256 research outputs found

    Counting Complexity for Reasoning in Abstract Argumentation

    Full text link
    In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.Comment: Extended version of a paper published at AAAI-1

    Solving Set Optimization Problems by Cardinality Optimization with an Application to Argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied

    Fast Algorithms for Join Operations on Tree Decompositions

    Full text link
    Treewidth is a measure of how tree-like a graph is. It has many important algorithmic applications because many NP-hard problems on general graphs become tractable when restricted to graphs of bounded treewidth. Algorithms for problems on graphs of bounded treewidth mostly are dynamic programming algorithms using the structure of a tree decomposition of the graph. The bottleneck in the worst-case run time of these algorithms often is the computations for the so called join nodes in the associated nice tree decomposition. In this paper, we review two different approaches that have appeared in the literature about computations for the join nodes: one using fast zeta and M\"obius transforms and one using fast Fourier transforms. We combine these approaches to obtain new, faster algorithms for a broad class of vertex subset problems known as the [\sigma,\rho]-domination problems. Our main result is that we show how to solve [\sigma,\rho]-domination problems in O(st+2tn2(tlog(s)+log(n)))O(s^{t+2} t n^2 (t\log(s)+\log(n))) arithmetic operations. Here, t is the treewidth, s is the (fixed) number of states required to represent partial solutions of the specific [\sigma,\rho]-domination problem, and n is the number of vertices in the graph. This reduces the polynomial factors involved compared to the previously best time bound (van Rooij, Bodlaender, Rossmanith, ESA 2009) of O(st+2(st)2(s2)n3)O( s^{t+2} (st)^{2(s-2)} n^3 ) arithmetic operations. In particular, this removes the dependence of the degree of the polynomial on the fixed number of states~ss.Comment: An earlier version appeared in "Treewidth, Kernels, and Algorithms. Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday" LNCS 1216

    Solving set optimization problems by cardinality optimization with an application to argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore