486 research outputs found

    NCUWM Talk Abstracts 2015

    Get PDF

    Distances and Domination in Graphs

    Get PDF
    This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present

    A survey of the theory of hypercube graphs

    Get PDF
    We present a comprehensive survey of the theory of hypercube graphs. Basic properties related to distance, coloring, domination and genus are reviewed. The properties of the n-cube defined by its subgraphs are considered next, including thickness, coarseness, Hamiltonian cycles and induced paths and cycles. Finally, various embedding and packing problems are discussed, including the determination of the cubical dimension of a given cubical graph.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27522/1/0000566.pd

    Investigations in the semi-strong product of graphs and bootstrap percolation

    Get PDF
    The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 is an edge of H. A natural subject for investigation is to determine properties of the semi-strong product in terms of those properties of its factors. We investigate distance, independence, matching, and domination in the semi-strong product Bootstrap Percolation is a process defined on a graph. We begin with an initial set of infected vertices. In each subsequent round, uninfected vertices become infected if they are adjacent to at least r infected vertices. Once infected, vertices remain infected. The parameter r is called the percolation threshold. When G is finite, the infection either stops at a proper subset of G or all of V(G) becomes infected. If all of V(G) eventually becomes infected, then we say that the infection percolates and we call the initial set of infected vertices a percolating set. The cardinality of a minimum percolating set of G with percolation threshold r is denoted m(G,r). We determine m(G,r) for certain Kneser graphs and bipartite Kneser graphs

    A new approach on locally checkable problems

    Full text link
    By providing a new framework, we extend previous results on locally checkable problems in bounded treewidth graphs. As a consequence, we show how to solve, in polynomial time for bounded treewidth graphs, double Roman domination and Grundy domination, among other problems for which no such algorithm was previously known. Moreover, by proving that fixed powers of bounded degree and bounded treewidth graphs are also bounded degree and bounded treewidth graphs, we can enlarge the family of problems that can be solved in polynomial time for these graph classes, including distance coloring problems and distance domination problems (for bounded distances)

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), conïŹrming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deïŹne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diïŹ€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique
    • 

    corecore