5 research outputs found

    Full-duplex user-centric communication using non-orthogonal multiple access

    Get PDF
    This paper proposes an improved user-centric Non-Orthogonal Multiple Access (NOMA) communication in two-base station networks with in-band full duplex (IBFD) user. We derive the achievable rates of the proposed user-centric NOMA systems. For benchmarking purposes, we also derive the achievable rate for the user-centric system deploying conventional NOMA schemes, Orthogonal Multiple Access (OMA) schemes and point-point communication systems. We then analyze and simulate the performance of the proposed and all the benchmarked systems. We found that our proposed user-centric NOMA approach has a 64% improvement in the total achievable rate when compared to the benchmarked approach under similar power constraint

    Cache-Aided Non-Orthogonal Multiple Access for 5G-Enabled Vehicular Networks

    Get PDF
    The increasing demand for rich multimedia services and the emergence of the Internet-of-Things (IoT) pose challenging requirements for the next generation vehicular networks. Such challenges are largely related to high spectral efficiency and low latency requirements in the context of massive content delivery and increased connectivity. In this respect, caching and non-orthogonal multiple access (NOMA) paradigms have been recently proposed as potential solutions to effectively address some of these key challenges. In the present contribution, we introduce cache-aided NOMA as an enabling technology for vehicular networks. In this context, we first consider the full file caching case, where each vehicle caches and requests entire files using the NOMA principle. Without loss of generality, we consider a two-user vehicular network communication scenario under double Nakagami−m-m fading conditions and propose an optimum power allocation policy. To this end, an optimization problem that maximizes the overall probability of successful decoding of files at each vehicle is formulated and solved. Furthermore, we consider the case of split file caching, where each file is divided into two parts. A joint power allocation optimization problem is formulated, where power allocation across vehicles and cached split files is investigated. The offered analytic results are corroborated by extensive results from computer simulations and interesting insights are developed. Indicatively, it is shown that the proposed caching-aided NOMA outperforms the conventional NOMA technique.Comment: Accepted for publication in IEEE Transactions on Vehicular Technolog

    Energy Efficient Uplink Transmission in Cooperative mmWave NOMA Networks with Wireless Power Transfer

    Get PDF
    In 5G wireless networks, cooperative non-orthogonal multiple access (NOMA) and wireless power transfer (WPT) are efficient ways to improve the spectral efficiency (SE) and energy efficiency (EE). In this paper, a new cooperative NOMA scheme with WPT is proposed, where EE optimization with a constrained maximum transmit power and minimum required SE is considered for the user grouping and transmit power allocation of users. We obtain a sub-optimal solution by decoupling the original problem in two sub-problems: an iterative algorithm is considered for the user grouping, while, in addition, we utilize the Bat Algorithm (BA) for solving the power allocation problem, where BA was proved to be able to achieve a higher accuracy and efficiency with respect to other meta-heuristic algorithms. Furthermore, to validate the performance of the proposed system, analytical expressions for the energy outage probability and outage probability of users are derived, confirming the effectiveness of the simulation results. It is demonstrated that the proposed cooperative NOMA with WPT offers a considerable improvement in terms of SE and EE of the network compared to other methods. Finally, the effectiveness of BA in solving the EE optimization problem is demonstrated through a high convergence speed by comparing it with other methods
    corecore