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Abstract We introduce a new class of structured symmetric matrices by extending
the notion of perfect elimination ordering from graphs to weighted graphs or matrices.
This offers a common framework capturing common vertex elimination orderings of
monotone families of chordal graphs, Robinsonian matrices and ultrametrics. We give
a structural characterization for matrices that admit perfect elimination orderings in
terms of forbidden substructures generalizing chordless cycles in graphs.
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1 Introduction

We introduce a new class of structured matrices by ways of perfect elimination order-
ings, an extension to weighted graphs of the classical notion of perfect elimination
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ordering for graphs. This offers a common framework for the study of (adjacency
matrices of) chordal graphs (and their metric powers) as well as for ultrametrics and
Robinsonian (dis)similarity matrices.

Recall that a graph G = (V, E) is chordal when it does not contain a chordless
cycle of length atleast 4, where acycle C = (v1, ..., vp) in G is said to be chordless if
C is aninduced subgraph of G, i.e., if none of the pairs {v;, v;} for i — j| > 2 (indices
taken modulo p) is an edge of G. Chordal graphs appear as tractable or well-behaved
cases in many optimization problems (see, e.g., [15,16]). This is often due to their
equivalent characterization in terms of perfect elimination orderings. A linear order
of V is called a perfect elimination ordering of G if, for any vertices x, y, z € V such
that x <; y <z 2, {x, ¥}, {x, z} € E implies {y, z} € E. It is a well known fact that
G is chordal if and only if G has a perfect elimination ordering [7,13].

In this paper we extend this notion of vertex ordering to weighted graphs, aka
symmetric matrices. Throughout SV is the set of symmetric matrices indexed by the
set V = [n]. Given a matrix A = (Ayy) € S V we say that a linear order 7 of V is a
perfect elimination ordering of A if it satisfies the following three-points condition

Ay, >min{Ayy, Ay} forallx,y,z € V withx <z y <z z. (D)

Note that the diagonal entries do not play a role in this definition. When A = Ag is
the adjacency matrix of a graph G both notions of perfect elimination orderings of
A and perfect elimination orderings of G coincide.

Given a distance space (V, d) and its associated distance matrix D € S V' (with
entries Dy, = Dyy = dyy forx # yand D, = Oforx, y € V), aperfect elimination
ordering of the matrix A = — D is a linear order 7 of V satisfying

Dy, <max{Dyy, Dy;} forallx,y,z e V withx <z y <z z. 2)

Recall that (V,d) is an ultrametric if the inequality in (2) holds for all elements
x, ¥,z € V.In other words we have the following connection.

Lemma 1 Let (V, d) be a distance space with distance matrix D. Then (V,d) is an
ultrametric if and only if every linear ordering of V is a perfect elimination ordering
of the matrix — D.

Another special class of matrices admitting a perfect elimination ordering arises
from Robinsonian matrices. A symmetric matrix A is called a Robinsonian similar-
ity matrix if there exists a linear order 7 of V satisfying the following three-points
condition:

Ay, <min{Ayy, Ay} forallx, y,z € Vwithx <z y <z z; 3)

such an ordering is then called a Robinson ordering of A. In the context of distances, a
matrix D is called a Robinsonian dissimilarity matrix when A = — D is a Robinsonian
similarity matrix. Robinsonian matrices have a long history and play an important role
in classification problems in data science, in particular in ranking problems [12] and in
the seriation problem (introduced by the archeologist Robinson [24] for chronological

@ Springer



Perfect elimination orderings for symmetric matrices

dating) (see, e.g., [20]). There the goal is to order (seriate) a set of objects, given
through their pairwise (dis)similarities, in such a way that two objects are ranked
close to each other if they have a large correlation/similarity (or a small dissimilarity).

It is a classical observation by Roberts [22] that the adjacency matrix of a graph
G is Robinsonian if and only if G is a unit interval graph, i.e., its vertices can be
labeled by unit intervals on a line so that adjacent vertices receive intersecting intervals.
Clearly, the condition (3) implies (1) and thus any Robinson ordering of A is a perfect
elimination ordering of A. For adjacency matrices of graphs, this corresponds to the fact
that unit interval graphs are chordal graphs. So Robinsonian matrices are weighted
graph analogues of unit interval graphs and this fact formed the motivation for the
present work to investigate weighted analogues of chordal graphs.

There is a well known structural characterization of unit interval graphs in terms of
minimal forbidden substructures (namely, claws and asteroidal triples; see [14,22]).
An analogous structural characterization was given in [19] for Robinsonian matrices
(by extending the notion of asteroidal triple to weighted graphs). For chordal graphs
the minimal forbidden substructures are the chordless cycles. This raises the natural
question of understanding the minimal forbidden substructures for the class of matrices
admitting a perfect elimination ordering. A main contribution of this note is to provide
such a structural characterization, in terms of weighted chordless walks, a new key
notion which we will introduce below (see Theorem 1).

The paper is organized as follows. Sections 2.1 and 2.2 contain definitions and pre-
liminary results about vertex elimination orderings and simplicial vertices. In Sect. 2.3
we present our main structural result (Theorem 1) for matrices admitting a perfect elim-
ination ordering. In Sect. 2.4 we discuss related notions: common perfect elimination
orderings of powers of chordal graphs, distance-preserving elimination orderings of
shortest path distance matrices, and conclude with a brief discussion of other graph
properties that could be extended to matrices and of related recognition algorithms.
The last Sect. 3 is devoted to the proof of our main structural result in Theorem 1.

2 Perfect elimination orderings of matrices
2.1 Perfect elimination orderings and simplicial elements

Givenagraph G = (V, E), recall that v € V is a simplicial vertex of G if its neighbors
form a clique of G. Then an order w of V is a perfect elimination ordering of G if
and only if each vertex v is simplicial in G[{x € V : v <; x}], the subgraph of G
induced by the nodes coming after v in 7. In the same way, given a matrix A € SV,
an element v € V is said to be simplicial in A if

Ay, > min{A,,, A,;} forall distinct y, z € V\{v}. 4
Then an order 7 of V is a perfect elimination ordering of A precisely wheneachv € V
is simplicial in A[{x € V : v <; x}], the principal submatrix of A indexed by the

elements coming after v in . We next observe that simplicial elements are precisely
those coming first in some perfect elimination ordering.
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Lemma 2 Assume A € S has a perfect elimination ordering and let v € V. Then,
v is simplicial for A if and only if there exists a perfect elimination ordering of A with
v as first element.

Proof The ‘if” part is clear. We show the ‘only if part’ by induction on the size n of
A. The case n = 3 is clear. Assume now that n > 4 and a is simplicial for A and
consider a perfect elimination ordering 7 of A starting at b # a. Then we know that
b is simplicial in A. Consider the submatrix A’ induced by V\{b}. Then A’ still has
a perfect elimination ordering and a is still simplicial in A”. Hence, by the induction
assumption, there exists a perfect elimination ordering 7" of A’ starting at a, say
7' = (a,u,...,w). We consider the ordering # = (a, b, u, ..., w) obtained by
inserting b between a and u. We claim that 77 is a perfect elimination ordering of A,
thatis, Ay, > min{A,,, Ay;} forall x <z y <z z. Thisis trueif b ¢ {x, y, z} since
7’ is a perfect elimination ordering. Assume now that b € {x, y, z}. Then b # z (as
b is second in 7). If b = x then the desired inequality follows from the fact that b is
simplicial in A. Finally, if b = y then x = a and the desired inequality follows from
the fact that a is simplicial in A. O

2.2 Common perfect elimination orderings

Letog < o] < ap < --- < oy, denote the distinct values taken by the entries of a
matrix A € SV and, for £ = 0, 1, ..., L, define its level graph Gy = (V, E;), whose
edges are the pairs {x, y} with Ay, > ay. Thus, (V, Ep) is the complete graph on V
(i.e., Ag, is the all-ones matrix) and E; C --- C Ej. It is easy to check that (up to
shifting all entries of A by o and assuming all its diagonal entries are zero) A can be
decomposed as a conic combination of the adjacency matrices of its level graphs:

A—aoAg, = ) (@ —ar-1)Ag,. ®)
=1

As a direct application we have the following characterization.

Lemma 3 A matrix A € 8" has a perfect elimination ordering if and only if there
exists an ordering w of V which is a common perfect elimination ordering of all the
level graphs of A.

In other words, a necessary condition for A to have a perfect elimination ordering is
that all its level graphs be chordal, however for finding a perfect elimination ordering of
A one needs to find an ordering which is a perfect elimination ordering simultaneoulsy
for all its level graphs.

Clearly we may assume without loss of generality that g = 0. Moreover, the exact
values of «y, ..., oy are not important (as long as they are strictly 1ncreasmg) For
instance, A has a perfect elimination ordering if and only if the matrix A= Z =1 AG,
does too. Hence the question whether a matrix has a perfect elimination ordering is
equivalent to asking whether a finite monotone family of graphs G| 2 G> 2 --- 2 G,
admits acommon perfect elimination ordering. We will come back to this in Sect. 2.4.1.
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Finally observe that any arbitrary order of V is a perfect elimination ordering of
A precisely when all its level graphs are disjoint unions of cliques. Such (similarity)
matrices A correspond thus to distance matrices D of ultrametrics, via the correspon-
dence A = —D.

2.3 Structural characterization of matrices with perfect elimination orderings

We now describe the structural obstructions for the symmetric matrices admitting a
perfect elimination ordering. First we introduce some notation.

A walk is an ordered sequence W = (vo, v1, ..., vp) of elements of V. Then we
set V(W) = {vo, v1,...,vp}, I(W) ={v; : 1 <i < p — 1} is the set of internal
elements of W, vg and v, are its end points. The walk W is said to be closed if vg = v,
and the walk W is said to be self-contained if (W) = V(W). A closed walk is called
acycleif vo, vy, ..., vp—1 are all distinct.

The following notions will play a key role in our structural characterization. For a
matrix A € SV, awalk W = (vo, v1, ..., vp) is said to be weighted chordless in A if

Ay oy <min{Ay,_ .y, Ay o) foralll <i < p-—1 (6)

In addition, W is said to be a weighted chordless cycle in A if W is a cycle which, in
addition to (6), also satisfies the inequality

Avp,lvl < min{Aul,,lvoa Avov1 }. @)

Hence a walk (y, x, z) is weighted chordless precisely when the triple (x, y, z) violates
the inequality in (1) and thus its internal element x cannot come before both y, z in
any perfect elimination ordering of A.

It is useful to compare with the notion of chordless cycle in graphs. Let A = Ag
be the adjacency matrix of a graph G = (V, E). Then, a walk W = (vy, ..., v)) is
weighted chordless in Ag precisely when all the 2-chords {v;, v;42} (1 <i < p —2)
are not edges of G. Therefore, either W is an induced walk in G (i.e., none of the
chords {v;, vj} (1 <i,i+2 < j < p)isanedge of G), or W contains a chordless
cycle of G (meaning V(W) contains a subset inducing a chordless cycle in G). In
particular, if W is a weighted chordless cycle in Ag then W is equal to or contains a
chordless cycle of G.

By definition, chordal graphs are exactly the graphs that have no chordless cycle of
length at least 4. It is natural to ask whether a similar structural characterization holds
for matrices. We start with some easy observations.

Lemma 4 Consider a matrix A € SV. If (i) A has a perfect elimination ordering
then (ii) A has no weighted chordless cycle, which in turn implies that (iii) every level
graph of A is a chordal graph.

Proof (1) = (ii): Assume 7 is a perfect elimination ordering of A, W is a weighted
chordless cycle in A and v; is the element of W coming firstin . As (vi—_1, Vi, Vi+1)
is a weighted chordless walk we get a contradiction.
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(b)

Fig. 1 Visualization of two {0, 1, 2}-symmetric matrices of size 5 as weighted graphs, where bold edges
have weight 2, dashed edges have weight 1 and non-edges have weight 0: First, an example of a matrix which
has no weighted chordless cycle (because (2, 1, 3), (1,2, 5), (1, 3,5), (1,4, 5), (3, 5, 4) are all the chordless
2-walks and they cannot be concatenated to build a weighted chordless cycle) and also no simplicial vertex
(and thus no perfect elimination ordering) (a); second, an example where all level graphs are chordal, but
(1,2,3,4,5) is a weighted chordless cycle (b)

Fig. 2 Visualization of a {0, 1, 2}-symmetric matrix of size 6 as a weighted graph, where bold edges
have weight 2, dashed edges have weight 1 and non-edges have weight 0. This matrix has no simpli-
cial vertex and no self-contained weighted chordless walk (because (2, 1, 3), (1, 2, 6), (1, 3, 6), (1,4, 6),
(1,5,6), (4,6,5) are all the chordless 2-walks but they cannot be concatenated to a build a self-contained
weighted chordless walk)

(ii) == (iii): Assume C = (vy, ..., vp) is a chordless cycle in some level graph G"
of A,ie., Ay, > a fori =1,..., p, while Av[vj < oy whenever |i — j| > 2.
Then C is a weighted chordless cycle in A, contradicting (ii). O

The reverse implications are not true in general. See Figure 1 for examples.

Although the matrix in Figure 1(a) has no weighted chordless cycle, it yet contains
a forbidden structure for perfect elimination orderings, namely (1,4, 5,3,1,2,5) is
a self-contained weighted chordless walk in the matrix. Recall that a walk W is self-
contained if V(W) = I(W). More generally, a family {Wy, ..., Wi} of walks is
self-contained if Uﬁ:l V(Wy) = UI;::II (Wy). Figure 2 gives an example having no
simplicial vertex and also no self-contained weighted chordless walk, so forbidding a
single self-contained chordless walk is not sufficient to guarantee a perfect elimination
ordering; we need to forbid families of them.

Lemma 5 If A € SV has a self-contained family of weighted chordless walks, then
A does not have a perfect elimination ordering.
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Proof Same proof as for the implication (i) = (ii) in Lemma 4. O

Lemma 6 Assume A € SV does not contain any self-contained family of weighted
chordless walks. Then A has a simplicial vertex.

Proof Suppose for contradiction that A does not have a simplicial vertex. That is,
for any x € V there exist y # z € V\{x} such that Ay, < min{A,y, A,;}, ie.,
P, := (y, x, z) is a weighted chordless walk. Then we have a self-contained family
{P, : x € V} of weighted chordless walks in A. O

Corollary 1 A matrix A € S8V has a perfect elimination ordering if and only if there
does not exist a self-contained family of weighted chordless walks in A.

Proof The ‘only if” part is shown in Lemma 5. We now show the ‘if part’, using
induction on the size n of A. The base case n < 3 is trivial. So let us assume that A
has size n > 4. In view of Lemma 6, A has a simplicial vertex v;. Consider now the
principal submatrix A of A indexed by V'\{v;}. By the induction assumption, A has
a perfect elimination ordering 1. Then, appending v as first element before 71, we
get the ordering 7 = (v, 1) of V, which is a perfect elimination ordering of A. This
concludes the proof. O

The argument used in the proof of Lemma 6 is the matrix analogue of the well
known fact that a graph has no simplicial vertex if and only if each vertex is the
midpoint of an induced P; (a path with three vertices). Dirac’s theorem informally
says that some of these induced P3’s can be assembled to form a chordless cycle. As
a matrix analogue, we will show that it suffices to exclude self-contained pairs of two
weighted chordless walks. This is our main structural characterization result, which
we will prove in Sect. 3 below, since the technical details are more involved.

Theorem 1 A symmetric matrix A has a perfect elimination ordering if and only if A
has no self-contained pair of weighted chordless walks.

Note that the matrix from Figure 2 has a self-contained pair of two weighted chord-
less walks, namely Wy = (6,2, 1,3, 6) and W, = (1,4, 6, 5, 1) (note that 6 € I (W>)
and 1 € I (Wy)).

2.4 Applications and related concepts
2.4.1 Common perfect elimination orderings of powers of chordal graphs

Given a graph G = (V, E) let dg be its shortest path metric, with associated distance
matrix D . For a positive integer k, the k-th power G* is the graph on V, whose edges
are the pairs {u, v} with distance dg (1, v) < k. So we have a monotone graph family:
G! C ... € G*. Duchet [9] shows that if G* is chordal then so is G¥*2. Hence
if G and G? are chordal then all powers of G are chordal. Dragan et al. [8] prove
that if G and G? are chordal then they admit a common common perfect elimination
ordering (see also [2, Thm 5]), and Brandstid et al. [1] prove that, for any integers
I, ..n, i, G, ..., G'* admit a common elimination ordering if they are all chordal.
Consequently, the following holds.
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Theorem 2 (Brandstid, Chepoi and Dragan [1]) If G and G? are chordal, then all
the powers of G admit a common perfect elimination ordering.

This theorem has an interesting implication in our context: the reverse direction of
Lemma 4 is true for the shortest path distance matrix D¢ of a graph.

Corollary 2 Let G be an undirected graph and let Dg be its shortest path distance
matrix. Then the following assertions are equivalent.
(1) —Dg has a perfect elimination ordering;
(ii) —Dg has no weighted chordless cycle;
(iii) Every level graph of — D¢ is chordal;
(iv) G and G? are chordal.

Proof This follows from Lemma 4 and Theorem 2 after observing the correspondence
between the adjacency matrices of the powers of G and the level graphs of —Dg. O

This result does not extend to shortest path distance matrices of weighted graphs. For
this consider the matrix A from Figure 2 and define the matrix D = (3 — Ayy)x, ye[6]-
Then D is a shortest path distance matrix (for the weights D, ), but —D has no perfect
elimination ordering and no weighted chordless cycle.

2.4.2 Distance-preserving elimination orderings

Here we point out a link between perfect elimination orderings and the following notion
of distance-preserving ordering considered by Chepoi [5]. For a graph G = (V, E),
a linear ordering vy, . .., v, of V is called a distance-preserving elimination ordering
if for each i € [n] the subgraph G; of G induced by {v;, ..., v,} is isometric, i.e.,
dg, coincides with the restriction of dg to {v;, ..., v,}. This notion can be naturally
generalized to weighted graphs: Given nonnegative edge weights w € %tE the shortest
path metric of (G, w) is denoted by d(G, ), and a linear ordering vy, ..., v, of V is
a distance-preserving elimination ordering of (G, w) if for each i € [n] the weighted
subgraph (G;, w) is isometric, i.e., d(g, ) coincides with the restriction of d(g, ) to
{vi, ..., v,}.

We may identify the weighted graph (G, w) with the symmetric matrix W € SV
given by Wy, = wyy for {x, y} € E(G) and Wy, = M for {x, y} ¢ E for some
sufficiently large positive number M.

Proposition 1 Let (G, w) be a graph with nonnegative edge weights w and cor-
responding weight matrix W € SY. Any perfect elimination ordering of —W is a
distance-preserving elimination ordering of (G, w).

Proof Letm = (vy, ..., v,) be a perfect elimination ordering of —W and assume 7
is not distance-preserving for (G, w). Let i be the smallest integer such that d(G,, |, w)
is not equal to the restriction of d(G,w) to {viy1, ..., v,}. Then there exist v;, vr with
i < j < ksuch that dG, .w)(vj, v) > dG;w)(vj, vk) and thus every shortest
path P between v; and vy in (G;, w) passes through v;. Let P be such a path, say
P = (vj,..., v, v, Vg, ..., ). As 7 is a perfect elimination ordering of —W we
have Wy, ,, < max{W,,,,, Wy,,,} and thus

d(Giyw)(vrs vS) = WUr”s = maX{WUiUr’ invs} = WU,'U, + in”A“ = d(Gf’w)(vr’ U‘Y)'
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Hence equality holds throughout and thus the path P\{v;} is again a shortest path from
v;j to vg in (G;, w) but now not traversing v;, a contradiction. O

The reverse direction is not true in general, even for {0, 1} matrices.
2.4.3 Outlook about other structured matrices and recognition algorithms

We conclude with some observations about possible further extensions of graph prop-
erties to symmetric matrices and about recognition algorithms.

We present in this paper a matrix analogue of chordal graphs, motivated by the
fact that Robinsonian matrices give a matrix analogue of unit interval graphs. The
key point in both cases is that chordal and unit interval graphs can be defined by a
three-points condition on their adjacency matrix. We now mention two more graph
classes that would also fit within this pattern: interval and cocomparability graphs.

Recall that a graph G = (V, E) is an interval graph if and only if there is a linear
ordering = of V such that {x, z} € E implies {y, z} € E forall x <, y <5 z [21].
Hence one may define an interval matrix A to be a matrix A € S¥ whose index set V
admits a linear ordering 7 such that

Ay, < Ay, forallx <z y <g z. (®)

Similarly G is a cocomparability graph if and only if there is a linear ordering = of
V such that {x, z} € E implies {x, y} € Eor{y,z} € E forall x <5 y <5 z [17].
Hence one may define a cocomparability matrix A to be a matrix A € SY whose
index set V admits a linear ordering 7 such that

Ay, <max{A,y, Ay} forallx <7 y <z z. O]

Clearly relation (3) implies (8), which in turn implies both (1) and (9). In other words,
this extends to matrices the well known fact that unit interval graphs are interval graphs,
which in turn are chordal and cocomparability graphs.

As shown in [19] the structural characterization of unit interval graphs in terms
of minimal forbidden structures extends naturally to the matrix setting and in this
paper (Theorem 1) we provide such an extension for chordal graphs. Establishing
such extensions for interval and cocomparability matrices, or a more general theory
for generalizing structural characterizations from graphs to matrices, is an interesting
open problem which we leave for further research.

On the algorithmic side, one has the question of finding a perfect elimination order-
ing of an n x n symmetric A (if some exists). Clearly, one can find a simplicial element
in A in O(n®) operations and thus one can find a perfect elimination ordering of A
in O(n*) operations (or decide that none exists). This raises the question of finding a
more efficient algorithm.

There are two well-known linear time algorithms for recognizing chordal graphs
(and finding perfect elimination orderings): lexicographic breadth-first search (Lex-
BFS) [23] and maximum cardinality search (MCS) [26]. A natural question is whether
these algorithmic techniques can be extended to matrices.
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Corneil [6] gives an algorithm for recognizing unit interval graphs based on three
sweeps of Lex-BFS. In [18] a weighted generalization of Lex-BFS, called Similarity
First Search (SFS), is introduced, which applies to symmetric matrices. It is shown in
[18] that n sweeps of SFS can recognize Robinsonian matrices of size n by returning
a Robinson ordering. It is natural to ask whether SFS can also be used to find perfect
elimination orderings.

In [3] it is shown that Lex-BFS can find a common perfect elimination ordering of
the powers of a chordal graph G (assuming G? is chordal). Hence, in view of Corol-
lary 2, if D is a shortest path distance matrix, then a single sweep of SFS finds a perfect
elimination ordering of — D. However it is not difficult to construct a symmetric matrix
for which a single sweep of SFS does not suffice to find a perfect elimination order-
ing. This thus raises the question whether one can find perfect elimination orderings
of matrices using multiple sweeps of SFS.

A generalization of MCS is proposed in the proof of Theorem 2 in [1], which can
be adapted to the matrix setting. But it is not difficult to find a symmetric matrix for
which this generalized MCS cannot find a perfect elimination ordering in just one
sweep. Again one may ask whether a multi-sweep type variant of MCS can find a
perfect elimination ordering.

In this context note that it is shown recently in [10] that n sweeps of Lex-BFS permit
to find elimination orderings certifying cocomparability graphs.

Finally, one may also ask to find all perfect elimination orderings of a symmetric
matrix. In the graph case an efficient algorithm is given in [4] (see also [25]). It is an
interesting question whether these methods extend to the general matrix setting.

3 Proof of Theorem 1

In this section we prove Theorem 1. By Lemma 5, if a matrix A contains a self-
contained pair of weighted chordless walks then it has no perfect elimination ordering,
hence it remains to show the converse implication. A first easy observation is that it in
fact suffices to show the existence of a simplicial vertex. Indeed, Theorem 1 follows
easily from the next result (using induction on the size of the matrix).

Theorem 3 [fa matrix A has no self-contained pair of weighted chordless walks then
A has a simplicial vertex.

We will in fact prove a stronger result (Theorem 4 below). Before stating this
stronger result we introduce some notation and preliminary facts. Throughout we let
A be a symmetric matrix indexed by a finite set V.

Definition 1 Set min A = min{A,, : x # y € V}. Given X,Y C V we say that
(X, Y)is aseparation of A if X\Y, Y\X # () and Ay, = min A for all x € X\Y and
y e Y\ X.

Lemma 7 Let (X, Y) be a separation of A. If x € X\Y is a simplicial vertex of A[X]
then x is a simplicial vertex of A, where A[X] denotes the principal submatrix of A
indexed by X.
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Proof Let u,v € V, we show that A,, > min{A,y, Ayx}. This is true when (say)
u € Y\ X since then Ay, = min A, and also when u, v € X because x is simplicial in
A[X]. O

Lemma 8 There exists a separation (X, Y) of A for which the following property
holds for each Z € {X, Y}:

Forallu e Z\(XNY)ands € X NY, either Ag, > min A holds, P)
or there exists a weighted chordless walk from u to s in A[Z]

which is internally vertex-disjoint from X N'Y.

In addition, given a, b € V with Agp = min A, there exists a separation (X,Y) of A
separating a, b (i.e., a € X\Y, b € Y\X or vice versa) and (P) holds for u € {a, b}.

Proof Let G = (V, E) be the graph on V whose edges are the pairs {x, y} with
Ayxy > min A. If G is not connected and Cy, ..., C; (f > 2) denote its connected
components then we may set X = Cy and Y = V\C].

Assume now that G is connected. Let S be a minimal vertex separator of G and
let Cq, ..., C; be the connected components of G[V\S]. Fix s € §. As S\{s}is a
not a vertex separator of G it follows that s is adjacent to at least one vertex in each
component C;. Hence for any x € C; there is a path from x to s in G[C; U {s}] and
if we choose this path shortest possible then either it consists of a single edge or it
provides a weighted chordless walk from x to s in A which is contained in C; U {s} and
thus internally vertex-disjoint from S. Thus the lemma holds if we set, e.g., X = Cy
and Y = V\C;.

Finally if we are given a pair a, b with A;, = min A then choosing S to be a
minimal (a, b)—vertex separator in G and C; the component containing a gives the
final statement. O

Definition 2 A walk W is said to be a critical walk of A if W is a closed weighted
chordless walk whose end point vg is simplicial in A and there exists an internal
element u € I (W) such that A,,, = min A.

A walk W is said to be rooted in a set S C V if the end points of W belong to §
and the internal elements of W belong to V\S with I (W) # .

We can now formulate the following stronger result.

Theorem 4 [f a matrix A has no self-contained pair of weighted chordless walks then
it satisfies at least one of the following two properties (A) or (B):

A has a critical walk, (A)

A has two distinct simplicial vertices u, v such that A,, = min A. (B)
Property (B) is a matrix analogue of a known fact that the diameter of a chordal
graph is attained by a pair of simplicial vertices (see, e.g., [11]). This property is

no longer true for symmetric matrices, see Figure 3. A weaker well known fact by
Dirac [7] is that a chordal graph has at least two simplicial vertices that are not adjacent
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Fig. 3 A visualization of a

{0, 1, 2}-matrix of size four as a
weighted graph, where each
bold edge has weight two and
each dashed edge has weight
one. Observe that 4 is the unique
simplicial vertex in A

if it is not a complete graph. The example in Figure 3 shows that even this weaker fact
fails for general matrices.

Clearly both properties (A) and (B) imply the existence of a simplicial vertex, hence
Theorem 4 does indeed imply Theorem 3 (and thus in turn Theorem 1). The following
lemma will provide the main technical ingredient for the proof of Theorem 4.

Lemma 9 Let (X, Y) be a separation of A satisfying the property (P) from Lemma 8.
Assume that every proper (i.e., distinct from A) principal submatrix of A satisfies (A)
or (B). Then each Z € {X, Y} satisfies at least one of the following two properties
(P1), (P2):

A[Z] has a simplicial vertex belonging to Z\(X NY), PD

there is a weighted chordless walk in A[Z] which is rooted in X N'Y. P2)

Proof We show that A[X] satisfies (P1) or (P2) (same reasoning for A[Y]). For this we
will iteratively construct a sequence of subsets Zgp = X, Z1, ..., Zx which is strictly
monotone: Zg D --- D Z; D --- D Zi and satisfies the following two properties
QD-(Q2) forall0 <i <k:

Z; meets Y and V\Y, QD
if x € Z;\Y is simplicial in A[Z;] then x is also simplicial in A[X]. Q2)

We first observe that if we can find a set Z satisfying (Q1)-(Q2) and |Z; NY| =1
then we can stop and conclude that (P1) or (P2) holds for A[X]. To see this consider
the (proper) submatrix A[Z;], which by assumption satisfies (A) or (B). Assume first
A[Zj] satisfies (B). Then there are distinct simplicial elements u, v in A[Z]. At least
one of them, say u, belongs to Z;\Y. Then by (Q2) we know that u is simplicial in
A[X] and thus (P1) holds for A[X]. Assume now A[Z] satisfies (A). Then there is
a critical walk W in A[Z;]. If its end point vg belongs to Z;\Y then vy is critical in
A[X] (again by (Q2)) and thus (P1) holds for A[X]. Assume now vy € Y. Then as
|Zix N Y| = 1 the walk W is in fact a weighted chordless walk rooted in X N'Y and
thus (P2) holds for A[X].

We now proceed to construct the sets Z; satisfying (Q1)—(Q2) until we can conclude
that (P1) or (P2) holds for A[X]. We start with Zy = X which indeed satisfies (Q1)-
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(Q2). Suppose we have Z;_1 satisfying (Q1)-(Q2) and |Z;_; N Y| > 2. Consider the
matrix A[Z;_1]. We claim that if (P1) and (P2) do not hold for A[X] then

min A[Z;_1] = Ayy for some v, w € Z;_1 NY with v # w. (10)

By assumption A[Z;_;] satisfies (A) or (B). Assume first (B) holds and let v, w
be simplicial vertices in A[Z;_1] with A,,, = min A[Z;_;]. If at least one of the
two vertices belongs to Z;_1\Y, then (P1) follows by (Q2). Otherwise, as A,, =
min A[Z;_1], we get (10).

Assume next A[Z;_1] satisfies (A) and let W be a critical walk in A[Z;_1], so its
end point vg is simplicial in A[Z;_1]. If vo € Z;_1\Y then vy is simplicial in A[X]
(by (Q2)) and thus (P1) holds. Assume now vg € Z;_1 NY. As W is critical there
exists an internal vertex u € I (W) such that A,, = min A[Z;_]. If u € Y then (10)
holds. Otherwise W contains a subwalk which is a weighted chordless walk rooted in
X N Yand thus (P2) holds.

So we may now assume (10) holds. Let (C, D) be aseparation of A[Z;_1] separating
vand w, as in Lemma 8, with (say) v € C\ D and w € D\C. Without loss of generality
CNV\Y)#@.Set Z; = C.Then Z; C Z;— (since w € Z;_1\C) and (Q1) holds
for Z;. We claim:

If (Zi_1\Y) N (C N D) # & then (P2) holds for A[X]. (11)

For this consider z € (Z;—1\Y)N(C N D) and apply Lemma 8 to the separation (C, D)
of A[Z;_1] separating v, w € Z;_1\(C N D) and z € C N D. Then either A;, >
min A[Z;_1] holds or there exists a weighted chordless walk W| = (z, a, .. ., v) from
z to v in A[Z;_1] that is internally vertex-disjoint from C N D; in the former case
we set W1 = (z, v) (i.e., a = v). Analogously, either A;,, > min A[Z;_1] holds or
there exists a weighted chordless walk Wo = (z, b, ..., w) from z to w internally
vertex-disjoint from C N D; in the former case set Wo = (z, w) (ie., b = w). Then
a € C\D and b € D\C, which implies A;, = min A[Z;_1]. From this it follows
that the walk W obtained by traveling first from v to z along the reverse of W; and
then from z to w along W> is a weighted chordless walk in A[X]. By z ¢ X N'Y and
v, w € X NY it contains at least one subwalk Wy which is a weighted chordless walk
in A[X]rooted in X N Y and thus (P2) holds.

So we may now assume in addition that (Z;_{\Y) N (C N D) = (J, we claim that
Z; = C satisfies (Q2). For this let x € C\Y simplicial in A[C], we show that x is
simplicial in A[X]. Indeed, x ¢ D and thus x is simplicial in A[Z;_;] (by Lemma 7)
and also in A[X] (as A[Z;_] satisfies (Q2)). Hence Z; = C satisfies (Q1)-(Q2),
which concludes the proof. O

With the help of Lemma 9 we can now prove Theorem 4.

Proof (of Theorem 4) The proof is by induction on the size of the matrix A. So we may
assume A has no self-contained pair of weighted chordless walks and every proper
principal submatrix of A satisfies (A) or (B). Let (X, Y) be a separation of A satisfying
property (P) of Lemma 8.
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Assume first X N'Y = @. By the induction assumption A[X] satisfies (A) or (B),
which implies that the same holds for A (since a simplicial vertex of A[X] is also
simplicial in A in view of Lemma 7).

Assume now S = X NY # . In view of Lemma 9 both A[X] and A[Y] satisfy
(P1) or (P2). We distinguish three cases, depending on these possible combinations.

Case 1: Both A[X] and A[Y] satisfy (P1). Hence there exist x € X\S which is
simplicial in A[X] and y € Y\ S which is simplicial in A[Y]. Then x, y are simplicial
in A (by Lemma 7) with Ay, = min A and thus (B) holds.

Case 2: A[X] satisfies (P1) and A[Y] satisfies (P2) (or vice versa). So let x € X\S
which is simplicial in A[X] and let Q = (vq, v2, ..., Vk—1, Vx) be a chordless walk in
A[Y] which is rooted in S (i.e., vi, v € S and vy, ..., vk—1 € Y\S with &k > 3).
By property (P) there exist weighted chordless walks W = (x,...,u, vy) from
x to vy (resp., Wo = (x,...,v,vr) from x to vx) in A[X] which are internally
vertex-disjoint from S, where we allow a walk Wy = (x, vy) (resp., Wo = (x, vt))
of length one, in which case Ay,, > min A (resp., Ay,, > min A). Consider the
walk W obtained by concatenating the three walks Wy, Q, W> in that order, that
we may visualize as W = ([x]Wi[v1]Q[vk]W2[x]) (where we insert the connec-
tion vertices between consecutive walks into brackets just to clarify the definition).
Then W is a closed walk whose end point x is indeed simplicial in A (in view of
Lemma 7). Moreover W is a weighted chordless walk in A. Indeed the only missing
inequalities are Ay, < min{A,y,, Ay v} and Ay, < min{Ay,,, Ay} Which
do hold since Ay, = Ay, , = minA (as u,v € X\S and v, v—1 € Y\S).
Finally, we have Ay,, = min A. Therefore W is a critical walk in A and thus (A)
holds.

Case 3: Both A[X] and A[Y] satisfy (P2). Solet P = (uy, ua, ..., uj—1, uj) (resp.,
0 = (v1,v2,...,Vk_1, Vr)) be a chordless walk in A[X] (resp., in A[Y]), which are
rootedin S (i.e.,uy, us, v, vx € S,uz, ..., u;—1 € X\S,andva, ..., vp—1 € Y\S with
k,l > 3). By property (P) there exist weighted chordless walks Wi = (v, ..., y, u1)
from vy to uy and Wy = (va, ..., Y, u;) from vy to u; in A[Y] which are internally
disjoint from S (where W; and W may have length one as in Case 2). Then one
can check (as in Case 2) that the concatenated walk W = ([vp]W1[u1]1P[u;1W2[v2])
is a closed weighted chordless walk with v, as only vertex which is not an internal
element of W. Analogously, using again (P) we find weighted chordless walks W3 =
(uz,...,x,v1)and Wy = (us, ..., x’, vg) in A[X] which are internally disjoint from
S. So the walk W/ = ([u2]W3[v1]1Q[vi]W4[uz]) is a weighted chordless walk in A
with only u, as non-internal element. Finally as v, is an internal element of W’ and
uy is an internal element of W, the two walks (W, W) form a self-contained pair of
weighted chordless walks in A, which contradicts the assumption on A. So we reach
a contradiction and the proof is completed. O
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