789 research outputs found

    Perfect Elimination Orderings for Symmetric Matrices

    Get PDF
    We introduce a new class of structured symmetric matrices by extending the notion of perfect elimination ordering from graphs to weighted graphs or matrices. This offers a common framework capturing common vertex elimination orderings of monotone families of chordal graphs, Robinsonian matrices and ultrametrics. We give a structural characterization for matrices that admit perfect elimination orderings in terms of forbidden substructures generalizing chordless cycles in graphs.Comment: 16 pages, 3 figure

    Distance-preserving orderings in graphs

    Get PDF
    For every connected graph G, a subgraph H of G is isometric if the distance between any two vertices in H is the same in H as in G. A distance-preserving elimination ordering of G is a total ordering of its vertex-set V (G), denoted (v1; v2;...,vn), such that any subgraph Gi = G n (v1; v2;..., vi) with 1 ≤ i < n is isometric. This kind of ordering has been introduced by Chepoi in his study on weakly modular graphs [11]. We prove that it is NP-complete to decide whether such ordering exists for a given graph | even if it has diameter at most 2. Then, we prove on the positive side that the problem of computing a distance-preserving ordering when there exists one is fixed-parameter-tractable in the treewidth. Lastly, we describe a heuristic in order to compute a distance-preserving ordering when there exists one that we compare to an exact exponential time algorithm and to an ILP formulation for the problem.Nous étudions les ordres d’élimination des sommets préservant les distances dans les graphes

    Distance-preserving orderings in graphs

    Get PDF
    For every connected graph G, a subgraph H of G is isometric if the distance between any two vertices in H is the same in H as in G. A distance-preserving elimination ordering of G is a total ordering of its vertex-set V (G), denoted (v1; v2;...,vn), such that any subgraph Gi = G n (v1; v2;..., vi) with 1 ≤ i < n is isometric. This kind of ordering has been introduced by Chepoi in his study on weakly modular graphs [11]. We prove that it is NP-complete to decide whether such ordering exists for a given graph | even if it has diameter at most 2. Then, we prove on the positive side that the problem of computing a distance-preserving ordering when there exists one is fixed-parameter-tractable in the treewidth. Lastly, we describe a heuristic in order to compute a distance-preserving ordering when there exists one that we compare to an exact exponential time algorithm and to an ILP formulation for the problem.Nous étudions les ordres d’élimination des sommets préservant les distances dans les graphes

    On distance-preserving elimination orderings in graphs: Complexity and algorithms

    Get PDF
    International audienceFor every connected graph G, a subgraph H of G is isometric if the distance between any two vertices in H is the same in H as in G. A distance-preserving elimination ordering of G is a total ordering of its vertex-set V (G), denoted (v 1 , v 2 ,. .. , v n), such that any subgraph G i = G\(v 1 , v 2 ,. .. , v i) with 1 ≤ i < n is isometric. This kind of ordering has been introduced by Chepoi in his study on weakly modular graphs [11]. We prove that it is NP-complete to decide whether such ordering exists for a given graph — even if it has diameter at most 2. Then, we prove on the positive side that the problem of computing a distance-preserving ordering when there exists one is fixed-parameter-tractable in the treewidth. Lastly, we describe a heuristic in order to compute a distance-preserving ordering when there exists one that we compare to an exact exponential time algorithm and to an ILP formulation for the problem

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Characterizations of k-copwin graphs

    Get PDF
    AbstractWe give two characterizations of the graphs on which k cops have a winning strategy in the game of Cops and Robber. One of these is in terms of an order relation, and one is in terms of a vertex ordering. Both generalize characterizations known for the case k=1

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure
    corecore