527 research outputs found

    On Distinguishing Relative Locations with Busy Tones for Wireless Sensor Networks

    Get PDF
    [[abstract]]Bounding-box mechanism is a well known low-cost localization approach for wireless sensor networks. However, the bounding-box location information can not distinguish the relative locations of neighboring sensors, hence leading to a poor performance for some applications such as location-aware routing. This paper proposes a Distinguishing Relative Locations (DRL) mechanism which uses a mobile anchor to broadcast tones and beacons aiming at distinguishing the relative locations of any two neighboring nodes. Experimental study reveals that the proposed DRL mechanism effectively distinguishes relative locations of any two neighboring nodes and hence significantly improves the performance of location-aware routing in wireless sensor networks (WSNs).[[conferencetype]]國際[[conferencedate]]20100523~20100527[[iscallforpapers]]Y[[conferencelocation]]Cape Town, South Afric

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Simulated Assessment of Interference Effects in Direct Sequence SpreadSpectrum (DSSS) QPSK Receiver

    Get PDF
    This research developed and validated a generic simulation for a direct sequence spread spectrum (DSSS), using differential phase shift keying (DPSK) and phase shift keying (PSK) modulations, providing the flexibility for assessing intentional interference effect using DSSS quadrature phase shift keying receiver (QPSK) with matched filtering as a reference. The evaluation compares a comprehensive pool of jamming waveforms at pass-band that include continuous wave (CW) interference, broad-band jamming, partial-band interference and pulsed interference. The methodology for jamming assessment included comparing the bit error rate (BER) versus required jamming to signal ratio (JSR) for different interferers using the Monte Carlo approach. This thesis also analyzes the effect of varying the jammer bandwidth for broad-band jammers including broad-band noise (BBN), frequency hopping interference (FHI), comb- spectrum interference (CSI), multi-tone jamming (MTJ), random frequency modulated interference (RFMI) and linear frequency modulated interference (LFMI). Also, the effect of changing the duty cycle for pulsed CW waveforms is compared with the worst case pulsed jamming equation. After the evaluation of different interferers, the research concludes that pulsed binary phase shift keying (BPSK) jamming is the most effective technique, whereas the CW tone jamming and CW BPSK interference result are least effective. It is also concluded that by finding an optimum bandwidth, FHI and BBN improves the required JSR by approximately 2.1 dB, RFMI and LFMI interference by 0.9 and 1.5 dB respectively. Alternately, MTJ and CSI improves their effectiveness in 4.1 dB and 3.6 dB respectively, matching the performance of the pulsed BPSK jammer

    Performance analysis of vehicular networks for motorway scenario.

    Get PDF
    Abstract Not Provided

    Software-hardware systems for the Internet-of-Things

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages [187]-201).Although interest in connected devices has surged in recent years, barriers still remain in realizing the dream of the Internet of Things (IoT). The main challenge in delivering IoT systems stems from a huge diversity in their demands and constraints. Some applications work with small sensors and operate using minimal energy and bandwidth. Others use high-data-rate multimedia and virtual reality systems, which require multiple-gigabits-per-second throughput and substantial computing power. While both extremes stress the computation, communications, and energy resources available to the underlying devices, each intrinsically requires different solutions to satisfy its needs. This thesis addresses both bandwidth and energy constraints by developing custom software-hardware systems. To tackle the bandwidth constraint, this thesis introduces three systems. First, it presents AirShare, a synchronized abstraction to the physical layer, which enables the direct implementation of diverse kinds of distributed protocols for loT sensors. This capability results in a much higher throughput in today's IoT networks. Then, it presents Agile-Link and MoVR, new millimeter wave devices and protocols which address two main problems that prevent the adoption of millimeter wave frequencies in today's networks: signal blockage and beam alignment. Lastly, this thesis shows how these systems enable new IoT applications, such as untethered high-quality virtual reality. To tackle the energy constraint, this thesis introduces a VLSI chip, which is capable of performing a million-point Fourier transform in real-time, while consuming 40 times less power than prior fast Fourier transforms. Then, it presents Caraoke, a small, low-cost and low-power sensor, which harvests its energy from solar and enables new smart city applications, such as traffic management and smart parking.by Omid Salehi-Abari.Ph. D

    Design considerations for an indoor location service using 802.11 wireless signal strength

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Includes bibliographical references (p. 63-67).This thesis compares approaches to the problem of discovering a mobile user's location indoors. The particular challenges of location discovery using 802.11 (Wi-Fi) signals and "organically collected" (i.e. user-generated) received signal strength maps are discussed. Several existing and novel localizer algorithms are compared on a database of organically collected data. Features of local Wi-Fi "signatures" which are relevant to location discovery are identified and applied to algorithm design considerations. Future directions for algorithm refinement are discussed.by David M. Lambeth.S.M
    • …
    corecore