xn], then the following complex is a minimal
resolution of A as an A⊗Aop-module:

Fi :=
⊕

1≤i1<...<ir≤n

A⊗Aop ei1 . . . eir ,

ei1 . . . eir
∂
7→

r∑

m=1

(−1)#{ij<im}T (xim) ei1 . . . êim . . . eir .

In particular, we have:

HilbHH(A,k)(x, t) =
∑

i,α

dimk

(
(TorA⊗Aop

i )(k,A)α

)
xα ti

=

n∏

i=1

(1 + xi t).
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Proof of Theorem 3.2. The description of the basis of Fi follows with exactly
the same arguments as for the proof of Theorem 1.10. Since no constant term
appears in the differential it suffices, to verify that the differential has the given
form.

First, we consider a variable [xi]. Clearly, it maps to (xi ⊗ 1) − (1 ⊗ xi).

Next, we consider a minimal fully attached tuple wj =
[
xγi

∣∣∣xγi

xγi

]
, where

xγ := xm(xγ). Then we have:
[
xγi

∣∣∣∣
xγi

xγi

]
→ −

∑

α

fiα[xα] →
∑

α

fiα

[
xα

∣∣∣∣
xα

xα

]
.

As in the commutative case, the multi-index α decreases successively, but here[
xβ

∣∣∣ xα

xβxα

]
, for xβ = xm(xβ) with xβ := xα

xα
, maps in addition to

(
1⊗ xα

xa′xα

)
[xa′ ],

hence in this case we get:
[
xγi

∣∣∣∣
xγi

xγi

]
→

n∑

j=1

Tj(fi)

T (xj)
ej .

For a fully attached tuple [w1| . . . |wl], we have to calculate the sign of the
permutations. This calculation is similar to the calculation of the sign in the
commutative case (see proof of Theorem 1.10) and is left to the reader.

With the bijection between the elements eir . . . ei1t
(l1)
j1

. . . t
(lq)
jq

and the fully

attached tuples, we finally get the following differential:

∂(eir . . . ei1 t
(l1)
j1

. . . t
(lq)
jq

)

=

r∑

m=1

(−1)#{ij>im}T (xim) eir . . . êim . . . ei1t
(l1)
j1

. . . t
(lq)
jq

+

q∑

m=1

n∑

p=1
p6=i1,...,ir

(−1)r Tp(fjm)

T (xp)
eir · · · ei1ept

(l1)
j1

. . . t
(ljm−1)
jm

. . . t
(lq)
jq
,

and the desired result follows. �

We now consider the exterior algebra:

Theorem 3.5. Let E = k[x1, . . . , xn]/〈x2
i , xixj + xjxi〉 be the exterior algebra.

The following complex is a minimal resolution of E as E⊗Eop-module:

Fi :=
⊕

1 ≤ i1 < . . . < ir ≤ n
l1, . . . , lr ∈ Nn

E⊗Eop e
(l1)
i1

. . . e
(lr)
ir

with

e
(l1)
i1

. . . e
(lr)
ir

7→∑r

j=1
(xij ⊗ 1) + (1⊗ xij ) e

(l1)
i1

. . . e
(lj−1)
ij

. . . e
(lr)
ir
.
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In particular, we have :

HilbHH(E,k)(x, t) =
∑

i,α

dimk

(
(TorE ⊗E

i (k,E))α

)
xα ti

=
n∏

i=1

1

1 − xi t
.

Let S be the commutative polynomial ring in n indeterminates, then we have
the following duality:

HilbHH(E,k)(x, t) = HilbS(x, t),

HilbHH(S,k)(x, t) = HilbE(x, t).

Proof. The proof is the same as in Example 2.11 from Paragraph 2, only with
the modified differential. �



Chapter 6

The Multigraded
Hilbert and
Poincaré-Betti Series
and the Golod
Property

In this chapter, which is submitted under the title “On the Multigraded Hilbert
and Poincaré-Betti Series and the Golod Property of Monomial Rings” (see
[35]), we study the multigraded Hilbert and Poincaré-Betti series of algebras
A = S/a, where S is the commutative polynomial ring in n indeterminates and
a is a monomial ideal with minimal monomial generating system MinGen(a) :=
{m1, . . . ,ml}.

Recall that the multigraded Poincaré-Betti series P A
k (x, t) and HilbA(x, t)

of A are defined as

PA
k (x, t) :=

∞∑

i=0

∑

α∈Nn

dimk(Tor
A
i (k, k)α) xα ti,

HilbA(x, t) :=

∞∑

i=0

∑

α∈Nn

|α|=i

dimk(Aα) xα ti.

In [13] Charalambous and Reeves proved that in the case where the Taylor
resolution of a over S is minimal the Poincaré-Betti series takes the following
form:

PA
k (x, t) =

n∏

i=1

(1 + xi t)

1 +
∑

I⊂{1,...,l}

(−1)cl(I)mI t
cl(I)+|I|

,

101
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where cl(I) is the number of equivalence classes of I with respect to the relation
defined as the transitive closure of i ∼ j :⇔ gcd(mi,mj) 6= 1 and mI :=
lcm(mi | i ∈ I) is the least common multiple.
In the general case, they conjecture that

PA
k (x, t) =

n∏

i=1

(1 + xi t)

1 +
∑

I⊂[l]
I∈U

(−1)cl(I)mI t
cl(I)+|I|

,

where [l] = {1, . . . , l} and U ⊂ 2[l] is the “basis”-set. However, the conjecture
does not include a description of the basis-set U .

Using our standard matching from Chapter 4, we are able to specify the
basis-set U and prove the conjecture in several cases. In fact, we give a gen-
eral conjecture about the multigraded minimal A-free resolution of k over A.
This conjecture implies in these cases an explicit description of the multigraded
Hilbert and Poincaré-Betti series, hence it implies the conjecture by Charalam-
bous and Reeves.

In Paragraph 1 we formulate our conjecture on the multigraded minimal
resolution of k as an A-module and we show that our conjecture gives an explicit
form of the multigraded Hilbert and Poincaré-Betti series. This generalizes the
conjecture by Charalambous and Reeves. We say that an algebra A has property
(P) (resp. (H)) if the multigraded Poincaré-Betti series (resp. multigraded
Hilbert series) has the conjectured form.

In Paragraph 2 we give a description of the Koszul homology H•(K
A) of

the Koszul complex over A with respect to the sequence x1, . . . , xn in terms of
a standard matching on the Taylor resolution. We need this description later
in the proof of our conjecture.

In Paragraph 3 we prove that the Stanley Reisner ring A = k[∆], where
∆ = ∆(P ) is the order complex of a partially ordered set P , satisfies property
(P) and property (H).

In the first section of Paragraph 4 we prove our conjecture for algebras
for which H•(K

A) is an M -ring, a notion introduced by Fröberg [23]. Using
a theorem of Fröberg, we also prove property (P) for algebras A = S/a for
which in addition the minimal free resolution of a carries the structure of a
differential-graded algebra. In the second part we prove our conjecture for all
Koszul algebras A. Note that this, as a particular case, gives another proof
that A = k[∆] satisfies property (P) and (H).
Finally, we explain why our conjecture makes sense in general. We generalize the
Massey operation in order to get an explicit description of the Eagon complex.
On this complex we define an acyclic matching. If the resulting Morse complex
is minimal, one has to find an isomorphism to the conjectured complex. We give
some ideas on how to construct this isomorphism. This construction justifies
our conjecture.
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Since an algebra is Golod if and only if

PA
k (x, t) =

n∏

i=1

(1 + xi t)

1 − t
∑

βα,i 6=0

βα,ix
α ti

,

where βi,α := dimk

(
TorS

i (A, k)α

)
, we can give some applications to the Golod

property of monomial rings in the last paragraph of this chapter. We prove,
under the assumption of property (P), that A is Golod if and only if the first
Massey operation is trivial. In addition we give, again under the assumption
of property (P), a very simple, purely combinatorial condition on the minimal
monomial generating system MinGen(a) which implies Golodness. We conjec-
ture that this is an equivalence. This would imply that, in the monomial case,
Golodness is independent of the characteristic of the residue class field k.

Recently, Charalambous proved in [14] that if

PA
k (x, t) =

n∏

i=1

(1 + xi t)

QR(x, t)
with QR(x, t) =

∑(∑

α

cαx
α
)
ti,

then xα equals to a least common multiple of a subset of the minimal monomial
generating system MinGen(a). However an explicit form of QR(x, t) in terms
of subsets of MinGen(a) is still not known.
In addition, Charalambous proves a new criterion for generic ideals to be Golod.
In Section 5 we reprove this criterion using our approach.

In another recent paper, Berglund gives an explicit form of the denomina-
tor QR(x, t) in terms of the homology of certain simplicial complexes. Since
there seems to be no obvious connection of the approach taken in [8] and our
approach, it is an interesting problem to link these two methods.

1. The Multigraded Hilbert and Poincaré-Betti Series

Let aES be a monomial ideal and M = M1∪
⋃

i≥2 Mi a standard matching on
the Taylor resolution. We introduce a new non-commutative polynomial ring
R̃, defined by

R̃ := k〈YI for MinGen(a) ⊃ I 6∈ M1 and cl(I) = 1〉.

On this ring, we define three gradings:

|YI | := |I| + 1,

deg(YI) := α, with xα = mI ,

degt(YI) := ||α||, with xα = mI ,

where ||α|| =
∑

i αi is the absolute value of α. This makes R̃ into a multigraded
ring:

R̃ =
⊕

α∈Nn

⊕

i≥0

R̃i,α

with R̃i,α :=
{
u ∈ R̃

∣∣ deg(u) = α and |u| = i
}
.
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Let [YI , YJ ] := YIYJ − (−1)|YI ||YJ |YJYI be the graded commutator of YI and
YJ . We define the following multigraded two-sided ideal

r := 〈[YI , YJ ] for gcd(mI ,mJ ) = 1〉,

and set

R := R̃/r.

Let HilbR(x, t, z) :=
∑

α∈Nn

∑

i≥0

dimk(Ri,α) xα t||α|| zi be the multigraded Hilbert

series of R. We have the following fact:

Proposition 1.1. The multigraded Hilbert series HilbR(x, t, z) of R is given by

HilbR(x, t, z) =
1

1 +
∑

I⊂MinGen(a)
I6∈M1

(−1)cl(I) mI t
mI zcl(I)+|I|

,

where tmI := t|α| with xα = mI .

Proof. In [12], Cartier and Foata prove that the Hilbert series of an arbitrary
non-commutative polynomial ring divided by an ideal, which is generated by
some (graded) commutators, is given by

HilbR(x, t, z) :=
1

1 +
∑

F

(−1)|F | xdeg(yF ) tdegt(yF ) z|YF |
,

where F ⊂ {YI with I 6∈ M1, cl(I) = 1} is a commutative part (i.e. YIYJ =

(−1)|J ||I|YJYI for all YI , YJ ∈ F ) and YF =
∏

YI∈F YI .
Therefore, we only have to calculate the commutative parts. Since r is generated
by the relations YIYJ = (−1)|J ||I|YJYI , if gcd(mI ,mJ ) = 1, we see that the
commutative parts are given by

F :=
{
YIi1

, . . . , YIir

∣∣∣ gcd(mIij
,mIi

j′
) = 1 for all j 6= j ′

}
.

But the fact that YIi1
, . . . , YIir

is a commutative part is equivalent to Ii1 ∪
. . . ∪ Iir 6∈ M1. Therefore, we can identify the commutative parts F with the
elements I 6∈ M1 and sum over all I 6∈ M1. It is clear that the cardinality

of a commutative part equals to the number cl(I). If I = I1
·
∪ . . .

·
∪ Ir with

cl(Ij) = 1 is a commutative part, it follows that YI = YI1 · · · YIr , which implies
the exponents of t, z, x. �

We formulate the following conjecture:

Conjecture 1.2. Let F• be a multigraded minimal A-free resolution of k as an
A-module with Fi :=

⊕
α∈Nn A(−α)βi,α for i ≥ 0. Then we have the following

isomorphism as k-vectorspaces:

Fi
∼=

⊕

J⊂{1,...,n}
|J|=l

⊕

u∈G(R)
|u|=i−l

A
(
− (αJ + deg(u))

)
,

where G(R) is the set of monomials in R and αJ is the characteristic vector of
J , defined by

(αJ )i =

{
0 , i 6∈ J,
1 , i ∈ J.
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This conjecture gives a precise formulation of the conjecture by Charalam-
bous and Reeves on the multigraded Poincaré-Betti series. In addition, we get
an explicit form of the multigraded Hilbert series of S/a for monomial ideals a.

Proposition 1.3. Let A = S/a be the quotient of the commutative polyno-
mial ring by a monomial ideal a, and let M := M1 ∪

⋃
i≥2 Mi be a standard

matching on the Taylor resolution. If Conjecture 1.2 holds, then the multigraded
Poincaré-Betti and Hilbert series have the following form:

PA
k (x, t) =

n∏

i=1

(1 + xi t) HilbR(x, 1, t)(1.1)

=

n∏

i=1

(1 + xi t)

1 +
∑

I⊂MinGen(a)
I6∈M1

(−1)cl(I) mI t
cl(I)+|I|

,

HilbA(x, t) =
( n∏

i=1

(1 − xi t) HilbR(x, t,−1)
)−1

(1.2)

=

1 +
∑

I⊂MinGen(a)
I6∈M1

(−1)|I| mI t
mI

n∏

i=1

(1 − xi t)

.

Note that Equation (1.1) is a reformulation of the conjecture by Charalam-
bous and Reeves.

Proof. The form of the Poincaré-Betti series follows directly from the conjec-
ture, by counting basis elements of Fi.
For the Hilbert series we consider the complex F• → k → 0, which is exact
since F• is a minimal free resolution of k. Since the Hilbert series of k is 1, the
Euler characteristic implies:

∑

i≥0

(−1)i HilbFi
(x, t) = 1.

Conjecture 1.2 implies

HilbFi
(x, t) =

∑

J⊂{1,...,n}
|J|=l

∑

u∈R
|u|=i−l

xαJ t|J | xdeg(u) tdegt(u) HilbA(x, t).

The Cauchy product finally implies:
∑

i≥0

(−1)i HilbFi
(x, t) = HilbA(x, t)

∑

i≥0

∑

J⊂{1,...,n}
|J|=l

(−1)l xαJ t|J |

∑

u∈R
|u|=i−l

(−1)i−l xdeg(u) tdegt(u)

= HilbA(x, t)


 ∑

J⊂{1,...,n}

xαJ (−t)|J |



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(∑

u∈R

xdeg(u) tdegt(u) (−1)|u|

)

= HilbA(x, t)
n∏

i=1

(1 − t xi) HilbR(x, t,−1).

�

It is known that if A is Koszul, then HilbA(x, t) = 1/PA
k (x,−t). In our case,

this means:

Proposition 1.4. If A is Koszul, then HilbR(x, t,−1) = HilbR(x, 1,−t).

Proof. In the monomial case, the Koszul property is equivalent to the fact that
a is generated in degree two. We prove that a subset I ∈ MinGen(a) which is
not matched by M1 satisfies cl(I) + |I| = degt(YI). It is clear that this proves
the assertion.
It is enough to prove it for subsets I ⊂ MinGen(a) with cl(I) = 1. Let mI =
xα be the least common multiple of the generators in I. Since all generators
have degree two, it follows ||α|| ≤ 2 + |I| − 1 = |I| + 1 = |I| + cl(I). Since
TorS

i (S/a, k)i = 0, we get ||α|| = |I| + 1 = |I| + cl(I). �

We introduce some notation for rings A satisfying the consequences of Con-
jecture 1.2.

Definition 1.5. We say that A has property

(P) if PA
k (x, t) =

∏n
i=1(1 + xi t) HilbR(x, 1, t) and has property

(H) if HilbA(x, t) =
(∏n

i=1(1 − xi t) HilbR(x, t,−1)
)−1

.

2. The Homology of the Koszul Complex KA

Let M be a standard matching on the Taylor resolution of a. The basis of the
k-vectorspace TM

• ⊗S k is then given by the sets I ⊂ MinGen(a) with I 6∈ M.

We denote with KA
• the Koszul complex of A with respect to the sequence

x1, . . . , xn, i.e.

Ki :=
⊕

{j1<...<ji}

A e{j1<...<ji}

with differential

∂i :

{
Ki → Ki−1

e{j1<...<ji} 7→
∑i

l=1(−1)l+1 xjl
e{j1<...<jl−1<jl+1<...ji}

We denote further by Z(K•) (resp. B(K•)) the set of cycles (resp. boundaries)
of the complex K•. Finally, we denote with H(K•) the homology of the Koszul
complex.

Proposition 2.1. If M is a standard matching, then there exists a homoge-
neous homomorphism

φ :

{
TM
• ⊗S k → KA

•

I 7→ φ(I)

such that for all I, J 6∈ M with gcd(mI ,mJ) = 1 we have
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(1) φ(I) is a cycle,

(2) φ(I)φ(J) = φ(I ∪ J) if I ∪ J 6∈ M,

(3) if I ∪ J ∈ M,

φ(I)φ(J) = ∂(c) +
∑

L6∈M

cl(L)≥cl(I)+cl(J)

aLφ(L) for some aL ∈ k,

for some c ∈ KA
• .

Note that φ(I)φ(J) ∈ B(K•) might happen if all coefficients aL are zero.

Proof. We consider the following double complex:

0 0 0
↑ ↑ ↑

0 → TM
n ⊗S k → . . . → TM

0 ⊗S k → S/I ⊗S k → 0
↑ ↑ ↑

0 → TM
n ⊗S K

S
0 → . . . → TM

0 ⊗S K
S
0 → S/I ⊗S K

S
0 → 0

↑ ↑ ↑

0 →
... → . . . →

... →
... → 0

↑ ↑ ↑
0 → TM

n ⊗S K
S
n → . . . → TM

0 ⊗S K
S
n → S/I ⊗S K

S
n → 0

↑ ↑ ↑
0 0 0

Since every row and every column, except the first row and the right column,
are exact, we get by diagram chasing a homogeneous homomorphism

φ :

{
TM
• ⊗S k → K•

I 7→ φ(I).

By construction it is clear that φ(I) is a cycle. The second condition of a
standard matching is: if (I → J) ∈ M, then (I ∪ K → J ∪ K) ∈ M for
all K with gcd(mK ,mI) = 1. This condition implies that one can chose the
homomorphism φ such that φ(I)φ(J) = φ(I ∪ J) if I ∪ J 6∈ M.
Now let I∪J ∈ M. Since I, J 6∈ M, it follows from the standard matching that
I ∪ J is matched with a set Î of higher homological degree. We now consider
M′ := M\ {Î → I ∪ J}. We then have

0 = ∂M
′
∂M

′
(Î).

Hence we get:

∂M
′
(I ∪ J) =

∑

L6∈M

aL∂
M(L).

Since we take the tensor product ⊗Sk with k, all summands with aL 6∈ k cancel
out. Hence φ(I)φ(J) ∈ B(KA

• ) or, again with diagram chasing:

φ(I)φ(J) −
∑

L6∈M
cl(L)≥cl(I)+cl(J)

aLφ(L) ∈ B(KA
• ).

From the construction of the standard matching it follows, in addition, that
cl(L) ≥ cl(I) + cl(J) (otherwise L would have been matched before). �



108 6. The Multigraded Hilbert and Poincaré Series and the Golod Property

We define the following new k-algebra:
For each I 6∈ M with cl(I) = 1 we define one indeterminate YI with total
degree degt(YI) := |I| and multidegree degm(YI) := xα, if xα = mI . Let R′ :=
k(YI , I 6∈ M, cl(I) = 1)/r′ be the quotient algebra of the graded commutative

polynomial ring k(YI , I 6∈ M, cl(I) = 1) (i.e. YIYJ = (−1)|I||J |YJYI) and the
multigraded ideal r′ that is generated by the relations given by Proposition 2.1,
i.e.:

(1) YIYJ = 0 if gcd(mI ,mJ) 6= 1,

(2) YIi1
· · · YIir

=
∑
aLYL if φ(Ii1) · · · φ(Iir) =

∑
aLφ(L) + boundary,

(3) YIi1
· · · YIir

= 0 if [φ(Ii1) · · ·φ(Iir )] = 0.

Theorem 2.2. If M is a standard matching, then R′ is isomorphic to H(K•).

Proof. The isomorphism is given by Proposition 2.1. We only have to prove
that [φ(I)][φ(J)] = 0 if gcd(mI ,mJ) 6= 1. This follows from the next lemma
and the next corollary. �

Lemma 2.3. Let c =
∑

I αI
m
xI
eI be a homogeneous cycle with multidegree

deg(c) = m. We fix an x0 | m. Then there exists a cycle c′ =
∑

I′ αI′
m
xI′
eI′ ,

homologic to c, such that x0 | xI′ for all I ′.

Proof. Let I be an index set such that αI 6= 0 in the expansion of c with
x0 6 | xI . Then

m

xI
eI =

∑

i∈I

(−1)pos(i)+1 mxi

x0 xI
ex0 ∧ eI\{i} + ∂

(
mI

x0 xI
ex0 ∧ eI

)
.(2.1)

If we replace each index set I with respect to (2.1), we finally reach a cycle
c′ with the desired property. By construction there exists an element d with
c− c′ = ∂(d) ∈ B(K•). �

Corollary 2.4. Let c1, c2 be two homogeneous cycles with multidegrees deg(c1) =
m and deg(c2) = n. If gcd(m,n) 6= 1, we have [c1][c2] = 0.

Proof. Let c1 :=
∑

I αI
m
xI
eI and c2 :=

∑
J βJ

n
xJ
eJ with gcd(m,n) 6= 1. We fix

a j ∈ supp(gcd(m,n)). By Lemma 2.3 we can assume that j ∈ I ∩ J for all
I, J . This implies [c1][c2] = 0. �

Corollary 2.5. H(K•) is generated by I 6∈ M with cl(I) = 1.

3. Hilbert and Poincaré-Betti Series of the Algebra A = k[∆]

In this paragraph we prove property (P) and (H) for A = S/a where a = I∆(P )

is the Stanley Reisner ideal of the order complex ∆(P ) of a partially ordered
set P .

Let P := ({1, . . . , n},≺) be a partially ordered set, where i ≺ j implies
i < j. The Stanley Reisner ring of the order complex ∆ = ∆(P ) is given by

A := k[∆] = k[xi, i ∈ P ]/〈xixj with i < j and i 6≺ j〉.

We now define a sequence of regular languages Li over the alphabet Γi :=
{xi, . . . , xn}:
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(1) xixj ∈ Li for all i < j and i 6≺ j,

(2) xixj1 · · · xjl
∈ Li if xixj1 · · · xjl−1

∈ Li and i < jr for all r = 1, . . . l and
either
(a) jl−1 6≺ jl or
(b) xixj1 · · · xjl−2

xjl
∈ Li and jl < jl−1.

Let fi(x, t) :=
∑

w∈Li
t|w| w be the word counting function of Li.

Corollary 1.8 and Corollary 1.9 of Chapter 5 imply the following theorem:

Theorem 3.1. The Poincaré-Betti series of A is given by:

PA
k (x, t) :=

n∏

i=1

(1 + t xi)
n∏

i=1

(1 + Fi(x, t)) =
n∏

i=1

1 + t xi

1 − fi(x, t)
,

where Fi(x, t) := fi

1−fi(x,t) .

We only have to calculate the word counting functions fi. Since the language
Ln is empty, it follows that fn := 0. We construct recursively non-deterministic
finite automata Ai such that the language L(Ai) accepted by Ai is Li (for the
basic facts on deterministic finite automata we use here [31]). We assume that
Aj is defined for all j > i. Let A+

j be the automaton which accepts the language

L+
j ∪ {w xj with w ∈ L∗

j}, where

L+ :=
{
w1 ◦ . . . ◦ wi

∣∣ i ∈ N \ {0} and wj ∈ L, j = 1, . . . , i
}
,

L∗ := L+ ∪ {ε} =
{
w1 ◦ . . . ◦ wi

∣∣ i ∈ N and wj ∈ L, j = 1, . . . , i
}
,

where ◦ denotes the concatenation and ε is the empty word. It follows that the

word counting function of L(A+
j ) is given by

fj+t xj

1−fj
.

We now construct Ai:

. From the starting state we go to the state i if we read the letter xi,
otherwise we reject the input word.

. From the state i we can switch by reading the empty word to the state
j, which represents the automaton A+

j , if i < j and i 6≺ j. We then

accept if A+
j accepts.

. Now assume we have the transitions i → j1 and i → j2 with j1 < j2.
Because of condition (2b) we can switch by reading the empty word
from state j2 to state j1.

. Assume that we have the transition i → j2 and we do not have the
transition i → j1, with j1 < j2. This means i ≺ j1 and i 6≺ j2.
Therefore, we must have j1 ≺ j2, otherwise we get a contradiction to
the transitivity of the order in P . It follows by condition (1) that we
can switch by reading the empty word from state j2 to j1.

It is clear that Ai accepts the language Li. Since the state j represents the
automaton A+

j , we get a recursion for the word counting functions:

Lemma 3.2. For the word counting functions fi we get the following recursion:

fn := 0,
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fi := t xi

∑

i<j
i6≺j

fj + t xj

1 − fj

j−1∏

r=i+1

1 + t xj

1 − fj
.

Proof. The state j represents the automaton A+
j with word counting function

fj+t xj

1−fj
. By the argumentation above we have j → ν for all ν = i+ 1, . . . , j − 1

if we have i→ j. Since we accept when the automaton A+
j accepts, we get the

desired recursion. �

By standard facts on regular languages the functions fi are rational func-
tions, but we want to have an expression of the Poincaré-Betti series by poly-
nomials:

Lemma 3.3. For the rational functions fi we have:

fi :=
wi

1 −
n∑

r=i+1

wr

,

where wi are polynomials and wn = 0.

Proof. We prove it by induction: wn is a polynomial and we have fn = wn

1−0 .
We now assume that fj satisfies the desired condition for all j > i. Then

fi = t xi

∑

i<j
xixj∈a

t xj + fj

1 − fj

j−1∏

r=i+1

1 + t xr

1 − fr

= t xi

∑

i<j
xixj∈a

t xj +
wj

1−

∑

r>j

wr

1 −
wj

1−

∑

r>j

wr

j−1∏

r=i+1

1 + t xr

1 − wr

1−

∑

l>r

wl

= t xi

∑

i<j
xixj∈a

t xj


1 −

∑

r>j

wr


+ wj

1 −
∑

r≥j

wr

(
j−1∏

r=i+1

(1 + t xr)

)



j−1∏

r=i+1

1 −
∑

l>r

wl

1 −
∑

l≥r

wl




= t xi

∑

i<j
xixj∈a

t xj


1 −

∑

r>j

wr


+ wj

1 −
∑

r≥j

wr

(
j−1∏

r=i+1

(1 + t xr)

) 1 −
∑

l>j−1

wl

1 −
∑

l≥i+1

wl

= t xi

∑

i<j
xixj∈a


wj + t xj − t xj

∑

r>j

wr



(

j−1∏

r=i+1

(1 + t xr)

)
1

1 −
∑

l≥i+1

wl

=
wi

1 −
∑

l≥i+1

wl
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with

wi := t xi

∑

i<j
xixj∈a


wj + t xj − t xj

∑

r>j

wr



(

j−1∏

r=i+1

(1 + t xr)

)
.

By induction, wr is for r > i a polynomial and therefore wi is a polynomial. �

Corollary 3.4. The Poincaré-Betti series of A is given by:

PA
k (x, t) :=

n∏

i=1

(1 + t xi)
1

1 − w1 − . . . − wn

with

wn := 0,

wi := t xi

∑

i<j
xixj∈a


wj + t xj − t xj

∑

r>j

wr



(

j−1∏

r=i+1

(1 + t xr)

)
.

Proof. The result is a direct consequence of Lemma 3.3 and Theorem 3.1. �

We now solve the recursion of wi. For this, we introduce a directed graph
G = (V,E) with vertex set V = {1, . . . , n} and two vertices i, j are joined (i.e.
i 7→ j) if i < j and i 6≺ j. We write G

∣∣
i1,...,iν

for the induced subgraph on the

vertices i1, . . . , iν .
For a sequence 1 ≤ i1 < . . . < iν ≤ n we define

d(i1, . . . , iν) := #{paths from i1 to iν in G
∣∣
i1,...,iν

},

c(i1, . . . , iν) :=
∑

0=a0<a1<...<ar=ν

ai+1−ai≥2

r≥1

(−1)r d(ia0+1, . . . , ia1) · · · d(iar−1+1, . . . , iar ).

Note that a path counted by d(i1, . . . , iν) does not have to pass through all
vertices i1, . . . , iν .

With this notation we get

Corollary 3.5. The Poincaré-Betti series of A is given by:

PA
k (x, t) :=

n∏

i=1

(1 + t xi)
1

W (t, x)

with

W (t, x) = 1 +
∑

1≤i1<...<iν≤n

ν≥2

c(i1, . . . , iν) tν xi1 · · · xiν .

Proof. The result follows if one solves the recursion of the wi’s and collects the
coefficients of the monomials xi1 · · · xiν . �

In order to prove property (P) , we give a bijection between the paths in
G
∣∣
i1,...,iν

and the sting-chains:
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Lemma 3.6. For any sequence 1 ≤ i1 < . . . < iν ≤ there exists a bijection
between the paths from i1 to iν in G

∣∣
i1,...,iν

and the sting-chains I with lcm(I) =
xi1 · · · xiν .

Proof. We consider the path i1 → j2 → j3 → . . . → jr → iν . To this path,
we associate the set I := {xi1xj2 , xj2xj3 , . . . , xjrxiν}. Now we define the stings:
Assume jr < il0 , . . . , il1 < jr+1. Then we must have either jr 6≺ is or is 6≺ jr+1

for all s = l0, . . . , l1 (otherwise we would have a contradiction to jr 6≺ jr+1).
This implies

{xjrxis , xisxjr+1} ∩ a 6= ∅ for all s = l0, . . . , l1.

If xjrxis ∈ {xjrxis , xisxjr+1}∩a, we choose xjrxis , otherwise we choose xisxjr+1 .
With this choice we get that I satisfies condition (4b) and (4c) of Definition 1.6
of Chapter 4. By construction we have lcm(I) = xi1 · · · xiν .

If we start with a sting-chain I with lcm(I) = xi1 · · · xiν , then by definition
there exist monomials xi1xj2 , xj2xj3 , . . . , xjrxiν ∈ I. This sequence defines a
path i1 7→ j2 7→ . . . 7→ jr 7→ iν . Since both constructions are inverse to each
other, the assertion follows. �

It follows:

W (t, x) := 1 +
∑

I∈B

(−1)cl(I)mIt
cl(I)+|I|,(3.1)

where B is the set of chains of sting-chains, defined in Paragraph 1 of Chapter
4.

We now can prove property (P) and (H) for the ring A = k[∆]:

Theorem 3.7. Let P be a partially ordered set and ∆ the order complex of P .
The multigraded Poincaré-Betti and Hilbert series of the Stanley Reisner ring
A = k[∆] = S/a are given by:

PA
k (x, t) :=

∏

i∈P

(1 + t xi)

W (t, x)
,

HilbA(x, t) :=
W (−t, x)∏

i∈P

(1 − t xi)
,

where

W (t, x) = 1 +
∑

I 6∈M

(−1)cl(I) mI t
cl(I)+|I|

= 1 +
∑

I 6∈M1

(−1)cl(I)mI t
cl(I)+|I|

= 1 +
∑

I∈B

(−1)cl(I)mI t
cl(I)+|I|

= 1 +
∑

I nbc-set

(−1)cl(I)mI t
cl(I)+|I|

with M = M1 ∪M2 a standard matching on the Taylor resolution T• of a.
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Proof. The assertion is a direct consequence of Corollary 1.8 of Chapter 4,
Corollary 3.5 and Equation (3.1). �

4. Proof of Conjecture 1.2 for Several Classes of Algebras A

In this paragraph we prove Conjecture 1.2 in some special cases. In the first
section, we prove the conjecture for algebras A for which the Koszul homology
is an M -ring - a notion introduced by Fröberg [23]. If in addition the mini-
mal resolution of a has the structure of a differential-graded algebra, we prove
property (P) for A.

In the second section, we prove Conjecture 1.2 for all Koszul algebras. Note
that this gives another proof that for a partially ordered set P the Stanley
Reisner ring A = k[∆(P )] satisfies property (P) and (H).

In the last section, we outline an idea for a proof of Conjecture 1.2 in general.

4.1. Proof for Algebras A for which H•(K
A) is an M-ring.

The first class for which we can prove Conjecture 1.2 uses a theorem by Fröberg
[23]. We use the notation of Fröberg:

Definition 4.1. A k-algebra R isomorphic to a (non-commutative) polynomial
ring k〈X1, . . . , Xr〉 divided by an ideal r of relations is called

(1) a weak M-ring if r is generated by relations of the following types:
(a) the (graded) commutator [Xi, Xj ] = 0,
(b) m = 0, where m is a monomial in Xi.

(2) an M-ring if if r is generated by relations of the following types:
(a) the (graded) commutator [Xi, Xj ] = 0,
(b) m = 0 with m a quadratic-monomial in Xi.

Now we assume that H(K•) is an M-ring and M is a standard matching.
Let R′′ := k〈YI , I 6∈ M, cl(I) = 1〉/r′′ be the non-commutative polynomial ring
divided by an ideal r′′, where r′′ is generated by the following relations:

YIYJ = (−1)degt(YIYJ )YJYI , if

{
gcd(mI ,mJ) = 1 and I ∪ J 6∈ M

for all I, J 6∈ M with cl(I) = cl(J) = 1.

In the notion of Fröberg, R′′ ⊗ R′ is the MM-ring belonging to the M -ring
R′ ' H(K•). Each literal YI has two degrees: the total degree |YI | := |I| + 1
and the multidegree deg(YI) := α, with xα = mI .

We define F• := R′′⊗kK
A
• . Since KA

• is an A-module, F• is a free graded A-

module with deg(m⊗n) := degR′′

t (m)+deg
KA

•
t (n). Let Fi be the homogeneous

part of degree i. The next theorem proves Conjecture 1.2 in our situation.

Theorem 4.2. Let M be a standard matching. Assume H(K•) an M-ring.
If there exists a homomorphism s : H•(K

A) → Z•(K
A), such that π ◦ s =

idH•(KA), then A satisfies Conjecture 1.2.

Corollary 4.3. Under the assumptions of Theorem 4.2 the algebra A has prop-
erties (P) and (H). �
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Proof of Theorem 4.2. Theorem 2.2 verifies the conditions for Theorem 3 in
[23]. In the proof of this theorem, Fröberg shows that F• defines a minimal free
resolution of k as an A-module. By Theorem 2.2 the homology of the Koszul
complex is isomorphic to the ring R′/r′. Since H•(K

A) is an M -ring, it follows
that the ideal r′ is generated in degree two. The construction of the ideal r′

implies that every standard matching ends after the second sequence. In the
second sequence of M, we have that I → J ∈ M2 satisfies cl(I) = cl(J)−1 and
|I| = |J |+1. Now let I → J ∈ M2 with cl(I) = 1 and cl(J) = cl(J1)+ cl(J2) =
2. The difference between the ring R′′ and the ring R is that in R we have a
variable YI and the variables YJ1 , YJ2 commute. In the ring R′′ the variables
YJ1 , YJ2 do not commute and the variable YI is omitted. Identifying YJ1YJ2 ∈ R′′

with YJ1YJ2 ∈ R and YJ2YJ1 ∈ R′′ with YI ∈ R gives an isomorphism as k-
vectorspaces of R and R′′. The property cl(I) = cl(J) − 1 and |I| = |J | + 1
proves that this isomorphism preserves the degrees, and we are done. �

The theorem includes the theorem by Charalambous and Reeves since in
their case every standard matching is empty and Charalambous and Reeves
proved the existence of the map s : H•(K

A) → Z•(K
A):

Corollary 4.4 ([13]). If the Taylor resolution of a is minimal, then A = S/a
satisfies Conjecture 1.2. �

Note that H•(K
A)∼=R′ carries three gradings. Let u ∈ R′ with u =

YI1 · · · YIr . Then we have gcd(mIj
,mIj′

) = 1, for j 6= j ′, and I1 ∪ . . . ∪ Ir 6∈ M

(otherwise u ∈ r′). We set

deg(u) = α if xα = mI1 · · ·mIr = mI1∪...∪Ir ,

degt(u) = r = cl(I1 ∪ . . . ∪ Ir),

|u| = |I1| + . . .+ |Ir| = |I1 ∪ . . . ∪ Ir|.

It follows:
H•(K

A)∼=R′ =
⊕

α∈Nn

i,j≥0

R′
α,i,j =

⊕

I 6∈ M
degt(I) = i
|I| = j

k YI ,

where YI = YI1 · · · YIr if cl(I) = r and gcd(mIj
,mIj′

) = 1, for j 6= j ′.

Fröberg proved that in the case where H•(K
A) is an M-ring and the minimal

resolution of a has the structure of a differential-graded algebra we have:

PA
k (x, t) =

HilbK•⊗Ak(x, t)

HilbH•(KA)(x,−t, t)
=

n∏

i=1

(1 + t xi)
1

HilbH•(KA)(x,−t, t)
.

Therefore, we only have to calculate the Hilbert series HilbH•(KA)(x,−t, t):

HilbH•(KA)(x,−t, t) =
∑

α∈Nn

i,j≥0

dimk(R
′
α,i,j) x

α (−t)i tj

=
∑

I 6∈M

mI (−t)cl(I) t|I|

= 1 / HilbR(x, 1, t).
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The last equation follows from Lemma 1.3 of Chapter 4 since if H•(K
A) is an

M-ring, every standard matching ends after the second sequence. It follows:

Corollary 4.5. If H•(K
A) is an M-ring and the minimal resolution of a has

the structure of a differential-graded algebra, then A has property (P). �

4.2. Proof for Koszul Algebras. In this section we give the proof of Con-
jecture 1.2 for Koszul algebras A = S/a. Note that since a is monomial, this is
equivalent to the fact that a is generated in degree two. We assume in addition
that a is squarefree. This is no restriction since via polarization we can reduce
the calculation of the Hilbert and Poincaré-Betti series of S/a to the calculation
of the series for S/b for a squarefree ideal bES.

Theorem 4.6. Let A = S/a be the quotient algebra of the polynomial ring
and a squarefree monomial ideal a generated by monomials of degree two and
M = M1 ∪M2 a standard matching of a. Then A satisfies Conjecture 1.2.

Corollary 4.7. The multigraded Poincaré-Betti and Hilbert series of Koszul
algebras A = S/a for a squarefree monomial ideal aES are given by:

PA
k (x, t) :=

∏

i∈P

(1 + t xi)

W (t, x)
,

HilbA(x, t) :=
W (−t, x)∏

i∈P

(1 − t xi)
,

where

W (t, x) = 1 +
∑

I 6∈M

(−1)cl(I)mI t
cl(I)+|I|

= 1 +
∑

I 6∈M1

(−1)cl(I) mI t
cl(I)+|I|

= 1 +
∑

I nbc-set

(−1)cl(I) mI t
cl(I)+|I|.

Proof. The assertion follows directly from Theorem 4.6, the standard matching
for ideals generated in degree two given in Paragraph 1 of Chapter 4 and the fact
that, in this case, every standard matching ends after the second sequence. �

Note that if aES is any ideal with a quadratic Gröbner basis, this corollary
gives a form of the multigraded Hilbert and Poincaré-Betti series of A = S/a
since, in this case, the series coincide with the series of S/ in≺(a).

Proof of Theorem 4.6. In this proof we sometimes consider the variables
x1, . . . , xn as elements of the polynomial ring S and sometimes as letters. In
the second case the variables do not commute and we consider words over the
alphabet Γ := {x1, . . . , xn}. It will be clear from the context if we consider w
as a monomial in S or as a word over Γ. For example, if we write w ∈ a or
xi | w, we see w as a monomial.

For j = 1, . . . , n, let Lj be the sets of words xi1xi2 · · · xir , r ≥ 2, over the
alphabet {x1, . . . , xn}, such that



116 6. The Multigraded Hilbert and Poincaré Series and the Golod Property

(1) i1 = j < i2, . . . , ir,

(2) for all 2 ≤ l ≤ r there exists an 1 ≤ l′ < l such that xil′xil ∈ a and
it > il for all l′ < t < l.

We define

L :=

{
wi1 · · ·wir

∣∣∣∣
i1 > . . . > ir

wij ∈ Lij , j = 1, . . . , r

}
.

Note that here the variables xi are considered as letters and do not commute.
In Chapter 5 we construct for Koszul algebras A a minimal free resolution of
k. The basis in homological degree i in this resolution is given by the following
set (see Corollary 1.9 of Chapter 5):

Bi =



eI w

∣∣∣∣∣∣

I ⊂ {1, . . . , n}
w ∈ L

|J | + |w| = i



 ,

where |w| is the length of the word w.

Thus in order to prove the theorem, we have to find a bijection between
the words w ∈ L of length i and the monomials u ∈ R with degree |u| = i.
Remember that in our case the subsets I 6∈ M1 are exactly the nbc-sets (see
Paragraph 1.2 of Chapter 4) and therefore the ring R has the following form:

R =
k〈YI , I is an nbc-set , cl(I) = 1〉

〈[YI , YJ ] | gcd(mI ,mJ) = 1〉
.

We assume that the monomials u ∈ R are ordered, i.e. if u = YI1 · · · YIr and
YIj

commute with YIj+1 , then min(Ij) > min(Ij+1).

Clearly, it is enough to construct a bijection between the sets Lj and the
ordered monomials u = YI1 · · · YIr , with cl(I1 ∪ . . . ∪ Ir) = 1 and j = min(I1) <
min(Ii), for i = 2, . . . , r.

For a word w over the alphabet {x1, . . . , xn} we denote by xf(w) (resp. xl(w))

the first (resp. the last) letter of w, i.e. w = xf(w)w
′ (resp. w = w′xf(w)).

We call a word w over the alphabet {x1, . . . , xn} an nbc-word if there exists
an index j such that w ∈ Lj and each variable xi, i = 1, . . . , n, appears at most
once in the word w.

The existence of the bijection follows from the following four claims.

Claim 1: For each j and each word w ∈ Lj which is not an nbc-word there
exists a unique subdivision of the word w,

φ1(w) := u1||v1||u2||v2|| . . . ||ur||vr,

such that

(i) u1v1 · · · urvr = w.

(ii) The subword ui is either a variable or an nbc-word in the language
Lf(ui).

(iii) The words vi are either the empty word ε or a descending chain of
variables, i.e. vi = xj1 · · · xjvi

with j1 > . . . > jvi
.

(iv) If vi 6= ε and ui is an nbc-word, then

f(ui) ≥ f(vi) > l(vi) > f(ui+1).
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(v) If vi 6= ε and ui is a variable, then

f(ui) < f(vi) > l(vi) > f(ui+1).

(vi) If vi = ε and ui is an nbc-word, then

f(ui) ≥ f(ui+1).

(vii) If vi = ε and ui is a variable, then

f(ui) < f(ui+1).

Claim 2: There exists an injective map φ2 on the subdivisions of Claim 1 such
that

φ2

(
φ1(w)

)
:= w1||w2|| . . . ||ws

and for each wi, i = 1, . . . , s, we have the following properties:

(i) If wi = xj1 · · · xjt, then for all 1 ≤ l ≤ t there exists an index 0 ≤ l′ < l
with xjl′

xjl
∈ a and jν > jl for all l′ < ν < l.

(ii) In each word wi, each variable x1, . . . , xn appears at most once.

(iii) wi is not a variable.

(iv) There exists an index t such that xt | w1 · · ·wi−1 and xtxf(wi) ∈ a and
either xf(wi) | w1 · · ·wi−1 or t > f(wi).

(v) For all xj | wi, j < f(wi), and xt | w1 · · ·wi−1 with xtxj ∈ a, we have
t < j.

(vi) If gcd(wi, wi+1) = 1, then f(wi) > f(wi+1).

Claim 3: There exists an injection φ3 between the sequences φ2φ1

(
Lj

)
from

Claim 2 and the sequences w1||w2|| . . . ||ws,, satisfying, in addition to the con-
ditions from Claim 2, the following properties:

(i) There exists an j < i such that gcd(wi, wj) 6= 1.

Claim 4: For each j there is a bijection

φ4 : φ3φ2φ1

(
Lj

)
→



YI1 · · · YIr

∣∣∣∣∣∣

cl(I1 ∪ . . . ∪ Ir) = 1 and
j = min(I1) < min(Ii) , for i = 2, . . . , r

YI1 · · · YIr ordered





Since φ1, . . . , φ3 are injections and φ4 is a bijection, the composition φ4φ3φ2φ1

is the desired map.

Proof of Claim 1. Let xj1 · · · xjr ∈ Lj, for some j, which is not an nbc-word.
Then we have the following uniquely defined subdivision:

xi1xi2 · · · xij0−1︸ ︷︷ ︸
i2>...>ij0−1

|| xij0
· · · xij1−1︸ ︷︷ ︸
∈Lj0

ij0−1>ij0

|| xij1
· · · xij2−1︸ ︷︷ ︸

ij1
>...>ij2−1
ij0

≥ij1

|| xij2
· · · xij3−1︸ ︷︷ ︸
∈Lj2

ij2−1>ij2

|| · · · .

The first part xi1xi2 · · · xij0−1 we split again into

u1||v1 := xi1 ||xi2 · · · xij0−1 .

Thus, we get the subdivision

u1 || v1 || u2 || v2 || . . . || us1 || vs1 ,
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where u1 is a variable, vi are the monomials of the descending chains of variables
(note that vi = ε is possible) and the words ui, i ≥ 2, are words in Lf(ui). If all
ui are nbc-words, we are done. But in general, it is not the case. Therefore,
we define the following map ϕ: For an nbc-word w we set ϕ(w) := w. If w is
not an nbc-word, we construct the above subdivision and set

ϕ(w) := u1 || v1 || ϕ(u2) || v2 || . . . || ϕ(us1) || vs1 .

Since the word w is of finite length the recursion, is finite and ϕ(w) produces a
subdivison of the word w.
Since each ϕ(w) ends with a word v, which is possibly the empty word ε, the
u’s and v’s do not always alternate in ϕ(w). In order to define the desired
subdivision, we therefore have to modify ϕ(w):

. If we have the situation vi||vi+1 such that vi, vi+1 are descending chains
of variables, possibly ε, then by construction we have that the word
vivi+1 is a descending chain of variables. We replace the subdivison
vi||vi+1 by the word vivi+1.

The construction implies that the resulting subdivison fulfills all desired prop-
erties. Let φ1 be the map which associates to each word w the corresponding
subdivison. Clearly, this subdivision is unique and therefore φ1 is an injection.

Proof of Claim 2. Let φ1(w) = u1 || v1 || u2 || v2 || . . . || us || vs be a subdivision
of Claim 1. We construct the image under φ2 by induction.

(R) If f(vs) ≤ f(us) and there exists a variable xt | u1v1 · · · us−1vs−1 with
xtxf(vs) ∈ a, we replace vs−1 by v′s−1 := vs−1xf(vs), else we replace

us by u′s := usxf(vs). Finally, we replace vs by the v′s such that vs =
xf(vs)v

′
s.

We repeat this process until v′s = ε. We get a word

u1||v1|| . . . ||us−1||v
′
s−1||u

′
s,

such that ui, vi, for i = 1, . . . , s−2, and us−1 are as before, v′s−1 is a descending
chain of variables and for u′s we have:

(∗) If there exist variables xi | u
′
s with i < f(u′s) and xj | u1v1 · · · us−1v

′
s−1

such that xixj ∈ a, then j < i.

Now we repeat the same process for us−1||v
′
s−1. We get a word

u1||v1|| . . . ||us−2||v
′
s−2||u

′
s−1||u

′
s,

such that ui, vi are from the original decomposition and u′s, u
′
s−1 have property

(∗).
We repeat this process for all words ui||vi and we reach a sequence of words

φ2,1

(
φ1(w)

)
:= u′1||u

′
2|| . . . ||u

′
s−1||u

′
s.

By construction this sequence satisfies the conditions (i), (ii), and (v).
Note that our construction implies that each word u′i has a unique decomposi-
tion u′i = u′′i v

′′
i such that u′′i is either a variable or an nbc-word in Lf(u′′

i ) and

v′′i is descending chain of variables. Now we begin with v ′′1 and permute the
variables with respect to the rule (R) to the right, if necessary, and go on by
induction. It is clear that these two algorithms are inverse to each other and
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therefore φ2,1 is an injection onto its image.
In order to satisfy conditions (iii), (iv), and (vi), we define an injective map
φ2,2 on the image of φ2,1. The composition φ2 := φ2,2φ2,1 gives then the desired
map.
Let φ2,1

(
φ1(w)

)
= u1||u2|| . . . ||us−1||us. Let i be the smallest index such that

gcd(ui, ui+1) = 1 and f(ui) < f(ui+1). By construction the word ui = u′ivi

has a decomposition such that vi is a descending chain of variables and f(vi) <
f(ui+1) (vi was constructed by the map φ2,1). The word ui+1 has a decom-
position ui+1 = u′i+1vi+1 such that u′i+1 is either a variable or an nbc-word
and vi+1 a descending chain of variables. We replace ui||ui+1 by the new word
ϕ(ui||ui+1) := u′iu

′
i+1c(vivi+1) where c(vi, vi+1) is the descending chain of vari-

ables consisting of the variables of vi and vi+1.
We repeat this procedure until there are no words ui, ui+1 with gcd(ui, ui+1) = 1
and f(ui) < f(ui+1).
It is straightforward to check that the resulting sequence

φ2,2φ2,1

(
φ1(w)

)
:= ũ1||ũ2|| . . . ||ũs̃−1||us̃

satisfies all desired conditions.
To reverse the map φ2,2, we apply to each word ui the maps φ1 and φ2,1. Then
it is easy to see that the sequence

φ2,1φ1(u1)||φ2,1φ1(u2)|| . . . ||φ2,1φ1(us−1)||φ2,1φ1(us)

is the preimage of φ2,2. Therefore, φ2,2 is an injection and the map φ2 := φ2,2φ2,1

is the desired injection.

Proof of Claim 3: Let φ2φ1(w) = u1||u2|| . . . ||us−1||us be a sequence from Claim
2. In order to satisfy the desired condition, we construct a map φ3 similar to
φ2,2. Let i be the largest index such that gcd(lcm(u1, . . . , ui), ui+1) = 1. Then
it follows from Claim 2 that f(ui) > f(ui+1). If we replace ui||ui+1 by a new
word which is constructed in a similar way as in the map φ2,2, we risk to violate
condition (v) from Claim 2. Therefore, we first have to permute the word ui+1 in
the correct position. Let l < i+1 be the smallest index such that there exists an
index t > f(ui+1) with xt | ul and xtxf(ui+1) ∈ a. By Condition (iv) from Claim
2, such an index always exists. We replace the sequence u1||u2|| . . . ||us−1||us

by the sequence

u1|| . . . ||ul−1||ϕ(ul||ui+1)||ul+1|| . . . ||ui||ui+2|| . . . ||us,

where ϕ(ul||ui+1) is the map from the construction of φ2,2 of Claim 2. Now the
construction implies that all conditions of Claim 2 are still satisfied.
We repeat this procedure until the sequence satisfies the desired condition.
To reverse this procedure we reverse the map ϕ with the maps φ1 and φ2 and
permute the words to the right until Condition (vi) from Claim 2 is satisfied.
It follows that φ3 is an injection onto its image.

Proof of Claim 4. Let φ3φ2φ1(w) = w1||w2|| . . . ||ws be a sequence from Claim
3. We now construct a bijection between these sequences of words and the
ordered monomials YI1 · · · YIr with cl(I1 ∪ . . . ∪ Ir) = 1 and min(I1) < min(Ij)
for all j = 2, . . . , r. We now assume:
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Assumption A:

(a) For each nbc-set I and each index i with xi | mI = lcm(I), there
exists a unique word ψ(I) := w such that w = xiw

′ and w satisfies
conditions (i) - (iii) from Claim 2.

(b) For each word w satisfying conditions (i) - (iii) from Claim 2, there
exists a unique nbc-set ϕ(w) := I.

In addition, the maps ψ and ϕ are inverse to each other.

We now prove Claim 4:
Let YI1 · · · YIs be an ordered monomial with cl(I1 ∪ . . .∪ Is) = 1 and min(I1) <
min(Ij), for j = 2, . . . , s. Let jIl

be the smallest index i such that xi| lcm(Il)
and either

• there exists a variable xt | w1w2 · · ·wl−1 with t > i and xixt ∈ a

• or xi | lcm(I1, I2, . . . , Il−1).

Such an index always exists since gcd(mI1∪I2∪...∪Il−1
,mIl

) 6= 1. By definition
the variables YI , YJ commute if gcd(mI ,mJ ) = 1. It is easy to see that one
can reorder the monomial YI1 · · · YIs , such that if gcd(mIi

,mIi+1) = 1, we have
jIi

> jIi+1 . We now construct a bijection between monomials YI1 · · · YIs ordered
in that way and the sequences of Claim 3.

Let φ3φ2φ1(w) = w1||w2|| . . . ||ws be a sequence of Claim 3 and Ij be the
nbc-sets corresponding to the words wj . Then we associate to the sequence the
following monomial

φ4(w1||w2|| . . . ||ws) := YI1 · · · YIs .

Condition (i) from Claim 3 and Condition (vi) from Claim 2 imply that we get
an ordered monomial.
On the other hand, consider an ordered monomial YI1 · · · YIs . We associate to
YI1 the corresponding nbc-word w1 whose front letter is xmin(I1).
For l = 2, . . . s let wl be the word corresponding to Il whose front letter is xjIl

.

It follows directly from the construction that the sequence w1||w2|| . . . ||ws sat-
isfies all desired conditions.
Conditions (iv) and (v) of Claim 2 imply that both constructions are inverse to
each other and therefore φ4 is a bijection.

In order to finish our proof, we have to verify Assumption A.
To a word w = xj1 · · · xjs satisfying Conditions (i) - (iii) we associate a graph
on the vertex set V = [n]. The edges are constructed in the following way:
We set E :=

{
{j1, j2}

}
. For js there exists an index 0 ≤ l < s such that

xjl
xjs ∈ a. Let Pjs be the set of those indices. Now let l2 be the maximum

of Pj2 . If E ∪
{
{jl2 , j2}

}
contains no broken circuit (with respect to the lex-

icographic order), we set E := E ∪
{
{jl2 , j2}

}
. Else we set Pj2 := Pj2 \ {l2}

and repeat the process. It is clear that there exists at least one index in Pj2

such that the constructed graph contains no broken circuit. We repeat this for
Pj3 , Pj4 , . . . , Pjr . By construction we obtain a graph which contains no broken
circuit. Now graphs without broken circuits are in bijection with the nbc-sets
(define I := {xixj | {i, j} ∈ E}).
Given an nbc- graph and a vertex i such that there exist j ∈ V with {i, j} ∈ E,
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we construct a word w satisfying Conditions (i) - (iii) by induction: Assume
we can construct to each graph of length ν and each vertex i a word w which
satisfies the desired conditions.
Given a graph of length ν + 1 and a vertex i. Let Pi := {i < j | {i, j} ∈ E}
and E1 := E \

{
{i, j} ∈ E

∣∣ j ∈ Pi

}
. Then E \ E1 decomposes in |Pi| + 1

connected components. One component is the vertex i and for each j > i we
have exactly one component Gj with j ∈ Gj . By induction we can construct
words wj corresponding to Gj . Now assume Pi = {j1 < . . . < jr}. We set
w := iwjr · · ·wj1 . Finally, we permute xt ∈ wjl

, with t < jl+1 to the right until
it is in the correct position.
Let w be a word constructed from a graph. Assume there is xt ∈ wj which
was permuted to the right in the word wj′ , j < j′. If there exists an index
l such that xl ∈ wj′ , xlxt ∈ a, and l > t, then we would add an edge {l, t}.
But since xt ∈ wj and the original graph was connected, this leads to a bro-
ken circuit for the constructed graph. Therefore, the edge for the vertex t has
to be constructed with the corresponding index in wj. This proves that both
constructions are inverse to each other. �

4.3. Idea for a Proof in the General Case. In this paragraph we outline
a program which we expect to yield a proof of Conjecture 1.2 in general.

The only way to prove the conjecture is to find a minimal A-free resolution
of the field k, which in general is a very hard problem. With the Algebraic
Discrete Morse theory one can minimize a given free resolution, but one still
needs a free resolution to start. The next problem is the connection to the
minimized Taylor resolution of the ideal a.
The Eagon complex is an A-free resolution of the field k which has a natural
connection to the Taylor resolution of the a since the modules in this complex
are tensor products of H•(K

A) ' TM ⊗S k. The problem with the Eagon
complex is that the differential is defined recursively.
In the first part of this paragraph, we define a generalization of the Massey
operations which gives us an explicit description of the differential of the Eagon
complex. We apply Algebraic Discrete Morse theory to the Eagon complex.
The resulting Morse complex is not minimal in general, but it is minimal if
for example H•(K

A) is an M-ring. In order to prove our conjecture in general,
one has to find an isomorphism between the minimized Eagon complex and the
conjectured minimal resolution. We can not give this isomorphism in general,
but with this Morse complex we can explain our conjecture.
For the general case, we think that one way to prove the conjecture is the
following:

• calculate the Eagon complex,
• minimize it with the given acyclic matching,
• find a degree-preserving k-vectorspaces-isomorphism to the ringK• ⊗k R.

As before we fix one standard matching M on the Taylor resolution of a.
The set of cycles {φ(I) | I 6∈ M} is a system of representatives for the Koszul
homology. With the product on the homology, we can define the following
operation:
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For two sets J, I 6∈ M we define:

I ∧J :=





0 , gcd(mI ,mJ) 6= 1
0 , gcd(mI ,mJ) = 1, I ∪ J ∈ M and [φ(I)][φ(J)] = 0
I ∪ J , [φ(I)][φ(J)] = [φ(I ∪ J)] and I ∪ J 6∈ M∑

L6∈M aLL , [φ(I)][φ(J)] =
∑

L6∈L aL[φ(L)] and I ∪ J ∈ M.

Now we can define the function (I, J) 7→ g(I, J) ∈ KA
• such that

∂(g(I, J)) := φ(I)φ(J) −
mImJ

mI∪J
φ(I ∧ J).

By Proposition 2.1 this function is well defined.
We now define a function for three sets γ(I1, I2, I3) by:

γ(I1, I2, I3) := φ(I1)g(I2, I3) + (−1)|I1|+1g(I1, I2)φ(I3)

+(−1)|I1|+1mI1mI2

mI1∪I2

g(I1 ∧ I2, I3) − (−1)|I1|+1mI2mI3

mI2∪I3

g(I1, I2 ∧ I3).

It is straightforward to prove that ∂(γ(I1, I2, I3)) = 0. If γ(I1, I2, I3) is a bound-
ary for all sets I1, I2, I3, we can define g(I1, I2, I3) such that ∂(g(I1, I2, I3)) =
γ(I1, I2, I3).
Similar to the Massey operations we go on by induction:
Assume γ(I1, . . . , Il) vanishes for all l-tuples I1, . . . , Il, with l ≥ ν − 1. Then
there exist cycles g(I1, . . . , Il) such that ∂(g(I1, . . . , Il)) = γ(I1, . . . , Il). We
then define:

γ(I1, . . . , Iν) := φ(I1)g(I2, , . . . , Iν) + (−1)
Pν−2

j=1 |Ij |+1g(I1, . . . , Iν−1)φ(Iν)

+

ν−2∑

i=2

(−1)
Pi−1

j=1 |Ij |+1g(I1, . . . , Ii)g(Ii+1, . . . , Iν)

+

ν−2∑

i=1

(−1)
Pi

j=1 |Ij |+1mIj
mIj+1

mIj∪Ij+1

g(I1, . . . , Ij−1, Ij ∧ Ij+1, Ij+2, . . . , Iν)

−(−1)
Pν−2

j=1 |Ij |+1mIν−1mIν

mIν−1∪Iν

g(I1, . . . , Iν−2, Iν−1 ∧ Iν).

It is straightforward to prove that γ(I1, . . . , Iν) is a cycle. Therefore, we get an
induced operation on the Koszul homology. Since the first three summands are
exactly the summands of the Massey operations, we call γ(I1, . . . , Iν) the ν-th
generalized Massey operations.

From now on we assume that all generalized Massey operations vanish. We
then can give an explicit description of the Eagon complex:
We define free modules Xi to be the free A-modules over I 6∈ M with |I| = i.
It is clear that we have Xi ⊗A k ' Hi(K

A). The Eagon complex is defined by
a sequence of complexes Y i, with Y 0 = KA

• and Y n is defined by

Y n+1
i := Y n

i+1 ⊕ Y n
0 ⊗Xi, i > 0,

Y n+1
0 = Y n

1 .

Let Zi(Y
s
• ) and Bi(Y

s
• ) denote cycles and boundaries, respectively. The differ-

entials ds on Y s are defined by induction. d0 is the differential on the Koszul
complex. Assume ds−1 is defined. One has to find a map α that makes the
diagram in Figure 1 commutative: One can then define ds := (ds−1, α).
The map ds satisfiesHi(Y

s) = H0(Y
s)⊗Xi andBi−1(Y

s) = ds(Y s
1 ) = Zi(Y

s−1).
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Y s
0 ⊗Xi ' Y s−1

1 ⊗Xi

α

ttiiiiiiiiiiiiiiiiiii

ds−1

��
Zi(Y

s)
π // Hi(Y

s) ' B0(Y
s−1) ⊗Xi

Figure 1

The first property allows us to continue this procedure for s+1 and the second
gives us exactness of the following complex:

F• : · · · Y s+1
0

ds

−→ Y s
0

ds−1

−→ Y s−1
0 −→ · · · −→ Y 0

0 −→ k.

Note that to make the diagram commutative, it is enough to define α(n ⊗ f)
for all generators n⊗ f of Y s

0 ⊗Xi such that α(n⊗ f) = (m, ds−1(n)⊗ f), with
m ∈ Y s−1

i+1 and the property that ds−1(m) + ds−1(ds−1(n) ⊗ f) = 0.

The ν-th module of the complex Y s
• is given by Y s

ν = Kj ⊗Xi1 ⊗ . . .⊗Xir

with j+ r+
∑r

j=1 ij = ν+ s. We fix an R-basis of Y s
ν , by eL ⊗ I1⊗ . . .⊗ Ir with

Ij 6∈ M and eL = el1 ∧ . . . ∧ elt . We are now able to define the maps α: Since
all generalized Massey operations vanish, there exists elements g(I1, . . . Ir) such
that ∂(g(I1, . . . Ir)) = γ(I1, . . . Ir)

Lemma 4.8. Suppose that ds−1 : Y s−1
• → Y s−1

• is such that

ds−1(eL ⊗ I1 ⊗ . . .⊗ Ir) = ∂K(eL) ⊗ I1 ⊗ . . .⊗ Ir

+(−1)|L|eLφ(I1) ⊗ I2 ⊗ . . .⊗ Ir

+(−1)|L|
r−1∑

j=1

(−1)
Pj

i=1 |Ij |+1mIj
mIj+1

mIj∪Ij+1

eL ⊗ I1 ⊗ . . .⊗ Ij ∧ Ij+1 ⊗ . . .⊗ Ir

+(−1)|L|
r−1∑

j=1

(−1)
Pj

i=1 |Ij |+1eL g(I1, . . . , Ij+1) ⊗ Ij+2 ⊗ . . .⊗ Ir.

If n := eL ⊗ I1 ⊗ . . . ⊗ Ir ∈ Y s
0 and J is a generator of Xi, we define α(n⊗ J)

to be the map that sends n⊗ J to (m, ds−1(n) ⊗ J) with

m = (−1)|L|(−1)
Pr

i=1 |Ij |+1mIrmJ

mIj∪J
eL ⊗ I1 ⊗ . . .⊗ Ir−1 ⊗ Ir ∧ J

+(−1)|L|(−1)
Pr

i=1 |Ij |+1eL g(I1, . . . , Ir, J).

Then α makes the diagram in Figure 1 commutative.

Proof. We only have to check that ds−1(m) + ds−1(ds−1(n) ⊗ f) = 0. This is
a straightforward calculation and is left to the reader. �

Corollary 4.9. The map ds can be defined as follows:

ds(eL ⊗ I1 ⊗ . . .⊗ Ir) = ∂K(eL) ⊗ I1 ⊗ . . .⊗ Ir

+(−1)|L|eLφ(I1) ⊗ I2 ⊗ . . .⊗ Ir

+(−1)|L|
r−1∑

j=1

(−1)
Pj

i=1 |Ij |+1mIj
mIj+1

mIj∪Ij+1

eL ⊗ I1 ⊗ . . .⊗ Ij ∧ Ij+1 ⊗ . . .⊗ Ir
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+(−1)|L|
r−1∑

j=1

(−1)
Pj

i=1 |Ij |+1eL g(I1, . . . , Ij+1) ⊗ Ij+2 ⊗ . . .⊗ Ir.

With this corollary we get an explicit description of the Eagon resolution
of k over A.

In order to define the acyclic matching, we first use Theorem 2.2 to define
the Eagon complex with the ring H•(K

A)∼=R′ = k[YI | cl(I) = 1, I 6∈ M]/r′

instead of H•. The operation I ∧ J then is nothing but the multiplication YIYJ

in R′. We write yI for the class of YI in R′.

It is clear that this complex is not minimal in general. The idea now is
to minimize this complex via Algebraic Discrete Morse theory. It is easy to
see, that the only invertible coefficient occurs by mapping . . . ⊗ yI ⊗ yJ ⊗ . . .
to the element . . . ⊗ yIyJ ⊗ . . ., with gcd(mI ,mJ) = 1. The idea is to match
all such basis elements, with I ∧ J = I ∪ J and I ∪ J 6∈ M. In order to
do this, we have to define an order on the variables yI with I 6∈ M: We
order the sets I by cardinality and if two sets have the same cardinality by
the lexicographic order on the multidegrees mI ,mJ . The monomials in R′ are
ordered by the degree-lexicographic order. The acyclic matching is similar to
the Morse matching on the normalized Bar resolution (see Chapter 5, Lemma
1.2). Since M is a standard matching on the Taylor resolution, we know that
if I1 ∪ I2 ∪ . . . ∪ Ir 6∈ M with cl(Ij) = 1 and gcd(mIj

,mIj′
) = 1 for all j 6= j ′,

then it follows that I2 ∪ . . .∪ Ir 6∈ M. Therefore, the following matching is well
defined:

eL ⊗ yI1 ⊗ yI2 · · · yIr ⊗ . . . 7→ eL ⊗ yI1yI2 · · · yIr ⊗ . . . ,

where I1 < I2 < . . . < Ir and I1 ∪ I2 ∪ . . . ∪ Ir 6∈ M and cl(Ij) = 1 and
gcd(mIj

,mIj′
) = 1 for all j 6= j ′. On the remaining basis elements we do the

same matching on the second coordinate, and so on. The exact definition of
the acyclic matching and the proof is given in Definition 1.1 of Chapter 5.

We describe the remaining basis elements, as in Chapter 5, by induction.
[yI |u1] with u1 = yJ1 · · · yJr is called fully attached (see Definition 1.3 of Chapter
5) if one of the following conditions is satisfied:

(1) r = 1 and gcd(mI ,mJ1) 6= 1 or yI > yJ1 ,

(2) gcd(mI ,mJi
) = 1 for all i and I∪J1∪. . .∪Jr ∈ M, and for all 1 ≤ i ≤ r

we have I ∪ J1 ∪ . . . ∪ Ĵi ∪ . . . ∪ Jr 6∈ M.

A tuple [yJ |u1| . . . |ur] is called fully attached if [yJ |u1| . . . |ur−1] is fully at-
tached, one of the following properties is satisfied and ur is minimal in the
sense that there is no proper divisor vr | ur satisfying one of the conditions
below:

(1) ur is a variable and gcd(mur−1 ,mur) 6= 1,

(2) ur, ur−1 are both variables and ur−1 > ur,

(3) [yJ |u1| . . . |ur−2|ur] is a fully attached tuple and ur−1 > ur,

(4) ur−1 = yI1 · · · yIt , ur = yJ1 · · · yJs such that gcd(mur−1 ,mur) = 1 and
I1 ∪ . . . ∪ It ∪ J1 ∪ . . . ∪ Js ∈ M.
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Here mu := lcm(I1 ∪ . . . ∪ Ir) if u = yI1 · · · yIr .

The basis of the Morse complex is given by elements eL|w, where w is a
fully attached tuple. If H•(K

A) is an M-ring, the Morse complex is minimal
since in this case the fully attached tuple has the form [yI1 |yI2 | · · · |yIr ]. In
order to prove Conjecture 1.2 one has to find an isomorphism between the fully
attached tuples and the monomials in R.

We can not give this isomorphism in general, but we think that this Morse
complex helps for the understanding of our conjecture:

Let [yI1 |yI2 | . . . |yIr ] be a fully attached tuple, with yI1 > . . . > yIr . We
map such a tuple to the monomial YI1 · · · YIr ∈ R. Clearly, this map preserves
the degree. We get a problem if [yJ |u1| . . . |ur] is a fully attached tuple and
u1 = I1 ∪ . . . ∪ Ir with r > 1. For example, assume J 7→ I1 ∪ . . . ∪ Ir ∈
Mr, with cl(J) = cl(I1) = . . . = cl(Ir) = 1 and gcd(mIj

,mIj′
) = 1 for j 6=

j′, is matched. Assume further yI1 < . . . < yIr . Then [yI1 |yI2 · · · yIr ] is a
fully attached tuple. We cannot map [yI1 |yI2 · · · yIr ] to YI1YI2 · · · YIr , since in
R the variables commute, i.e. YI1YI2 · · · YIr = YIrYIr−1 · · · YI1 and the tuple
[yIr |yIr−1 | . . . |yI1 ] maps already to this element. But we can define

[yI1 |yI2 · · · yIr ] 7→ YJ ∈ R.

The degree of YJ ∈ R is |J |+ 1 and the homological degree of [yI1 |yI2 · · · yIr ] is

|I1| + 1 + (|I2| + . . .+ |Ir|) + 1 = (|I1| + . . .+ |Ir| + 1) + 1 = |J | + 1,

therefore this map preserves the degree.

These facts show that the variables YI , with I ∈ M, cl(I) = 1, but I 6∈ M1,
are necessary and this justifies our conjecture.

5. Applications to the Golod Property of Monomial Rings

In this paragraph we give some applications to the Golod property. Remember
that a ring A is Golod if and only if one of the following conditions is satisfied
(see [26]):

PA
k (x, t) =

n∏

i=1

(1 + xi t)

1 − t
∑

α∈Nn,i≥0

dimk(Tor
S
i (A, k)α)xα ti

.(5.1)

All Massey operations on the Koszul homology vanish.(5.2)

If an algebra satisfies property (P), then we get in the monomial case the
following equivalence:

Theorem 5.1. If A = S/a satisfies property (P) , then A is Golod if and only
if one of the following conditions is satisfied:

(1) For all subsets I ⊂ MinGen(a) with cl(I) ≥ 2 we have I ∈ M for any
standard matching M.

(2) The product (i.e. the first Massey operation) on the Koszul homology
is trivial.
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Proof. Property (P) implies the equivalence of (5.1) and the first condition.
Theorem 2.2 implies the equivalence of the first and the second condition. �

Corollary 5.2. If A = S/a satisfies one of the following conditions, then A is
Golod if and only if the first Massey operation vanishes.

(1) a is generated in degree two,

(2) H•(K
A) is an M -ring and either there exists a homomorphism s :

H•(K
A) → Z•(K

A) such that π ◦ s = idH•(KA) or the minimal resolu-
tion of a has the structure of a differential graded algebra.

Proof. In the previous paragraph we proved property (P) in these cases, there-
fore the result follows from the theorem above. �

Recently, Charalambous proved in [14] a criterion for generic ideals to be
Golod. Remember that a monomial ideal a is generic if the multidegree of two
minimal monomial generators of a are equal for some variable, then there is a
third monomial generator of a whose multidegree is strictly smaller than the
multidegree of the least common multiple of the other two. It is known that
for generic ideals a the Scarf resolution is minimal. Charalambous proved the
following proposition:

Proposition 5.3 (see [14]). Let aES be a generic ideal. A = S/a is Golod if
and only if mImJ 6= mI∪J whenever I ∪ J ∈ ∆S for I, J ⊂ MinGen(a).
Here ∆S denotes the Scarf complex.

Assuming property (P), our Theorem 5.1 gives a second proof of this fact:

Proof. It is easy to see that the condition

mImJ 6= mI∪J whenever I ∪ J ∈ ∆S

is equivalent to fact that the product on the Koszul homology is trivial. Thus,
Theorem 5.1 implies the assertion. �

We have the following criterion:

Lemma 5.4. Let A = S/a with a = 〈m1, . . . ,ml〉.

(1) If gcd(mi,mj) 6= 1 for all i 6= j, then A is Golod (see [13], [29]).

(2) If A = S/a is Golod, then a satisfies the gcd-condition.

Proof. If a ring A is Golod, then the product on H•(K
A) is trivial. This

implies YIYJ = 0 if gcd(mI ,mJ) = 1. With Theorem 2.2 it follows that all sets
I ∪ J with gcd(mI ,mJ) = 1 are matched. In particular, all sets {mi,mj} with
gcd(mi,mj) = 1. Such a set can only be matched with a set {mi1 ,mi1 ,mi1}
with the same lcm. But this implies that there must exist a third generator mr

with mr|mimj . �

The following counterexample shows that the converse of the second state-
ment is false: Let a := 〈xy, yz, zw,wt, xt〉 be the Stanley Reisner ideal of the
triangulation of the 5-gon. It is easy to see that a satisfies the gcd-condition.
But a is Gorenstein and therefore not Golod. But we have:
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Theorem 5.5. If A = S/a has property (P) and a satisfies the strong gcd-
condition, then A is Golod.

Proof. We prove that H•(K
A) is an M -ring and isomorphic as an algebra to

the ring

R := k(YI | I 6∈ M, cl(I) = 1)/〈YIYJ for all I, J 6∈ M0 ∪M〉,

where M0 is the sequence of matchings constructed in Proposition 1.11 in order
to obtain the complex Tgcd and M is a standard matching on the complex Tgcd.
It follows that the first Massey operation is trivial and then Theorem 5.1 implies
the assertion.
The idea is to make the same process as in Paragraph 2 with the complex Tgcd

from Proposition 1.11 from Chapter 4 instead of the Taylor resolution T•. Since
all sets I in Tgcd satisfy cl(I) = 1, the result follows directly from property (P).
Note that M0 satisfies all conditions required in the proof of Proposition 2.1
except the following: Assume I∪J ∈ M0 with gcd(mI ,mJ) = 1 and I, J 6∈ M0.

Then there exists a set Î such that Î → I ∪ J ∈ M0. It follows

0 = ∂2(Î) = ∂(I ∪ J) +
∑

L6∈M0

aL L

and therefore as in the proof of Proposition 2.1

φ(I ∪ J) =
∑

L6∈M0

aL φ(L) for some aL ∈ k.

In the case of Proposition 2.1 we could guarantee that cl(L) ≥ cl(I∪J). We can
not deduce this fact here, but this is the only difference between M0 ∪M and
a standard matching on the Taylor resolution. Since all sets L with cl(L) ≥ 2
are matched, we only could have

φ(I ∪ J) =
∑

L6∈M0
cl(L)=1

aL φ(L) for some aL ∈ k.

We prove that this cannot happen. If I ∪ J is matched, then there exists a
monomial m with I ∪J ∪{m} → I ∪J ∈ M0. But then, since cl(I ∪J \ {n}) ≥
cl(I ∪ J) ≥ 2, by the definition of M0 any image I ∪ J ∪ {m} \ {n} is also
matched:

I ∪ J ∪ {m} \ {n} → I ∪ J \ {n} ∈ M0.

This proves that the situation above is not possible and we are done. �

Corollary 5.6. Suppose that A = S/a has property (P). Then A is Golod if

(1) a is shellable (for the definition see [4]),

(2) MinGen(a) is a monomial ordered family (for the definition see [39]),

(3) a is stable and #supp(m) ≥ 2 for all m ∈ MinGen(a),

(4) a is p-Borel fixed and #supp(m) ≥ 2 for all m ∈ MinGen(a).

Here supp(m) :=
{
1 ≤ i ≤ n

∣∣ xi divides m
}
.

Proof. We order MinGen(a) with the lexicographic order. Then it follows di-
rectly from the definitions of the ideals that a satisfies the strong gcd-condition.
The assertion follows then from Theorem 5.5. �
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Theorem 5.5 and the preceding Lemma give rise to the following conjecture:

Conjecture 5.7. Let a = 〈m1, . . . ,ml〉 ⊂ S be a monomial ideal and A = S/a.
Then A is Golod if and only if a satisfies the strong gcd-condition.
In particular: Golodness is independent of the characteristic of k.

It is known that if a is componentwise linear, then A is Golod (see [29]).
One can generalize this result to the following:

Corollary 5.8. Let a be generated by monomials with degree l.

(1) If dimk

(
TorS

i (S/a, k)i+j

)
= 0 for all j ≥ 2(l − 1), then A = S/a is

Golod,

(2) if A is Golod, then dimk

(
TorS

i (S/a, k)i+j

)
= 0 for all j ≥ i(l− 2)+2.

In particular: If A is Koszul, then A is Golod if and only if the minimal free
resolution of a is linear.

Proof. Let I ⊂ {m1, . . . ,ml} with cl(I) = 1 and lcm(I) 6= lcm(I \ {m}) for
all m ∈ I. Then l + |I| − 1 ≤ deg(I) ≤ (l − 1)|I| + 1. Now assume that
L = I ∪ J 6∈ M with gcd(mI ,mJ) = 1, then deg(L) ≥ 2l− 2 + |I ∪ J |, which is
a contradiction to dimk

(
TorS

i (S/a, k)i+j

)
= 0 for all j ≥ 2l− 2. Therefore, the

product on the Koszul homology is trivial. By the same multidegree reasons it
follows that all Massey operations have to vanish, hence A is Golod.
If A is Golod, then the product on H•(K

A) is trivial, hence (by theorem 2.2)
I 6∈ M implies cl(I) = 1. But for those subsets we have l + |I| − 1 ≤ deg(I) ≤
(l − 1)|I| + 1. Therefore, it follows that dimk

(
TorS

i (S/a, k)i+j

)
= 0 for all

j ≥ i(l − 2) + 2. �



Part 2

Two Problems in
Algebraic
Combinatorics





Chapter 1

Introduction

This part of the thesis treats two loosely related problems in combinatorics.
It is separated from the first part since the results were obtained with other
combinatorial methods than Algebraic Discrete Morse theory.

The first problem considers combinatorial questions in Lie algebra homol-
ogy. We give a short overview of the theory and the problems; and we present
some results. A detailed introduction is given at the beginning of Chapter 2.

The second problem we study is the Neggers-Stanley conjecture also known
as poset conjecture. We give an introduction to the problem and present known
results as well as still open questions. Finally, we present our work on the
Neggers-Stanley conjecture. As for the first problem we give a detailed intro-
duction at the beginning of Chapter 3.
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Chapter 2

Homology of Nilpotent
Lie Algebras of Finite
Type

In this chapter we discuss some problems about the homology of nilpotent Lie
algebras that are of combinatorial nature. A survey article about combinatorial
problems in Lie algebra homology in general can be found in [27].

In the first paragraph we give a very short introduction to the theory of Lie
algebras and the definition of their homology. We introduce the theory of root
systems and Lie algebras associated to root systems. We list the classical ex-
amples: We introduce the root systems An, Bn, Cn, Dn and their corresponding
reflection groups as well as their corresponding Lie algebras. For more details
see for example [33] and [34].
At the end of this paragraph we present a list of known results and still open
questions and conjectures about the homology of (nilpotent) Lie algebras.

The second paragraph contains our work. We define a new type of isomor-
phism for nilpotent Lie algebras called quasi-isomorphism, and we prove that
the homology groups H•(L) and H•(L

′) of two quasi-isomorphic Lie algebras L
and L′ are isomorphic. The surprising fact is that

H•(L) =
⊕

i≥0

Hi(L) ∼= H•(L
′) =

⊕

i≥0

Hi(L
′),

but there may be an index i such that Hi(L) 6∼=Hi(L
′).

In Paragraph 3 we draw some corollaries for subalgebras of the nilpotent
part of Lie algebras associated to root systems. For the root system An our
subalgebras are in one-to-one correspondence with partially ordered sets. We
introduce a new type of isomorphism for partially ordered sets, which we also
call quasi-isomorphism. The definition only depends on the corresponding order
complexes. We prove that in this setting two Lie algebras L(P ) and L(P ′) are
quasi-isomorphic if the underlying partially ordered sets P and P ′ are quasi-
isomorphic.
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1. General Theory

Lie algebras arise in nature as vectorspaces of linear transformations endowed
with a new operation, which is in general neither commutative nor associative:
[x, y] = xy − yx. It is possible to describe these kind of systems abstractly by
a few axioms.

Definition 1.1. A vectorspace over a field k, with an operation L × L → L
denoted (x, y) → [x, y] and called the Lie-bracket or commutator of x and y, is
called a Lie algebra over k if the following axioms are satisfied:

(L1) The bracket operation is bilinear.

(L2) [x, x] = 0 for all x ∈ L.

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Axiom (L3) is called the Jacobi identity.

We say that two Lie algebras L, L′ over k are isomorphic if there exists a
vectorspace isomorphism φ : L→ L′ satisfying φ([x, y]) = [φ(x), φ(y)].

An ideal I of a Lie algebra L is a subvectorspace such that for all x ∈ L
and y ∈ I we have [x, y] ∈ I.

Given a Lie algebra L, we define two sequences of Lie algebras:

(1) The derived series L(0) := L, L(1) := [L,L], . . ., L(i) := [L(i−1), L(i−1)].

(2) The descending central series L0 := L, L1 := [L,L], L2 := [L,L1], . . .,
Li := [L,Li−1].

We call a Lie algebra nilpotent if there exists a number n ≥ 1 such that Ln = 0,
and we call it solvable if there exists a number n ≥ 1 such that L(n) = 0.

We denote with Rad(L) the unique maximal solvable ideal of a Lie algebra
L (existence and uniqueness is proved in [33]) and call it the radical of the Lie
algebra L. If L 6= 0 and Rad(L) = 0, we call L semi-simple.

We now list the classical examples of Lie algebras.

Example 1.2. (1) Let gl(n, k) be the set of all n×n matrices over k. We
use the standard basis consisting of the matrices eij having 1 in the
(i, j) position and 0 elsewhere. It follows that

[eij , ekl] = δjkeil − δliekj .

Then gl(n, k) is a Lie algebra, called the general linear Lie algebra.

(2) Let t(n, k) ⊂ gl(n, k) be the subalgebra of all upper triangular n × n
matrices over k with standard basis eij with 1 ≤ i ≤ j ≤ n. Then
t(n, k) is a Lie algebra.

(3) Let d(n, k) be the subspace of all diagonal matrices with standard basis
eii with 1 ≤ i ≤ n. Then d(n, k) is a Lie algebra.

(4) Let n(n, k) be the subspace of all strictly upper triangular matrices
with standard basis eij with 1 ≤ i < j ≤ n. Then n(n, k) is a Lie
algebra.

(5) Let sl(n + 1, k) be the set of all (n + 1) × (n + 1) matrices over k
having trace zero. Then sl(n+ 1, k) is a Lie algebra, called the special
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linear algebra. A standard basis is given by eij for i 6= j and hi :=
eii−ei+1ei+1 for 1 ≤ i ≤ n, hence the dimension of sl(n, k) is (n+1)2−1.

(6) Let s :=

(
0 In

−In 0

)
be a non-degenerate skew-symmetric form. The

symplectic algebra sp(2n, k) is given by all 2n×2n matrices x satisfying
sx = −xts.

(7) Let s :=




1 0 0
0 0 In
0 In 0


 be a non-degenerate symmetric bilinear form.

The orthogonal algebra o(2n+ 1, k) is given by all (2n+ 1) × (2n+ 1)
matrices x satisfying sx = −xts.

(8) Let s :=

(
0 In
In 0

)
be a non-degenerate symmetric bilinear form.

The orthogonal algebra o(2n, k) is given by all 2n × 2n matrices x
satisfying sx = −xts.

The algebra t(n, k) is solvable, n(n, k) is nilpotent and sl(n, k), sp(2n, k),
o(2n+ 1, k), and o(2n, k) are semi-simple.

1.1. Root Space Decomposition. We call an endomorphism x ∈ End(V )
semi-simple if the roots of its minimal polynomial over k are all distinct. The
Jordan-Chevalley decomposition says that for each x ∈ End(V ) there exist
unique elements xs, xn ∈ End(V ), such that xs is semi-simple and xn is nilpotent
and x = xs + xn.
Let L be a semi-simple Lie algebra. A toral subalgebra of L is defined to be the
span of the semi-simple elements xs ∈ L. We denote with H a maximal toral
subalgebra of L.

For example, for the Lie algebra L = sl(n, k) the subalgebra consisting of
all diagonal matrices having trace zero is the maximal toral subalgebra of L.

For α ∈ H∗ we define

Lα :=
{
x ∈ L

∣∣ adh(x) = α(h)x for all h ∈ H
}
,

where adh : L → L maps an element x to [h, x] and α(h) is the eigenvalue of
adh corresponding to the eigenvector x.
We set Φ := {α ∈ H∗ | Lα 6= 0}. It is known that Φ is a finite set and it is
called the root system related to H.

Theorem 1.3 (Root Space Decomposition). Let L be a semi-simple Lie algebra,
H a maximal toral subalgebra with root system Φ. Then we have:

(1) H is abelian ([H,H] = 0).

(2) L = H ⊕
⊕

α∈Φ Lα.

(3) [Lα, Lβ ] ⊂ Lα+β.

(4) If α ∈ Φ, then −α ∈ Φ.

In fact, it can be shown that the root system Φ characterizes the algebra L
completely.

The root system of a semi-simple Lie algebra L satisfies the following con-
ditions:
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Proposition 1.4. (1) If α ∈ Φ, then −α ∈ Φ, but no other multiple of α
is a root.

(2) If α, β ∈ Φ, then β − 2(β,α)
(α,α) α ∈ Φ, where (·, ·) is a positive definite

symmetric bilinear form.

(3) If α, β ∈ Φ, then 2(β,α)
(α,α) ∈ Z.

From this proposition it follows that there exists a decomposition of Φ into a
negative and a positive part of roots, say Φ = Π+ ∪Π−, such that the following
algebras are nilpotent Lie algebras:

NL+ :=
⊕

α∈Π+

Lα and NL− :=
⊕

α∈Π−

Lα.

It follows:

Corollary 1.5. Let L be a semi-simple Lie algebra with root system Φ. Then
L decomposes into

L = H ⊕NL+ ⊕NL−.

The algebras NL+ and NL− are nilpotent.

We call the subalgebra NL+ the nilpotent part of the Lie algebra L.

Example 1.6. The nilpotent part of the Lie algebra sl(n, k) is given by n(n, k).

It is possible to characterize root systems axiomatically and to associate to a
given root system a semi-simple Lie algebra. It turns out that this construction
and the one from Theorem 1.3 are inverse to each other (see Theorem 1.9).

1.2. Root Systems and Reflection Groups. In this section let V be a real
vectorspace with a positive definite symmetric bilinear form (·, ·).
A reflection is a linear operator s on V which sends some nonzero vector α to
its negative while fixing pointwise the hyperplane Hα orthogonal to α. There
is a simple formula for sα:

sα λ = λ−
2(λ, α)

(α, α)
α.

It is easy to see that sα is an orthogonal transformation, i.e. sα ∈ O(V ). Hence
a finite group generated by some reflection is a finite subgroup of O(V ).

Now let Φ ⊂ V be a set of vectors in V satisfying

(R1) Φ ∩ Rα = {α,−α} for all α ∈ Φ,

(R2) sαΦ = Φ for all α ∈ Φ.

Define W to be the group (the Weyl group) generated by all reflections sα, α ∈
Φ. Call Φ a root system with associated reflection group W . The first condition
implies that Φ decomposes into a positive and a negative part, Φ = Π+ ∪ Π−.

A subset ∆ ⊂ Φ of the root system is called a simple system if ∆ is a
vectorspace basis for the R-span of Φ in V and if moreover each α ∈ Φ is a
linear combination of ∆ with coefficients all of the same sign (all nonnegative
or all nonpositive). The following theorem assures that simple systems always
exists.
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Theorem 1.7. (1) If ∆ is a simple system in Φ, then there is a unique
positive system containing ∆.

(2) Every positive system Π+ in Φ contains a unique simple system; in
particular, simple systems exist.

Example 1.8. (1) (An−1, n ≥ 2) Consider the symmetric group Sn. It
can be thought of as a subgroup of the group O(n,R) of n×n matrices
in the following way. Make a permutation act on Rn by permuting
the standard basis vectors ε1, . . . , εn. The transpositions (ij) acts as
a reflection, sending εi − εj to its negative and fixing pointwise the
orthogonal complement, which consists of all vectors in Rn having
equal ith and jth components. Since Sn is generated by transpositions,
it is a reflection group.
A root system Φ and a simple system ∆ for Sn is given by

Φ :=
{
εi − εj

∣∣∣ 1 ≤ i, j ≤ n, i 6= j
}
,

∆ :=
{
εi − εi+1

∣∣∣ 1 ≤ i ≤ n− 1
}
.

The root system to the reflection group Sn is called An.

(2) (Bn, n ≥ 2) Again let V = Rn, so Sn acts on V as above. Other
reflections can be defined by sending εi to its negative and fixing all
other εj . These sign changes generate a group of order 2n isomorphic
to (Z/2Z)n. Taking the semidirect product with Sn gives a reflection
group. A root system Φ and a simple system ∆ for Sn n (Z/2Z)n are
given by

Φ :=
{
± εi, ±εi ± εj

∣∣∣ 1 ≤ i, j ≤ n, i 6= j
}
,

∆ :=
{
εn, εi − εi+1

∣∣∣ 1 ≤ i ≤ n− 1
}
.

The root system to the reflection group Sn n (Z/2Z)n is called Bn.

(3) (Cn, n ≥ 2) Starting with Bn, one can define Cn to be its inverse root
system. This means that we replace each root α by 2α

(α,α) . The root

system Φ and a simple system ∆ for Cn are given by

Φ :=
{
± 2εi, ±εi ± εj

∣∣∣ 1 ≤ i, j ≤ n, i 6= j
}
,

∆ :=
{

2εn, εi − εi+1

∣∣∣ 1 ≤ i ≤ n− 1
}
.

(4) (Dn, n ≥ 4) Consider the reflection group of type Bn. Since Sn nor-
malizes the subgroup consisting of sign changes which involve an even
number of signs, generated by the reflections εi + εj 7→ −(εi + εj),
i 6= j, the semidirect product is also a reflection group. A root system
Φ and a simple system ∆ for Sn n (Z/2Z)n−1 are given by

Φ :=
{
± εi ± εj

∣∣∣ 1 ≤ i < j ≤ n
}
,

∆ :=
{
εn−1 + εn, εi − εi+1

∣∣∣ 1 ≤ i ≤ n− 1
}
.

The root system to the reflection group Sn n (Z/2Z)n−1 is called Dn.



138 2. Homology of Nilpotent Lie Algebras of Finite Type

To a root system one can associate a semi-simple Lie algebra if the root
systems satisfies a third axiom:

(R3) 〈α, β〉 := 2(α,β)
(β,β) ∈ Z for all α, β ∈ Φ.

We say that a subset B ∈ L generates L as Lie algebra if every element x ∈ L
can be obtained from elements in B in the following way:

x = [y1, [y2, [y3, . . . , [yl−1, yl] . . .]]], with y1, . . . , yl ∈ B.

Theorem 1.9 (Serre, see [33]). Fix a root system Φ satisfying (R1)-(R3),
with base ∆ = {α1, . . . , αl}. Let L be the Lie algebra generated by 3l elements
{xi, yi, hi | 1 ≤ i ≤ l} subject to the relations

(S1) [hi, hj ] = 0 for 1 ≤ i, j ≤ l,

(S2) [xi, yi] = hi, [xi, yj] = 0 if i 6= j,

(S3) [hi, xj ] = 〈αj , αi〉xj, [hi, yj] = −〈αj , αi〉yj,

(S+
ij) (adxi)

−〈αj ,αi〉+1(xj) = 0 for i 6= j,

(S−
ij) (ad yi)

−〈αj ,αi〉+1(yj) = 0 for i 6= j.

Then L is a (finite dimensional) semi-simple Lie algebra with maximal toral
subgroup H spanned by the hi and with corresponding root system Φ. The
nilpotent parts NL+ and NL− are generated as Lie algebra by the elements xi

and yi.

Example 1.10. (1) The Lie algebra constructed with respect to the root
system An is isomorphic to sl(n + 1, k). The nilpotent part NL+ is
isomorphic to n(n + 1, k), and NL− is isomorphic to the subspace
n−(n+ 1, k) consisting of all strictly lower triangular (n+ 1)× (n+ 1)
matrices, spanned by the standard basis eij , 1 ≤ j < i ≤ n+ 1.

(2) The Lie algebra constructed with respect to the root system Bn is
isomorphic to o(2n+ 1, k). The algebra NL+ ⊕NL− is isomorphic to

(
n(2n+ 1, k) ⊕ n−(2n+ 1, k)

)
∩ o(2n+ 1).

(3) The Lie algebra constructed with respect to the root system Cn is
isomorphic to sp(2n, k). The algebra NL+ ⊕NL− is isomorphic to

(
n(2n, k) ⊕ n−(2n, k)

)
∩ sp(2n).

(4) The Lie algebra constructed with respect to the root system Dn is
isomorphic to o(2n, k). The algebra NL+ ⊕NL− is isomorphic to

(
n(2n, k) ⊕ n−(2n, k)

)
∩ o(2n).

1.3. Homology of Lie Algebras. In this section we follow the notes of Han-
lon [27]. Consider the exterior algebra ΛL over the Lie algebra L. On the

exterior algebra ΛL =
⊕

r≥0 Λ(r)L we have two differentials:

Let B = {z1, . . . , zd} be a basis for L and cijl denote the coefficients that de-
scribe the bracket in L, i.e.

[zi, zj ] =
∑

l

cijlzl.
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A basis for Λ(r) is given by

Br = {zi1 ∧ . . . ∧ zir | 1 ≤ i1 < . . . < ir ≤ d}.

The differential on ΛL is given by

∂r : Λ(r)L → Λ(r−1)L

zi1 ∧ . . . ∧ zir 7→
∑

1≤l<j≤r

(−1)l+j+1[zil , zij ] ∧ zi1 ∧ . . . ∧ ẑil ∧ . . . ∧ ẑij ∧ . . . ∧ zir ,

where ẑ means that we omit the element z.

Lemma 1.11. For any r we have ∂r ◦ ∂r+1 = 0.

Proof. Consider ∂2(x ∧ y ∧ z):

∂2(x ∧ y ∧ z)

= ∂
(
(−1)1+2+1[x, y] ∧ z + (−1)1+3+1[x, z] ∧ y + (−1)2+3+1[y, z] ∧ x

)

= [[x, y], z] − [[x, z], y] + [[y, z], x]

= −[z, [x, y]] − [y, [z, x]] − [x, [y, z]]

= 0.

The last equation follows from the Jacobi identity. Using this fact and the
alternating sign, the general proof is straightforward. �

The transpose ∂t
r : Λ(r−1)L→ Λ(r)L of ∂ is given by

∂t
r

(
zi1 ∧ . . . ∧ zir−1

)
:=

r−1∑

j=1

(−1)j+1zi1 ∧ . . . ∧ zij−1 ∧
(∑

a<b

cabij za ∧ zb
)
∧ zij+1 ∧ . . . ∧ zir−1 .

Again we have

Lemma 1.12. For any r we have ∂t
r ◦ ∂

t
r−1 = 0. �

The homology of a Lie algebra L is defined to be the homology of the
complex ΛL:

Hi(L) := Hi(ΛL) =
ker(∂i)

Im(∂i+1)
.

Finally, we define the Laplacian:

Λr : Λ(r) → Λ(r)

z 7→
(
∂r+1∂

t
r+1 + ∂t

r∂r

)
(z).

The following elegant theorem is proved by Kostant in Section 2 of [37] using
nothing more than standards facts from linear algebra.

Theorem 1.13 (Kostant). For each r

dimC(Hr) = dimC

(
ker(Λr)

)
.

Example 1.14 (Kostant). Consider the Lie algebra n(n, k). Then Theorem
1.13 implies

dimC(Hr) = #
{
σ ∈ Sn

∣∣ #Inv(σ) = r
}
,
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where Inv(σ) = {(i, j)
∣∣ i < j, σ(i) > σ(j)

}
. In fact, if one associates to each

permutation σ ∈ Sn the following element in ΛL

Λ
(i,j)∈Inv(σ)

eij ,

one can show that Theorem 1.13 implies the assertion.

This result shows that the homology of n(n, k) is of combinatorial nature.

We have seen that Λ(r)L has a C-vector space basis Br. Let R be any ring
with 1. Then we consider the free R-modules generated by Br instead of the
modules Λ(r)L. With the same differential we obtain a well defined complex
and we can ask for the homology. We call this homology the homology of L
with coefficients in R and write Hr(L,R).

If we consider in Example 1.14 the homology with coefficients in R = Z2,
the dimension dimZ2(Hr(L,Z2)) is still an open question. We come back to it
in Section 1.4.

Remark 1.15. The calculation of the homology of a Lie algebra L can be
approached with Algebraic Discrete Mores theory since all coefficients are ±1.
We tried to find good acyclic matchings on the complex ΛL in the case where
L = n(n, k) is the Lie algebra of strictly upper triangular matrices or a subalge-
bra of it. But we were not able to define good acyclic matchings for the general
case. Computer algorithms gave us some conjectures (see Section 1.4).

Nevertheless, we are convinced that there are Lie algebras L where Alge-
braic Discrete Morse theory produces good results. Sködberg, for example,
calculates in [41] - using Algebraic Discrete Morse theory - the homology of
the nilpotent Lie algebra, generated by {x1, . . . , xn, y1, . . . , yn, z} with the only
nonvanishing Lie bracket being [z, xi] = yi over a field of characteristic 2.
Note that the Lie algebra studied by Sköedberg is quasi-isomorphic (see Defi-
nition 2.5) to the Heisenberg Lie algebra.

1.4. Conjectures and Open Questions. In this section we present some
conjectures and open questions on the homology of Lie algebras.

Consider the homology of L = n(n, k). Then Kostant theorem implies that

(1.1) dimC Hi(L) = #{σ ∈ Sn | #Inv(σ) = i}.

The first question one can ask is: what is the dimension of the homology with
coefficients in fields of other characteristic or with coefficients in Z? It turns
out that this question is a very hard problem. The only known result about
this question is the following, proved by Dwyer [17]:

dimZp Hi(n(n, k)) = dimCHi(n(n, k)) for all p ≥ n− 1.

Computer experiments up to n ≤ 7 show that for small prime numbers p the
homology of n(n, k) depends strongly on p (see Table 1.4).

We tried to find some number sequences which describe the torsion of the Lie
algebra n(n, k). Using Algebraic Discrete Morse theory and Computer experi-
ments We get the following conjectures:
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1.4 Homology of n(n, k) with coefficients in Z

i/n 2 3 4 5 6

0 Z Z Z Z Z

1 Z Z2 Z3 Z4 Z5

2 Z2 Z5 ⊕ Z2 Z9 ⊕ Z2
2 Z14 ⊕ Z3

2

3 Z Z6 ⊕ Z2 Z15 ⊕ Z6
2 ⊕ Z2

6 Z29 ⊕ Z16
2 ⊕ Z4

6

4 Z5 Z20 ⊕ Z7
2 ⊕ Z3

6 Z49 ⊕ Z37
2 ⊕ Z10

6 ⊕ Z3
12

5 Z3 Z22 ⊕ Z7
2 ⊕ Z3

6 Z71 ⊕ Z62
2 ⊕ Z17

6 ⊕ Z9
12

6 Z Z20 ⊕ Z6
2 ⊕ Z2

6 Z90 ⊕ Z95
2 ⊕ Z23

6 ⊕ Z12
12

7 Z15 ⊕ Z2
2 Z101 ⊕ Z114

2 ⊕ Z24
6 ⊕ Z12

12

8 Z9 Z101 ⊕ Z95
2 ⊕ Z23

6 ⊕ Z12
12

9 Z4 Z90 ⊕ Z62
2 ⊕ Z17

6 ⊕ Z9
12

10 Z Z71 ⊕ Z37
2 ⊕ Z10

6 ⊕ Z3
12

11 Z49 ⊕ Z16
2 ⊕ Z4

6

12 Z29 ⊕ Z3
2

13 Z14

14 Z5

15 Z

Conjecture 1.16. (1) Every torsion pi ≤ n− 2, with p prime, appears in
H•(n(n, k)).

(2) If r is the largest number such that Zr appears in H•(n(n, k)), then it
appears in 2 · n!

24 copies.

The next question one can ask is about the homology of subalgebras of
n(n, k). Does there exist a similar combinatorial description of the dimension
of the ith homology?

Equation (1.1) is still true for the nilpotent part of Lie algebras of other
root systems. The number of the ith homology is then given by the number
of elements in the Weyl group of length i. Therefore, one can ask the same
question for subalgebras of the nilpotent part of Lie algebras associated to
other root systems.

A lot of other combinatorial problems in Lie algebra homology can be found
in the articles “A Survey of Combinatorial Problems in Lie Algebra Homology”
and “Some Conjectures and Results Concerning the Homology of Nilpotent Lie
Algebras” both written by Hanlon ([27] and [28]).

2. New Invariance Theorem for Nilpotent Lie Algebras of
Finite Type

In this paragraph we develop for nilpotent Lie algebras a new type of isomor-
phism and prove a new invariance theorem for the homology of a Lie algebra.

Let L be a Lie algebra and B a basis of L as a k-vectorspace. We call L a
Lie algebra of finite type if the set of Lie relations

{
(a, b, [a, b])

∣∣ a, b ∈ B with [a, b] 6= 0
}
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is finite. Since L is nilpotent, it follows that [a, b] 6= a, b for all a, b ∈ B.
Let R ⊂

{
(a, b, [a, b])

∣∣ a, b ∈ B with [a, b] 6= 0
}

be the subset of the Lie
relations such that for all a, b ∈ B with [a, b] 6= 0 we have either (a, b, [a, b]) ∈ R
or (b, a, [b, a]) ∈ R. We call R the set of positive Lie relations.

We introduce the following additional condition:

(2.1)
For each generator eα ∈ B there exists a generator eβ ∈ B
such that (eα, eβ , [eα, eβ ]) ∈ R.

From now on we only consider Lie algebras of finite type satisfying the
additional condition (2.1).

First we define a new type of isomorphisms, namely quasi-isomorphism,
depending on the set of positive Lie relations. Before we are able to give the
definition of a quasi-isomorphism, we have to introduce the notion of a two-
colored simplicial complex:

Definition 2.1. Let ∆ be a pure simplicial complex of dimension d with n
facets. We denote by Fi :=

{
F ∈ ∆

∣∣ dim(F ) = i
}

the set of faces of dimension
i, for i = 0, . . . , d. On the set of facets we fix an order and write:

Fd := {F1 < F2 < . . . < Fn}.

(1) A two-coloring of a facet F is a map fF which associates to each zero-
dimensional face of F a color from {r, g} (r =red, g =green).

(2) Given a two-coloring fFi
, i = 1, . . . , n, the pair (∆, f) is a two-colored

simplicial complex if f is a map defined by

f : F0 → {r, g,−}n

v 7→ (f1(v), . . . , fn(v)),

where n := #Fd is the number of facets of ∆ and

fi(v) :=

{
fFi

(v) , v ∈ Fi

− , v 6∈ Fi.

For a color vector c := (c1, . . . , cn) ∈ {r, g,−}n we define the complement
vector c := (c1, . . . , cn) by

ci :=





r , ci = g
g , ci = r
− , ci = −

Definition 2.2. Let (∆, f) and (∆′, f ′) be two two-colored simplicial com-
plexes, with n facets.
We say that (∆, f) is isomorphic to (∆′, f ′), if

(1) ∆ and ∆′ are isomorphic as simplicial complexes and

(2) there exists a permutation σ ∈ Sn such that for all vertices v we have

f ′(v) ∈
{
σ(f(v)), σ(f(v))

}
,

where σ acts by permuting coordinates.

Since the color vector is an ordered tuple and depends on the chosen order
on the facets Fd := {F1 < F2 < . . . < Fn}, we need the permutation σ in order
to define a non-trivial isomorphism. By relabeling the facets one can always
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assume that the ith facet of ∆ is mapped to the ith facet of ∆′. In this case
we can omit the permutation in Definition 2.2.

Example 2.3.
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not isomorphic no
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isomorphic

(g,−) (r, r) (−, g)

(g,−) (g, r) (−, g)

(r,−) (−, g)

(g,−) (g, g) (−, r)

(r,−) (−, g)(−, g)(g,−)

Now let L be a nilpotent Lie algebra of finite type and R the set of positive
Lie relations. To this set of Lie relations we associate a two-colored simplicial
complex.

Definition 2.4. Let L be a finitely generated Lie algebra with Lie relations R.
The two-dimensional two-colored simplicial complex (∆, f) defined by

∆ = ∆(R) :=
⋃

(a,b,c)∈R

∆
(
(a, b, c)

)
,

∆
(
(a, b, c)

)
:=
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
,

and coloring

f(a,b,c)(v) :=

{
g , v = a, b
r , v = c = [a, b].

is called the Lie relation complex.

Clearly, the Lie-bracket [·, ·] of L is - up to a sign - uniquely determined by
the Lie relation complex.

We are now in position to define the new type of isomorphism:

Definition 2.5. Two nilpotent Lie algebras L and L′ of finite type are quasi-
isomorphic if there is a choice of positive Lie relations R and R′ such that the
corresponding two-colored simplicial complexes (∆, f) and (∆′, f ′) are isomor-
phic.

Now we can formulate our main theorem:

Theorem 2.6. Let L and L′ be two quasi-isomorphic nilpotent Lie algebras of
finite type. Then ⊕

i≥0

Hi(L)∼=
⊕

i≥0

Hi(L
′).
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Proof. The homology of the Lie algebras is calculated by the complexes ΛL
and ΛL′. As seen in the previous paragraph, there are two differentials:

∂ : Λ(i)L → Λ(i−1)L

∂t : Λ(i)L → Λ(i+1)L

We construct an isomorphism ψ : ΛL → ΛL′ which commutes with both dif-
ferentials. Not that φ is not necessarily a map of graded vectorspaces, so φ(a)
may have a different homological degree than a. Therefore, we will only be able
to deduce an isomorphism

⊕

i≥0

Hi(L)∼=
⊕

i≥0

Hi(L
′).

We consider the corresponding two-colored simplicial complexes (∆, f) and
(∆′, f ′). Let φ : (∆, f) → (∆′, f ′) be the isomorphism of complexes. Let

Fd :=
{
F1 < . . . < Fn

}
,

F ′
d :=

{
F ′

1 < . . . < F ′
n

}

be the sets of facets, ordered by an order fulfilling φ(Fi) = F ′
i . The map

φ induces an isomorphism between the sets of color vectors, which we again
denote with φ:

{
f(v)

∣∣ v ∈ F0

} φ
→
{
f ′(v)

∣∣ v ∈ F ′
0

}
.

The isomorphism ψ is constructed by the following algorithm. We start with an
element e = v1∧. . .∧vr ∈ ΛL, where the vi are elements of the chosen basis of L.
In the simplicial complex (∆, f) we mark each point vj , 1 ≤ j ≤ r. Now consider
a facet Fi of (∆, f), for i = 1, . . . , n. We denote by p1, p2, p3 the vertices of Fi

and by q1, q2, q3 the vertices of the corresponding facet F ′
i ∈ ∆(P ′), where pj

maps to qj , j = 1, 2, 3. For the image of the vertices we have to distinguish two
cases. We only consider the ith coordinate of the corresponding color vectors:

Fi ∈ (∆, f) φ(Fi) ∈ (∆′, f ′)

f(p1) := (. . . , r, . . .) f(q1) := (. . . , r, . . .)
f(p2) := (. . . , g, . . .) f(q2) := (. . . , g, . . .)
f(p3) := (. . . , g, . . .) f(q3) := (. . . , g, . . .)

Fi ∈ (∆, f) φ(Fi) ∈ (∆′, f ′)

f(p1) := (. . . , r, . . .) f(q1) := (. . . , g, . . .)
f(p2) := (. . . , g, . . .) f(q2) := (. . . , r, . . .)
f(p3) := (. . . , g, . . .) f(q3) := (. . . , g, . . .)

We mark q3 if and only if p3 is marked. In the first case we mark the points qi if
and only if the points pi are marked. In the second case we have to distinguish
four cases:

Fi ∈ (∆, f) φ(Fi) ∈ (∆′, f ′)

p1 is marked, p2 is not mark q2
p2 is marked, p1 is not mark q1
p1, p2 not marked mark either no vertex or q1, q2

p1, p2 are both marked mark either q1, q2 or no vertex
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In the last two cases we have a choice. In a first step we always choose the first
possibility (p1, p2 not marked, do not mark q1, q2, and p1, p2 both marked, mark
q1, q2). We do this for all facets in (∆, f). This gives us some marked points
for each facet in (∆′, f ′). By glueing the facets of (∆′, f ′) it can happen that
marked (resp. unmarked) points are glued to unmarked (resp. marked) points.
The choice in the last two cases allows us to avoid such a situation. We explain
this by two examples:

Example 2.7.
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(r,−)

7→
choice
7→

(g, g)
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(g, g)

(r,−) (r,−)

(g,−)(g,−)(g,−)(−, g)(r, r)(g,−)

(−, r)

(−, g)

(−, r)

(−, g) (−, g)

(−, r)(g,−) (−, g)
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(g, g)

(r,−)

7→
choice
7→

(g, g)

7→

(g, g)

(r,−) (r,−)

(g,−)(g,−)(g,−)(−, g)(r, r)(g,−) (−, g)

(−, r) (−, r)

(−, g)

(−, r)

(−, g)

(g,−) (−, g)

The aim is to mark the vertices such that marked (resp. unmarked) points
are glued to marked (resp. unmarked) points. In order to construct an isomor-
phism, this process has to be shown reversible. The image of e - up to a sign -
is then given by the marked points in the complex (∆′, f ′). Finally, we have to
show that this process commutes - up to a sign - with both differentials.
We prove this by induction on the number of facets. We assume that both
simplicial complexes are connected (otherwise consider the connected compo-
nents). The first interesting case is if the simplicial complex ∆ has two facets.
If the two facets have a common one-dimensional face, then the only possible
images of ∆ are permutations of the labeling of the two vertices of the common
edge. Therefore, the map is reversible and commutes - up to a sign - with both
differentials.
If the two facets have a common vertex, then Example 2.7 explains that one
can always find a marking such that marked (resp. unmarked) points are glued
to unmarked (resp. marked) points: Consider the first example. We are not al-
lowed to make the choice if (−, r) is already marked. But in this case the point
(r,−) in the image and the point (r, r) in the preimage have to be marked
as well, which is a contradiction. Similarly in the second example we are not
allowed to make the choice if the point (r,−) in the image is not marked, but
then the point (r, r) in the preimage cannot be marked.
Note that for this process it does not matter if the third point is marked or not.
In all other cases the argumentation is similar to the above argumentation for
Example 2.7.

Since this process is symmetric, it follows that applying the same algorithm
on the image produces the preimage, hence we have an isomorphism.
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Note that here the condition that a color vector only maps to itself or to its
complement plays an important role.

We say that a Lie relation [a, b] = c is applicable in (∆, f) if either a, b are
marked and c is not marked or a, b are not marked and c is marked.

In order to prove that the construction commutes with both differentials,
we make the following observation:

• A Lie relation is applicable in the preimage if and only if the corre-
sponding Lie relation is applicable in the image: If a Lie relation is
applicable in a facet F of the preimage (resp. image), then for the
marking of the vertices in the image (resp. preimage) of F we have
no choice. Since marked (resp. unmarked) points are glued to marked
(resp. unmarked) points, the corresponding relation is applicable in
the image (resp. preimage).

• In the case where we have the choice (mark either q1 and q2 or none
of them), the set of applicable Lie relations does not change.

• Since a color vector maps either to itself or to its complement and
marked (resp. unmarked) points are glued to marked (resp. unmarked)
points, we see that if after applying a Lie relation in the preimage
(resp. image) there is a new applicable Lie relation in the preimage
(resp. image), then we have the same situation in the image (resp.
preimage).

These three facts prove that the assignment commutes - up to a sign - with
both differentials.

Now assume that ∆ has n facets. We start the algorithm with two con-
nected facets. Then the image is already well defined. We choose a facet which
is connected to the two facets. With the same arguments as before we get a well
defined image. The assignment is reversible and commutes with both differen-
tials. Then choose a facet connected to the first three and choose the correct
marking. We continue in this way step by step. With the same arguments as in
the case n = 2, we finally reach a marking in the image and the assignment is
reversible and commutes with both differentials. This completes our proof. �

3. Applications to Lie Algebras of Root Systems

In this paragraph we draw some corollaries of Theorem 2.6, in the case where
L is the nilpotent part of a Lie algebra associated to root systems.

Let V be any vectorspace over a field k and Φ ⊂ V a root system. Recall
from the first paragraph that Φ decomposes into a positive and a negative part,

Φ = Π+ ∪ Π−.

Let ∆ := {α1, . . . , αl} ⊂ Π+ be a basis for Φ. The nilpotent part of the Lie
algebra associated to the root system Φ is generated as Lie algebra by elements
xi, 1 ≤ i ≤ l, with respect to the condition

(S+
ij) (adxi)

−〈αj ,αi〉+1(xj) = 0 for i 6= j.

On the other hand, we know that L = H ⊕
⊕

α∈Φ Lα, where Lα is a one-
dimensional space, i.e. Lα = C Xα. In order to construct the nilpotent part of
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the Lie algebra associated to a root system Φ = Π+ ∪ Π−, we have to define
basis elements Xα, for α ∈ Π+, and relations

[Xα, Xβ ] =

{
0 , α+ β 6∈ Π+

cα,β Xα+β , α+ β ∈ Π+, cα,β ∈ C.

The nilpotent part is then given by

NL+ :=
⊕

α∈Π+

C Xα.

Example 3.1. (1) Let V = Rn be the Euclidean space and Φ := {εi −
εj | 1 ≤ i, j ≤ n} the root system An−1, where ei is the ith unit vector
in V . Then Φ decomposes in

Π+ := {εi − εj | 1 ≤ i < j ≤ n},

Π− := {εi − εj | 1 ≤ i > j ≤ n}.

To the vector α = εi − εj we associate the matrix Xα := eij . The
nilpotent part of the Lie algebra associated to An−1 is given by

L :=
⊕

1≤i<j≤n

C eij ,

with Lie relations

[eij , ekl] := δjkeil − δilekj.

Clearly, this is exactly the algebra n(n, k) of strictly upper triangular
matrices.

(2) Consider the root system Bn = {±εi,±εi ± εj}. We choose a positive
system Π+ := {εi, εi ± εj}. Now we choose matrices Xα, for each
α ∈ Π+:

Xεi−εj
:= ei+1,j+1 − el+j+1,l+i+1

Xεi+εj
:= ei+1,l+j+1 − ej+1,l+i+1

Xεi
:= e1,l+i+1 − ei+1,1

The nilpotent part is then given by

L :=
⊕

α∈Π+

C Xα.

We now consider closed subsets of the positive part of the root system Φ.

Definition 3.2. A subset S ⊂ Π+ of the set of positive roots is called closed
iff for any α, β ∈ S we have

α+ β ∈ Π+ =⇒ α+ β ∈ S.

In the same way as before, we can associate to S a nilpotent Lie algebra:

NLS :=
⊕

α∈S

C Xα.

Clearly, NLS is a subalgebra of the nilpotent part NL+ of the Lie algebra
associated to the root system Φ.

We are now interested in finding conditions on the closed subsets of a root
system such that the corresponding nilpotent Lie algebras are quasi-isomorphic.
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3.1. Homology of Lie Algebras Associated to An. The first application
of our Theorem 2.6 we get for Lie algebras associated to closed subsets of the
root system An−1.
The nilpotent part of the Lie algebra corresponding to An−1 is the Lie algebra
n(n, k).

We consider closed subsets of the root system An−1. Note that they are in
one-to-one correspondence with partially ordered sets P , with #P ≤ n:

Let P be a finite partially ordered set.

Definition 3.3 (Lie algebra associated to P ). For any p < q ∈ P we define the
matrix epq to be the matrix having 1 in the (p, q) coordinate and 0 elsewhere.
Let B be the set of all those matrices. The Lie algebra L associated to the
partially ordered set P is given by

L(P ) :=
⊕

e∈B

C e.

It is the subalgebra of n(n, k) consisting of those matrices with aij = 0 if i 6<P j.

Lemma 3.4. The vectorspace L from Definition 3.3 with the Lie-bracket in-
herited from the Lie algebra n(n, k) is a Lie algebra.

Proof. For a partially ordered set P we have: p < q and q < u implies p < u.
Thus, it is straightforward to check that this fact proves the Jacobi identity and
the fact that the relation [epq, euv ] is either zero or an element of B. �

It is easy to see that the Lie algebras L(P ) are in one-to-one correspondence
with the nilpotent part of Lie algebras corresponding to closed subsets of An.

Example 3.5. Let P be the partially ordered set given by the Hasse diagram

4

>>
>>

>>
>

��
��

��
�

2

>>
>>

>>
> 3

��
��

��
�

1

Then the Lie algebra L associated to P is given by

L := V e12 ⊕ V e13 ⊕ V e14 ⊕ V e24 ⊕ V e34.

Note that the Lie relations are in one-to-one correspondence with two-chains
in ∆(P ) (see Figure 1). In order to translate the notion of quasi-isomorphism to
partially ordered sets, we introduce two types of pairs of two-chains (see Figure
2 and Figure 3).

Definition 3.6. We call two partially ordered sets P and P ′ strongly isomor-
phic if their corresponding order complexes ∆(P ) and ∆(P ′) are isomorphic as
simplicial complexes and if there exists an isomorphism

φ : ∆(P ) → ∆(P ′)

that maps pairs of two-chains of Type 1 to pairs of two-chains of Type 1 and
pairs of two-chains of Type 2 to pairs of two-chains of Type 2.
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Figure 2. Pairs of two-chains of Type 1
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Figure 3. Pairs of two-chains of Type 2

With this notation we get the following proposition:

Proposition 3.7. Let P and P ′ be two partially ordered sets and L(P ) and
L(P ′) their corresponding Lie algebras.

(1) If P and P ′ are strongly isomorphic, then L(P ) and L(P ′) are quasi-
isomorphic.

(2) If L(P ) and L(P ′) are quasi-isomorphic with respect to the standard
basis, then P and P ′ are strongly isomorphic.

Proof. If P and P ′ are strongly isomorphic, then by definition there is an iso-
morphism φ between the order complexes. The map φ induces an isomorphism
between the Lie relation complexes. The fact that φ maps pairs of two-chains of
Type i to pairs of two-chains of Type i, i = 1, 2, implies that the induced map
φ maps color vectors only to themselves or to their complements. It follows
that the Lie algebras L(P ) and L(P ′) are quasi-isomorphic.
On the other hand, if the Lie algebras L(P ) and L(P ′) are quasi-isomorphic
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with respect to the standard basis, then there is an isomorphism φ between
the Lie relation complex. Since the Lie relations are in one-to-one correspon-
dence with two-chains in ∆(P ), the map φ induces an isomorphism between
the two-skeletons. Since order complexes are flag complexes (i.e. every mini-
mal non-face is one-dimensional), φ induces an isomorphism between the whole
order complexes. The fact that φ maps color vectors only to themselves or to
their complements implies that the induced map φ maps pairs of two-chains of
Type i to pairs of two-chains of Type i, i = 1, 2. �

Corollary 3.8. Let P , P ′ be two strongly isomorphic partially ordered sets.
Then ⊕

i≥0

Hi(L)∼=
⊕

i≥0

Hi(L
′).

Proof. The assertion is a direct consequence of Proposition 3.7. �

In Example 3.5 we get:

Example 3.9. The homology of the Lie algebras associated to the following
three partially ordered sets are isomorphic:
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Since there is no three-chain, every isomorphism φ between the order complexes
maps pairs of two-chains of Type i to pairs of two-chains of Type i, i = 1, 2.
Therefore, Corollary 3.8 implies the assertion.

For all poset transformations which preserve the order complexes we only
have to check if there exists an isomorphism between the order complexes with
the desired conditions. We present one example:

Let P, P ′ be two partially ordered sets. We define the new poset P#P ′ by

p < q ⇐⇒





p <P q , p, q ∈ P
p <P ′ q , p, q ∈ P ′

true , p ∈ P, q ∈ P ′.

Corollary 3.10. If P, P ′ are two partially ordered sets, then
⊕

i

Hi

(
L(P#P ′)

)
=
⊕

i

Hi

(
L(P ′#P )

)
.

Proof. Clearly, ∆(P#P ′)∼= ∆(P ′#P ). We define the isomorphism between
the order complexes on the maximal chains:
Let p1 < . . . < pl be a maximal chain in P#P ′. By the definition of P#P ′

there exists an index j such that p1 < . . . < pj is a maximal chain in P and
pj+1 < . . . < pl is a maximal chain in P ′. We define φ as follows:

φ
(
p1 < . . . < pl

)
:= pj+1 < . . . < pl < p1 < . . . < pj.
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It follows directly from the definition of φ that φ maps pairs of two-chains of
Type i to pairs of two-chains of Type i, i = 1, 2. Therefore, P#P ′ and P ′#P
are strongly isomorphic. The assertion follows then from Corollary 3.8. �

3.2. Homology of Lie Algebras Associated to other Root Systems. If
we consider subalgebras of the nilpotent part of other root systems, then clearly
Theorem 2.6 is still applicable since it holds for any finitely generated nilpotent
Lie algebra. But in general it is harder to find nice conditions on the closed
subsets of the root systems since we do not have a nice combinatorial description
as in the case An. Reiner gave in [43] and [44] combinatorial interpretations
for the root system Bn. Therefore, we think that Type Bn results analogue to
the ones in Section 3.1 are within reach. We leave this as a project for further
research.





Chapter 3

The Neggers-Stanley
Conjecture

In this chapter we study the Neggers-Stanley conjecture, also known as the
poset conjecture. In the first paragraph we introduce the conjecture and we
present several equivalent conjectures. Here we follow the notes of Brenti [11].
In the second paragraph we study the special case where (P, ω) is naturally
labeled. Reiner and Welker proved unimodality of the W -polynomial of graded
posets. In fact, they proved that the W -polynomial coincides with the h-vector
of a certain simplicial complex ∆eq, which is a polytopal sphere and therefore
has a unimodal h-vector. We explain their results and sketch their proof.
Paragraph 3 contains of our results. It is known that the W -polynomial appears
in the nominator of the Hilbert series of the Hibi ring. Using the results of Part
1 of this thesis we can prove a recursion formula for the W -polynomial.
In the second part we generalize the idea of Reiner and Welker to arbitrary
naturally labeled posets: Given any naturally labeled poset P , we construct an
analogous simplicial complex ∆eq and show in the same way that the h-vector of
∆eq coincides with the W -polynomial. In general, ∆eq is not a polytopal sphere.
But we prove that in general ∆eq is isomorphic to the intersection of a polytopal

sphere ∆̂eq with an intersection of coordinate and diagonal hyperplanes.

1. The Poset Conjecture

In this paragraph we explain the Neggers-Stanley conjecture. We present some
elementary results and some equivalent formulations of it. Finally, we list some
special cases in which the conjecture is known to be true and we present the
counterexample for the general case, which was found recently by Brändén [10].
We follow in this paragraph the notes of Brenti [11].

Let P be a (finite) partially set. A labeling of P is a bijection ω : P →
{1, . . . ,#P}. The pair (P, ω) is called a labeled poset. We call a labeling natural
if x, y ∈ P and x ≤ y implies ω(x) ≤ ω(y) in the natural order.

153
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If (P, ω) is a labeled poset and s ∈ N then a (P, ω)-partition with largest
part ≤ s is an order-reversing map σ : P → [s] such that x < y and ω(x) > ω(y)
implies σ(x) > σ(y).

We denote with Ω(P, ω; s) (respectively, es(P, ω)) the number of (P, ω)-
partitions (respectively, surjective (P, ω)-partitions) with largest part ≤ s. It is
easy to see that

Ω(P, ω;x) =

#P∑

s=1

es(P, ω)

(
x

s

)

for all x ∈ N . This shows that Ω(P, ω;x) is a polynomial function of x of degree
#P . The polynomial Ω(P, ω;x) is called the order polynomial of (P, ω).

From the theory of generating functions it follows that there exists a poly-
nomial W (P, ω; z) ∈ R[x] of degree ≤ #P such that

(1.1)
∑

n≥0

Ω(P, ω;n) zn =
W (P, ω; z)

(1 − z)#P+1
,

as formal power series in z. We are now in position to formulate the conjecture:

Conjecture 1.1 (poset conjecture). For all labeled posets (P, ω) the polynomial
W (P, ω; z) defined by Equation (1.1) has only real zeros.

In the case where ω is a natural labeling of P , the poset conjecture was first
stated in 1978 by Neggers. In the present form it has been first conjectured by
Stanley in 1986.

Recently, P. Brändén [10] has found a labeled poset (P, ω) for which the
poset conjecture does not hold. We present it at the end of this paragraph.
Since his labeling is not natural, the following weaker conjecture is still open:

Conjecture 1.2 (poset conjecture). For all naturally labeled posets (P, ω) the
polynomial W (P, ω; z) defined by Equation (1.1) has only real zeros.

The polynomial W (P, ω; z) has a combinatorial interpretation. Before we
can state it, we need some additional definitions:

Let P be a poset. A linear extension is an order-preserving bijection τ :
P → {1, . . . ,#P}, i.e. a natural labeling of P . We write L(P ) for the set of all
linear extensions. If (P, ω) is a labeled poset and τ is a linear extension of P ,
then we let

D(τ, ω) :=
{
i ∈ [#P − 1]

∣∣ ω(τ−1(i)) > ω(τ−1(i+ 1))
}

be the set of descents and denote with d(τ, ω) := #D(τ, ω) the cardinality of
it. Now it is possible to show that

(1.2) W (P, ω; z) =
∑

τ∈L(P )

zd(τ,ω)+1.

Sometimes the polynomial W (P, ω; z) is defined by the following equation

W (P, ω; z) =
∑

τ∈L(P )

zd(τ,ω).

Since both polynomials only differ by a factor z, one of them has only real zeros
if and only if the other has.



1. The Poset Conjecture 155

From the definition of the W -polynomial and Equation (1.2) we obtain

W (P, ω; z) = (1 − z)#P+1
∑

n≥0

#P∑

s=1

es(P, ω)

(
n

s

)
zn

= (1 − z)#P+1
#P∑

s=1

es(P, ω)
zs

(1 − z)s+1

= (1 − z)#PE

(
P, ω;

z

(1 − z)

)
,

where E(P, ω; z) :=
∑#P

s=1 es(P, ω)zs. Therefore, we can reformulate the poset
conjecture in the following form:

Conjecture 1.3. For any labeled poset (P, ω) the polynomial E(P, ω; z) defined
above has only real zeros.

There are some weaker conjectures about the polynomials E and W , which
follow from the poset conjecture. We need some more definitions.

A sequence {a0, a1, . . . , ad} of real numbers is called log-concave if a2
i ≥

ai−1ai+1 for i = 1, . . . , d − 1. It is said to be unimodal if there exists an index
0 ≤ j ≤ d such that ai ≤ ai+1 for i = 0, . . . , j−1 and ai ≥ ai+1 for i = j, . . . , d−1
and is said to have internal zeros if there are not three indices 0 ≤ i < j < k ≤ d

such that ai, ak 6= 0 and aj = 0. We say that a polynomial
∑d

i=0 aix
i is log-

concave with no internal zeros (resp. unimodal) if the sequence {a0, a1, . . . , ad}
has the corresponding property. The following theorem gives the connection to
the poset conjecture:

Theorem 1.4. Let
∑d

i=0 aix
i be a polynomial with nonnegative coefficients and

with only real zeros. Then the sequence {a0, a1, . . . , ad} is log-concave with no
internal zeros; in particular, it is unimodal. �

We are now able to formulate weaker conjectures:

Conjecture 1.5. For any labeled poset (P, ω) the polynomials W (P, ω;x) and
E(P, ω;x) are

(1) log-concave with no internal zeros and

(2) unimodal.

We finish this section by presenting one general class of posets and labelings
for which the poset conjecture is true.

Theorem 1.6. Let P be a disjoint union of chains. Then the polynomial
W (P ; z) has only real zeros.

But if one adds one more order relation, the result turns out to be false.
The example was found by Brändén [10]:

From now on we define the W -polynomial by the equation

W (P, ω; z) =
∑

τ∈L(P )

zd(τ,ω).
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Let m t n be the disjoint union of the chains 1 < 2 < 3 . . . < m and
m+ 1 < m+ 2 < . . . < m+n. Theorem 1.6 implies that W (mtn, z) has only
real zeros.

Now we define Pm,n to be the partially ordered set mtn together with the
additional relation m+ 1 < m.

Theorem 1.7 (Brändén, [10]). If m,n are large enough, then the W -polynomial
with respect to the labeled poset Pm,n has non-real zeros.

Here are two examples: Consider P11,11. Then W (P, z) has two non-real
zeros, which are approximately z = −0.10902 ± 0.01308i.
Another example is

W (P36,6, z) = 216t+ 9450t2 + 142800t3 + 883575t4 + 2261952t5 + 1947792t6 .

This polynomial has two non-real zeros.

Just before finishing this thesis, the author learned that there is also a coun-
terexample to the real-rootness of the W -polynomial in the naturally labeled
case, which is still unpublished and therefore we cannot give a reference.

For the counterexamples found by Brändén, the polynomial W (P, ω, z) is
still unimodal. Therefore, Conjecture 1.5 is still open.

2. The Naturally Labeled Case for Graded Posets

If (P, ω) is a naturally labeled poset, then the combinatorial interpretation of the
polynomials W (P, ω; z) and E(P, ω; z) becomes particularly nice and simple. In
fact, for s ∈ N, es(P, ω) is the number of surjective order-reversing (equivalently
preserving) maps P → s (where s is a chain of s elements) while the coefficient
of zs in W (P, ω; z) equals the number of linear extensions of P with exactly s
descents.

In the naturally labeled case, we get another description of theW -polynomial
via a Hilbert series of a polynomial ring, namely the Hibi ring. In order to give
this description, we have to introduce the lattice of order ideals:

Definition 2.1. Let (P, ω) be a naturally labeled partially ordered set. An
order ideal I ⊂ P is a subset of P satisfying the condition

p ∈ I, q ≺ p ⇒ q ∈ I.

We denote with J (P ) the set of all order ideals ordered by inclusion.

We have the following property:

Theorem 2.2. (1) J (P ) is distributive lattice.

(2) Every finite distributive lattice is of the form J (P ) for some poset P .

Now, if σ : P → s is a surjective order-preserving map, then σ−1([1]) ⊂
σ−1([2]) ⊂ . . . ⊂ σ−1([s − 1]) is a chain of s − 1 order ideals in J (P ) and
this correspondence is a bijection. Therefore, we may think of es(P, ω) as the
number of chains of length s from ∅ to P in J (P ). Therefore, we can restate
the poset conjecture as follows:
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Conjecture 2.3. Let D be a finite distributive lattice and let, for s ∈ N, cs(D)

be the number of chains of length s from 0̂ to 1̂ in D. Then the polynomial

C(D, z) :=
∑|P |

s=0 cs(D)zs has only real zeros.

To the set of order ideals J (P ) one can associate a polynomial ring, called
the Hibi ring:

Definition 2.4. Let (P, ω) be a naturally labeled partially ordered set and
J (P ) the set of order ideals. The polynomial ring

R(P ) :=
k[xI , I ∈ J (P )]

〈xIxJ − xI∩JxI∪J〉

with the bigrading

|xI | := |I|,

deg(xI) := αI ∈ N#P

is called the Hibi ring.

Here (αI)i =

{
1 , ω−1(i) ∈ I
0 , ω−1(i) 6∈ I

is the characteristic vector of the order ideal.

The following theorem gives one more description of the W -polynomial.

Theorem 2.5. Let R(P ) be the Hibi ring. Then the Hilbert series HilbR(P )(x, t)
is given by

HilbR(P )(1, t) =
W (P, ω, t)

(1 − t)#P+1
.

Since we are able to calculate the multigraded Hilbert series of this kind
of polynomial rings (see Part 1, Chapter 6), we will get a description of the
W -polynomial in terms of nbc-sets of an undirected graph (see Paragraph 3).

With this characterization of the W -polynomial, Reiner and Welker were
able to prove unimodality for graded posets P :

Theorem 2.6 (Reiner, Welker, [45]). Let (P, ω) be a graded naturally labeled
partially ordered set. Then the W -polynomial is unimodal.

The proof uses polytope theory. Since we want to generalize the idea to
arbitrary naturally labeled poset, we give in the following section an overview
of the proof and its methods.

2.1. Proof of Theorem 2.6. We first describe the topological background of
the W -polynomial. For this we have to recall some definitions:
Given an abstract simplicial complex ∆, one can collate the face numbers fi,
which count the number of i-dimensional faces, into its f -vector and f -poly-
nomial

f(∆) := (f−1, f0, f1, . . . , fd−1),

f(∆, t) :=

d∑

i=0

fi−1t
i.

The h-polynomial and h-vector are easily seen to encode the same information:

h(∆) := (h0, h1, . . . , hd), where
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h(∆, t) =

d∑

i=0

hit
i satisfies

tdh(∆, t−1) =
[
tdf(∆, t−1)

]
t7→t−1

.

Given a naturally labeled poset P on [n], the vector space of functions
f = (f(1), . . . , f(n)) : P → R will be identified with Rn. One says that f is a
P -partition if f(i) ≥ 0 for all i and f(i) ≥ f(j) for all i <P j. Denote by A(P )
the cone of all P -partitions in Rn. The convex polytope

O(P ) = A(P ) ∩ [0, 1]n

is called the order polytope of P . It is known that the order polytope is the
convex hull of the characteristic vectors χI ∈ [0, 1]n of the order ideals in P .

To each permutation ω = (ω1, . . . , ωn) ∈ Sn we define a cone

A(ω) :=

{
f ∈ Rn

∣∣∣∣
f(ωi) ≥ f(ωi+1), for i ∈ [n− 1]
f(ωi) > f(ωi+1), if i ∈ Des(ω)

}
,

where Des(ω) = {i | ωi > ωi+1} is the set of descents of ω.

Proposition 2.7 (see Prop. 2.1 in [45]). (1) The cone of P -partitions de-
composes into a disjoint union as follows:

A(P ) = tω∈L(P )A(ω).

The closure of the cones A(ω) for ω ∈ L(P ) gives a unimodular trian-
gulation of A(P ).

(2) The unimodular triangulation of A(P ) described in (1) restricts to a
unimodular triangulation of the order polytope

O(P ) = tω∈L(P )A(ω) ∩ [0, 1]n.

We call the triangulation of A(P ) and O(P ) from Proposition 2.13 their
canonical triangulations.

The combinatorics of these triangulations is closely related to the distribu-
tive lattice J (P ) of all order ideals:
Given a set of vectors V ⊂ Rn, define their positive span to be the (relatively
open) cone

pos(V ) :=

{∑

v∈V

cv · v | cv ∈ R, cv > 0

}
.

Proposition 2.8 (see Prop. 2.2 in [45]). (1) Every P -partition f ∈ A(P )
can be uniquely expressed in the form

f =

t∑

i=1

ciχIi
,

where the ci are positive reals and I1 ⊂ . . . ⊂ It is a chain of ideals in
P . In other words,

A(P ) =
⊔

I1⊂...⊂It⊂P

Ij order ideals

pos
(
{χIi

}t
i=1

)
.
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(2) The canonical triangulation of the order polytope O(P ) is isomorphic
(as an abstract simplicial complex) to ∆(J (P )), via an isomorphism
sending an ideal I to its characteristic vector χI .

(3) The lexicographic order of permutations in L(P ) gives rise to a shelling
order on ∆(J (P )).

(4) In this shelling, for each ω ∈ L(P ), the minimal faces of its cor-
responding simplex in ∆(J (P )), which is not contained in a lexico-
graphically earlier simplex, are spanned by the ideals {ω1, . . . , ωi} where
i ∈ Des(ω).

Part (4) of the preceding proposition implies the following identity:

W (P, t) :=
∑

ω∈L(P )

t#Des(ω) = h(∆(J (P )), t).

In order to prove the unimodality for graded naturally labeled posets P ,
Reiner and Welker go on as follows:

They exhibit an alternative triangulation of the order polytope O(P ), which
they call the equatorial triangulation. Then they show the following properties:

. It is a unimodular triangulation.

. It is isomorphic as an abstract simplicial complex, to the join of an
r-simplex with a simplicial (#P − r − 1)-sphere, which they denote
∆eq(P ) and call the equatorial sphere.

. ∆eq is a subcomplex of ∆(J (P )).

. The equatorial sphere ∆eq(P ) is polytopal and hence shellable and a
PL-sphere.

. h(∆eq(P ), t) = h(∆(J (P )), t) = W (p, t).

The last two properties imply the unimodality for the W -polynomial for all
graded naturally labeled posets P .

In Section 3.2 we generalize this idea for all naturally labeled posets P . We
define a similar triangulation, for which we prove the following properties:

. It is a unimodular triangulation.

. It is isomorphic, as an abstract simplicial complex, to the join of an
r-simplex with a space ∆eq(P ), which we call the equatorial space.

. ∆eq is a subcomplex of ∆(J (P )).

. h(∆eq(P ), t) = h(∆(J (P )), t) = W (p, t).

But in the general case, the equatorial space ∆eq is not polytopal and therefore
we cannot make conclusions about the h-vector as in [45].

Finally, we give the definitions from [45] of the r-simplex and the equatorial
sphere:
Let P be a graded naturally labeled poset of rank r.

Definition 2.9. A P -partition f will be called rank-constant if it is constant
along ranks, i.e. f(p) = f(q) whenever p, q ∈ Pj for some j.
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A P -partition f will be called equatorial if minp∈P f(p) = 0 and for every
j ∈ [2, r] there exists a covering relation between ranks j−1, j in P along which
f is constant, i.e. there exist pj−1 <P pj with

pj−1 ∈ Pj−1, pj ∈ Pj , and f(pj−1) = f(pj).

An order ideal I in P will be called rank-constant (resp. equatorial) if its
characteristic vector χI is rank-constant (resp. equatorial).

A collection of order ideals {I1, . . . , It} forming a chain I1 ⊂ . . . ⊂ It will be
called rank-constant (resp. equatorial) if the sum χI1 +χI2 + . . .+χIt (or equiva-
lently, any vector in the cone pos({χIi

}t
i=1)) is rank-constant (resp. equatorial).

The equatorial sphere ∆eq(P ) is defined to be the subcomplex of the order
complex ∆(J (P )) whose faces are indexed by the equatorial chains of non-
empty ideals.

3. The Naturally Labeled Case for General Posets

In this paragraph we present our results. In the first part we calculate the
multigraded Hilbert series of the Hibi ring in terms of nbc-sets of an undirected
graph. This result gives us a reformulation of the poset conjecture in graph-
theoretic terms. We develop a recursion formula for the W -polynomial.
In the second section we generalize the construction of Reiner and Welker [45]
to arbitrary naturally labeled posets P :
Similar to [45], we construct a unimodular triangulation of the order polytope,
which is isomorphic (as abstract simplicial complex) to the join of a simplex
and an “equatorial space” ∆eq. It follows that the W -polynomial coincides
with the h-polynomial of ∆eq. In general, ∆eq is not a polytopal sphere, but we

prove that it is isomorphic to the intersection of a polytopal sphere ∆̂eq with an
intersection of coordinate and diagonal hyperplanes. Finally, we study the set of
possible configurations. Hence our results give a new topological interpretation
of the W -polynomial.

3.1. W -Polynomial in Graph Theory.

3.1.1. The Multigraded Hilbert Series of the Hibi Ring. In Part 1, Chapter 6, we
calculated the multigraded Hilbert series of k[∆(P )], where ∆(P ) is the order
complex of a partially ordered set P . Remember that the Hibi ring of a poset
P is defined by

R(P ) := k[xi, i ∈ J (P )]/〈xixj − xi∩jxi∪j〉,

with the multigrading defined by deg(xi) := α, with tα =
∏

j∈w−1
0 (i) tj =:

tw
−1
0 (i). If we order the indeterminates by x0 > x1 > . . . > xJ (P )−1, it is easy

to prove that 〈xixj with i∩ j 6= i, j〉 is the initial ideal of 〈xixj −xi∩jxi∪j〉 with
respect to the reverse lexicographic order. We write

R(P )rlex := k[xi | i ∈ J (P )]/〈xixj | i ∩ j 6= i, j〉.

By standard Gröbner basis arguments we have the following identity:

HilbR(P )(t, x) = HilbR(P )rlex(t, x).(3.1)
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Recall the definition of an nbc-set:

Definition 3.1. Let G = (V,E) be an undirected graph and ≺ a total order on
E. A subgraph I = (VI , EI) ⊂ G is called an nbc-set if it contains no broken
circuit, i.e.

(1) The graph I contains no circuit and

(2) there exists no edge c ∈ E such that EI ∪{c} contains a circuit Z ⊂ EI

and c = min≺ Z.

Let aES be an ideal generated in degree two with minimal monomial gen-
erating system MinGen(a). To MinGen(a) we associate an undirected graph
G = (V,E) on the vertex set V = [n] by setting {i, j} ∈ E if xixj ∈ MinGen(a).
To a subset I ⊂ MinGen(a) we get a corresponding subgraph GI of G. We call
a subset I ⊂ MinGen(a) an nbc-set, if GI contains no broken circuit.

As a direct consequence of Theorem 3.7 of Part 1, Chapter 6, we get a
formula for the multigraded Hilbert series of the Hibi ring.

Corollary 3.2. The multigraded Hilbert series of the Hibi ring is given by

HilbA(t0, t1, . . . , t#P ) :=
W (t0, t1, . . . , t#P )

n∏

i=0

(1 − t0 t
w−1

0 (i))

,

with

W (t0, t1, . . . , t#P ) := 1 +
∑

I 6∈M

(−1)|I|t
cl(I)+|I|
0 tdeg(I),

= 1 +
∑

I∈B

(−1)|I|t
cl(I)+|I|
0 tdeg(I)

= 1 +
∑

I nbc-set

(−1)|I|t
cl(I)+|I|
0 tdeg(I),

where M is a standard matching on the Taylor resolution of the ideal a :=
〈xixj | i ∩ j 6= i, j〉 and B is the set of chains of sting-chains (see Part 1
Chapter 4).

Proof. By Theorem 3.7 of Chapter 6 of Part 1 we get

HilbArlex
(t, x) =

1 +
∑

I 6∈M

(−1)cl(I)mI (−t)cl(I)+|I|

∏

i∈P

(1 − t xi)

Since we have here a different grading, we have to transform the degrees with
the map:

φ : N#O(P ) → N#P

ei 7→
∑

j∈w−1
0 (i)

δj ,
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where ei (resp. δi) is the ith unit vector in N#O(P ) (resp. ith unit vector in
N#P ).
The assertion follows then from the identity (3.1). �

3.1.2. W -Polynomial in Graph Theory. Given a lattice L with a natural label-
ing ω : L → [#L], we associate an undirected graph G(L) = (V,E) on the
vertex set V := [#L] by setting {i, j} ∈ E if ω−1(i) is incomparable to ω−1(j)
with respect to the order of L.

Using the notation from Corollary 3.2, Theorem 2.5 implies the following
equation:

W (t, 1, . . . , 1) = (1 − t)#J (P )−#P−1 W (P, ω, t).

Therefore, we can reformulate the poset conjecture as follows:

Conjecture 3.3. Let L be a distributive lattice and G(L) the corresponding
graph. Then the following polynomial has only real zeros:

W (G(L), t) := 1 +
∑

I⊂G(L)
I nbc-set

(−1)|I|tcl(I)+|I|.

The Polynomial W (G(L), t) ∗ (1 − t)#P+1−#J (P ) is unimodal and log-concave
with no internal zeros.

For the polynomial W (G(L), t) we have the following formula:

Proposition 3.4. Let L be a distributive lattice, G(L) the corresponding graph
and {p, q} an edge in G(L) (or equivalently an anti-chain in L). Then

W (G(L), t) = (1 − t)
(
W
(
G(L \ {p}), t

)
+W

(
G(L \ {q}), t

))

−(1 − t)2 W
(
G(L \ {p, q}), t

)
.

Proof. We split the sum
∑

I⊂G(L)
I nbc-set

into eight sums. We write p 6∈ I, if there is

no edge e in I with p ∈ e. Let epq be the edge joining p and q. We get the
following equation:

W (G(L), t) =
∑

I nbc

(−1)|I| tcl(I)+|I|=

=
∑

I nbc
epq 6∈ I

p, q 6∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p, q 6∈ I

+
∑

I nbc
epq 6∈ I

p, q ∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p, q ∈ I

+
∑

I nbc
epq 6∈ I

p ∈ I \ {epq}
q 6∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p ∈ I
q 6∈ I

+
∑

I nbc
epq 6∈ I

p 6∈ I \ {epq}
q ∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p 6∈ I
q ∈ I

where the summands are always given by gI := (−1)|I| tcl(I)+|I|.
The nbc-property depends on the chosen linear order on the edges of G(P ).
We fix a linear order such that the edge epq is the smallest edge. Hence we get
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the following fact: I ⊂ G(P ) with epq 6∈ I is an nbc-set if and only if I ∪ {epq}
is an nbc-set. If we compare the exponents |I| and cl(I), we get the following
equations

∑

I nbc
epq ∈ I

p, q 6∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p, q 6∈ I

= (1 − t2)
∑

I nbc
epq 6∈ I
p, q 6∈ I

,

∑

I nbc
epq ∈ I

p ∈ I \ {epq}
q 6∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p ∈ I
q 6∈ I

= (1 − t)
∑

I nbc
epq 6∈ I
p ∈ I
q 6∈ I

,

∑

I nbc
epq ∈ I

p 6∈ I \ {epq}
q ∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p 6∈ I
q ∈ I

= (1 − t)
∑

I nbc
epq 6∈ I
p 6∈ I
q ∈ I

,

∑

I nbc
epq ∈ I

p, q ∈ I \ {epq}

+
∑

I nbc
epq 6∈ I
p, q ∈ I

= 0.

If we add (1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I

− (1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I

, we get

W (G(L), t) = (1 − t)
∑

I nbc
epq 6∈ I
p ∈ I
q 6∈ I

+(1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I

+(1 − t)
∑

I nbc
epq 6∈ I
p 6∈ I
q ∈ I

+(1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I

+t (1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I

−(1 − t)
∑

I nbc
epq 6∈ I
p, q 6∈ I
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= (1 − t)
(
W
(
G(L \ {p}), t

)
+W

(
G(L \ {q}), t

))

−(1 − t)2 W
(
G(L \ {p, q}), t

)
.

�

This proposition allows to calculate the W -polynomial recursively.

3.2. Unimodality for Naturally Labeled Posets. The main idea of this
section is to associate to each naturally labeled poset P in a unique way a graded
naturally labeled poset P̂ . Using the construction of [45] for P̂ , we construct
a unimodular triangulation of the order polytope O(P ). The aim is to show
that this triangulation is isomorphic to the simplicial join σr ∗ ∆eq(P ), where
σr is the interior r-simplex spanned by the chain of (generalized) rank-constant
ideals.
As a consequence we get the following identity:

W (P, t) = h(∆eq, t) = h(∆̂eq ∩H, t),

where ∆̂eq is the equatorial sphere of P̂ and H is an intersection of coordinate
and diagonal hyperplanes.
These facts give a new possibility to approach unimodality of the W-polynomial:
Study the h-vector of the intersection of the equatorial sphere of P̂ with an
intersection of coordinate and diagonal hyperplanes.
We conjecture that ∆eq(P ) is a shellable ball (remember that in the graded
case ∆eq(P ) was a polytopal sphere).

From now on let (P, ω) be any naturally labeled poset.

We first associate to each element p of P a rank ρ(p) defined by

ρ(p) := max
{
i ∈ N

∣∣ there exist p1, . . . , pi−1 ∈ P s.t. p1 ≺ p2 ≺ . . . ≺ pi−1 ≺ p
}
.

The rank of the poset P is defined as follows:

ρ(P ) := max{ρ(p) | p ∈ P
}
.

If P is not graded, then there exist maximal chains p1 ≺ . . . ≺ pi such that
i < ρ(P ). The following algorithm extends P to a graded partially ordered set

P̂ with ρ(P ) = ρ(P̂ ).

Algorithm: Let p1 ≺ . . . ≺ pi be a maximal chain, with i < ρ(P ).
Let j be the smallest number such that ρ(pj) = j and ρ(pj+1) = j + k with
k ≥ 2. Then we add new elements pj,1, . . . , pj,k−1 to the poset P with order
relations

p ≺ pj ≺ pj,1 ≺ . . . ≺ pj,k−1 ≺ pj+1 ≺ q for all p ≺ pj and pj+1 ≺ q.

All other elements of P are incomparable to the elements pj,1, . . . , pj,k−1. By
construction the element pj+1 has still rank j + k and the elements pj,l have
rank j + l.

The natural labeling ω for P is constructed as follows: For all q ∈ P with
ω(q) > ω(pj) we shift the labeling to ω̂(q) := ω(q) + k − 1. The labeling of the
new elements is then given by ω̂(pj,l) := ω(pj) + l.

Now we repeat the algorithm with the poset P := P ∪{pj,1, . . . , pj,k−1} until
P satisfies the following property:
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For every maximal chain p1 ≺ . . . ≺ pi we have ρ(pj) = j. In particular, P is
graded.
We denote with (P̂ , ω̂) the resulting graded poset P .

In Figure 1 and Figure 2 we present two examples to clarify the construction.
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From now on we denote with ≺P the order of P and with ≺P̂ the order of

P̂ . We write i ∈ P (resp. i ∈ P̂ \ P ) if ω̂−1(i) ∈ P (resp. ω̂−1(i) ∈ P̂ \ P ) and
i ≺P j (resp. i ≺P̂ j) if ω−1(i) ≺ ω−1(j) (resp. ω−1(i) ≺P̂ ω−1(j)).
Define

m(i) :=





i , i ∈ P

min
{
j ∈ P

∣∣ i ≺P̂ j
}

, i ∈ P̂ \ P,min exists

0 , i ∈ P̂ \ P,min does not exist.

We denote with n = #P and n̂ = #P̂ the sizes of P and P̂ .

By definition the order polytope O(P ) lives in Rn and the order polytope

O(P̂ ) lives in Rn̂. We now define an embedding of O(P ) into O(P̂ ).
In order to do this, we see the space Rn as a subspace of Rn̂, via

xi :=

{
xω(ω̂−1(i)) , i ∈ P

0 , i ∈ P̂ \ P.

(1) Let f = (f1, . . . , fn) ∈ Rn be a P -partition. We define the image of f
as

f̂i :=





fi , i ∈ P

fm(i) , i ∈ P̂ \ P,m(i) 6= 0

0 , i ∈ P̂ \ P,m(i) = 0.
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It is straightforward to check that f̂ is a P̂ -partition.

(2) Let I ⊂ J (P ) be an order ideal. Then clearly I ⊂ P̂ . Now denote

with Î the smallest (with respect to the inclusion) order ideal in J (P̂ )
containing I.

Hence we get an embedding of the lattice of order ideals of P to the lattice
of order ideals of P̂ and an embedding of the order polytope O(P ) to the order

polytope O(P̂ ):

φ :

J (P ) ↪→ J (P̂ )

I 7→ Î

O(P ) ↪→ O(P̂ )

f 7→ f̂ .

Since φ is left-invertible (φ−1(Î) := I ∩ P and φ−1(f̂) = f ∩ Rn), we have an
embedding.

Let H ⊂ Rn̂ be the following intersection of coordinate and diagonal hyper-
planes

H :=

{
x ∈ Rn̂

∣∣∣∣
xi = xm(i) , i ∈ P̂ \ P,m(i) 6= 0,

xi = 0 , i ∈ P̂ \ P,m(i) = 0.

}
.

Then it follows directly from the definitions that H is a linear subspace and
hence convex. The image of O(P ) under φ equals the intersection of O(P̂ ) and
H:

φ
(
O(P )

)
= O(P̂ ) ∩H.

We are now in position to give the definitions of equatorial and rank-
constant in the general case:

Definition 3.5. Let P be a naturally labeled partially ordered set.

(1) A P -partition f : P → Rn will be called rank-constant (resp. equato-

rial) if φ(f) = f̂ : P̂ → Rn̂ is rank-constant (resp. equatorial).

(2) An order ideal I in P will be called rank-constant (resp. equatorial) if

the ideal φ(I) = Î in P̂ is rank-constant (resp. equatorial).

(3) A collection of ideals {I1, . . . , It} forming a chain I1 ⊂ I2 ⊂ . . . ⊂ It will

be called rank-constant (resp. equatorial) if the collection {Î1, . . . , Ît}

in P̂ is rank-constant (resp. equatorial).

Definition 3.6. The equatorial complex ∆eq(P ) is defined to be the subcomplex
of the order complex ∆(J (P )) whose faces are indexed by the equatorial chains
of non-empty ideals.

The simplex σr is defined to be the subcomplex of the order complex
∆(J (P )) whose faces are indexed by the rank-constant chains of ideals.

With the same arguments as for the graded case, we exhibit now an alter-
native triangulation of the order polytope O(P ), which we call the equatorial
triangulation. Then with exactly the same proofs as for the graded case, we
show the following properties:

. It is a unimodular triangulation.
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. It is isomorphic, as an abstract simplicial complex, to the join of an
r-simplex with a space ∆eq(P ), which we call the equatorial space.

. The equatorial space ∆eq(P ) is a subcomplex of ∆(J (P )).

. h(∆eq(P ), t) = h(∆(J (P )), t) = W (p, t).

In addition, we get - by definition - the following isomorphism (as abstract
simplicial complexes):

∆eq(P )∼=∆eq(P̂ ) ∩H.

As corollary we get the following useful fact:

Corollary 3.7. Let P be a naturally labeled poset and P̂ the above embedding.
Then

W (P, t) = h(∆eq, t) = h(∆̂eq ∩H, t).

Hence in order to prove the unimodality of the W-polynomial for all natu-
rally labeled posets, one has to study the h-vector of the intersection of a poly-
topal sphere with an intersection H of coordinate and diagonal hyperplanes.

Before we come to the proofs, we discuss an example.

Example 3.8. Consider the naturally labeled poset P = {1, 2, 3, 4} with order
relation given by the Hasse diagram in Figure 3. The lattice of order ideals
J (P ), the equatorial space ∆eq, and the simplex σr are also given in Figure 3.

The corresponding graded lattice P̂ with his lattice of ordered ideals J (P̂ ), the

equatorial sphere ∆̂eq, and the simplex σ̂r are given in Figure 4.
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The W -polynomials, the f -vectors, and the h-vectors are as follows:

W (P, t) = 1 + 2 t
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f(∆eq) = (1, 4, 3)

h(∆eq) = (1, 2)

W (P̂ , t) = 1 + 4 t+ t2

f(∆̂eq) = (1, 6, 6)

h(∆̂eq) = (1, 4, 1)

The convex set H ⊂ R5 is given by

H :=
{
x ∈ R5

∣∣∣ x2 = x5

}
.

If we identify each order ideal I with the corresponding characteristic vector
χI , we have

∆eq = ∆̂eq ∩H,

σr = σ̂r ∩H.

The proofs of

. σr ∗ ∆eq indexes a unimodular triangulation of O(P ),

. the equatorial complex ∆eq(P ) is a subcomplex of ∆(J (P )),

. h(∆eq(P ), t) = h(∆(J (P )), t) = W (p, t)

follow directly from the embedding φ : O(P ) → O(P̂ ) and Proposition 3.3,
Proposition 3.4, Proposition 3.6, Corollary 3.8, and Proposition 3.10 of [45]:

Proposition 3.9 (see Prop. 3.3. of [45]). Every non-zero P -partition f can
be uniquely expressed as

f = f rc + f eq,

where f rc, f eq are rank-constant and equatorial P -partitions, respectively.

Proof. Proposition 3.3 in [45] shows the assertion for graded posets. Therefore,

the assertion holds for all P̂ -partitions f̂ , in particular, the assertion holds for all
P̂ -partitions f̂ living in O(P̂ )∩H. Since we have O(P )∼=φ(O(P )) = O(P̂ )∩H,
the assertion follows. �

Proposition 3.10 (see Prop. 3.4. of [45]). The rank-constant subcone of A(P )
is interior that is, it does not lie in the boundary subcomplex of the cone A(P ).

Proof. With the same arguments as in the proof of Proposition 3.9, the result
follows directly for Proposition 3.4. of [45]. �

Proposition 3.11 (see Prop. 3.6. of [45]). The collection of all cones

pos
(
{χI | I ∈ R ∪ E}

)
,

where R (resp. E) is a chain of non-empty rank-constant (resp. equatorial)
ideals in P , gives a unimodular triangulation of the cone of P -partitions A(P ).

Proof. With the same arguments as in the proof of Proposition 3.9, the result
follows directly for Proposition 3.6. of [45]. �
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Corollary 3.12 (see Cor. 3.8. of [45]). The equatorial triangulation of the
order polytope O(P ) is abstractly isomorphic to the simplicial join σr ∗∆eq. As
a consequence of its unimodularity, one has

h(∆eq, t) = h(∆(J (P )), t) = W (P, t).

Proof. Recall that for a convex polytope Q in Rn having vertices in Zn the
number of lattice points contained in an integer dilation dQ grows as a poly-
nomial in the dilation factor d ∈ N. This polynomial in d is called the Erhart
polynomial:

Erhart(Q, d) := #
(
dQ ∩ Nn

)
.

Whenever Q has a unimodular triangulation abstractly isomorphic to a simpli-
cial complex ∆, there is the following relationship:

(3.2)
∑

d≥0

Erhart(Q, d) td =
h(∆, t)

(1 − t)n
.

The first assertion follows directly from Proposition 3.11. For the second,
note that both σr ∗ ∆eq and ∆(J (P )) index unimodular triangulations of the
order polytope, so (3.2) implies

h(∆eq, t) = h(∆(J (P )), t).

On the other hand, the definition of the h- and f -vector shows that

f(∆1 ∗ ∆2, t) = f(∆1, t) ∗ f(∆2, t),

h(∆1 ∗ ∆2, t) = h(∆1, t) ∗ h(∆2, t),

h(σ, t) = 1,

and hence h(σr ∗ ∆eq, t) = h(∆eq, t). �

Corollary 3.13.

h(∆eq, t) = h(∆̂eq ∩H, t) = W (P, t).

Proof. The result follows from the preceding corollary and the fact that ∆eq

is isomorphic to ∆̂eq ∩H. �

The fact that ∆eq(P ) is a subcomplex of ∆(J (P )) follows from the definition
of ∆eq(P ).

Finally, we can ask which subspaces H are possible:

Let P be a graded naturally labeled poset on the set [n] of rank r and
∆eq ∈ Rn its equatorial sphere.

First we define the set of possible coordinates:

Definition 3.14. A set C ⊂ [n] is called a set of possible coordinates if each
i ∈ C satisfies the following properties:

(1) i has a unique maximal predecessor, i.e. there exists exactly one j ≺P i
such that there is no k ∈ P with j ≺P k ≺P i,

(2) i has a unique minimal successor or is maximal, i.e. there exists either
no j ∈ P with i ≺P j or there exists exactly one i ≺P j such that
there is no k ∈ P with i ≺P k ≺P j,
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(3) if for each i ∈ P \ C the rank of i does not change if one removes all
elements lying in C, i.e.

ρP (i) = ρP\C(i) for all i ∈ P \ C.

We denote with Co(P ) the maximal subset (with respect to inclusion) satisfying
these properties and call it the set of possible coordinates.

Definition 3.15. Let A ⊂ Co(P ) be a set of possible coordinates.

(1) We call a set of equations

EA
0 =

{
{xi = 0}

∣∣∣ i ∈ A
}

a P -valid set of equations if it satisfies the following property:

{xi = 0} ∈ EA
0 , i ≺P j ⇒ j ∈ A and {xj = 0} ∈ EA

0 .

(2) We call a set of equations

EA
1 :=

{
{xi = xj}

∣∣∣ i ≺P j and i ∈ A
}

a P -valid set of equations, if it satisfies the following property:

{xi = xj} ∈ EA
1 , i ≺P j ⇒





There exists an l ∈ P \A such that i ≺P l
and for all i ≺p k ≺P l we have k ∈ A and
{xi = xk} ∈ EA

1 .

(3) We call a set of equations E(P ) a P -valid set of equations if there
exists a set of possible coordinates A ⊂ Co(P ) such that EA

0 and EA
1

are P -valid set of equations and E(P ) = EA
0 (P )∪EA

1 (P ).

For a P -valid set E(P ) of equations we define the convex set H(P ) :=
H(E(P )) ∈ Rn to be the intersection of coordinate and diagonal hyperplanes:

H(P ) :=
{
x ∈ Rn

∣∣∣ x satisfies all equations in E(P )
}
.

With this setting we get the following theorem:

Theorem 3.16. The following statements are equivalent:

(1) For all naturally labeled posets, the W -polynomial is unimodal (resp.
log-concave).

(2) For all graded, naturally labeled posets P on [n] with equatorial sphere
∆eq and for all P -valid sets of equations E(P ) with corresponding set
of coordinate and diagonal hyperplanes H(P ), the h-polynomial

h
(
∆eq ∩H(P ), t

)

is unimodal (resp. log-concave).

Proof. The result follows from Corollary 3.13 and the fact that to each nat-
urally labeled posets P there exists a unique graded naturally labeled posets
P̂ and a unique P̂ -valid set of equations E(P̂ ) such that h(∆eq, t) = h(∆̂eq ∩
H(P ), t). �

Theorem 3.16 gives a new approach to prove the unimodality of the W -
polynomial for all naturally labeled posets P .
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Appendix A

German Abstract
(Deutsche
Zusammenfassung)

1. Struktur der Arbeit

Die vorliegende Arbeit gliedert sich in zwei Teile mit den Titeln ”Algebraische
Diskrete Morse-Theorie und Anwendungen in der kommutativen Algebra” und
”Zwei Probleme der Algebraischen Kombinatorik”.

Der erste Teil der Arbeit ist ein Beitrag zur kombinatorischen kommuta-
tiven Algebra. Hier verallgemeinern wir die Diskrete Morse-Theorie von For-
man auf eine algebraische Version. Mit Hilfe dieser Verallgemeinerung ist es
nun möglich, verschiedene Probleme der kommutativen Algebra zu lösen: Wir
können minimale Auflösungen für neue Klassen von Idealen konstruieren sowie
Fragestellungen über die multigraduierte Poincaré-Betti-Reihe beantworten.

Im zweiten Teil der Arbeit diskutieren wir die ”Homologie von nilpotenten
Lie-Algebren endlichen Typs” und die ”Neggers-Stanley-Vermutung”. Nach
einer kurzen Vorstellung beider Probleme präsentieren wir hier neue Resultate:
Wir beweisen Aussagen über die Homologie nilpotenter Lie-Algebren zu Wurzel-
systemen - speziell zum Wurzelsystem An - und reduzieren die Neggers-Stanley-
Vermutung auf die Berechnung des h-Vektors des Schnittes einer polytopalen
Sphäre mit einer Menge von Hyperebenen.

2. Algebraische Diskrete Morse-Theorie und Anwendungen

2.1. Einführung.
Die Theorie der minimalen freien Auflösungen befasst sich mit Abhängigkeiten
von Polynomen p1, . . . , pn ∈ S = k[x1, . . . , xn] über S. Solche Abhängigkeiten
sind deutlich komplexer als Abhängigkeiten von Vektoren v1, . . . , vn eines Vek-
torraums, da zum Beispiel die beiden Begriffe maximal linear unabhängig und
minimal erzeugend nicht äquivalent sind.
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Ein Maß für Abhängigkeiten von Polynomen sind minimale freie Auflösun-
gen des von den Polynomen erzeugten Ideals 〈p1, . . . , pn〉ES; allerdings sind
solche Auflösungen im Allgemeinen schwierig zu konstruieren. Im monomialen
Fall gibt es zumindest Verfahren (z.B. Taylor-Auflösung), eine Auflösung zu
konstruieren, die aber in den seltensten Fällen minimal ist.

In der kommutativen Algebra werden, neben minimalen Auflösungen, viele
wichtige Invarianten, wie zum Beispiel Regularität, Poincaré-Betti-Reihe, Tor
und Ext, über die Homologie von algebraischen Kettenkomplexen berechnet.
Oftmals ist der Kettenkomplex viel zu groß, in dem Sinne, dass es azyklische
Unterkomplexe gibt, die herausdividiert werden können. Zum Beispiel ist die
Taylor-Auflösung eines monomialen Moduls ein Komplex, der - tensoriert mit k
- die Betti-Zahlen des Moduls berechnet, aber im Allgemeinen besitzt er einen
relativ großen azyklischen Unterkomplex.

”Optimale” Komplexe zur Berechnung von Invarianten, wie zum Beispiel
minimale freie Auflösungen, existieren zwar theoretisch, sind aber im Allge-
meinen nicht effektiv konstruierbar. Die Theorie besagt zwar, dass man zu
einem beliebigen Komplex einen Homotopie-äquivalenten Kettenkomplex kon-
struieren kann, von dem sich kein azyklischer Komplex abspalten lässt, jedoch
gibt es bisher keinen effizienten Algorithmus, der dies leistet.

2.2. Bisherige Lösungsansätze.
Zur Berechnung von minimalen freien Auflösungen monomialer Ideale liefert
die Diskrete Morse-Theorie von Forman (vgl. [21], [22]) einen vielversprechen-
den Lösungsansatz. Die Diskrete Morse-Theorie von Forman ist eigentlich
eine topologische Theorie: Sie ordnet einem regulären CW-Komplex X einen
Homotopie-äquivalenten CW-Komplex XM mit weniger Zellen zu. Die Homolo-
gie von CW-Komplexen berechnet sich durch die Homologie des zugeordneten
Kettenkomplexes der zellulären Homologie. Formans Theorie besagt insbeson-
dere, dass die Kettenkomplexe vonX undXM zueinander homotop sind. Damit
ergibt sich der Zusammenhang zur kommutativen Algebra: Finde zu einem al-
gebraischen Kettenkomplex einen passenden CW-Komplex (das heißt der Kom-
plex der zellulären Homologie stimmt mit dem gegebenen überein) und wende
dann Formans Theorie an. Damit erhält man einen zum Ausgangskomplex
Homotopie-äquivalenten Kettenkomplex mit kleineren Rängen.

Leider ist diese Methode nicht auf beliebige Kettenkomplexe anwendbar,
sondern nur auf solche, zu denen ein passender CW-Komplex existiert. Auf-
lösungen monomialer Ideale, zu denen ein passender CW-Komplex existiert,
heißen zelluläre Auflösungen (vgl. [6]). Batzies studierte in seiner Arbeit [4] die
Anwendung der Diskreten-Morse Theorie von Forman auf zelluläre Auflösungen
monomialer Ideale. Hier werden sogenannte azyklische Matchings auf zel-
lulären Auflösungen definiert, um anschließend kleinere - bestenfalls minimale
- Auflösungen zu konstruieren. Es zeigt sich in [4], dass diese Theorie gute
Resultate liefert.

Wie bereits erwähnt, setzt die Anwendung der Diskreten Morse-Theorie von
Forman stets die Existenz eines regulären CW-Komplexes voraus. Es gibt aber
Auflösungen, die nicht von einem regulären CW-Komplex unterstüzt werden.
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Ein weiteres Problem ist die iterative Anwendung dieses Verfahrens, da das
Verfahren nur angewendet werden kann, wenn der CW-Komplex regulär ist. Es
ist aber möglich, dass nach einmaliger Anwendung die Auflösung nicht minimal
und der unterstützende CW-Komplex nicht mehr regulär ist. Daher kann man
mit diesem Verfahren nicht jede zelluläre Auflösung minimieren. Es ist bis heute
ein ungelöstes Problem, ob jeder monomiale Modul über dem Polynomring eine
minimale zelluläre Auflösung besitzt.

Die Diskrete Morse-Theorie auf zellulären Auflösungen erlaubt zwar in vie-
len Fällen die Minimierung der Auflösung und ist somit eine wichtige Methode
in der kommutativen Algebra zur Berechnung der Betti-Zahlen, sie hat aber,
wie oben gezeigt, ihre Grenzen.

Somit stellt sich nun die Frage, ob es eine ähnliche Methode gibt, die erstens
die Diskrete Morse-Theorie verbessert - also zum Beispiel eine Anwendung auf
alle Auflösungen monomialer Ideale zulässt - und zweitens eine iterative Anwen-
dung ermöglicht. Damit hätte man ein Konstruktionsverfahren zur Verfügung,
um eine beliebige Auflösung schrittweise zu minimieren. Schließlich wäre es
wünschenswert, dieselbe Methode auf beliebige algebraische Kettenkomplexe
anwenden zu können, um deren Homologie anzugeben.

Der grundlegende Ansatz dieser Arbeit, ist die Diskrete Morse-Theorie von
Forman auf eine algebraische Version zu verallgemeinern, die alle oben aufge-
führten Forderungen erfüllt. Wir entwickeln eine solche Methode und nennen sie
”Algebraische Diskrete Morse-Theorie”. Anschließend wenden wir die Theorie
auf verschiedene Fragestellungen in der kommutativen Algebra an.

Während der Entstehung der Arbeit ist es unabhängig von uns auch Sköld-
berg gelungen, die Diskrete Morse-Theorie auf algebraische Komplexe zu ver-
allgemeinern [41].

In den folgenden beiden Abschnitten erklären wir die Algebraische Diskrete
Morse-Theorie und geben eine detaillierte Zusammenfassung der Anwendungen
in der kommutativen Algebra und unserer Resultate.

2.3. Die Algebraische Diskrete Morse-Theorie.
Die Algebraische Diskrete Morse-Theorie behält im Prinzip das Verfahren der
Diskreten Morse-Theorie bei, allerdings wird kein CW-Komplex mehr benötigt,
sondern nur noch der Kettenkomplex. Damit ermöglichen wir die Anwen-
dung der Formanschen Theorie auf beliebige algebraische Kettenkomplexe und
machen eine iterative Anwendung möglich. Dies erlaubt uns - rein theoretisch
- jeden beliebigen algebraischen Kettenkomplex von freien R-Moduln zu mi-
nimieren und somit die Berechnung von Invarianten in der kommutativen Al-
gebra zu vereinfachen.

Die Algebraische Diskrete Morse-Theorie wird in Kapitel 3 definiert und
hergeleitet. Wir geben hier die Definition und die Aussage der Algebraischen
Diskreten Morse-Theorie wieder:

Sei R ein Ring und C• = (Ci, ∂i)i≥0 ein Kettenkomplex freier R-Moduln Ci.
Wir fixieren eine Basis X =

⋃n
i=0Xi, so dass Ci '

⊕
c∈Xi

R c. Von nun an
schreiben wir das Differential ∂i bezüglich der Basis X in der folgenden Form:
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∂i :





Ci → Ci−1

c 7→ ∂i(c) =
∑

c′∈Xi−1

[c : c′] · c′.

Zu einem gegebenen Komplex C• mit BasisX konstruieren wir einen gewichte-
ten, gerichteten Graphen G(C•) = (V,E). Dabei entspricht die Eckenmenge V
der gewählten Basis V = X, und die Kantenmenge E des Graphen G(C•) ist
durch folgende Regel definiert:

(c, c′, [c : c′]) ∈ E :⇔ c ∈ Xi, c
′ ∈ Xi−1 und [c : c′] 6= 0.

Für eine Kante (c, c′, [c : c′]) in dem Graphen schreiben wir oftmals nur c → c′

und vernachlässigen das Gewicht. Mit e ∈ G(C•) meinen wir, dass e eine Kante
aus E ist.

Definition 2.1. Eine endliche Teilmenge M ⊂ E der Eckenmenge heißt azyk-
lisches Matching, falls die folgenden drei Bedingungen erfüllt sind:

(1) (Matching) Jede Ecke v ∈ V liegt in höchstens einer Kante e ∈ M.

(2) (Invertierbarkeit) Für jede Kante (c, c′, [c : c′]) ∈ M ist das Gewicht
[c : c′] invertierbar und liegt im Zentrum von R.

(3) (Azyklizität) Der Graph GM(C•) = (V,EM) enthält keine gerichteten
Zyklen, wobei EM definiert ist durch

EM := (E \M) ∪

{(
c′, c,

−1

[c : c′]

)
mit (c, c′, [c : c′]) ∈ M

}
.

Für das azyklische Matching M auf dem Graphen G(C•) = (V,E) führen
wir folgende Notation ein, die wir von Forman übernommen haben:

(1) Eine Ecke c ∈ V heißt kritisch bezüglich M, falls c in keiner Kante
e ∈ M vorkommt; wir schreiben

XM
i := {c ∈ Xi | c kritisch }

für die Menge der kritischen Ecken im homologischen Grad i.

(2) Wir schreiben c′ ≤ c, falls c ∈ Xi, c
′ ∈ Xi−1 und [c : c′] 6= 0.

(3) Path(c, c′) bezeichnet die Menge der gerichteten Pfade von c nach c′

in dem Graphen GM(C•).

(4) Das Gewicht w(p) eines Pfads p = c1 → · · · → cr ∈ Path(c1, cr) ist
gegeben durch

w(c1 → . . . → cr) :=

r−1∏

i=1

w(ci → ci+1),

w(c→ c′) :=





−
1

[c : c′]
, c ≤ c′

[c : c′] , c′ ≤ c.

(5) Wir schreiben Γ(c, c′) =
∑

p∈Path(c,c′)

w(p) für die Summe der Gewichte

aller Pfade von c nach c′.
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Der Morse-Komplex CM
• = (CM

i , ∂Mi )i≥0 von C• bezüglich M ist wie folgt
definiert:

CM
i :=

⊕
c∈XM

i

R c,

∂Mi :





CM
i → CM

i−1

c 7→
∑

c′∈XM
i−1

Γ(c, c′)c′, .

Der folgende Satz ermöglicht das Minimieren von Kettenkomplexen:

Theorem 2.2. Der Komplex CM
• ist ein Komplex freier R-Moduln und ist

Homotopie-äquivalent zum Komplex C•. Insbesondere gilt für alle i ≥ 0

Hi(C•) ∼= Hi(C
M
• ).

Die folgenden Abbildungen definieren eine Kettenhomotopie zwischen C• und
CM
• .

f :





C• → CM
•

c ∈ Xi 7→ f(c) :=
∑

c′∈XM
i

Γ(c, c′)c′,

g :





CM
• → C•

c ∈ XM
i 7→ gi(c) :=

∑

c′∈Xi

Γ(c, c′)c′.

In manchen Anwendungen ist es nützlich unendliche azyklische Match-
ings zu betrachten. Die Definition eines azyklischen Matchings benutzt die
Endlichkeit nicht; jedoch wird die Endlichkeit in der Definition von Γ(c, c ′),
sowie im Beweis des Theorems 2.2 benutzt. Um die Theorie auf unendliche
Matchings zu erweitern benötigen wir eine “lokale” Endlichkeit.

Wenn C• ein Komplex freier R-Moduln und M ein unendliches azyklisches

Matching, so induziert M auf jedem endlichen Unterkomplex C f
• ein endliches

azyklisches Matching. Daher definieren wir unendliche Morse-Matchings wie
folgt:

Definition 2.3 (Endlichkeit). Sei C• ein Komplex freier R-Moduln und M ein
unendliches azyklisches Matching. Wir sagen M definiert ein Morse-Matching
falls eine Folge von endlichen Unterkomplexen Di := (D•)i, i ≥ 0 von C•

existiert, so dass Folgendes gilt:

(1) Für alle i ≥ 0 ist Di ein Unterkomplex von Di+1.

(2) C• = colimi≥0Di.

(3) Für alle i ≥ 0 ist (Di)
M ein Unterkomplex von (Di+1)

M.

Die letzte Bedingung impliziert Γ(c, c′) <∞ und es ist leicht zu sehen, dass die
Aussage von Theorem 2.2 nun auch für unendliche Morse-Matchings gültig ist.

In unseren Anwendungen sind alle Komplexe durch α ∈ Nn multigraduiert
und der α-graduierte Teil von C• ist endlich. Daher sind die folgenden Un-
terkomplexe alle endlich:
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Di :=

i⊕

j=0

⊕

α∈Nn

|α|=j

(C•)α

Es ist leicht zu sehen, dass auf multigraduierten Komplexen deren α-graduierte
Teile endlich sind, jedes unendliche Morse-Matching mit der Folge Di die zusätz-
liche Endlichkeitsbedigung erfüllt. Daher bekommen wir für diese Klasse von
Komplexen folgende allgemeine Aussage:

Theorem 2.4. Sei C• ein Nn-graduierter Komplex freier R-Moduln, so dass
für alle α ∈ Nn der Komplex (C•)α endlich ist. Dann gilt die Aussage von
Theorem 2.2 für alle unendlichen azyklischen Matchings M.

Als erste Anwendung zeigen wir, dass die normalisierte Bar-Auflösung,
sowie die normalisierte Hochschild-Auflösung durch ein azyklisches Matching
aus der Bar- bzw. Hochschild-Auflösung hervorgehen (vgl. Proposition 3.3.1
und Proposition 3.3.2).

2.4. Anwendungen in der Kommutativen Algebra.

2.4.1. Auflösungen Monomialer Ideale.
Wir konstruieren minimale Auflösungen von monomialen Idealen a in dem
Polynomring S = k[x1, . . . , xn]. Wir entwickeln ein sogenanntes “Standard-
Matching” M :=

⋃
i≥1 Mi auf der Taylor-Auflösung T• eines monomialen

Ideals, so dass der resultierende Morse-Komplex TM
• eine minimale Auflösung

definiert. Das Standard-Matching existiert in jedem Fall und liefert zusätzlich
zu einer minimalen freien Auflösung des monomialen Ideals ein Produkt auf der
Basis der minimalen Auflösung. Damit können wir insbesondere zeigen, dass
die Homologie des Koszul-Komplexes von S/a bezüglich der Sequenz x1, . . . , xn

als Algebra isomorph ist zum Quotienten eines graduiert-kommutativen Poly-
nomrings:

Proposition 2.5.

H(K
S/a

• ) ' k(YI , I 6∈ M, cl(I) = 1)/r.

Dies ist ein wichtiges Resultat der Arbeit, mit dem wir Fragestellungen über
die multigraduierte Poincaré-Betti-Reihe beantworten können.

Speziell studieren wir Auflösungen von in Grad zwei erzeugten monomi-
alen Idealen. Für solche Ideale zeigen wir, dass ein “kleinerer” Unterkomplex
der Taylor-Auflösung bereits eine Auflösung definiert. Zunächst geben wir eine
graphische Interpretation der Basiselemente der Taylor-Auflösung. Der Un-
terkomplex der Taylor-Auflösung, der von denjenigen Basiselementen erzeugt
wird, die keinen Broken Circuit enthalten, sogenannte nbc-Mengen, definiert
dann bereits eine Auflösung:

Theorem 2.6. Sei aES ein quadratfreies monomiales Ideal im Polynomring S
und MinGen(a) ein minmales monomiales Erzeugendensystem. Dann definiert
der Unterkomplex Tnbc, dessen Basis gegeben ist aus I ⊂ MinGen(a) mit I
nbc-Menge, eine freie Auflösung des Ideals a.
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Als Spezialfall betrachten wir Stanley-Reisner-Ideale a = I∆(P ) von Ord-
nungskomplexen ∆(P ) einer partiell geordneten Menge P . Für solche Ideale
konstruieren wir auf der Auflösung Tnbc ein weiteres nicht-azyklisches Match-
ing M. Betrachtet man nun den Vektorraum TM

nbc
, so liefert dieser zwar keine

Auflösung (für nicht azyklische Matchings ist ∂M nicht definiert), aber die Ba-
sis von TM

nbc
ermöglicht in diesem Fall die Berechnung der multigraduierten

Poincaré-Betti-Reihe von k ' (S/a)/m.

Das Standard-Matching und die Ergebnisse über Auflösungen von in Grad
zwei erzeugten Idealen verwenden wir später, um die multigraduierte Poincaré-
Betti-Reihe spezieller Restklassenkörper auszurechnen (siehe Abschnitt 2.4.3).

Wir definieren zwei neue Klassen monomialer Ideale über eine kombina-
torische Bedingung auf dem minimalen Erzeugendensystem.

Definition 2.7. Ein monomiales Ideal aES mit minimalem monomialen Erzeu-
gendensystem MinGen(a) erfüllt die

(1) gcd-Bedingung, falls für je zwei teilerfremde Erzeugerm,n ∈ MinGen(a)
ein dritter Erzeuger m,n 6= u ∈ MinGen(a) existiert, so dass u | mn.

(2) starke gcd-Bedingung, falls auf MinGen(a) eine lineare Ordnung ≺
existiert und für je zwei Erzeugerm ≺ n ∈ MinGen(a) mit gcd(m,n) =
1 ein dritter Erzeuger m,n 6= u ∈ MinGen(a) existiert, so dass u | mn
und m ≺ u.

Für monomiale Ideale, die die starke gcd-Bedingung erfüllen, konstruieren
wir dann ein azyklisches Matching M auf der Taylor-Auflösung. Den resul-
tierenden Morse-Komplex TM bezeichnen wir mit Tgcd.

Proposition 2.8. Sei aES ein monomiales Ideal, das die starke gcd-Bedingung
erfüllt. Der Komplex Tgcd geht durch ein azyklisches Matching aus der Taylor-
Auflösung hervor und definiert somit eine freie Auflösung des Ideals a.

Mit Hilfe des Komplexes Tgcd erhalten wir für monomiale Ideale aES in-
teressante Zusammenhänge und neue Resultate für die Golod-Eigenschaft von
A := S/a. Wir gehen in Abschnitt 2.4.3 näher darauf ein. Anschließend
studieren wir die sogenannte Poset-Auflösung (vgl. [39]). Diese Auflösung
löst das Ideal, das von einer monomial geordneten Familie erzeugt wird, frei
auf. Eine monomial geordnete Familie ist eine partiell geordnete Menge P ,
deren Elemente in eindeutiger Weise Monome zugeordnet sind. Die Poset-
Auflösung ist dann die zelluläre Auflösung, die von dem Ordnungskomplex der
partiell geordneten Menge unterstüzt wird. Für diese Auflösung definieren wir
mit Hilfe der Algebraischen Diskreten Morse-Theorie zwei Algorithmen, die die
Auflösung deutlich verkleinern und in manchen Fällen minimieren. Die Effek-
tivität unserer Algorithmen hängt wesentlich von der geordneten Menge P und
einer vorher gewählten linearen Erweiterung der Ordnung ab. Wir diskutieren
die Vor- und Nachteile und geben Kriterien für die partiell geordnete Menge
P und deren lineare Erweiterung an, welche implizieren, dass die Algorithmen
minimale Auflösungen produzieren.

Schließlich wenden wir die Algebraische Diskrete Morse-Theorie auf die
Taylor-Auflösung von Borel- bzw. p-Borel-fixed-Idealen an. Für Borel-Ideale
gibt es bereits explizite Darstellungen minimaler Auflösungen (vgl. z.B. [19]).
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Hier geben wir eine neue zelluläre Auflösung einer Unterklasse dieser Ideale an,
die eine direkte Verallgemeinerung der hypersimplizialen Auflösung ist, welche
Batzies in seiner Dissertation [4] einführte, um minimale zelluläre Auflösungen
von Potenzen des maximalen homogenen Ideals zu berechnen.
Eine minimale Auflösung für p-Borel-fixed-Ideale gibt es bisher nur für solche,
die Cohen-Macaulay sind (vgl. [2]). In [4] wurde gezeigt, dass diese sogar zel-
lulär sind. Wir konstruieren in diesem Abschnitt minimale zelluläre Auflösungen
für eine deutlich größere Klasse von p-Borel-fixed-Idealen, die die Cohen-Macau-
lay Ideale umfassen.
Zusätzlich geben wir eine rekursive Formel zur Berechnung der multigraduierten
Betti-Zahlen sowie eine Formel zur Berechnung der Regularität solcher Ideale
an. Die Ergebnisse über die Regularität verallgemeinern bisher bekannte Re-
sultate (vgl. [20],[30]); unter Anderem können wir Pardues [38] Vermutung
über die Regularität von p-Borel-fixed-Idealen teilweise neu beweisen.

2.4.2. Auflösungen des Restklassenkörpers.
Ein Großteil der Arbeit beschäftigt sich mit der minimalen Auflösung des
Körpers k als A-Modul, wobei A der Quotient aus dem (nicht notwendigerweise
kommutativen) Polynomring S und einem (nicht notwendigerweise monomi-
alen) Ideal aES ist.

Zunächst betrachten wir den Restklassenkörper k = A/m, wobei A der Quo-
tientenring aus dem kommutativen Polynomring R := k[x1, . . . , xn] und einem
Ideal aER ist. Auf der normalisierten Bar-Auflösung definieren wir dann ein
azyklisches Matching. Um das Differential des resultierenden Morse-Komplexes
angeben zu können, fixieren wir eine Gröbnerbasis des Ideals a und geben dann
sogenannte Reduktionsregeln an. Wir erhalten eine Auflösung des Körpers k,
die man als “kommutative Version der Anick-Auflösung” verstehen kann.
Wir geben Kriterien für das monomiale Ideal aER an, so dass der oben kon-
struierte Komplex eine minimale Auflösung definiert. Des Weiteren zeigen wir
für den Fall, dass unsere Auflösung minimal ist, dass die Poincaré-Betti-Reihe

gleich dem Produkt
(∏n

i=1(1+t xi)
)
F (x, t) ist, wobei F (x, t) die Wort-zählende

Funktion einer regulären Sprache L ist.
Schließlich geben wir eine explizite minimale Auflösung des Restklassenkörpers
k für den Fall an, dass a ein vollständiger Durschnitt ist.

Anschließend übertragen wir die oben aufgeführten Ergebnisse auf den nicht-
kommutativen Fall, das heißt, wir betrachten den Restklassenkörper k = A/m,
wobei A der Quotientenring aus dem nicht-kommutativen Polynomring R :=
k〈x1, . . . , xn〉 und einem beidseitigem Ideal aER ist. Der Morse-Komplex des
übertragenen Matchings ist nun isomorph zur Anick-Auflösung. Auch hier
geben wir Kriterien für das Ideal a, so dass der Morse-Komplex eine minimale
Auflösung des Körpers k ist. Im Falle der Minimalität können wir außerdem
beweisen, dass die Poincaré-Betti-Reihe eine rationale Funktion ist. Wir zeigen
unter Anderem, dass der Morse-Komplex minimal ist, falls a eine quadratische
Gröbnerbasis besitzt. In diesem Fall folgt zudem die Rationalität der Hilbert-
Reihe.
Schließlich diskutieren wir einige Beispiele von A = R/a und beweisen damit
unter Anderem eine Vermutung von B. Sturmfels (vgl. [42]).
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Mit einem ähnlichen azyklischen Matching konstruieren wir außerdem neue
Auflösungen des Körpers k, aufgefasst als A⊗Aop-Modul, wobei wieder A der
Quotient aus dem (nicht notwendigerweise kommutativen) Polynomring S und
einem (nicht notwendigerweise monomialen) Ideal aES ist. Für den Fall, dass
R kommutativ und a ein vollständiger Durchschnitt ist, geben wir eine explizite
Gestalt der minimalen Auflösung an. Damit lässt sich die Hochschild-Homologie
von A mit Koeffizienten in k berechnen. Dieses liefert eine Verallgemeinerung
eines Resultates über die Hochschild-Homologie von Bach [9].

Die in diesem Abschnitt vorgestellten Ergebnisse wurden von uns bereits in
[36] vorgestellt.

2.4.3. Multigraduierte Hilbert- und Poincaré-Betti-Reihe und Golod-Eigenschaft.
Eine weitere Invariante, die sich durch Anwendung der Algebraischen Diskreten
Morse-Theorie berechnen lässt, ist die multigraduierte Poincaré-Betti-Reihe von
k∼=A/m, wobei A = S/a der Quotientenring aus dem kommutativen Polynom-
ring S = k[x1, . . . , xn] und einem monomialen Ideal aES ist.

Backelin bewies 1982 [3], dass in diesem Fall die multigraduierte Poincaré-
Betti-Reihe rational ist, jedoch ist bis heute keine explizite Gestalt der Reihe
bekannt. Charalambous und Reeves [13] bewiesen 1995 eine explizite Gestalt
für den Extremfall, dass die Taylor-Auflösung des monomialen Ideals minimal
ist. Sie schlussfolgerten, dass im Allgemeinen die Poincaré-Betti-Reihe eine
“ähnliche Gestalt” hat, waren jedoch nicht in der Lage, eine konkrete Vermu-
tung zu formulieren. Mit Hilfe des von uns entwickelten Standard-Matchings auf
der Taylor-Auflösung können wir eine Vermutung über die Basis der minimalen
multigraduierten Auflösung des Körpers k = A/m formulieren. Als Folgerung
daraus ergibt sich sofort eine explizite Gestalt der Poincaré-Betti-Reihe, die
die Vermutung von Charalambous und Reeves präzisiert und bestätigt. Des
Weiteren erhalten wir über die Euler-Charakteristik eine explizite Gestalt der
multigraduierten Hilbert-Reihe und somit einen allgemeinen Zusammenhang
zwischen Hilbert- und Poincaré-Betti-Reihe:

Sei aES ein monomiales Ideal, A := S/a die Quotientenalgebra und M =⋃
i≥1 Mi ein Standard-Matching. Für eine Teilmenge I ⊂ MinGen(a) eines

minimalen monomialen Erzeugendensystems sei mI das kleinste gemeinsame
Vielfache und cl(I) die Anzahl der Äquivalenzklassen bezüglich des transitiven
Abschlusses der Relation m ≡ n ⇔ gcd(m,n) 6= 1, wobei m,n ∈ I. Wir
konstruieren einen neuen nichtkommutativen Ring:

R :=
k〈YI , cl(I) = 1 , I ∈ M1〉

〈YIYJ − (−1)(|I|+1)(|J |+1)YJYI falls gcd(mI ,mJ) = 1〉
.

Der Ring R hat drei Graduierungen:

|YI | := |I| + 1,
deg(YI) := α, falls mI = xα,
degt(YI) := ||α||, falls mI = xα.

Wir können nun unsere Vermutung über die minimale freie Auflösung des Rest-
klassenkörpers formulieren:
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Vermutung 2.9. Sei F• eine minmale freie graduierte Auflösung des Rest-
klassenkörpers k über A. Sei Fi :=

⊕
αA(−α)βi,α der Modul im i-ten homolo-

gischen Grad. Dann gilt

Fi
∼=
⊕

I⊂[n]

⊕

u∈G(R)

A(−(αI + |u|)),

wobei αI ∈ {0, 1}n der charakteristische Vektor von I ist und G(R) die Menge
der Monome in R bezeichnet.

Mit Hilfe der Cartier-Foata-Theorie [12] erhalten wir eine präzise Darstel-
lung der multgraduierten Hilbert- und Poincaré-Betti-Reihe, die die Vermutung
von Charalambous und Reeves präzisiert und bestätigt.

Proposition 2.10. Gilt Vermutung 2.9, so haben die multigraduierte Hilbert
und Poincaré-Betti Reihe folgende Gestalt:

PA
k (x, t) =

n∏

i=1

(1 + xi t) HilbR(x, 1, t)(2.1)

=

n∏

i=1

(1 + xi t)

1 +
∑

I⊂MinGen(a)
I6∈M1

(−1)cl(I) mI t
cl(I)+|I|

,

HilbA(x, t) =
( n∏

i=1

(1 − xi t) HilbR(x, t,−1)
)−1

(2.2)

=

1 +
∑

I⊂MinGen(a)
I6∈M1

(−1)|I| mI t
mI

n∏

i=1

(1 − xi t)

.

Wir führen nun folgende Notation ein:

Definition 2.11. Wir sagen, A hat Eigenschaft

(P) ,falls PA
k (x, t) =

∏n
i=1(1 + xi t) HilbR(x, 1, t), und hat Eigenschaft

(H) ,falls HilbA(x, t) =
(∏n

i=1(1 − xi t) HilbR(x, t,−1)
)−1

.

Im Folgenden beschäftigen wir uns damit, unsere Vermutung 2.9 in Spezial-
fällen zu beweisen. Wir zeigen unsere Vermutung für verschiedene Klassen von
Algebren A:

Theorem 2.12. Sei A = S/a der Quotientenring und aES ein monomiales
Ideal.

(1) Ist a in Grad zwei erzeugt, so gilt Vermutung 2.9.

(2) Ist die Koszul-Homologie H•(K
A) ein M -Ring (vgl. [23]) und existiert

ein Homomorphismus φ : H(KA) → Z(KA), so dass πφ = idH(KA),

so gilt Vermutung 2.9, wobei π : Z(KA) → H(KA) die kanonische
Projektion ist.
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(3) Ist die Koszul-Homologie H•(K
A) ein M -Ring und hat die minimale

Auflösung von a über S eine differentiell graduierte Struktur, so hat A
Eigenschaft (P).

Für den allgemeinen Fall geben wir mit Hilfe des Eagon-Komplexes und
einer Verallgemeinerung der Massey-Operationen eine Beweisidee, die zudem
unsere Vermutung rechtfertigt.

Die Golod-Eigenschaft eines monomialen Ringes A = S/a ist äquivalent zu
einer konkreten Darstellung der Poincaré-Betti-Reihe:

A Golod ⇔ PA
k (x, t) =

∏n
i=1(1 + t xi)

1 − t
∑

i,α βi,α xα ti
,

wobei βi,α = dim
(
TorS

i (A, k)α

)
die multigraduierten Betti-Zahlen sind.

Daher liefert unsere Vermutung interessante Folgerungen sowie Kriterien
für die Golod-Eigenschaft. Unter Annahme unserer Vermutung bekommen wir
folgende interessante Resultate:

Theorem 2.13. Sei A = S/a eine Quotientenalgebra mit Eigenschaft (P). Dann
ist A genau dann Golod, wenn das Produkt auf der Koszul-Homologie (die erste
Massey-Operation) trivial ist.

Diese Äquivalenz ist eine wesentliche Vereinfachung gegenüber der Defini-
tion von Golod.

Mit unserer gcd-Bedingung erhalten wir sogar noch einfachere, rein kombi-
natorische Kriterien für die Golod-Eigenschaft:

Theorem 2.14. Sei A = S/a eine Quotientenalgebra mit Eigenschaft (P).
Erfüllt a die starke gcd-Bedingung, so ist A Golod.

Hier vermuten wir sogar eine Äquivalenz:

Vermutung 2.15. Sei A = S/a eine Quotientenalgebra mit Eigenschaft (P).
Dann ist A genau dann Golod, falls a die starke gcd-Bedingung erfüllt.

Herzog, Reiner und Welker beweisen in [29], dass wenn aES komponen-
tenweise linear ist, der Ring A = S/a Golod ist. Mit Hilfe der Algebraischen
Diskreten Morse-Theorie können wir dieses Resultat verallgemeinern:

Theorem 2.16. Sei aES in Grad l erzeugt.

(1) Falls dimk

(
TorS

i (S/a, k)i+j

)
= 0 für alle j ≥ 2(l − 1), dann ist die

Algebra A = S/a Golod.

(2) Ist A Golod, so gilt dimk

(
TorS

i (S/a, k)i+j

)
= 0 für alle j ≥ i(l−2)+2.

Insbesondere gilt: Ist A Koszul, so ist A genau dann Golod, wenn die minimale
freie Auflösung von a linear ist.

Die in diesem Abschnitt präsentierten Resultate wurden von uns bereits in
[35] vorgestellt.
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2.5. Struktur des ersten Teils.

. Kapitel 1 enthält die Einleitung.

. Kapitel 2 enthält einige Definitionen, elementare Tatsachen über und
Beispiele von Kettenkomplexen bzw. Auflösungen, die in der Arbeit ver-
wendet werden:

. Im ersten Paragraphen werden folgende Begriffe definiert:
• Multigraduierte freie Auflösungen von R-Moduln
• Zelluläre multigraduierte freie Auflösungen von R-Moduln
• Multigraduierte Hilbert- und Poincaré-Betti-Reihe von Mod-

uln
• Homologie von Komplexen

Des Weiteren werden grundlegende Zusammenhänge erklärt.
. Im zweiten Paragraphen werden spezielle Kettenkomplexe definiert

und ihre Anwendungen erklärt. Es werden die folgenden Komplexe
definiert:

• Taylor- und Scarf- Auflösung monomialer Moduln
• Poset-Auflösung monomialer Moduln
• Koszul-Komplex
• Bar- und normalisierte Bar-Auflösung
• Azyklische und normalisierte azyklische Hochschild-Auflösung

. Im dritten Paragraphen definieren wir den sogenannten Eagon-Komplex,
der eine freie Auflösung des Körpers k über dem Quotientenring
A ist, wobei A der Quotient aus dem Polynomring S und einem
Ideal a in S ist. Es werden die Massey-Operation auf der Koszul-
Homologie und die Golod-Eigenschaft von k-Algebren erklärt sowie
deren Zusammenhänge untereinander und deren Folgerungen für die
Poincaré-Betti-Reihe erläutert.

. Kapitel 3 enthält die Resultate, die im Abschnitt 2.3 erläutert sind.

. Kapitel 4 enthält die Resultate aus Abschnitt 2.4.1.

. Kapitel 5 enthält die Resultate aus Abschnitt 2.4.2.

. Kapitel 6 enthält die in Abschnitt 2.4.3 vorgestellten Ergebnisse.
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3. Zwei Probleme aus der Algebraischen Kombinatorik

3.1. Einführung.
In diesem Teil der Doktorarbeit werden zwei Probleme aus der algebraischen
Kombinatorik diskutiert: “Die Homologie von Nilpotenten Lie-Algebren End-
lichen Typs” und die “Neggers-Stanley-Vermutung”, auch bekannt als “Poset-
Vermutung”. Für beide Probleme wird eine kurze Einleitung in die The-
orie gegeben und die grundlegenden Fragestellungen erklärt. Anschließend
präsentieren wir unsere Resultate.

Der Grund für die separate Behandlung dieser Probleme ist, dass die Resul-
tate nicht mit Hilfe der Algebraischen Diskreten Morse-Theorie erzielt wurden.

3.2. Homologie von nilpotenten Lie-Algebren endlichen Typs.
In diesem Kapitel diskutieren wir die Homologie von nilpotenten Lie-Algebren.
Es zeigt sich in [27], dass viele Fragestellungen über die Homologie von nilpo-
tenten Lie-Algebren kombinatorischer Natur sind. Eine klassische Verbindung
zwischen der Kombinatorik und den Lie-Algebren ergibt sich aus dem engen
Zusammenhang zwischen halb-einfachen Lie-Algebren und endlichen Spiege-
lungsgruppen im Rn.

Im ersten Paragraphen geben wir eine grundlegende Einführung in die
Theorie. Wir folgen hier dem Buch “Introduction to Lie algebras and rep-
resentation theory“ von Humphreys [33]. Wir geben die klassischen Beispiele
von Lie-Algebren n(n, k), sp(n, k), sl(n, k), o(n, k) und geben deren Wurzelsys-
teme (An, Bn, Cn, Dn) an. Weiter geben wir, dem Buch “Reflection groups
and Coxeter groups” von Humphreys [34] folgend, eine knappe Einführung
in die Theorie der Spiegelungsgruppen und den dazu assoziierten Wurzelsyste-
men. Wir erklären die Spiegelungsgruppen zu den oben angeführten Beispielen.
Schließlich definieren wir den nilpotenten Teil einer Lie-Algebra, assoziiert zu
einem Wurzelsystem.
Im nächsten Teil geben wir die Definition der Homologie von Lie-Algebren.
Hier folgen wir dem Übersichtsartikel über kombinatorische Probleme in der
Homologie von nilpotenten Lie-Algebren von Hanlon [27]. Wir schließen diesen
Paragraphen mit ein paar Beispielen von ungelösten Problemen und interessan-
ten Vermutungen bezüglich der Homologie von nilpotenten Lie-Algebren (vgl
[28]).

Paragraph 2 besteht aus unseren Ergebnissen in der Theorie der nilpotenten
Lie-Algebren: Wir charakterisieren nilpotente Lie-Algebren durch sogenannte
“Zwei-gefärbte simpliziale Komplexe”:

Definition 3.1. Sei ∆ ein d-dimensionaler simplizialer Komplex mit n Facetten.
Wir bezeichnen mit Fi :=

{
F ∈ ∆

∣∣ dim(F ) = i
}

die Menge der i-dimensionalen
Seiten. Auf der Menge der Facetten fixieren wir eine lineare Ordnung:

Fd := {F1 < F2 < . . . < Fn}.

(1) Eine Zwei-Färbung einer Facette F ist eine Abbildung fF , die zu jeder
Ecke von F eine Farbe {r, g} (r =rot, g =grün) zuordnet.

(2) Sei für jede Facette Fi, i = 1, . . . , n, eine Zwei-Färbung fFi
gegeben.

Dann heißt das Paar (∆, f) ein zwei-gefärbter Komplex, falls f definiert
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ist durch

f : F0 → {r, g,−}n,

v 7→ (f1(v), . . . , fn(v)),

wobei σ durch Permutieren der Koordinaten agiert und n := #Fd

die Anzahl der Facetten von ∆ ist. Die Abbildungen fi sind definiert
durch

fi(v) :=

{
fFi

(v) , v ∈ Fi

− , v 6∈ Fi.

Für einen Farb-Vektor c := (c1, . . . , cn) ∈ {r, g,−}n definieren wir den kom-
plementären Vektor c := (c1, . . . , cn) durch

ci :=





r , ci = g
g , ci = r
− , ci = −.

Definition 3.2. Seien (∆, f) und (∆′, f ′) zwei zwei-gefärbte simpliziale Kom-
plexe mit n Facetten.
Wir nennen (∆, f) und (∆′, f ′) isomorph, falls

(1) ∆ und ∆′ als simpliziale Komplexe isomorph sind, und

(2) eine Permutation σ ∈ Sn existiert, so dass für alle Ecken v gilt

f ′(v) ∈
{
σ(f(v)), σ(f(v))

}
,

wobei σ die Koordinaten permutiert.

Da der Farb-Vektor ein geordnetes Tupel ist und somit von der gewählten
Ordnung abhängt, benötigen wir die Permutation, um den Isomorphiebegriff
nicht-trivial zu machen. Durch Neuordnen kann man jedoch immer annehmen,
dass die i-te Facette von ∆ auf die i-te Facette von ∆′ abgebildet wird. In
diesem Fall kann man in der Definition die Permutation weglassen.

Sei nun L eine nilpotente Lie-Algebra endlichen Typs, also ein k-Vektorraum
versehen mit dem Lie-produkt. Sei B eine k-Basis von L. Wir betrachten nun
die Menge der Lie-Relationen

{
(a, b, [a, b])

∣∣ a, b ∈ B, [a, b] 6= 0
}
,

wobei [·, ·] die Lie-Klammer ist. Da die Lie-Algebra endlichen Typs ist, ist
die Menge der Lie-Relationen endlich und charakterisiert die Algebra L in ein-
deutiger Weise. Wir bezeichnen mit R die Teilmenge der Lie-Relationen, die für
alle a, b ∈ B mit [a, b] 6= 0 genau eine der Relationen (a, b, [a, b]), (b, a,−[a, b])
enthält und nennen sie die Menge der positiven Lie-Relationen.

Zu R assoziieren wir einen zwei-gefärbten simplizialen Komplex.

Definition 3.3. Seit L eine endlich erzeugte nilpotente Lie-Algebra mit Lie-
Relation R. Der zweidimensionale zwei-gefärbte simpliziale Komplex (∆, f),
definiert durch

∆ = ∆(R) :=
⋃

(a,b,c)∈R

∆
(
(a, b, c)

)
,

∆
(
(a, b, c)

)
:=
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
,
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mit Färbung

f(a,b,c)(v) :=

{
g , v = a, b
r , v = c = [a, b]

heißt der Lie-Relationen-Komplex.

Es ist leicht zu sehen, dass die Lie-Klammer durch den Lie-Relationen-
Komplex bis auf Vorzeichen eindeutig definiert ist.

Auf dieser Ebene sind wir in der Lage einen neuen (schwächeren) Isomor-
phietyp (Quasi-Isomorphismus) zu definieren.

Definition 3.4. Zwei nilpotente Lie-Algebren L and L′ endlichen Typs heißen
quasi-isomorph, falls es eine Wahl von Lie-Relationen R und R′ gibt, so dass die
zugehörigen zwei-gefärbten simplizialen Komplexe (∆, f) und (∆′, f ′) zueinan-
der isomorph sind.

Natürlich sind zwei zueinander isomorphe Lie-Algebren insbesondere quasi-
isomorph.

Diese schwache Isomorphie hat zur Folge, dass die Summe der Homolo-
giegruppen über alle homologischen Grade invariant bleibt:

Theorem 3.5. Seien L und L′ zwei zueinander quasi-isomorphe nilpotente
Lie-Algebren endlichen Typs. Dann gilt:

⊕

i≥0

H(L,Z)∼=
⊕

i≥0

H(L′,Z).

Hier zeigt sich der Unterschied zum bisherigen Isomorphiebegriff, in dessen
Folge die Homologiegruppen in jedem Grad isomorph sind. Bei unsere schwachen
Isomorphie kann es passieren, dass die Gruppen in einem festen homologischem
Grad nicht isomorph sind.

In Paragraph 3 suchen wir dann Kriterien, wann zwei nilpotente Lie-Al-
gebren zueinander quasi-isomorph sind. Wir studieren im speziellen Unter-
Algebren der nilpotenten Teile von Lie-Algebren assoziiert zu Wurzelsystemen.
Betrachten wir das Wurzelsystem An−1, so ist der nilpotente Teil gegeben durch
die Lie-Algebra, bestehend aus allen oberen Dreiecksmatritzen n(n, k). Unteral-
gebren von n(n, k) können einerseits durch sogenannte abgeschlossene Teilmen-
gen von An−1 charakterisiert werden oder durch partiell geordnete Mengen:
Wenn P =

(
{1, . . . , l},≺

)
mit l ≤ n eine partiell geordnete Menge ist, so ist

die zugehörige Unteralgebra von n(n, k) gegeben durch den Span der Matrizen
Eij mit i ≺ j, deren Eintrag an der i-ten Zeile und j-ten Spalte gleich 1 ist und
sonst 0.

Es ist leicht zu sehen, dass die Lie-Relationen eins zu eins den zwei-Ketten
im Ordnungskomplex entsprechen (vgl. Figure 1). Um den Begriff der Quasi-
Isomorphie auf partiell geordnete Mengen übertragen zu können, müssen wir
zwei Typen von Paaren von Zwei-Ketten einführen (vgl. Figure 2 and 3).
Damit können wir folgende Definition machen:

Definition 3.6. Zwei partiell geordnete Mengen P und P ′ heißen stark-iso-
morph, falls es einen Isomorphismus φ : ∆(P ) → ∆(P ′) gibt, der Paare von
Zwei-Ketten vom Typ i auf Paare von Zwei-Ketten vom Typ i abbildet, für
i = 1, 2.
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Figure 3. Paare von Zwei-Ketten vom Typ 2

Wir können dann folgende Äquivalenz beweisen:

Proposition 3.7. Zwei partiell geordnete Mengen P und P ′ sind genau dann
stark-isomorph, falls die zugehörigen Lie-Algebren L(P ) und L(P ′) zueinander
quasi-isomorph sind.

Mit dieser Charakterisierung bekommen wir folgendes Resultat:

Corollary 3.8. Seien P und P ′ zwei stark-isomorphe partiell geordnete Mengen
und L(P ), bzw. L(P ′) die zugehörigen nilpotenten Lie-Algebren. Dann gilt

⊕

i≥0

H(L(P ),Z)∼=
⊕

i≥0

H(L(P ′),Z).

Für Transformationen einer partiell geordneten Menge P , die den Ordnungs-
komplex invariant lassen, ist lediglich zu prüfen, ob ein gegebener Isomorphis-
mus zwischen den Ordnungskomplexen die Zusatzbedingung erfüllt. Wir geben
hierzu Beispiele an.
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Für Unteralgebren des nilpotenten Teils anderer Wurzelsysteme macht der
Begriff Quasi-Isomorphismus ebenfalls Sinn, da er für alle nilpotenten Lie-
Algebren definiert ist. Allerdings muss man bei anderen Wurzelsystemen mit
abgeschlossenen Teilmengen der Wurzelsysteme arbeiten, da kein dem Poset
äquivalenter Begriff zur Verfügung steht. Daher lassen sich keine zum An-Fall
ähnlichen Kriterien finden. Für das Wurzelsystem Bn hat Reiner [43], [44] eine
kombinatorische Charakterisierung gefunden, die wir aber noch nicht studiert
haben. Hier gibt es unserer Meinung nach eine Chance, ähnliche Kriterien zu
finden.

3.3. Neggers-Stanley-Vermutung.
Die Neggers-Stanley-Vermutung, auch bekannt als “Poset-Vermutung”, bezieht
sich auf ein spezielles Polynom, das einer beliebigen partiell geordneten Menge P
zugeordnet wird. Die Vermutung wurde erstmalig 1978 von Neggers formuliert:
Einer partiell geordneten Menge P wird zunächst eine Etikettierung zugeord-
net, das heißt, jedem Element in P wird eine Zahl zwischen 1 und #P zugeord-
net. Wir bezeichnen diese Zuordnung im Folgenden mit ω : P → {1, . . . ,#P}.
Dabei unterscheidet man zwischen “natürlichen” Etikettierungen, dass heißt,
gilt p <P q, so folgt ω(p) < ω(q), und beliebigen Etikettierungen. Anschließend
wird der Menge P ein Polynom W (P, ω, t) zugeordnet, das wesentlich von der
Etikettierung abhängt. Neggers vermutete, dass falls ω eine natürliche Etiket-
tierung ist, das Polynom W (P, ω, t) nur reelle Nullstellen hat.
Ein Theorem aus der Analysis besagt, falls ein beliebiges Polynom f(t) :=∑

i ait
i mit nichtnegativen Koeffizienten ai ausschließlich reelle Nullstellen hat,

dass dann die Koeffizientenfolge von f unimodal ist, das heißt, dass die Koef-
fizientenfolge a0, a1, . . . , ad erst ansteigt und anschließend fällt:

a0 ≤ a1 ≤ a2 . . . ≤ aj ≥ aj+1 ≥ aj+2 ≥ . . . ≥ ad.

Daraus ergibt sich eine schwächere Vermutung: Das Polynom W (P, ω, t) ist
unimodal.

1986 formulierte Stanley dieselbe Vermutung für eine beliebige Etikettierung.
Die Neggers-Stanley-Vermutung läßt sich in vier Vermutungen aufteilen:

Vermutung 3.9. [Stanley] Sei P eine partiell geordnete Menge mit einer be-
liebigen Etikettierung ω. Dann hat das Polynom W (P, ω, t) nur reelle Null-
stellen.

Vermutung 3.10. [Stanley] Sei P eine partiell geordnete Menge mit einer
beliebigen Etikettierung ω. Dann hat das Polynom W (P, ω, t) eine unimodale
Koeffizientenfolge.

Vermutung 3.11. [Neggers] Sei P eine partiell geordnete Menge mit einer
natürlichen Etikettierung ω. Dann hat das Polynom W (P, ω, t) nur reelle Null-
stellen.

Vermutung 3.12. [Neggers] Sei P eine partiell geordnete Menge mit einer
natürlichen Etikettierung ω. Dann hat das Polynom W (P, ω, t) eine unimodale
Koeffizientenfolge.
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Dabei gilt:

Vermutung 3.9 ⇒ Vermutung 3.10
⇑ ⇑

Vermutung 3.11 ⇒ Vermutung 3.12

Die vier Vermutungen sind in manchen Spezialfällen mittlerweile bewiesen und
für die ganz allgemeinen Vermutungen 3.9 und Vermutung 3.11 existieren seit
Ende 2004 Gegenbeispiele: Für beliebig etikettierte partiell geordnete Men-
gen existiert ein Gegenbeispiel von Brändén [10], das wir auch in der Arbeit
vorstellen. Von dem Gegenbeispiel für Vermutung 3.11 haben wir erst kurz
vor Fertigstellung der Arbeit erfahren, daher sei hier nur auf die Existenz des
Gegenbeispiels hingewiesen.

In der Arbeit beschäftigen wir uns mit Vermutung 3.12. Da wir nur partiell
geordnete Mengen P mit einer natürlichen Etikettierung ω behandeln und in
diesem Fall das PolynomW (P, ω, t) unabhängig von der Etikettierung ist, gehen
wir im Folgenden immer davon aus, dass P = ([n],≺) = ({1, . . . , n},≺) und die
Ordnung ≺ die natürliche Ordnung erhält: i ≺ j ⇒ i < j.

Zu einer partiell geordneten Menge P = [n] definiert man den sogenannten
Verband der Ordnungsideale J (P ). Ein Ordnungsideal I ist eine Teilmenge
von P , so dass für i ∈ I und j ≺ i auch j ∈ I gilt. J (P ) ist dann die Menge
aller Ordnungideale, geordnet durch Inklusion. Ein klassisches Theorem besagt,
dass J (P ) ein distributiver Verband ist und umgekehrt zu jedem distributiven
Verband L eine partiell geordnete Menge P existiert mit J (P ) = L.

Zu einem distributivem Verband L kann man den sogenannten Hibi-Ring
assoziieren:

R(L) :=
k[xi, i ∈ L]

〈xixj − xi∧jxi∨j〉
.

Der Zusammenhang zwischen dem Hibi-Ring und der Neggers-Stanley-Ver-
mutung ergibt sich aus der folgenden bekannten Tatsache:

HilbR(J (P ))(t) =
W (P, t)

(1 − t)#P+1
.

Da wir im ersten Teil der Arbeit multigraduierte Hilbert- und Poincaré-
Betti-Reihen berechnen bekommen wir durch diese Darstellung des Polynoms
eine weitere Formulierung der Neggers-Stanley-Vermutung und erhalten eine
Rekursionsformel für das W -Polynom:

Dazu assoziieren wir zu einem distributivem Verband L einen Graphen
G(L), dessen Eckenmenge V = L der Verband ist, und zwei Ecken i, j sind
miteinander verbunden, falls i und j eine Antikette in L sind, das heißt i 6≺ j
und j 6≺ i.
Eine Teilmenge I ⊂ E der Kantenmenge nennen wir nbc-Menge, falls I keinen
Broken Circuit enthält. Mit cl(I) bezeichnen wir die Anzahl der Zusammen-
hangskomponenten des von I induzierten Teilgraphen von G(L).

Damit bekommen wir folgende Darstellung der Neggers-Stanley-Vermutung:
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Vermutung 3.13. Sei L ein distributiver Verband und G(L) der zugehörige
Graph. Dann hat das folgende Polynom nur reelle Nullstellen:

W (G(L), t) := 1 +
∑

I⊂G(L)
I nbc-set

(−1)|I|tcl(I)+|I|.

Das Polynom W (G(L), t)(1 − t)#P+1−#J (P ) ist unimodal.

Des Weiteren erhalten wir folgende Rekursionsformel:

Proposition 3.14. Sei L ein distributiver Verband, G(L) der zugehörige Graph
und {p, q} eine Kante in G(L). Dann gilt

W (G(L), t) = (1 − t)
(
W
(
G(L \ {p}), t

)
+W

(
G(L \ {q}), t

))

−(1 − t)2 W
(
G(L \ {p, q}), t

)
.

Das Polynom W (P, t) einer partiell geordneten Menge P = [n] hat auch
eine topologische Struktur:
Dazu ordnet man jedem Ordnungsideal I ∈ J (P ) durch seinen charakteristi-
schen Vektor αI ∈ Zn, definiert durch

(αI)i :=

{
0 , i 6∈ I
1 , i ∈ I

einen Punkt im Rn zu. Die konvexe Hülle dieser Punkte bildet das sogenann-
te Ordnungspolytop O(P ). Der folgende Satz gibt erklärt die topologische
Interpretation des Polynoms W (P, t):

Theorem 3.15. Sei ∆ eine beliebige unimodulare Triangulierung (eine sim-
pliziale Triangulierung, bei der jeder vorkommende maximale Simplex das Vol-
umen 1/(n!) hat) des Ordnungspolytops O(P ). Dann stimmt das h-Polynom
der Triangulierung mit dem W -Polynom überein:

h(∆, t) = W (P, t).

Mit Hilfe dieser Interpretation ist es Reiner und Welker in [45] gelungen,
Vermutung 3.12 für graduierte partiell geordnete Mengen zu beweisen, das sind
solche, in denen alle maximalen Ketten dieselbe Länge haben.
Dazu konstruieren sie eine spezielle unimodulare Triangulierung und zeigen,
dass diese, als abstrakter simplizialer Komplex, isomorph zum topologischen
Verbund eines Simplex mit einem Komplex ∆eq ist, den sie “equatorial com-
plex” nennen. Daraus folgt dann, dass das W -Polynom mit dem h-Polynom
des “equatorial Komplexes” ∆eq übereinstimmt. Schließlich beweisen sie, dass
∆eq eine polytopale Sphäre ist, und somit das h-Polynom h(∆eq, t) unimodal
ist.

Wir zeigen, dass diese Konstruktionen im Allgemeinen gültig ist: Wir kon-
struieren analog zu [45] eine unimodulare Triangulierung des Ordnungspolytops
O(P ), wobei nun P = [n] eine beliebige partiell geordnete Menge ist. Unsere
Triangulierung ist ebenfalls isomorph zum Verbund eines Simplex mit einem
Komplex ∆eq und analog folgt, dass im Allgemeinen das W -Polynom mit dem
h-Polynom übereinstimmt.
Im Allgemeinen jedoch ist ∆eq keine polytopale Sphäre und daher kann zunächst
keine Aussage über die Gestalt des h-Polynoms getroffen werden. Aus unserer
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Konstruktion folgt jedoch, dass ∆eq isomorph (als abstrakter simplizialer Kom-

plex) zum Schnitt eines Komplexes ∆̂eq mit einem Scnitt von Koordinaten- und

Diagonal-Hyperebenen H ∈ Rn ist und es gilt, dass ∆̂eq eine polytopale Sphäre
ist. Die Gleichungen, die die Hyperebenen in H bestimmen, können außerdem
direkt von der partiell geordneten Menge P “abgelesen” werden.
Studiert man diesen Zusammenhang von der anderen Seite, so kann sich fra-
gen, welche Mengen von Hyperebenen auftreten können. Wir starten dazu mit
einer graduierten partiell geordneten Menge P und definieren über relativ ein-
fache Kriterien sogenannte P -gültigen Mengen von Hyperebenen. Mit dieser
Charakterisierung können wir folgende Äquivalenz beweisen:

Theorem 3.16. Die folgenden Aussagen sind äquivalent

(1) Für alle partiell geordneten Mengen P = [n] ist das W -Polynom uni-
modal.

(2) Für alle graduierten partiell geordneten Mengen P = [n] mit zuge-
höriger “equatorial sphere” ∆eq und für alle P -gültigen Mengen von
Hyperebenen mit Schnittmenge H(P ) ist das h-Polynom

h
(
∆eq ∩H(P ), t

)

unimodal.

Damit reduzieren wir Vermutung 3.12 auf die Berechnung von h-Vektoren.
Dieses Resultat eröffnet somit einen neuen Blickwinkel auf Vermutung 3.12.

Das Kapitel ist wie folgt strukturiert:

. Im ersten Paragraphen definieren wir die Vermutung und erläutern bisher
bekannte Zusammenhänge und Resultate. Außerdem bringen wir das
Gegenbeispiel zur Vermutung 3.9 von Brändén [10]. Wir halten uns dabei
an das Buch “Unimodal, log-concave and Pölya frequency sequences in
combinatorics” von Brenti [11].

. Der zweite Paragraph beschäftigt sich mit der Vermutung 3.12. Wir
erklären hier die Ergebnisse von Reiner und Welker [45] und geben eine
knappe Beweisskizze ihrer Resultate.

. Paragraph 3 besteht aus unseren Resultaten. Im ersten Teil befindet sich
die Darstellung des W -Polynoms durch die nbc-Mengen und die oben
erläuterte Rekursionsformel.
Im zweitem Teil sind die oben angesprochene unimodulare Triangulierung
des Ordnungspolytops O(P ), für beliebige, natürlich etikettierte, partiell
geordnete Mengen P und die oben aufgeführten Eigenschaften und Fol-
gerungen zu finden.



Appendix B

1. Danksagung / Acknowledgments

Mein besonderer Dank gilt Volkmar Welker für die gute Betreuung der Arbeit,
insbesondere für zahlreiche mathematische Diskussionen und Lösungsvorschläge
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