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Abstract

The semi-strong product of graphs G and H, denoted G×H, is a way of forming a new

graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian

product of the vertex sets of G and H, V (G) × V (H). The edges of G×H determined as

follows: (g1, h1)(g2, h2) ∈ E(G×H) whenever g1g2 ∈ E(G) and h1h2 ∈ E(H) or g1 = g2 and

h1h2 ∈ E(H).

A natural subject for investigation is to determine properties of the semi-strong product

in terms of those properties of its factors. We investigate distance, independence, matching,

and domination in the semi-strong product

Bootstrap Percolation is a process defined on a graph. We begin with an initial set

of infected vertices. In each subsequent round, uninfected vertices become infected if they

are adjacent to at least r infected vertices. Once infected, vertices remain infected. The

parameter r is called the percolation threshold. When G is finite, the infection either stops

at a proper subset of G or all of V (G) becomes infected. If all of V (G) eventually becomes

infected, then we say that the infection percolates and we call the initial set of infected

vertices a percolating set.

The cardinality of a minimum percolating set of G with percolation threshold r is denoted

m(G, r). We determine m(G, r) for certain Kneser graphs and bipartite Kneser graphs.
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Chapter 1

Introduction

In this dissertation, we will investigate two topics: the semi-strong product of graphs

and bootstrap percolation. Before each section we will provide appropriate definitions and

background. All graphs are simple and finite. Standard graph theory terminology is used,

for instance, as found in [24]. The semi-strong product was first introduced (as the strong

tensor product) by Garman, Ringeisen, and White in 1976 [31]. The three authors presented

some basic properties and also investigated the product in the context of graph imbeddings

on orientable surfaces. Ghidewon Abay-Asmerom investigated the semi-strong product in

1990 in his dissertation [2] and in subsequent papers [3, 4, 5], one of which includes a new

proof of the genus of Qn [6]. Brooks studied the semi-strong product in his master’s thesis in

2015 [20]. Zhao et. al. have studied book imbeddings of the semi-strong product [90]. The

semi-strong product may also have been studied under the name “semi-Cartesian Kronecker

product” in two papers in Russian [44, 66].

The works cited so far have studied the semi-strong product from a topological perspec-

tive. However, this product has also been investigated in other contexts. Petrosyan studied

interval edge colorings of product graphs, including the semi-strong product [73]. Li and

Zhang have studied nowhere-zero 3-flows and the group connectivity number in the semi-

strong product [61, 62]. Pisanski et. al. provided a sufficient condition for a 1-factor in the

semi-strong product [74]. Jaradat also studied 1-factorization of the semi-strong product, in

the context of edge coloring [51]. Zhou has studied Hamiltonian decomposition of cycles in

the semi-strong product of digraphs [91]. A series of papers have also examined the basis

number of the semi-strong product of various graphs [8, 9, 49, 50, 52]. In addition, the semi-

strong product has been investigated with regards to various coloring problems and signed

graphs [45, 84, 85]. In this dissertation, we continue research on non-topological properties

of the semi-strong product, such as distance, domination, independence, Eulerian circuits,
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Hamiltonian cycles, and matchings.

In section 2.1, we determine the distance between two vertices in the semi-strong product

in terms of distace in the factors. Using our knowledge of distance in the product, we find

the eccentricities of the vertices of the semi-strong product. This enables us to determine the

radius, diameter, center, and periphery of the semi-strong product. Section 2.2 continues the

study of distance in the semi-strong product. We prove formulas for the Wiener index of the

semi-strong product of a complete graph and a connected graph and a complete bipartite

graph and a connected graph. In section 2.3, we present Garman, Ringeisen, and White’s

formula for the chromatic number of the semi-strong product and find a similar formula for

the clique number of the semi-strong product. In section 2.4, we use Garman, Ringeisen,

and White’s result on the degree of a vertex of the semi-strong product along with Euler and

Hierholzer’s well-known theorm to characterize which semi-strong products contain Eulerian

circuits and Eulerian trails. We also provide a sufficient condition to guarantee a Hamiltonian

cycle in the semi-strong product.

Our major work on the semi-strong product is in sections 2.5 and 2.6 In section 2.5,

we find formulas for both the independence and vertex covering numbers of the semi-strong

product in terms of the order of the first factor and the independence or vertex covering

number of the second factor. We also determine the matching number and the edge covering

number for certain graph classes of the semi-strong product. Although formulas for some

graph invariants, such as the chromatic number, are known for all semi-strong products,

other graph invariants, such as the domination number, prove more difficult to determine.

In section 2.6, we determine the domination number of the semi-strong product of each of

four standard graph classes with a connected graph. These four classes are complete graphs,

complete bipartite graphs, paths, and cycles. We also provide a general upper bound for

the domination number of the semi-strong product, which is attained by some semi-strong

products. In this section, we also show that previous research on Vizing’s conjecture in the

direct product falsifies a natural conjectured lower bound. Subsection 2.6.1 contains no new

results, but describes a connection between domination in the semi-strong product and a

classic chessboard problem, which can be rephrased in terms of graph domination.

Bootstrap percolation is a process defined on a graph, G. The process begins by selecting

an initial set of infected vertices, A0 ⊆ V (G). In each subsequent round, an uninfected vertex,

v, becomes infected if v is adjacent to at least r previously infected vertices. We use At to
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denote the set of vertices infected as of round t. Symbolically,

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r}

The parameter r is called the percolation threshold and bootstrap percolation with fixed r

is sometimes referred to as r-neighbor bootstrap percolation or r-bootstrap percolation. If G

is a finite graph, then after a fixed number of rounds, either all vertices of G become infected

or the infection stops at some proper subset of V (G). The set of infected vertices after

the percolation process finishes is called the closure of A0, denoted 〈A0〉. If 〈A0〉 = V (G),

then we say that A0 is contagious or A0 percolates. Figure 1.1 shows two graphs containing

percolating sets of size 2 when r = 2.

Figure 1.1: Percolating sets of size 2 when r = 2 in K3,3 and C4

Bootstrap percolation was introduced in 1979 by Chalupa, Leath, and Reich [22]. One

model that has received much attention is when the vertices of A0 are selected randomly:

each vertex is selected independently and every vertex of G has probability p of being initially

selected. After this, the infection proceeds deterministically. This model has been studied

extensively, for instance, in [10, 11, 13, 14, 15, 43].

Another area of study is extremal problems. The minimum size of a percolating set in a

graph G with percolation threshold r is denoted m(G, r). Observe that if |V (G)| is at least r,

then m(G, r) ≥ r. In this dissertation, we investigate minimum percolating sets in the Kneser

graph and the bipartite Kneser graph. Previous research on bootstrap percolation in Kneser

graphs has found m(G, 2) for all Kneser graphs except those of the form K(2k + 1, k). In

Chapter 3, we find a sufficient condition for when m(G, r) = r in Kneser graphs and bipartite

Kneser graphs.
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Chapter 2

The semi-strong product

We begin this chapter by introducing the semi-strong product. In this dissertation, we

will use the tilde to denote adjacency: if xy ∈ E(G), then we write x ∼ y. The semi-strong

product of G and H, denoted G×H, is a graph with vertex set V (G)×V (H) (the Cartesian

product of V (G) and V (H)). The edge set of the semi-strong product is defined as follows:

(g1, h1)(g2, h2) ∈ E(G×H) if g1 = g2 and h1 ∼ h2 in H or g1 ∼ g2 in G and h1 ∼ h2 in H.

Figure 2.1 shows P1×P2.

Another way to describe the semi-strong product is in relation to other graph products.

The Cartesian product, direct product, and strong product all have vertex set V (G)×V (H).

The Cartesian product is denoted G�H, with edge set defined as follows: (g1, h1)(g2, h2) ∈
E(G�H) if g1 = g2 and h1 ∼ h2 in H or h1 = h2 and g1 ∼ g2 in G. The direct product of

G and H (also known as the tensor product), denoted G × H, has the following edge set:

(g1, h1)(g2, h2) ∈ E(G×H) if h1 ∼ h2 in H and g1 ∼ g2 in G. The strong product of G and

H is denoted G�H and its edge set is the union of the edge sets of both the Cartesian and

direct product. Figure 2.2 shows these three products with G = H = P2. Having defined

these products, we now see that the semi-strong product contains the direct product edges

along with half of the Cartesian edges. Hence, the semi-strong product can be considered

half of a strong product.

1

2

a b

(1, a)

(2, a)

(1, b)

(2, b)

Figure 2.1: P2×P2
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1

2

a b

(1, a)

(2, a)

(1, b)

(2, b)

P2 ���P2

1

2

a b

(1, a)

(2, a)

(1, b)

(2, b)

P2 × P2

1

2

a b

(1, a)

(2, a)

(1, b)

(2, b)

P2 ��� P2

Figure 2.2: P2�P2, P2 × P2, and P2 � P2

The Cartesian, direct, and strong products are both commutative and associative. It

is clear from the definition that the the semi-strong product is not commutative. In fact,

the semi-strong product is not even associative. This was shown in Garman et al. [31] by

considering (P2×P2)×P2 and P2× (P2×P2). As seen in Figure 2.1, P2×P2
∼= C4. Figure

2.3 shows C4×P2 on the left and P2×C4 on the right. Since C4×P2 is 3-regular, while

P2×C4 has vertices of degree 4, the two graphs cannot be isomorphic.

C4×P2 P2×C4

Figure 2.3: C4×P2 and P2×C4

In a graph product, a set of vertices V (G)× v, for v ∈ V (H) or V (H)× u, for u ∈ V (G)

is called a fiber. In this dissertation, we will follow the convention of making the columns

of our product graph copies of V (G) and the rows copies of V (H). For this reason, we will

refer to fibers of the form V (G) × v as vertical fibers and those of the form V (H) × u as

horizontal fibers.
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2.1 Distance

A walk in a graph is a sequence of vertices where successive vertices are adjacent. A

path is a walk in which no vertex is repeated. The distance between vertices x, y ∈ V (G),

denoted d(x, y), is the longest path between x and y in G. The eccentricity of a vertex v,

denoted e(v), is the greatest distance between v and a vertex of G. The radius of G, denoted

rad(G), is the smallest eccentricity among all vertices of G. The diameter of G, denoted

diam(G), is the largest eccentricity among all vertices of G. The center of G, denoted

cen(G), is the subgraph induced by all vertices of G whose eccentricity is equal to the radius

of G. Such vertices are known as central vertices. The periphery of G, denoted per(G), is

the subgraph induced by all vertices of G whose eccentricity is equal to the diameter of G.

Such vertices are known as peripheral vertices. In this subsection, we investigate distance,

eccentricity, radius, diameter, center, and periphery for the semi-strong product.

Suppose (g, h) is a vertex of G×H. Recall that the semi-strong product contains the

horizontal edges from G�H and all the edges from G×H. This means that we can move

from (g, h) to an adjacent vertex using either a horizontal edge or a diagonal edge, but never

using a vertical edge. In total, there are 6 possible directions. If we start at the vertex (0,0)

in Figure 2.4, we can move diagonally up to (1,1) or right to (1,0). If we begin at (2,2), then

we can move in all of the six possible directions.

(0, 0)

(0, 1)

(0, 2)

(0, 3)
(1, 3) (2, 3) (3, 3)

(4, 3)

(4, 2)

(4, 1)

(4, 0)
(1, 0) (2, 0) (3, 0)

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

Figure 2.4: Labels of vertices in P4×P5

Theorem 2.1.1. Let (g1, h1) and (g2, h2) be vertices of G×H. The distance between the

7



two vertices is determined as follows:

If |d(g1, g2)− d(h1, h2)| is even, then d((g1, h1), (g2, h2)) = max(d(g1, g2), d(h1, h2))

If |d(g1, g2)− d(h1, h2)| is odd, then d((g1, h1), (g2, h2)) = max(d(g1, g2) + 1, d(h1, h2))

Proof. For each case, we will first describe a sequence of moves which forms a shortest path

from (g1, h1) to (x, y) and then show that such a path is indeed the shortest possible. Since

we have adopted the convention of letting the columns of G×H be copies of V (G), while

letting the rows consist of copies of V (H), we will refer to d(g1, g2) as the vertical distance

from (g1, h1) to (g2, h2) and d(h1, h2) as the horizontal distance between these two vertices.

We split this proof into three cases:

Case 1: d(h1, h2) ≥ d(g1, g2):

To construct a path from (g1, h1) to (g2, h2), we first take d(h1, h2)− d(g1, g2) horizontal

steps. Each of these steps decreases the horizontal distance by one. We stop at a vertex,

(x, y), whose horizontal and vertical distances to (g2, h2) are equal. From the vertex (x, y),

we take d(g1, g2) diagonal steps. Altogether we take d(h1, h2)−d(g1, g2)+d(g1, g2) = d(h1, h2)

steps, forming a path of length d(h1, h2). If such a path is not minimum, then we can find

a new path of length less than d(h1, h2) from (g1, h1) to (g2, h2). But, since each movement

to form this new path must be either horizontal or diagonal, each movement corresponds to

an edge in H and we can use the horizontal coordinates of the vertices in this new path to

construct a path from h1 to h2 shorter than d(h1, h2). But this is a contradiction, so our

original path is in fact a shortest path.

An example of this scenario is moving from (0, 0) to (4, 2) in Figure 2.4. We first make

three movements to the right, ending at (2, 0). Next, we make two movements diagonally

up, ending at (4, 2). This forms a path of length 4, which is d(0, 4).

Case 2: d(h1, h2) < d(g1, g2) and d(g1, g2)− d(h1, h2) is even:

We begin by making d(g1, g2)−d(h1, h2) diagonal movements until the remaining horizon-

tal and vertical distances are equal. Further, we make the movements by “bouncing back and

forth” so that while constantly decreasing the vertical distance we follow every movement

that carries us closer horizontally by another movement that carries us away horizontally.

Recall that diagonal movements change both the horizontal and vertical distances. Since

d(g1, g2) − d(h1, h2) is even, we will make an even number of moves and the horizontal dis-

tance will remain unchanged at the end. Lastly, we make d(h1, h2) moves where we decrease

8



both the horizontal and vertical distance by one with each move. In total, these moves form

a path of length d(g1, g2)− d(h1, h2) + d(h1, h2) = d(g1, g2).

Such a path must be a shortest path. A horizontal move cannot decrease the vertical

distance. Thus, the only way to decrease the vertical distance is by making diagonal moves.

If we could make fewer than d(g1, g2) such moves, we could use the vertical coordinates in

this path to form a path from g1 to g2 shorter than d(g1, g2). (This is still possible even if

these diagonal moves have horizontal moves in between them because horizontal moves do

not change the vertical fiber). Contradiction.

An example of this is moving from (0,1) to (0,3) in Figure 2.4. We first move diagonally

up and to the right to (1,2), then up and left to (0,3).

Case 3: d(h1, h2) < d(g1, g2) and d(g1, g2)− d(h1, h2) is odd:

We begin by moving horizontally to a vertex, (x, y), adjacent to (g1, h1) such that

d(x, g2) − d(y, h2) is even. We then follow the same strategy as in Case 2. First we make

as many moves as necessary to equalize the horizontal and vertical distances, bouncing back

and forth so that the horizontal distance is unchanged after this sequence of moves. Then,

we make diagonal moves to decrease both horizontal and vertical distance simultaneously.

In total we make 1 + d(g1, g2)− d(h1, h2) + d(h1, h2) = d(g1, g2) + 1 moves.

As in case 2, if we could reach our target vertex with fewer than d(g1, g2) diagonal moves,

this would lead to a contradiction. Note that since we need to decrease the vertical distance

as well as the horizontal, all steps in such a path must be diagonal. Thus, to show our

path is minimum, we must show that we cannot find a path of length d(g1, g2) between

(g1, h1) and (g2, h2). If a path with exactly d(g1, g2) diagonal moves existed, then because

d(g1, g2)− d(h1, h2) is odd, it would be impossible for the changes in the horizontal distance

to cancel out. Thus, after making d(g1, g2) moves, we could not have reached (g2, h2). We

need at least one more move. Therefore, d(g1, g2) + 1 is the minimum number of moves.

An example of this situation in Figure 2.4 occurs when moving from (1,0) to (1,3). The

horizontal distance is 0 and the vertical distance is 3. So, we first go back and forth to (0,3)

and then right to (1,3), using 4 moves in all.

Theorem 2.1.2. If (g, h) is a vertex of G×H, then e((g, h)) = max(e(g) + 1, e(h)).

Proof. Let (g, h) be a vertex of G×H. We claim that if H contains no isolated vertices,

then we can always find a vertex whose distance from (g, h) is e(g) + 1. If u is a vertex

9



in G furthest from g, then, by the previous result, d((g, h), (u, h)) is e(g) + 1 if e(g) is odd

and e(g) if e(g) is even. Since H contains no isolated vertices, h is adjacent to some vertex

v ∈ H. So, if e(g) is even, then d((g, u)) − d((h, v)) = e(g) − 1, which is odd. Hence,

d((g, h), (u, v)) = e(g) + 1.

Therefore, from the above claim and the previous result, the two possibilities for e((g, h))

are e(g) + 1 or e(h). Since the eccentricity is the largest possible distance, e((g, h)) must

be the maximum of e(g) + 1 and e(h). Figure 2.5 displays the eccentricities for the vertices

P4×P5.

4

4

4

4
4 4 4

4

4

4

4
4 4 4

3 3 3

3 3 3

3

2

2

3

4 3 2 3 4

Figure 2.5: Eccentricities of vertices in P4×P5

Theorem 2.1.3. rad(G×H) = max(rad(G) + 1, rad(H)).

Proof. In general, if a ≤ x and b ≤ y, then max(a, b) ≤ max(x, y).

Therefore, max(rad(G) + 1, rad(H)) ≤ max(e(g) + 1, e(h)) for all values of e(g) and

e(h). Since there exist vertices (g, h) of G×H where e(g) = rad(G) and e(h) = rad(H),

this minimum is attained.
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Theorem 2.1.4. diam(G×H) = max(diam(G) + 1, diam(H)).

Proof. The diameter of G×H is the largest eccentricity over all vertices in the graph. By

Theorem 2.1.2, the two possibilities for the eccentricity of a vertex (g, h) are e(g)+1 and e(h).

The largest values for these two eccentricities are diam(G) + 1 and diam(H), respectively.

Thus, whichever of the two is greater must be the diameter for the entire graph.

Theorem 2.1.5. If rad(G) + 1 = rad(H), then Cen(G×H) = Cen(G)× Cen(H).

If rad(G) + 1 > rad(H), then Cen(G×H) = Cen(G)× {v ∈ H : e(v) ≤ rad(G) + 1}

If rad(H) > rad(G) + 1, then Cen(G×H) = Cen(H)× {u ∈ G : e(u) + 1 ≤ rad(H)}

Proof. Let (g, h) be a vertex of G×H. The center of G×H, i.e., the set of vertices for which

e((g, h)) = rad(G×H) is precisely the set of vertices for which the following inequality holds:

min(rad(G)+1, rad(H)) ≤ min(e(g)+1, e(H)) ≤ max(e(g)+1, e(h)) = max(rad(G)+1, rad(H))

Cleary, neither e(g) + 1 nor e(h) can be less than the minimum of rad(G) + 1, rad(H)

and if either of e(g) + 1 or e(h) was larger than the maximum of rad(G) + 1, rad(H), the

eccentricity of (g, h) would exceed the radius.

When rad(G) + 1 = rad(H), the only admissible vertices are those for which e(g) =

rad(G) and e(h) = rad(H). And those vertices form the set Cen(G)× Cen(H).

If rad(G) + 1 > rad(H), then there are some vertices (g, h) for which rad(H) < e(h) ≤
rad(G) + 1. The union of these vertices and the set of vertices for which e(h) = rad(H)

forms the set {v ∈ H : e(v) ≤ rad(G) + 1}. Hence, the center is Cen(G)× {v ∈ H : e(v) ≤
rad(G) + 1}.

If rad(H) > rad(G) + 1, then by similar reasoning as above, we need to include vertices

for which rad(G) < e(g) ≤ rad(H) in the center. And so, the center is Cen(H)× {u ∈ G :

e(u) + 1 ≤ rad(H)}.

As shown in Figure 2.5, the center of P4×P5 is Cen(P4)× Cen(P5).

Theorem 2.1.6. If diam(G) + 1 = diam(H), then Per(G×H) =

Per(G)× V (H) ∪ Per(H)× V (G).
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If diam(G) + 1 > diam(H), then Per(G×H) = Per(G)× V (H).

If diam(H) > diam(G) + 1, then Per(G×H) = Per(H)× V (G)

Proof. For every vertex, (g, h), in Per(G×H), the following inequality holds:

min(e(g)+1, e(h)) ≤ min(diam(G)+1, diam(H)) ≤ max(e(g)+1, e(h)) = max(diam(G)+1, diam(H))

In other words, if max(e(g) + 1, e(h)) = diam(G×H), then no matter what the value

of min(e(g) + 1, e(h)) the eccentricity of (g, h) is still the diameter of the product graph.

Therefore, for a vertex to be in the periphery of G×H, at least one of e(g) + 1, e(h) must

be equal to max(diam(G) + 1, diam(H)).

If diam(G) + 1 > diam(H), then the vertices for which e((g, h)) = diam(G) + 1 are

exactly those when e(g) = diam(G), regardless of the value of e(h). Thus, the periphery of

the product is Per(G)× V (H).

Likewise, if diam(H) > diam(G) + 1, the only allowable vertices are those for which

e(H) = diam(H), so Per(G×H) = Per(H)× V (G).

If diam(G)+1 = diam(H), then unlike before, we have two possibilities. e((g, h)) can be

equal to diam(G×H) both when e(g) + 1 = diam(G) and when e(h) = diam(H). Hence,

the periphery of the product is Per(G) × V (H) ∪ Per(H) × V (G). This occurs in Figure

2.5, where Per(P4×P5) = Per(P4)× V (P5) ∪ Per(P5)× V (P4).

2.2 Wiener Index

The Wiener index of a graph, G, is the sum of the all distances between pairs of

vertices of G, which we will denote W (G). This graph invariant was introduced by Wiener

in 1947 in the context of investingating the boiling points of paraffins [88]. The Wiener

index has been determined for the Cartesian product, by Graovac and Pisanski [34]. If G

and H are connected graphs, then W (G�H) = |H|2W (G) + |G|2W (H). Yeh and Gutman

independently found the formula for the Wiener index of the Cartesian product and also

determined the Wiener index of the lexicographic product [89].

The Wiener index of the direct and strong products have also been studied, for instance

in [67, 68, 69, 70]. Peterin and Pleteršek give a (fairly complicated) general formula for the

Wiener index of the strong product which they state cannot be simplified in general [72].
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In this section, we find the Wiener index for the semistrong product of a complete graph

with a connected graph, H and the Wiener index for the semistrong product of a complete

bipartite graph with a connected graph.

In each calculation, we will split the sum of pairs of distances into three parts and then

add these three sums to form the total. The first is pairs of vertices within the same horizontal

fiber,the second is pairs of vertices within the same vertical fiber. Lastly, we will calculate

the sum of distances between pairs of vertices which are in different horizontal fibers and

different vertical fibers.

Theorem 2.2.1. If H is a connected graph, then W (Kn×H) =
(
n+1
2

)
W (H) +n(n− 1)|H|

Proof. Since each horizontal fiber is a copy of H, the sum of distances within a single

horizontal fiber is W (H). There are n such fibers, so the total of this sum is nW (H).

Vertices in the same vertical fiber have horizontal distance 0 and vertical distance 1, so by

Theorem 2.1.1, their distance in the product is 2. There are
(
n
2

)
pairs of vertices in each

vertical fiber and |H| vertical fibers, so in total, this sum is 2
(
n
2

)
|H| = n(n− 1)|H|.

Suppose (g1, h1), (g2, h2) are a pair of vertices in both different horizontal and vertical

fibers. The vertical distance between such a pair of vertices in is 1. Whatever the horizontal

distance is, it must be at least 1, so by Theorem 2.1.1, d((g1, h1), (g2, h2)) = d(h1, h2). Hence,

the sum of distances between any pair of horizontal fibers is W (H). There are
(
n
2

)
pairs of

fibers and so the total sum is
(
n
2

)
W (H).

Combining these three sums, we find that

W (Kn×H) =
(
n
2

)
W (H)+nW (H)+n(n−1)|H|. This simplifies to

(
n+1
2

)
W (H)+n(n−1)|H|.

Theorem 2.2.2. If H is a connected graph, then

W (Kn,m×H) = W (H)
(

2nm+

(
m

2

)
+

(
n

2

))
+|H|

(
(n+m)2−(n+m)

)
+2|E(H)|

((m
2

)
+

(
n

2

))

Proof. Each horizontal fiber is a copy of H, and there are nm horizontal fibers, so our first

sum is nmW (H). If (g1, h) and (g2, h) is a pair of vertices in the same vertical fiber, then

we have two cases. If the vertices are in the same partite set, then the vertical distance is

2. If the vertices are in different partite sets, then the vertical distance is 1. In either case,
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since the horizontal distance is 0, the distance in the product is 2. Within each vertical fiber,

there are
(
n
2

)
+
(
m
2

)
+nm pairs of vertices and |H| horizontal fibers altogether, so our second

sum is 2|H|(
(
n
2

)
+
(
m
2

)
+ nm) = |H|((n+m)2 − (n+m)).

Suppose that (g1, h1), (g2, h2) are vertices in both different vertical and horizontal fibers.

Further, suppose that each vertex is contained in a fiber associated with the same partite set

of Kn,m. Then, the vertical distance is 2. If h1 is adjacent to h2, then the horizontal distance

is 1. If not, it is at least 2. Summing up all pairs of distances for this product yields W (H)

plus an additional amount equal to the degree of each vertex. Since there are
(
n
2

)
+
(
m
2

)
pairs

of fibers in the same partite set, this sum in total is (2|E(H)|+W (H))(
(
n
2

)
+
(
m
2

)
).

Now, suppose that (g1, h1), (g2, h2) are contained in fibers associated with different partite

sets. If (g1, h1) ∼ (g2, h2), both the horizontal and vertical distances are 1. Alternatively, if

(g1, h1) 6∼ (g2, h2), then the horizontal distance is at least 2 and the vertical distance is 1.

Either |d(g1, g2) − d(h1, h2)| is even or d(h1, h2) ≥ d(g1, g2), so by Theorem 2.1.1 the total

sum over such a pair of fibers is W (H). There are nm such pairs so in total our sum is

nmW (H).

Combining these three expressions yields

W (H)
(

2nm+

(
n

2

)
+

(
m

2

))
+ |H|

(
(n+m)2 − (n+m)

)
+ 2|E(H)|

((n
2

)
+

(
m

2

))

2.3 Coloring and Clique Number

A proper coloring of a graph, G, is an assignment of colors to the vertices of G such that

no adjacent vertices receive the same color. The chromatic number of a graph, denoted

χ(G), is the minimum number of colors used among all proper colorings of G. The chromatic

number is one of the most well known graph invariants. It originated with attempts to prove

the famous 4-color problem, that if G is a planar graph, then χ(G) ≤ 4.

In [31], Garman, Ringeisen, and White stated the following without proof. The result is

straightforward, but we present a proof here for the sake of completeness:

In the proof of the this result, we use the following elementary lemma concerning graph

coloring

Lemma 2.3.1. If P is a subgraph of G, then χ(G) ≥ χ(P ).
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Theorem 2.3.2. χ(G×H) = χ(H).

Proof. Since each horizontal fiber of the product is a copy of H, by Lemma 2.3.1 we need at

least χ(H) colors to form a proper coloring of the product. Hence, χ(G×H) ≥ χ(H).

Let C be a proper coloring of H. Color a single fiber of G×H using C and then repeat

this coloring exactly in every other horizontal fiber. This produces a proper coloring of

G×H. The reason is because if two vertices are colored the same and are in different fibers,

then they could only be joined by a direct product edge. But, direct product edges also

correspond to edges in H. Thus, if two adjacent vertices (u, x) and (v, y) are in different

fibers and assigned the same color, (u, x) would also be adjacent to a vertex (v, x) in its

horizontal fiber. But, we assumed C was a proper coloring, so this is impossible. Therefore,

χ(G×H) ≤ χ(H).

The clique number of a graph G, denoted ω(G) is the size of the largest complete

subgraph of G. Since a clique is a subgraph of G, χ(G) ≥ ω(G). We show that, analogous

to the chromatic number of the semi-strong product, the clique number of the semi-strong

product is determined by the clique number of H.

Theorem 2.3.3. ω(G×H) = ω(H).

Proof. Let C be a largest clique of H. Since every horizontal fiber of the product is a

copy of H, we can find a clique of size |C| = ω(H) in any fiber of the product. Thus,

ω(G×H) ≥ ω(H).

In order to demonstrate an upper bound, we must show that no clique larger than ω(H)

can be found in the product. Let K be any complete subgraph of G×H. No two vertices

of K can share the same vertical fiber because no vertices in the same vertical fiber can be

adjacent. Since every vertex of K is in a different vertical fiber, we can project every vertex

of K onto H to form a subgraph of H. Since we assumed K was a clique, every vertex in K

is adjacent to every other vertex in K. If two vertices (u, x), (v, y) are joined by horizontal

edges, then x, y ∈ H are also adjacent.

Likewise, if (u, x), (v, y) are joined by direct product edges, x, y are also joined in H.

Therefore, our projection is also a clique, so |K| ≤ ω(H). Since K was an arbitrary clique

of the product, ω(G×H) ≤ ω(H).
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2.4 Eulerian circuits and Hamiltonicity

A trail is a walk in a graph in which no edge is repeated. A closed walk is a walk with

the same beginning and ending vertex. An open walk is a walk with different starting and

ending vertices. An Eulerian circuit is a closed trail in a graph which traverses each edge

in the graph exactly once. An Eulerian trail is an open trail in a graph which traverses

each edge exactly once. A Hamiltonian path is a path which contains every vertex in a

graph. A Hamiltonian cycle is a cycle which contains every vertex in a graph. If a graph

contains a Hamiltonian cycle, then we say the graph is Hamiltonian.

Garman et. al. stated the following proposition in [31]:

Proposition 2.4.1. If (g, h) is a vertex in G×H, then d((g, h)) = (d(g) + 1)d(h)

Proof. First we consider the direct product edges. Let v ∈ G be some vertex adjacent to g.

Then, in every horizontal fiber {v}×V (H), (g, h) is adjacent to all vertices of the form (v, w),

where w ∈ H is adjacent to H. There are d(g) such horizontal fibers. So, (g, h) is adjacent

to d(g)d(h) vertices via direct product edges. In addition, (g, h) is adjacent to d(h) vertices

within its own horizontal fiber. Altogether, (g, h) is adjacent d(g)d(h)+d(h) = (d(g)+1)d(h)

vertices.

With this proposition and the following famous theorems due to Euler and Hierholzer

[28, 42], we can characterize those semi-strong products which have Eulerian circuits and

Eulerian trails:

Theorem 2.4.2. A nontrivial connected graph, G, is Eulerian if and only if every vertex of

G has even degree.

Theorem 2.4.3. A connected graph G contains an Eulerian trail if and only if exactly two

vertices of G have odd degree. Furthermore, each Eulerian trail of G begins at one of these

vertices and ends at another.

Theorem 2.4.4. G×H is Eulerian if and only if G has all odd degrees or H is Eulerian.

Proof. The product of k natural numbers is even when at least one of the factors is even.

Hence, if G has all odd degrees or H is Eulerian, at least one of d(g) + 1, d(h) will be even

for all g ∈ G, h ∈ H. Therefore, (d(g) + 1)d(h) will be even for all product vertices (g, h).

Now suppose that G has at least one even degree and H is not Eulerian. Then, for some
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vertex (u, v), both d(u) + 1 and d(v) are odd and thus their product is also odd. So, G×H
has at least one odd degree and hence is not Eulerian.

Theorem 2.4.5. G×H has an Eulerian trail if and only if G has exacty one even vertex

and H has an Eulerian trail.

Proof. A graph has an Eulerian trail if exactly two of its vertices have odd degree. G×H
has two odd vertices if and only if two of the products (d(g) + 1)(d(h)) are odd. There are

two ways for this to happen: G has two even vertices and H has one odd vertex or G has

one even vertex and H has two odd vertices. The first situation is impossible because no

graph can have an odd number of odd degree vertices. Therefore, if G has one even vertex

and H contains an Eulerian trail, then G×H contains an Eulerian trail and the condition

is also necessary.

We now present a sufficient condition for a Hamiltonian cycle in the product.

Theorem 2.4.6. If G has a Hamiltonian path and H contains a Hamiltonian cycle, then

G×H contains a Hamiltonian cycle.

Proof. Suppose |G| = n and |H| = m. Since each horizontal fiber corresponds to a vertex of

G, label all the horizontal fibers in sequence corresponding to the vertices of a Hamiltonian

path of G as follows: H1, H2, ..., Hn. Then, within each fiber, label the vertices corresponding

to their position in a copy of a Hamiltonian cycle, Ci, of Hi. Vertices within H1 would

be labeled as follows: v1,1, v1,2, ..., v1,m. The vertical coordinate is first and the horizontal

coordinate is second.

We have three cases:

Case 1: n = m

In this instance, we find a Hamiltonian cycle in G×H as follows: Begin with v1,1 and

follow C1 up to v1,m−1. Then, move to v2,m and move along C2, ending at v2,m−2, the third

to last vertex. In general, within the ith horizontal fiber, we move horizontally along Ci

(wrapping around when necessary) and ending at vi,m−i. We then move up to vi+1,m−i+1 in

the next horizontal fiber. During this process, within each fiber we pass through all vertices

except vi,m−i+1. Since n = m, the first vertex we reach in Hn is vn,2. We then follow Cn to

vn,1 and then follow the left to right diagonal through all the vertices we avoided until we

each v1,m. Then we wrap arond from v1,m to v1,1.
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In other words, within each horizontal fiber we include each vertex except the vertices of

the diagonal formed by the top left to bottom right vertices. We then follow this diagonal

down to the bottom right corner and return to the bottom left corner. Figure 2.6 gives an

example of how such a cycle is constructed. The labels on the vertices are the order of the

Hamiltonian cycle, with 9 returning back to 1.

Case 2: n < m

This case is similar to the previous case, except that now the vertices we avoid are on

the diagonal from the bottom right corner up to vn,m−n+1. Then, as before, we follow that

diagonal down to v1,m and then move from v1,m to v1,1.

Case 3: n > m

In this case, we must do something different. Starting at the bottom right corner, we

form a path of vertices diagonally up and left, until we reach vm,1. Then, we move diagonally

up and right until we reach v2m,m and so on, switching from left to right each time. These

are the vertices that we avoid when moving horizontally through each fiber. Then, once we

have reached the highest row, we follow this path down to v1,m and move from v1,m to v1,1.

That these three procedures yield Hamiltonian cycles follows from the fact that they

are formed only of allowable moves within Pn×Cm. If G and H satisfy the hypotheses of

this theorem, then G contains a subgraph isomorphic to Pn and H contains a subgraph

isomorphic to Cm, so G×H contains a subgraph isomorphic to Pn×Cm. Within such a

graph, we can move horizontally following the vertices of Cm and we can move diagonally

between horizontal fibers corresponding to adjacent vertices of Pn.

1 2 9

4 8 3

7 5 6

Figure 2.6: P3×C3
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2.5 Independence and Matching

An independent set of vertices in a graph G is a set of vertices, I ⊆ V (G) such that

no vertex in I is adjacent to any other vertex of I. If I ′ is an independent set of G such that

no independent set of G contains more vertices than I ′ (though some may have the same

amount), then we say that I ′ is a maximum independent set of G. The cardinality of a

maximum independent set of a graph G, denoted α(G), is the independence number of

G.

In this section, we determine the independence number of the semi-strong product and

the matching number for some graph classes of the semi-strong product. We also include

results on the vertex covering number and edge covering number of the semi-strong strong

product.

Geller and Stahl found a formula for the independence number of the lexicographic prod-

uct of two graphs: α(G ◦ H) = α(G)α(H) [32]. Determining the independence number of

the other main graph products is challenging in general. For instance, in [56], it is remarked

that α(Kk�G) = αk(G), where αk(G) is the maximum cardinality of a set of vertices of G,

no two of which are distance k or less apart. So, α1(G) would be the ordiary independence

number. Determining αk(G) is NP-complete [58]. Vizing [87] showed the following bounds

α(G)α(H) +min{|G| − α(G), |H| − α(H)} ≤ α(G�H) ≤ min{α(G)|H|, α(H)|G|}

Other papers investigating α(G�H) are [1, 19, 37, 53]. The independence number of

the direct product of graphs has been investigated in [53, 54, 55, 71]. The strong product of

graphs is connected to the Shannon Capacity [80], which is limk→∞
k
√
�k
i=1G. Some papers

investigating the independence number of the strong product of graphs are [38, 78, 86]. It

is perhaps somewhat surprising that, as with the lexicographic product, there is a formula

for the independence number of the semi-strong product of graphs:

Theorem 2.5.1. α(G×H) = |G|α(H).

Proof. First we will describe a lower bound. Choose one horizontal fiber of G×H and then

select a maximum independent set of H from this fiber. If we then copy this independent set

in every other horizontal fiber, the resulting set, I, is an independent set of G×H. Suppose

v, w are two vertices of I. If v and w are in the same horizontal fiber, then, by assumption,

v and w are not adjacent. If v and w are in different horizontal fibers and different vertical

fibers, then the only edge that could exist between the two is a direct product edge. But, a
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direct product edge only exists if the corresponding vertices of both G and H are adjacent.

But the corresponding vertices from H are not adjacent because they correspond to vertices

of an independent set. Recall that there are no edges between vertices of the same vertical

fiber in the semi-strong product. I consists of |G| maximum independent sets of H, so

|I| = |G|α(H). The red vertices in Figure 2.7 give an example of this construction. |P3| = 3

and α(K3) = 1, so we form a maximum independent set of P3×K3 with 3 vertices.

For the upper bound, note that in any independent set of the semi-strong product, the

maximum number of vertices in any horizontal fiber is α(H). If we had more, then the

vertices would no longer form a maximum independent set within that fiber. And so, no set

of vertices of G×H with more than |G|α(H) vertices can be independent because, by the

pigeonhole principle, at least one horizontal fiber must have more than α(H) vertices. Since

the upper and lower bounds match, α(G×H) = |G|α(H).

Figure 2.7: P3×K3

A vertex cover of a graph G is a set of vertices C such that every edge of G is incident

to at least one vertex of C. The smallest number of vertices in a vertex cover of G is the

vertex covering number of G, denoted β(G). In a linear programming sense, this is the

dual problem to finding the independence number of G.

Theorem 2.5.2. β(G×H) = |G|β(H)

Proof. First we describe a lower bound. Since Cartesian edges can only be covered within

a horizontal fiber, we need at least β(H) vertices in every horizontal fiber to form a vertex

cover of G×H. So, β(G×H) ≥ |G|β(H). For the upper bound, consider the following

construction: copy the same minimum vertex cover of H in every horizontal fiber of the

product, using a total of |G|β(H) vertices. Figure 2.7 shows an example of this construction
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using the blue vertices. β(K3) = 2 and |P3| = 3, so β(P3×K3) = 6. If we can prove that

this construction is a vertex cover of the product, then this will provide an upper bound

matching the lower bound.

Let C be a minimum vertex cover of H and let C ′ be union of all the copies of C over

all horizontal fibers of the product. Since each horizontal fiber contains a vertex cover, all

Cartesian edges are covered. Let w be some vertex of G. Consider the horizontal fiber

{w} × V (H). For any direct product edge, e, incident with a vertex of {w} × V (H), there

are two possibilities: e is incident with a vertex of the form (w, x), x ∈ C or e is incident

with a vertex (w, y), y 6∈ C.

If e is incident with a vertex of the first kind, then e is covered by C ′ because x ∈ C,

so (w, x) ∈ C ′. If e is incident with a vertex of the second kind, then e is not covered by a

vertex of {w} × V (H). However, consider the other endpoint of e, (y, z), where y ∈ V (G)

and z ∈ H. yz is a copy of an edge of H and since yz is not covered by y, yz must be covered

by z. Hence, z ∈ C and (v, z) ∈ C ′. Therefore, e is covered by (v, z).

Since {w} × V (H) was an arbitrary horizontal fiber of H, we can conclude that the

diagonal edges edges associated with any horizontal fiber of G×H are covered. Hence, C ′

is indeed a vertex cover of G×H. Our upper and lower bounds match, so we conclude that

β(G×H) = |G|β(H).

An independent set of edges or a matching of G is a set of edges of G such that

no two share an endpoint. The maximum possible number of edges in such a set is the

edge independence number of G, denoted ν(G) or the matching number of G. The

matching number can also be denoted α′(G), but we use ν(G) to avoid confusion with the

independence number of G. A perfect matching or a 1-factor is a matching of G in which

every vertex of G is incident with an edge of the matching. An edge covering of G is a set

of edges of G such that every vertex of G is adjacent to an edge of the edge covering. The

edge covering number of G, denoted β′(G) is the minimum number of edges in an edge

cover of G.

Matchings in graph products have not been studied as extensively as independent sets.

Klavzar and Jha and Paulraja and Varadarajan have studied the matching number of the

direct product in [55] and [71], respectively. Perfect matchings in the Cartesian product have

been studied in [59]. Perfect matchings in the direct product of graphs are studied in [7].

Sufficient conditions on perfect matchings in the lexicographic product, direct product, and

even the semi-strong product are investigated in [74]. In a series of papers, Sitthiwirattham
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along with others has investigated matchings in the direct and strong products [79, 81,

82, 83]. Lindeberg and Hellmuth construct matchings in the Cartesian, direct, strong, and

lexicographic products in [63].

It is more difficult to determine the matching number of the semi-strong product than

the independence number. We do not have a formula for all graphs, but we can find the

matching number of the semi-strong product for some graph classes.

We use a lemma along with the König-Egerváry and König-Rado Theorems to determine

these parameters for the semi-strong product under certain circumstances. We will first

prove the following proposition:

Proposition 2.5.3. If I is an independent set of H, then we can stack |G| copies of I in

G×H to form an independent set, I ′, in the product.

Proof. Suppose v, w ∈ I ′. If v, w are in the same horizontal fiber of G×H, then they are

not adjacent because they correspond to an independent set of H. If v, w are in the same

vertical fiber but different horizontal fibers, then since this is a semi-strong product v and

w are not adjacent. If v and w are in different horizontal and vertical fibers, then the only

way v and w could be adjacent is by a direct product edge. But, since the projections of v

and w onto H are also not adjacent, v and w are not adjacent in the product.

In [31], it is stated that If H is bipartite, then G×H is bipartite. In fact, G×H is

bipartite if and only if H is bipartite. For the sake of completeness, we include a proof of

this fact.

Lemma 2.5.4. G×H is bipartite if and only if H is also bipartite.

Proof. We will first prove sufficiency. Assume H is bipartite. Then, we can split V (H) into

two sets X and Y such that every edge in H is incident with a vertex in X and a vertex in

Y . Another way to say this is that X and Y are such that X ∪ Y = V (H), X ∩ Y = ∅ and

both X and Y are independent sets of H.

V (G×H) = V (G)×V (H). Therefore, split up V (G×H) as follows: Let X ′ consist of the

union of all copies of X over each horizontal fiber of the product. Let Y ′ be defined likewise.

Then, by construction, X ′∪Y ′ = V (G×H) and X ′∩Y ′ = ∅. Further, by Proposition 2.5.3,

both X ′ and Y ′ are independent. Hence, G×H is bipartite.

Now, we will show that if G×H is bipartite, then H is bipartite using the contrapositive.

Assume that H is not bipartite. Then, H contains an odd cycle. Since every horizontal fiber

is a copy of H, G×H also contains an odd cycle. Hence, G×H is not bipartite.
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Theorem 2.5.5 (König-Egerváry Theorem). If G is a bipartite graph, then β(G) = ν(G).

Theorem 2.5.6. If H is bipartite, then ν(G×H) = |G|ν(H).

Proof. By Lemma 2.5.4, if H is bipartite, G×H is also bipartite. Since the product is bi-

partite, we can apply the König-Egerváry Theorem to conclude that ν(G×H) = β(G×H).

By Theorem 2.5.2, β(G×H) = |G|β(H). We can then apply the König-Egerváry Theorem

to H and conclude that |G|β(H) = |G|ν(H).

Consider a graph G and assign a number between 1 and 0 to every vertex of G such that

the sum of the endpoints over each edge of G is no more than 1. Such an assignment is called

a fractional independent set of G and the largest possible sum of vertex assignments for

a given G is known as the fractional independence number and denoted αf (G). A graph

is KE or König-Egerváry if α(G) + ν(G) = |G|. The significance of KE graphs is that such

graphs is the class of graphs for which the König-Egerváry Theorem is true. In general, the

following holds:

Theorem 2.5.7 (Gallai’s Theorem). For any graph, G, α(G) + β(G) = |G| and ν(G) +

β′(G) = |G|.

In addition, α(G) + ν(G) ≤ |G| for all G. Let M be a maximum matching of G and

I be a maximum independent set of G. We can include at most 1 vertex from each edge

of the matching in I. We can also possibly include all unmatched vertices in I. Thus,

α(G) ≤ ν(G) + |G| − 2ν(G), which implies that α(G) + ν(G) ≤ |G|. By Gallai’s Theorem

β(G) = |G| − α(G), so in general ν(G) ≤ |G| − α(G) = β(G). Hence, the graphs for which

ν(G) = β(G) are also the graphs for which α(G) + ν(G) = |G|. We know that all bipartite

graphs are KE, but the KE graphs also contain non-bipartite graphs. For instance, the

graphs consisting of an odd cycle with a single leaf are non-bipartite but are KE.

In 2012, Larson proved the following theorem characterizing KE graphs in terms of their

fractional independence numbers:

Theorem 2.5.8 (KE Characterization Theorem [60]). A graph G is KE if and only if α(G)

= αf (G).

Using the following lemma and the KE characterization theorem, we can determine the

fractional independence number for a particular class of semi-strong product graphs:
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Lemma 2.5.9. If H is bipartite, then G×H is KE.

Proof. By Theorem 2.5.1, α(G×H) = |G|α(H). If H is bipartite, then ν(G×H) =

|G|β(H). But then, α(G×H) + ν(G×H) = |G|α(H) + |G|β(H) = |G|(α(H) + β(H)).

By Gallai’s Theorem, α(H) + β(H) = |H|. Thus, |G|(α(H) + β(H)) = |G||H| = |G×H|.
Therefore, G×H is KE.

Corollary 2.5.10. If H is bipartite, αf (G×H) = |G|α(H).

Proof. By Lemma 2.5.9, G×H is KE, so by the KE characterization theorem, αf (G×H) =

α(G×H) = |G|α(H).

We now determine β′(G×H) when H is bipartite. First, we will prove the following

proposition:

Proposition 2.5.11. G×H has no isolated vertices if and only if H has no isolated vertices.

Proof. First, we will show that if the product has no isolated vertices, H also has no isolated

vertices. The proof will be by contrapositive. Assume H has an isolated vertex, x. Then,

any vertex in the product of the form (a, x) must also be isolated. Because x is isolated,

(a, x) is not joined to any other vertices by Cartesian edges. Further, since direct product

edges require a vertex to be adjacent to another in both components, (a, x) cannot be joined

to another vertex by direct product edges either.

Now, we will show the other direction, that if H has no isolated vertices, G×H has

no isolated vertices. If H has no isolated vertices, then every vertex of H has at least

one neighbor. Therefore, every vertex in the product has at least one neighbor in its own

horizontal fiber.

Lemma 2.5.12. If H is bipartite and has no isolated vertices, then G×H is also bipartite

with no isolated vertices.

Proof. Assume H is bipartite with no isolated vertices. By Lemma 2.5.4, G×H is also

bipartite. By Proposition 2.5.11, G×H also has no isolated vertices.

Theorem 2.5.13 (König-Rado Theorem). If G is a bipartite graph without isolated vertices,

then α(G) = β′(G).
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Theorem 2.5.14. If H is bipartite without isolated vertices, then β′(G×H) = |G|β′(H).

Proof. SupposeH is bipartite with no isolated vertices. Then, by Lemma 2.5.12 and Theorem

2.5.13, β′(G×H) = α(G×H). By Theorem 2.5.1, α(G×H) = |G|α(H). We then apply

the König-Rado Theorem to H to conclude |G|α(H) = |G|β′(H).

Earlier, we showed that ν(G×H) = |G|ν(H) when H is bipartite. In fact, |G|ν(G) is a

general lower bound for ν(G×H). We simply stack |G| copies of a maximum matching of H,

using only the Cartesian edges of H. This ensures that each matching is indeed a matching

within each horizontal fiber. Furthermore, since Cartesian edges are only contained within

a particular horizontal fiber of the product, the edges are independent between different

horizontal fibers. Hence, these |G| copies of a maximum matching of H form a matching of

G. We can encapsulate this observation in the following proposition:

Proposition 2.5.15. Suppose M is a matching of H. Let M ′ be the set of edges of G×H
consisting of |G| copies of M , in which each copy of M consists of the edges of a single

horizontal fiber of the product. Then, M ′ is a matching of G, containing |G|ν(H) edges.

As shown in Theorem 2.5.6, this lower bound is attained when H is bipartite. This lower

bound is also attained for the wider class of KE graphs:

Lemma 2.5.16. If H is KE, then G×H is KE

Proof. In general, α(G×H) + ν(G×H) ≤ |G||H|. Furthermore, ν(G×H) ≥ |G|ν(H), so

we have |G|α(H) + |G|ν(H) ≤ α(G×H) + ν(G×H). We can rewrite the left hand side of

the inequality as |G|(α(H) + ν(H)). But since H is KE, α(H) + ν(H) = |H|, which yields

|G||H| ≤ α(G×H) + ν(G×H) ≤ |G||H|

Hence, G×H is KE.

Theorem 2.5.17. If H is KE, then ν(G×H) = |G|ν(H)

Proof. By Lemma 2.5.16, G×H is KE, so α(G×H) + ν(G×H) = |G||H|. This implies

that |G|α(H) + ν(G×H) = |G||H|, which yields ν(G×H) = |G|(|H| − α(H)). But we

assumed that H is KE, so |H| − α(H) = ν(H) and therefore, ν(G×H) = |G|ν(H).

This condition is not necessary, i.e., there exist non-KE graphs, H for which ν(G×H) =

|G|ν(H). For instance, K4 is not KE: ν(K4) + α(K4) = 2 + 1 = 3 < 4. However, since
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K4 contains a perfect matching, we can simply copy this perfect matching in the Cartesian

edges of G×K4 to make a perfect matching, M , in G×K4. Since M is perfect, M must be

maximum and hence ν(G×K4) = |G|ν(K4).

We can extend this example to the following theorem:

Theorem 2.5.18. If H has a perfect matching, then G×H also contains a perfect matching.

Proof. By Proposition 2.5.15, we can stack a perfect matchings of H in each horizontal fiber

to form a matching, M , in the product. This matching contains |G|ν(H) = |G||H|
2

edges.

Hence, M is a perfect matching of G×H.

2.6 Domination

A dominating set, D, of G is a subset of V (G) where every vertex of G is either

contained in D or is adjacent to a vertex in D. The domination number of G, denoted

γ(G) is the cardinality of a minimum dominating set of G. A total dominating set, T ,

of G is a subset of V (G) where ever vertex of G is adjacent to a vertex in T . The total

domination number of G, denoted γt(G) is the cardinality of a minimum total dominating

set of G. In this section, we investigate the domination number of some semi-strong product

graphs. We determine the domination number of the semi-strong product of a complete

graph with a connected graph, a complete bipartite graph with a connected graph, and

a cycle or a path with a connected graph. We also prove a general upper bound for the

domination number of the semi-strong product.

Both domination and total domination in graph products have been extensively studied.

Vizing conjectured in [87] that for all simple graphs G and H, γ(G)γ(H) ≤ γ(G�H).

Vizing’s conjecture has been the subject of much research. An overview is provided in [40].

Research has also been undertaken on the domination number of specific product graph

classes. Chang studied the domination number of the Cartesian product of paths in his

dissertation in 1992 [23]. This is a challenging problem and was not completely solved until

2011 [33]. Some other classes of graphs that have been studied are products of cycles and

trees. The domination number of Cartesian products of cycles, paths, and trees were studied

by Jacobson and Kinch in [47, 48].

Domination in the direct product of paths was studied by Gravier et. al. in 1995 [25]. The

domination number of the strong product of paths was found by Nowakowski and Rall [65].

For the strong product, the opposite of Vizing’s conjecutre holds, i.e., γ(G�H) ≤ γ(G)γ(H)
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[29]. A fractional dominating set is an assignment of a rational number from 0 to 1 to each

vertex of a graph such that the total sum over each closed neighborhood is at least 1. The

minimum possible sum over all vertices of a fractional dominating set is called the fractional

domination number and denoted γf (G). In [30], it is shown that γf (G�H) = γf (G)γf (H)

and that Vizing’s conjecture holds for the fractional domination number of the Cartesian

product, i.e., γf (G�H) ≥ γf (G)γf (H).

We start our research on domination by finding the domination number of the semi-strong

product of two complete graphs:

Proposition 2.6.1. γ(Kn×Km) = 2 unless n = 1 or m = 1. If n = 1, Kn×Km = Km,

hence γ(Kn×Km) = γ(Km) = 1. If m = 1, the graph is a collection of n isolated vertices

and γ = n.

Proof. The cases where n = 1 or m = 1 were dealt with in the statement of the theorem.

Suppose n ≥ 2, m ≥ 2. In the semistrong product of two complete graphs, every vertex is

adjacent to every other vertex in the graph except those in the same vertical fiber. So we

may select any vertex, v, to be in the dominating set, D. Then, v dominates every vertex in

the graph except those vertices in the same vertical fiber. Since n ≥ 2, there is at least one

vertex in the same vertical fiber as v. Thus, γ(Kn×Km) ≥ 2. Next, select any vertex, u in

the same horizontal fiber as v. Since m ≥ 2, there is at least one additional vertex in this

fiber. u dominates all vertices in the graph except those in contained in the vertical fiber of u.

Which means that, in particular, u dominates those vertices in the vertical fiber containing

v. Since we have shown a lower bound and a matching upper bound, γ(Kn×Km) = 2 when

n ≥ 2, m ≥ 2.

Figure 2.8 depicts a dominating set of K3×K3. Envision the dotted edges as wrapping

around behind the figure and connecting to the dotted edges in the same row or diagonal.

We see that the leftmost black vertex in the product does not dominate the two red vertices

above and below but does dominate every other vertex in the graph. Once we add one

more vertex into the dominating set, every vertex in the product is dominated by these two

vertices.
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Figure 2.8: A dominating set of K3×K3

Observe that the dominating sets constructed in the proof of Theorem 2.6.1 are in the

same horizontal fiber. Since each horizontal fiber of Kn×Km is a copy of a complete graph,

the two vertices in these dominating sets are adjacent, so they also form a total dominating

set. A total dominating set needs at least two vertices, so these vertices must also form

a minimum total dominating set of Kn×Km and we can conclude that γt(Kn×Km) = 2

when n,m ≥ 2. When m = 1, Kn×Km is a collection of isolated vertices, for which it is

impossible to find a total dominating set. When n = 1, Kn×Km = Km, so in that case

γt(Kn×Km) = γt(Km) = 2.

In general, if we can find a minimum dominating set of a graph that is also a total

dominating set, then the domination number of that graph equals the total domination

number:

Proposition 2.6.2. If G is a graph with a minimum dominating set, T , such that T is also

a total dominating set of G, then γt(G) = γ(G).

Proof. A minimum dominating set of a graph, G, is the minimum over all dominating sets of

G. Since a total dominating set of G is also a dominating set of G, γ(G) ≤ γt(G). Suppose

we can find a total dominating set, T , where |T | = γ(G). Since T is a total dominating set,

we know that γt(G) ≤ |T |. Hence, γt(G) ≤ γ(G) and therefore, γt(G) = |T | = γ(G).

Observe that the dominating set of K3×K3 in Figure 2.8 is the Cartesian product of a

dominating set of K3 and a total dominating set of K3. In general, the Cartesian product of

a dominating set of G and a total dominating set of H produces a dominating set for G×H.

This provides an upper bound on the domination number of the semi-strong product of

graphs:

Theorem 2.6.3. If |H| ≥ 2 and H contains no isolated vertices, then γ(G×H) ≤ γ(G)γt(H).
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Proof. Let A be a minimum dominating set of G and B be a minimum total dominating

set of H. (Note that we need H to have no isolated vertices because a graph with isolated

vertices cannot contain a total dominating set). Consider D = A×B ⊆ V (G×H). Suppose

(g, h) ∈ V (G×H), g1 dominates g in G, and h1 dominates h in H. If g1 6= g and h1 6= h,

(g1, h1) ∼ (g, h) by a direct product edge, so (g1, h1) dominates (g, h). If g1 = g, h1 6= h, then

(g1, h1) is adjacent to (g1, h) = (g, h) by a Cartesian product edge and so (g1, h1) dominates

(g, h). If g1 6= g and h = h1, then (g1, h1) does not dominate (g, h) because (g1, h1) is in the

vertical fiber above (g, h). However, since B is a total dominating set, there is some vertex

h2 such that h2 dominates h1 in H. Then, (g1, h2) dominates (g, h1) = (g, h) via a direct

product edge. These are all the possible cases, so we can see that D is indeed a dominating

set of G×H. Therefore, γ(G×H) ≤ |D| = |A||B| = γ(G)γt(H).

Not only does the Cartesian product of a dominating set of G and a total dominating

set of H form a dominating set of G×H, it also forms a total dominating set of G×H.

This is because each horizontal fiber contains a total dominating set of H, so each vertex

of the dominating set is dominated within its own horizontal fiber. By Proposition 2.6.2, if

γ(G×H) = γ(G)γt(H), then γt(G) = γ(G)γt(H):

Corollary 2.6.4. If |H| ≥ 2, H contains no isolated vertices, and γ(G×H) = γ(G)γt(H),

then γt(G×H) = γ(G×H) = γ(G)γt(H).

We now determine the domination number of the semi-strong product of a complete

graph and an arbitrary connected graph:

Theorem 2.6.5. If H is connected, γ(Kn×H) = γt(Kn×H) = γt(H), unless n = 1 or

H = K1. We have already dealt with the case where H = K1 above. If n = 1, then

Kn×H = H and the domination number of the product is γ(H).

Proof. By Theorem 2.6.3, γ(Kn×H) ≤ γ(Kn)γt(H) = γt(H). Suppose D is a minimum

dominating set of Kn×H. Since there is at least one horizontal fiber in Kn×H, any

dominating set must have at least γ(H) vertices (because every horizontal fiber is a copy of

H). Since n ≥ 2, for any v ∈ D, there exists a vertex, x, in the same vertical fiber as v,

which v does not dominate. Hence, there must be some vertex u ∈ D such that u dominates

x. But then, each vertex in D has a vertex in its strong neighborhood which is dominated

by at least one other vertex. Thus, there are no isolated strong neighborhoods of vertices in

D, and |D| ≥ γt(H).
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In addition, there is a total dominating set of Kn×H with γ(Kn×H) vertices, namely

the set formed by placing a total dominating set of H in a single horizontal fiber. Hence,

γt(Kn×H) = γ(Kn×H) = γt(H).

γ(Kn×H) is equal to the bound of Theorem 2.6.3, but this is not true for G×Km. In

general, it is not true that γ(G×Km) = γ(G)γt(Km) = 2γ(G). Figure 2.9 provides a coun-

terexample. In this figure the dotted edges represent cycles that join the leftmost vertex

in each row to the rightmost vertex in each row. The domination number of P4 is 2, so

2γ(P4) = 4, but we can dominate P4×K3 with 3 vertices.

Figure 2.9: A dominating set of P4×K3

In fact, this type of construction works in general. Suppose G is a graph with a minimum

dominating set D. Further suppose that there is a vertex v ∈ D such that D\{v} dominates

V (G)\{v}. Then, if H is a graph without isolated vertices, we can dominate G×H with less

than γ(G)γt(H) vertices as follows: Let T be a minimum total dominating set of H. Then,

by Theorem 2.6.3 we use (D \{v})×T to dominate all vertices of the product except for the

horizontal fiber {v} × V (H). Since we have only a single horizontal fiber remaining, we can

dominate it with γ(H) vertices. Hence, γ(G×H) < γ(G)γt(H). If there are multiple vertices

of a minimum dominating set with this property, then we can follow the same construction

and dominate G×H with even fewer vertices.

There is also another way that we can dominate the semi-strong product with fewer than

γ(G)γt(H) vertices. Consider the graph Q in Figure 2.10. The domination number of Q is

3 and the filled vertices provide a minimum dominating set of Q. Consider Q×P3. Since

γt(P3) = 2, γ(Q)γt(P3) yields 6 as an upper bound. However, we can dominate this product

with only 4 vertices. Depicting the entire product would be messy, so I have instead decided

to show only some subgraphs of the product. There are 3|Q| = 24 vertices in all, and each
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vertex occurs in exactly one of N [x], N [y] or N [z]. Observe that the black vertex N [x]×P3

dominates all of this subgraph except for the two blue vertices and, likewise, the black vertex

in N [y]×P3 dominates all of this subgraph except the two blue vertices. Similarly, we can

dominate all of the vertices in N [z]×P3 except the blue vertex with the black vertex in

the upper path. The black vertex in the lower path of N [z]×P3 dominates all of the blue

vertices. It dominates the blue vertex in its same horizontal fiber with Cartesian product

edges and dominates the other four with direct product edges.

Q

v

x y

z

N [x]×P3 N [y]×P3

N [z]×P3

Figure 2.10: Dominating Q×P3 with fewer than γ(Q)γt(P3) vertices

We can use this method in general to dominate Q×H, where H is any connected graph.

In this case, we use 3γ(H) vertices for the horizontal fibers corresponding to x, y and z.

Then, we use γt(H) − γ(H) vertices in the horizontal fiber corresponding to v to dominate

the remaining vertices. Altogether, we use 3γ(H) + γt(H)− γ(H) = 2γ(H) + γt(H), which

is always less than or equal to 3γt(H) = γ(Q)γt(H).

After considering an upper bound for the domination number of the semi-strong product,

we now consider the problem of finding a lower bound. It would seem reasonable to conjecture

a Vizing-like bound for the semi-strong product, i.e., γ(G×H) ≥ γ(G)γ(H). When G =

nK1, G×H is n copies of H, so γ(G×H) = |G|γ(H) = γ(G)γ(H). This situation is shown

in Figure 2.11.
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G

H

γ(H)

γ(H)

γ(H)

Figure 2.11: G×H when G is nK1

In addition, we have the following proposition:

Proposition 2.6.6. If S is the set of horizontal fibers which contain dominating vertices in

some dominating set, D, of G×H, then S must contain at least γ(G) fibers.

Proof. Let S be as described in the statement of the proposition. Let C be the vertices of

G corresponding to horizontal fibers of S.

Claim: C must be a dominating set of G. A horizontal fiber {v} ×H of G×H can only

be dominated by a horizontal fiber {w}×H where either w = v or w is a vertex adjacent to

v in G. Hence, if C was not a dominating set of G, then some horizontal fiber of the product

would be undominated by any horizontal fiber of S. But then D would not be a dominating

set of G×H, contradiction. But if C is a dominating set of G, then |C| ≥ γ(G), hence S

contains at least γ(G) horizontal fibers.

In 1995, Gravier and Khelladi conjectured that a Vizing bound holds for the direct

product of graphs, i.e., γ(G×H) ≥ γ(G)γ(H) in [35]. This conjecture was shown to be false

by Nowakowski and Rall in [65]. Nowakowski and Rall showed that the octahedral graph,

which is also K2,2,2, provides a counterexample as γ(K2,2,2) = 2, but γ(K2,2,2 ×K2,2,2) = 3.

The octahedral graph is also K6 with a perfect matching removed and in [76], Rall states

that for n ≥ 6, the direct product of Kn with a perfect matching removed with itself falls

below the Vizing bound. In [57], Klavžar and, Zmazek provide a family of graphs, Gk, such

that for any k ≥ 0, γ(Gk ×Gk)γ(Gk)γ(Gk)− k.

These results for the direct product are significant for the semi-strong product as well

because E(G × H) ⊆ E(G×H). Dominating the semi-strong product can only be easier

than dominating the direct product, so γ(G×H) ≤ γ(G × H). Which means that the

Vizing-like bound also fails for the semi-strong product and in fact all of these results hold

for the semi-strong product as well. For instance, γ(K2,2,2×K2,2,2) is also equal to 3.
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Now, we investigate the domination number of the semi-strong product of complete

bipartite graphs. We begin with stars.

Theorem 2.6.7. If G is a star other than K1 and H is a connected graph with no isolated

vertices, then γ(G×H) = γt(H).

Proof. γ(K1,t) = 1. By Theorem 2.6.3, γ(G×H) ≤ γt(H). The lower bound follows the

same argument as in the determination of γ(Kn×H). Hence the domination number of the

product is γt(H). Furthermore, by Corollary 2.6.4, γt(G×H) = γ(G×H) = γt(H).

Observe that the upper bound of Theorem 2.6.3 and the lower bound argument given in

Theorem 2.6.7 apply to any semi-strong product G×H, where G is a graph with |G| ≥ 2 and

a vertex v such that v dominates all of G and H contains no isolated vertices. Furthermore,

Corollary 2.6.4 also applies. So, we have the following theorem:

Theorem 2.6.8. Suppose G is a graph such that |G| ≥ 2 and G contains a vertex v such that

v dominates all of G. Then, if H is a connected graph with no isolated vertices, γt(G×H) =

γ(G×H) = γ(G)γt(H) = γt(H).

Now, we consider complete bipartite graphs other than stars, i.e., complete bipartite

graphs of the form Ks,t where s, t ≥ 2. For these graphs, because drawing the full product is

very messy, it is convenient to think about the graphs in a different way. The only way for one

horizontal fiber to dominate another in the semi-strong product is with the direct product

edges. These are determined by the adjacencies of both G (the vertical graph) and H (the

horizontal graph whose edges are included as the Cartesian edges), but in particular, if there

are no edges between vertices of G, then there will be no edges between the corresponding

horizontal fibers of the product. So, one way to investigate products with more edges is to

draw G and associate each vertex of G with a horizontal fiber of H. Then, next to each

vertex of G, we can write how many dominating vertices are in the associated horizontal

fiber in the product. An example is shown in Figure 2.12.

In the semi-strong product of a complete bipartite graph, Ks,t, we will denote the partite

sets by A and B, with A being the set with fewer vertices. Likewise, we will use these letters

to denote the corresponding two sets of horizontal fibers in the product. One set contains s

copies of H and the other contains t copies of H. Technically this is an abuse of notation,

but it will be clear from the context because we are only concerned with dominating the

product.

The following proposition will be useful in determining the domination number of the

semi-strong product of a complete bipartite graph with a connected graph:
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Proposition 2.6.9. For any graph H, γt(H) ≤ 2γ(H) and this bound is sharp.

Proof. Suppose D is a dominating set of H. To form a total dominating set D′ from D, at

most, we need to dominate each vertex of D with one other vertex. Thus, D′ requires no

more than twice as many vertices as D. Equality is achieved for complete graphs Kn, n ≥ 2,

where γ(Kn) = 1 and γt(Kn) = 2.

Before stating any theorems, we will first discuss some general considerations about

dominating the semi-strong product of the complete bipartite graph. Consider the product

graph Ks,t×H (where s, t ≥ 2 and let A and B be the partite sets of horizontal fibers, as

described above. There are two ways to dominate any horizontal fiber: either from within

its partite set or from outside its partite set. If we dominate from within the partite set,

we must dominate each horizontal fiber separately. While if we dominate from outside the

partite set, we can dominate multiple horizontal fibers at once. To dominate any horizontal

fiber from within requires at least γ(H) vertices, while to dominate a horizontal fiber entirely

from outside requires at least γt(H) vertices.

If either A or B contains at least two horizontal fibers, then the most efficient way to

dominate these horizontal fibers is from outside because γt(H) ≤ 2γ(H). It is also possible

that some horizontal fibers are dominated from both within and without, but since the above

inequality holds for any subset of V (H), the most efficient method is still to dominate from

outside.

Once we have dominated one partite set of horizontal fibers, it now remains for us to

dominate the remaining partite set. Without loss of generality, let |A| ≤ |B|. It is always

more efficient to place the γt(H) vertices in the smaller of the two partite sets because these

vertices then dominate more horizontal fibers. Figure 2.12 provides an example using the

graph K2,3×H. The rectangles represent horizontal fibers. If we dominate B from A, only

one more fiber remains to be dominated, while if we dominate A from B, two fibers remain

to be dominated.

γt(H)

A

B

Figure 2.12: Dominating K2,3×H
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It is important to note that because γ(H) ≤ γt(H) ≤ 2γ(H), the γt(H) vertices in A

are sufficient to dominate at least one fiber and possibly two. In Figure 2.12, the black fiber

dominates the three blue fibers in B, while the red fiber in A remains undominated. Since

we want a lower bound, assume that the γt(H) vertices in A are sufficient to dominate two

horizontal fibers. If we dominate the remaining horizontal fibers in A from within A, then we

need at least (|A|−2)γ(H) dominating vertices. To dominate these remaining fibers from B

requires γt(H) vertices, so we can only guarantee that it is more efficient to dominate from

B if (|A| − 2)γ(H) ≥ 2γ(H), which implies that |A| ≥ 4. Since we assumed that |A| ≤ |B|,
the above reasoning gives the following:

Theorem 2.6.10. γ(Ks,t×H) = 2γt(H) if s, t ≥ 4

Proof. We have just shown that 2γt(H) is both a lower and upper bound for the domination

number of Ks,t×H, so 2γt(H) is the domination number of the product. Furthermore, if we

dominate one horizontal fiber in A and one horizontal fiber in B with a total dominating set,

then our minimum dominating set is also a total dominating set, so by Proposition 2.6.2,

γt(Ks,t×H) = 2γt(H).

Theorem 2.6.11. Suppose G is a complete bipartite graph of the form K2,t, t ≥ 2. Then,

2γ(H) ≤ γ(G×H) ≤ γt(H) + γ(H). Furthermore, both the upper and lower bounds are

sharp.

Proof. We make the assumption that t ≥ 2 because if not, then G would be a star. In

graphs of the form K2,t, no matter which vertices we choose in a dominating set, at least

two vertices must be dominated separately. In other words, unlike stars, no single vertex can

dominate the entire graph. Hence, we must dominate at least two horizontal fibers separately

in the product; we must place dominating vertices in at least two horizontal fibers. Since a

horizontal fiber cannot be dominated with less than γ(H) vertices, we need at least 2γ(H)

vertices to dominate the product.

This lower bound is attained when we have graphs where either a minimum dominating

set is also a minimum total dominating set or H is such that the union of two minimum

dominating sets forms a total dominating set. An example of this scenario is K2,t×K3.

The upper bound is attained as follows. We place all dominating vetices in A. Next,

we dominate one copy of H with a minimum total dominating set. This then dominates

that copy of H as well as all copies of H in B. Lastly, we dominate the other copy of H

in A with γ(H) vertices. Figure 2.13 is a diagram of both situations (the lower and upper
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bound), with K2,2×H where the labels to the left and right of the filled vertices show how

many vertices we are using to dominate each horizontal fiber.

It is possible to dominate a product using a number of vertices between 2γ(H) and

γt(H) + γ(H). This is the case when H is such that the minimum dominating set of a

subset of V (H) is either a minimum total dominting set or is the union of two minimum

total dominating sets. An example is K2,2× (K3 + P5). In this case 2γ(K3 + P5) = 6 and

γt(K3 + P5) + γ(K3 + P5) = 8. However, if we dominate each of the K3’s in A with differ-

ent vertices, then the union of these minimum dominating sets is a total dominating set of

K3. Further, if we dominate one P5 with a total dominating set (needed for the copies of P5

in B) and the other with a minimum dominating set, then we use 1 + 3 + 1 + 2 = 7 vertices.

If H is such that no total dominating set of H is a union of minimum total dominating

sets, then we cannot spread a total dominating set among two graphs: it must be contained

within a single graph. In that case, the upper bound is also a lower bound and in this case,

the domination number of the product must be γt(H) + γ(H).

γ(H) γ(H) γt(H) γ(H)

Figure 2.13: Dominating K2,2×H

Theorem 2.6.12. Suppose G is a graph of the form K3,t, t ≥ 3.

Then, 3γ(H) ≤ γ(G×H) ≤ 2γt(H) and these bounds are sharp.

Proof. By the reasoning proceeding Theorem 2.6.10, since |B| = t ≥ 3, a minimum dominat-

ing set of the product dominates B entirely from outside. (Another way to say this is that

using a minimum total dominating set contained in A to dominate every horizontal fiber in

B is the most efficient “first move” in dominating the product). Since γt(H) ≤ 2γ(H), we

know that at most 2 horizontal fibers are dominated in A, so we need at least γ(H) more

vertices to dominate every horizontal fiber in A. K3,t×K3 attains this bound. We choose a

different vertex to dominate each copy of K3 in A. Then, the union of these three minimum

dominating sets forms a total dominating set of K3, so B is also dominated. In general, a

sufficient condition for the lower bound occurs when a minimum dominating set of H is also

a total dominating set of H or there are either two or three minimum dominating sets of H

whose union is a total dominating set of H.
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The upper bound occurs because the combination of a minimum total dominating set

in one horizontal fiber of A and another in one horizontal fiber of B dominates all of the

product. As before, it is also possible that we can dominate the product with a number of

vertices between these bounds. Consider K3,3× (2K3 + P5). 3γ(2K3 + P5) = 3(2 + 2) = 12.

2γt(2K3 + P5) = 2(4 + 3) = 14. However, it is only necessary to dominate one of the P5’s

with a total dominating set and we can also dominate two of the K3’s with different vertices

(spreading the total dominating set across two graphs). Then, we use a total of 13 vertices. A

sufficient condition for this is when some subset, S, of V (H) is such that a total dominating

set of S can be formed from either one or the union of two, or three minimum dominating

sets of H.

Next, we consider the domination number of the semi-strong product of paths and cycles,

i.e., Pn×H and Cn×H. There are three cases, based on whether n is congruent to 0, 1, or

2 (mod 3).

Before beginning these theorems, consider dominating a graph G, not necessarily a prod-

uct. An upper bound for the domination number of G is the order of G, |G|, since every

vertex can dominate itself. One way to think of a minimum dominating set is as a domi-

nating set D of G where |G| − |D| is as large as possible, in other words, where we reduce

the upper bound by as much as possible while still dominating G. We will use this idea in

proving lower bounds for these products.

Theorem 2.6.13. If n ≡ 0 (mod 3), then γ(Pn×H) = γ(Cn×H) = n
3
γt(H)

Proof. For the upper bound, partition the vertex set of Pn and Cn into sets of three con-

secutive vertices. Then, select the middle vertex of each of these sets and dominate the

corresponding horizontal fibers with a minimum total dominating set. A diagram is shown

in Figure 2.14. An example of the full product graph is shown in Figures 2.15 and 2.17.

Another possible upper bound is to dominate every horizontal fiber with a separate

minimum dominating set, which will require |G|γ(H) vertices. A minimum dominating set

of G×H is a dominating set of G×H, |D|, in which the difference between |G|γ(H) and

|D| is as large as possible.

Consider all horizontal fibers of the product associated with vertices of maximum degree

in G, vertices of degree ∆(G). If we can dominate any such horizontal fiber with a minimum

total dominating set, then this will reduce |G|γ(H) by the greatest amount possible. This

is because we reduce |G|γ(H) by (∆(G) + 1) − γt(H). We could also dominate any of

these horizontal fibers internally or dominate them partially inside or partially outside, but
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neither option will reduce the upper bound by more than the method of using a minimum

total dominating set to dominate the entire fiber neighborhood.

Furthermore, if it is possible to dominate every horizontal fiber of G×H in this way and

in such a way that each horizontal fiber is dominated by one and only one minimum total

dominating set (no overlap among horizontal fiber neighborhoods), then we can be certain

that this is a minimum dominating set of G×H. This is because each step of domination

was the best possible and there was no overlap between steps, so at the end of this process,

we have reduced |G|γ(H) by as much as possible. But the method of domination described

in the upper bound is exactly this same process.

Since there are n/3 middle horizontal fibers, the domination number is n
3
γt(H). Also

observe that this method produces a total dominating set of G×H, so by Proposition 2.6.2

γt(G×H) = γ(G×H) = n
3
γt(H).

Theorem 2.6.14. If n ≡ 2 (mod 3), then γ(Pn×H) = γ(Cn×H) = n+1
3
γt(H).

Proof. The upper bound is similar to Theorem 2.6.13. In this case, we partition the vertices

of Pn and Cn into as many sets of three consecutive vertices as possible, either from bottom

to top or top to bottom. However, in this case we will have a set of two consecutive vertices

left over. As before, we dominate the horizontal fibers associated with the sets of three

consecutive vertices by dominating the middle fiber with a minimum total dominating set.

Then, we dominate either of the remaining horizontal fibers with a minimum total dominat-

ing set. This will dominate both horizontal fibers and so the entire graph is now dominated.

A diagram is shown in Figure 2.14, while an example of the full product is shown in Figures

2.15 and 2.17.

For the lower bound, we first dominate a sequence of horizontal fibers associated with

vertices of ∆(G) with minimum total dominating sets such that no horizontal fiber is domi-

nated more than once by a minimum total dominating set. Since each of these dominations

reduces |G|γ(H) by the largest amount possible and there is no overlap, if we can dominate

whatever remains after a sequence of such dominations in the most efficient way possible,

then we will have found a minimum dominating set.

In this case, what remains is K2×H. The most efficient way to dominate this graph

(by Theorem 2.6.5) is by dominating one of the horizontal fibers with a minimum total

dominating set. But now, we have used n+1
3

minimum total dominating sets, so γ(G×H) =
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n+1
3
γt(H). As described in the upper bound, this is also a total dominating set of the product,

so γt(G×H) = γ(G×H).

Theorem 2.6.15. If n ≡ 1 (mod 3), then γ(Pn×H) = γ(Cn×H) = n−1
3
γt(H) + γ(H)

Proof. The upper bound is found in the same way as the previous two cases. We partition

the vertices of G into as many sets of three consecutive vertices as possible. In this case, we

will have a single vertex left over. We then dominate the horizontal fibers corresponding to

these sets of three vertices in the same way (using a minimum total dominating set). Next,

we dominate the last horizontal fiber with a minimum dominating set of H, which uses γ(H)

vertices. A diagram is shown in Figure 2.14, while an example of a dominating set using the

full product is shown in Figures 2.16 and 2.18.

The lower bound is found in the same way. Dominating the sets of three consecutive

horizontal fibers in this way is the most efficient way to reduce |G|γ(H) and after doing this,

we are left with a single horizontal fiber. To dominate a single horizontal fiber, we cannot

use less than γ(H) vertices. Hence, we have chosen the most efficient option at each step, so

the final result must also be the most efficient. We used n−1
3

minimum total dominating sets

H and one minimum dominating set, so in total, we have used n−1
3
γt(H) + γ(H) vertices. In

this case, the dominating set is not a total dominating set because the single horizontal fiber

is not totally dominated, so the total domination number in this case is yet to be found.

γt(H)

γt(H)

γt(H)

γt(H)

γt(H)

γt(H)

γt(H)

γt(H)

γt(H)

γ(H)

γt(H)

γ(H)

0 (mod 3) 2 (mod 3) 1 (mod 3)

Figure 2.14: Dominating the semi-strong product of paths and cycles
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Figure 2.15: Dominating sets of P6×P5 and P8×P5, respectively

Figure 2.16: A dominating set of P7×P5
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Figure 2.17: P6×P5 and P8×P5 with the edges connecting the subgraphs of the partition
removed

Figure 2.18: P7×P5 with the edges connecting the subgraphs of the partition removed

2.6.1 Chessboard Problems and Product Domination

The above theorems on the domination number of the semi-strong product of a path

with a path is related to a well-known chessboard problem. Consider an n×m chessboard.

We want to determine the minimum number of kings so that every square of the chessboard

either contains a king or is attacked by a king. Since a king can attack any square one

space away, either vertically, horizontally, or diagonally, this is equivalent to the domination
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number of the strong product of paths, i.e., γ(Pn�Pm). In [65], Nowakowski and Rall proved

that if T is a tree, then γ(T �H) = γ(T )γ(H), which implies the following:

Theorem 2.6.16. γ(Pn×Pm) = dn/3edm/3e

Proof. For the upper bound, we partition the horizontal fibers (from top to bottom or bottom

to top) into as many copies of P3 � Pm as possible. Then, dominate the middle horizontal

fiber of each path by selecting the center vertex of every three consecutive vertices. If m ≡ 0

(mod 3), nothing will be left over, but if n ≡ 1 or 2 (mod 3), then select any of the remaining

two or one vertices as a dominating vertex. An example of this, dominating P7 � P5 and an

example of the partitions is shown in Figure 2.19.

If n ≡ 0 (mod 3), then the entire product can be partitioned into copies of P3 � Pm. If

not, then what remains is either P2�Pm or Pm. If P2�Pm, then dominate either the upper

or lower path in the same way as the middle paths of the P3 � Pm. If Pm, then dominate

with a minimum dominating set of Pm.

For the lower bound, note that to dominate the product, we must cover a distance of

n vertically and m horizontally. Since each dominating vertex in the product can cover at

most distance 3 either horizontally or vertically, we need at least dn/3e vertices to cover the

vertical distance (n/3 for every set of 3 consecutive vertices and the ceiling is for any left over

if n is not divisible by 3). Likewise, we need at least dm/3e to cover the horizontal distance.

Since we need to cover both at the same time, we need at least the product of these two

numbers. But this is how many we used in the upper bound, hence the domination number

is in fact, dn/3edm/3e.
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Figure 2.19: A minimum dominating set of P7 � P5

8 0j0ZkZ0j
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 ZkZ0j0Zk
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0j0ZkZ0j
1 Z0Z0Z0Z0

a b c d e f g h

Figure 2.20: A minimum king dominating set of an 8× 8 chessboard

Figure 2.20 shows an example of a minimum number of kings placed on a regular 8× 8

chessboard. Comparing Figures 2.19 and 2.20, we can see that the strong product of paths

does indeed correspond to the King’s graph, the graph corresponding to the n×m chessboard

where two vertices u, v are adjacent if a king on u can attack v or vice versa.

Indeed, the above reasoning about the strong product also applies to the k-fold strong

product of paths, which would correspond to a k-dimensional chessboard where a king can

attack any square which is a unit distance away in any of the k-dimensions.

Theorem 2.6.17. γ(Pn1 � Pn2 � ...� Pnk
) = dn1/3edn2/3e...dnk/3e
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Proof. The upper bound is the same. For the 3 dimensional case, imagine n3 copies of

Pn1 � Pn2 connected according to the strong product edges. Then, dominate the middle

copy of every set of consecutive Pn1 � Pn2 ’s as determined in Theorem 2.6.16 and this will

dominate the two on either side. If we continue this process, we can see by induction, that

this method will dominate the k-fold product.

For the lower bound, we need to cover nd distance in every dimension d. The most a

vertex can cover in any dimension is nd/3 and we need to cover them all at the same time,

so we need at least dn1/3edn2/3e...dnk/3e vertices. The upper and lower bounds match, so

this is the domination number.

The connection between chess and the semi-strong product is because we can envision

the semi-strong product of paths as a chessboard problem. Consider a piece that can attack

every square a king can attack except for the square directly above and below. We might

call such a piece a “prince.” As with the king, we can ask, what is the minimum number of

princes needed so that every square of an n×m chessboard either contains or is attacked by a

prince. This problem is equivalent to determining the domination number of the semi-strong

product of paths. The corresponding problem for two cycles is equivalent to determining the

number of princes needed to dominate an n×m chessboard imbedded on a torus.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0j0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 2.21: The squares dominated by a “prince” on a regular chessboard

Using the above theorems about the semi-strong product of paths with any graph H, we

can find formulas in terms of the domination and total domination numbers of Pn and Pm:

Theorem 2.6.18. If n ≡ 0, 2 (mod 3), then γ(Pn×Pm) = γ(Pn)γt(Pm).
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Theorem 2.6.19. If n ≡ 1 (mod 3), then γ(Pn×Pm) = γ(Pn−1)γt(Pm) + γ(Pm).
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Chapter 3

Bootstrap Percolation

A natural research problem in bootstrap percolation is finding the cardinality of a min-

imum r-percolating set for a particular class of graphs. The cardinality of a minimum

percolating set for a graph G is denoted m(G, r). In this chapter, we find a sufficient condi-

tion for when m(G, r) = r for a specific class of Kneser graphs and bipartite Kneser graphs.

We begin by giving some background on earlier research into minimum percolating sets.

One class of graphs which has been actively studied is the d-dimensional square lattice,

denoted [n]d. This graph is a product graph: it is the dth Cartesian power of Pn, i.e.,

�d
i=1Pn,i. Balogh and Pete sketch a proof that m([n]d, d) = nd−1 [14]. Przykucki and Shelton

provide a more detailed proof of this result [75]. Balogh, Bollobás, and Morris proved that

m([n]d, 2) =
⌈
d(n−1)

2

⌉
[12]. Morrison and Noel investigated the minimum size of a percolating

set in the hypercube, demonstrating that m([2]d, 3) =
⌈
d(d+3)

6

⌉
+ 1 [64]. They also proved

that if r is fixed and d → ∞, then m([2]d, r) = 1+o(1)
r

(
d
r−1

)
. Hambardzumyan, Hatami, and

Qian gave a simplified proof of this result [39].

Coja-Oghlan, Feige, and Krivelevich investigated m(G, r) for d-regular graphs in terms

of girth and the second-largest eigenvalue [27]. Riedl established bounds for percolating sets

in trees while Beeler, Keaton, and Norwood extended this line of investigation [16, 77].

Coehlo et. al. investigated m(G, 2) for the lexicographic, Cartesian, and strong products

[26]. Coelho et. al. used different terminology: they framed this problem in terms of of

the P3 hull number. When S ⊆ V (G), the P3-interval I[S] is S along with every vertex of

G which contains at least 2 neighbors in S. We can recursively define Ip[S] to be Ip−1[S]

together with every vertex outside Ip−1[S] with at least two neighbors in Ip−1[S]. The P3-

convex hull of S, denoted H(S), is the set formed by Ip[S] after Ip[S] stops growing, i.e.,

when Ip[S] = Ip+1[S]. If H(S) = V (G), then S is a P3-hull set of G. The number of vertices
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in a minimum S for which H(S) = V (G) is the P3-hull number of G, denoted hP3(G).

From these definitions, we can see that the process of selecting S and finding H[S] is the

same as 2-bootstrap percolation on G. Hence, hP3(G) = m(G, 2). Grippo et. al. study the

P3-hull number of Kneser graphs and Bresar and Valencia-Pabon study the P3-hull number

of Hamming graphs (i.e., the Cartesian products of complete graphs) in and respectively [36,

18]. Hedzet and Henning and Hedzet and Bresar have also studied bootstrap percolation in

graph products [41, 17].

Interestingly enough, the semi-strong product even makes an appearance in bootstrap

percolation. In [46], it is shown that when the cardinality of an initial percolating set is less

then 2r, the number of rounds to percolation is at least dd/2e + 1. A graph which attains

this bound is Kr×Pn. These graphs also have the minimum number of edges among graphs

with percolating sets of size r.

The vertex set of the Kneser graph, denoted K(n, k), is all cardinality k subsets of the

set with n elements, denoted [n]. We will use the notation
(
[m]
k

)
to refer to the set formed

by all cardinality k subsets of a set of m elements. Vertices are adjacent if their respective

subsets are disjoint. We are primarily concerned with Kneser graphs when n ≥ 2k+1. When

n = 2k, the Kneser graph is k copies of K2. When n < 2k, K(n, k) is a collection of isolated

vertices. Two special classes of Kneser graphs are those when k = 1 and when n = 2k + 1.

Then Kneser graph K(n, 1) is just the complete graph Kn. The graph K(2k + 1, k) is also

called the odd graph and denoted Ok.

The author of this dissertation found that m(K(n, k), 2) = 2 exactly when n = 2k + 3

or for K(6, 2) and K(3, 1). Otherwise, a minimum 2-percolating set is larger than 2 [21].

Independently, Grippo et. al. determined that m(K(2k+3), 2) = 2 and m(K(2k+2), 2)) = 3

when k ≥ 3 [36]. For K(6, 2) a minimum percolating set contains 2 vertices. They also found

an upper bound for m(K(2k+1, k)). The Kneser graph is disconnected for n ≤ 2k and since

percolation cannot occur between components, the above graphs are the cases of interest.

In this dissertation, we continue this investigation. We determine a sufficient condition

for when m(K(n, k), r) = r). This is also a sufficient condition for when the bipartite

Kneser graph H(n, k) contains an r-percolating set of cardinality r. In the bipartite Kneser

graph, each set of the bipartition is a copy of the vertex set of K(n, k). Vertices (subsets)

are adjacent to disjoint vertices (subsets) in the opposite partite set. In fact, H(n, k) is a

product graph, namely K(n, k) ×K2. Figure 3.1 shows the Kneser graph K(5, 2), which is

also the Petersen graph.
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2,5 1,3

2,4

3,5

1,4

3,4 4,5

1,2

2,3 1,5

Figure 3.1: The Petersen graph, K(5, 2)

Let µ be the minimum number of elements in the union of r subsets of [n] of cardinality

k. µ is the smallest natural number such that
(
µ
k

)
≥ r. For example, if r = 2, k ≥ 2, then

µ = k + 1. If k = 3 and r = 4 then µ = 4 because
(
4
3

)
= 4. But if we increase r to 5, then

we need at least one additional element in our union and µ = 5.

Theorem 3.0.1. Let µ be as described. Then, m(K(2µ+ 1, k), r) = r.

Proof. Let A0 be an initial set of infected vertices of cardinality r. Select A0 such that a

total of µ elements are used among all r vertices, i.e., |
⋃r
i=1(vi)| = µ for vi ∈ A0. Since µ

elements of [n] are used in A0, we know that
(
µ−1
k

)
< r ≤

(
µ
k

)
.

For vi ∈ A0, let S =
⋃r
i=1(vi), i.e., the set of µ elements used by A0. Let T = [n] \ S.

Partition V (K(2µ+ 1, k)) as follows: Let Si be the set of vertices which contain i elements

from S and k − i elements from T . Then, V (K(2µ + 1, k)) = Sk, Sk−1, ..., S1, S0. Observe

that A0 ⊆ Sk.

Since vertices of K(n, k) are adjacent when they are disjoint, the set of vertices adjacent

to A0 is the vertices which use no elements of S, i.e., S0. So, A0 infects S0. Since |S0| =(
µ+1
k

)
>
(
µ
k

)
≥ r, S0 contains at least r vertices, so S0 then infects the rest of Sk (if A0 is a

proper subset of Sk).

If v be a vertex of Sk−1 then v is adjacent to those vertices in S0 which do not use the

single element of T contained by v. Hence, v is adjacent to
(
µ+1−1
k

)
=
(
µ
k

)
≥ r vertices in S0.

Hence, S0 infects Sk−1. We now prove the following:

Claim 1: If v ∈ Si and i ≤ k/2, then v is adjacent to at least r vertices in Sk−i.

To form a subset disjoint from v in Sk−i, we select k− i elements from S, excluding the i

elements used by v and i elements from T , excluding the k−i elements of T used by v. Thus,
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v is adjacent to
(
µ−i
k−i

)(
µ−k+i+1

i

)
vertices in Sk−i. If we can show that

(
µ
k

)
≤
(
µ−i
k−i

)(
µ−k+i+1

i

)
,

this would imply that v is adjacent to at least r vertices in Sk−i. Since
(
µ−k+i

i

)
≤
(
µ−k+i+1

1

)
,

it suffices to show that
(
µ
k

)
≤
(
µ−i
k−i

)(
µ−k+i

i

)
.

We now consider this product of binomial coefficients in another way:
(
µ−i
k−i

)
counts the

subsets of
(
[µ]
k

)
which contain some particular i elements of [µ]. We first select i elements,

which we can then combine with any k − i of the remaining elements of [µ]. Likewise,(
µ−k+i

i

)
=
(
µ−k+i
k−(k−i)

)
counts the subsets of

(
[µ]
k

)
which contain some particular k − i elements

of [µ]. We begin by choosing our k−i elements, which we can combine with any k−(k−i) = i

of the remaining elements of [µ].

Fix [i] ⊆ [µ] and [k − i] ⊆ [µ] such that |[i] ∩ [k − i]| = 0 and let P be the set formed by

concatenating each element of
(
[µ−i]
k−i

)
with each element of

(
[µ−k+i]

i

)
. Some sample elements

of P when k = 4, n = 8 and [i] = {1, 2}, [k − i] = {3, 4} are shown in Figure 3.2. We

show that
(
µ
k

)
≤
(
µ−i
k−i

)(
µ−k+i

i

)
by finding an injection from

(
[µ]
k

)
to P . The elements of P

contain 2k elements of [µ], k fixed elements (namely, [i]∪ [k− i]) and k elements which vary.

For each x ∈ P , denote the set of elements which are fixed with a and the set of elements

which vary with b, so x is formed from both a and b. In some elements of P , b includes

repetitions. Consider Q ⊆ P where for each x ∈ Q, b does not include repetitions. Since b

has no repetitions, b forms an element of
(
[µ]
k

)
.

Since each b is a distinct element of
(
[µ]
k

)
, we can map each y ∈

(
[µ]
k

)
to a single p ∈ P

such that b of p is y. There may be more than one such p (see, for example, the bottom two

entries of Figure 3.2), but no two y’s can be mapped to the same p. Therefore, we have an

injective function from
(
[µ]
k

)
to P and

(
µ
k

)
≤
(
µ−i
k−i

)(
µ−k+i

i

)
.

Claim 2: If v ∈ Sk−i−1 then v is adjacent to at least r vertices in Si.

By similar reasoning to Claim 1, if v ∈ Sk−i−1, then v is adjacent to
(
µ−k+i+1

i

)(
µ+1−(i+1)

k−i

)
=(

µ−k+i+1
i

)(
µ−i
k−i

)
vertices in Si. We already showed in Claim 1 that

(
µ
k

)
≤
(
µ−i
k−i

)(
µ−k+i

i

)
≤(

µ−i
k−i

)(
µ−k+i+1

i

)
, so Claim 2 holds.

Using Claim 1 and Claim 2, we can infect the rest of the graph. First, by Claim 1, Sk−1

infects S1. Then, we can show by induction that all Sj’s become infected by showing that

for any remaining i, we can infect Si+1. By Claim 2, Si infects Sk−i−1. Then, by Claim 1,

Sk−i−1 infects Sk−(k−i−1) = Si+1. Hence, our initial set of infected vertices is a percolating

set.
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{(1, 2)(5, 6)}{(1, 2)(3, 4)}

{(1, 2)(5, 6)}{(2, 5)(3, 4)}

{(1, 2)(3, 5)}{(2, 6)(3, 4)}

{(1, 2)(3, 5)}{(5, 6)(3, 4)}

{(1, 2)(7, 8)}{(5, 6)(3, 4)}

{(1, 2)(5, 8)}{(6, 7)(3, 4)}

Figure 3.2: Elements of P when k = 4, n = 8 and [i] = {1, 2}, [k − i] = {3, 4}

Figure 3.3 shows a 2-percolating set in K(7, 2). We select vertices (1, 2) and (2, 3) in the

initial round. In round 2, these vertices infect all vertices of S0, i.e., the vertices containing

4,5,6, or 7. In Round 3, (1, 3), the remaining vertex of S2 is infected by vertices of S0. In

addition, all the vertices of S1 are infected by vertices of S0. This is shown on the right hand

side of Figure 3.3.

Figure 3.4 provides another example of a percolating set infecting a Kneser graph where

n ≥ 2µ + 1. As in the previous example, our percolation threshold is 2. K(11, 4) has 330

vertices, so rather than depict the entire graph, we use a diagram. Since k = 4, we have 5

sets in our vertex partition: S4, S3, S2, S1, S0. Our initial infected vertices are (1, 2, 3, 4) and

(2, 3, 4, 5). These infect all of S0. In round 2, S0 infects the remaining vertices of S4 as well

as infecting S3. S3 infects both S1 and S2.

We now discuss minimum percolating sets in the bipartite Kneser graph, H(n, k). In

general, the size of a minimum percolating set of the bipartite Kneser graph, H(n, k) is no

more than twice the size of a minimum percolating set of K(n, k).

Proposition 3.0.2. m(H(n, k), r) ≤ 2m(K(n, k), r)

Proof. Suppose A0 is a minimum r-percolating set of K(n, k). Infect a copy of A0 in each

of the partite sets of H(n, k) and refer to these two sets as A1
0 and A2

0. Recall that At is

the set of vertices infected after t rounds. A2
0 together with the vertices newly infected by

A1
0 forms A2

1, a copy of A1 in the second partite set of H(n, k). Likewise, A1
0 together with

the vertices newly infected by A2
0 forms A1

1. At each round t, A1
t infects A2

t+1 and A2
t infects

A1
t+1. Since A0 is a percolating set of K(n, k), we eventually infect two copies of V (K(n, k)).

Hence, A0 ×K2 is a percolating set of H(n, k).
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1,2

2,3

4,5

4,6

4,7

5,6

5,7

6,7

Round 2

A0 S0

1,3

4,5

4,6

4,7

5,6

5,7

6,7

1,7

2,7

3,7

1,4

2,4

3,4

1,5

2,5

3,5

1,6

2,6

3,6

Round 3

S0

Figure 3.3: Infecting K(7, 2) with a 2-percolating set

In at least one case, this is indeed the size of a minimum percolating set of the bipartite

Kneser graph. Grippo et. al. report that for the Petersen graph, m(K(5, 2), 2) = 3 and

m(H(5, 2), 2) = 6 [36]. They conjecture that for the odd graph,

⌈m(H(2k + 1, k), 2)

2

⌉
= m(K(2k + 1, k), r)

However, when n = 2µ+ 1, we can do much better. In this instance, m(H(n, k), r) = r.

Theorem 3.0.3. m(H(2µ+ 1, k), r) = r

Proof. Observe that in the proof of Theorem 3.0.1, the infection across the Si’s proceeds as

follows: Sk, S0, Sk−1, S1, Sk−2, S2, Sk−3, S3, ...

For each Si we alternate by infecting Sk−i and then Sk−i−1. This yields a sequence of

Si’s, where those Si’s with i > k/2 alternate with Si’s with i < k/2. If k is even, then we
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S0 S1

S2

S3

S4

Figure 3.4: Infecting K(11, 4) with a 2-percolating set

have an odd number of Si’s in total and the sequence ends with S k+1
2
, S k−1

2
. And if k is odd,

then the sequence ends with S k
2
+1, S k

2
−1, S k

2
. The Si’s where i > k/2 decrease by one, while

the Si’s where i < k/2 increase by one.

Using this observation, as well as Claim 1 and Claim 2 of the proof of Theorem 3.0.1,

we can show that m(H(2µ + 1, k), r) = r. Suppose A0 ⊆ Sk is a percolating set containing

r vertices of K(2µ + 1, k), which uses µ elements in total. Let S1
i and S2

i be as described

in the proof of Proposition 3.0.2. Select A1
0 ⊆ S1

k to be an initial set of infected vertices of

H(2µ+ 1, k). A1
0 infects S2

0 , which then infects the rest of S1
k as well as S1

k−1. The infection

proceeds as follows: S2
1 , S

1
k−2, S

2
2 , .... If k is odd, then we will eventually reach S2

k−1
2

. But

k − k−1
2
− 1 = k+1

2
− 1 = k−1

2
, so by Claim 2, S2

k−1
2

can infect its counterpart S1
k−1
2

.

We continue to alternately infect Sk−i and Sk−i−1 as the infection goes backwards through

the Si’s with S2
k+1
2

next infected and ending at S2
k . If k is even, then the infection is slightly

different. The midpoint is S1
k
2

. But since k − k
2

= k
2
, by Claim 1, S1

k
2

infects its counterpart

S2
k
2

and the infection proceeds through the remaining uninfected Sji ’s.

For an example of the process in the proof of Theorem 3.0.3, let k = 5 and let r = 7.

Then, µ = 7. H(15, 5) is infected as follows: S1
5 , S

2
0 , S

1
4 , S

2
1 , S

1
3 , S

2
2 , S

1
2 , S

2
3 , S

1
1 , S

2
4 , S

1
0 , S

2
5 .

We only proved Theorems 3.0.1 and 3.0.3 for n = 2µ+ 1, but in fact, these results apply

for all n ≥ 2µ + 1 because Claim 1 and Claim 2 only use the fact that n is at least 2µ + 1.

However, we can say something more general:

Lemma 3.0.4. If K(n, k) contains an r-percolating set of cardinality p, then K(n + 1, k)

also contains an r-percolating set of cardinality p.

53



Proof. Suppose that K(n, k) contains an r-percolating set of cardinality p and let A0 be such

a percolating set. K(n + 1, k) contains K(n, k) as a subgraph, because every cardinality k

subset of [n] is also a subset of [n+ 1]. Since A0 ⊆ V (K(n+ 1, k)), select A0 to be an initial

set of infected vertices for K(n+ 1, k).

When A0 percolates in K(n, k), at every stage At infects At+1. In other words, the

vertices in At+1 are adjacent to at least r vertices in At, i.e., disjoint from at least r vertices

in At. If we swap out any element of these vertices for n+ 1, then they will still be disjoint

from r vertices of K(n, k). So, at each stage of the infection process in K(n + 1, k), some

vertices containing n + 1 are infected along with vertices only containing elements of [n].

Eventually all such vertices are infected because all vertices of K(n, k) are infected and all

vertices containing n+ 1 are formed from swapping out n+ 1 with an element of [n].

We now have the following corollary:

Corollary 3.0.5. If n ≥ 2µ+ 1, then m(K(n, k), r) = m(H(n, k), r) = r.

Although n ≥ 2µ+ 1 is sufficient to guarantee a percolating set of size r in K(n, k) and

H(n, k), the condition not necessary. For example, when k = 2 and r = 2, µ = 3, but

(1, 2), (1, 3) 2-percolates in K(6, 2). From looking at examples, it appears that n can fall

arbitrarily far below 2µ + 1 and K(n, k) can still contain a percolating set of size r. In

general, even determining when m(K(n, k), r) = r appears challenging.
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[19] Boštjan Brešar and Blaž Zmazek. “On the independence graph of a graph”. In: Discrete

Mathematics 272.2 (2003), pp. 263–268. doi: https://doi.org/10.1016/S0012-

365X(03)00194-8. url: https://www.sciencedirect.com/science/article/pii/

S0012365X03001948.

[20] Eric Brooks. “On the embeddings of the semi-strong product graph”. Master’s Thesis.

Virginia Commonwealth University, 2015. url: https://scholarscompass.vcu.edu/

etd/3811/.

[21] Neal Bushaw, Blake Conka, Vinay Gupta, Aidan Kierans, Hudson Lafayette, Craig

Larson, Sarah Loeb, Kevin McCall, Andriy Mulyar, Scott Taylor, Evan Wainwright,

Evan Wilson, and Guanyu Wu. “Bootstrap percolation via automated conjecturing”.

In: Ars Math. Contemp. 23.3 (2023). doi: 10.26493/1855-3974.2340.a61. url:

https://amc-journal.eu/index.php/amc/article/view/2340.

[22] Jan Chalupa, Paul L. Leath, and Guillaume R. Reich. “Bootstrap percolation on a

Bethe lattice”. In: Journal of Physics C: Solid State Physics 12.1 (1979), pp. L31–L35.

doi: 10.1088/0022-3719/12/1/008. url: https://iopscience.iop.org/article/

10.1088/0022-3719/12/1/008.

[23] Tony Yu Chang. “Domination numbers of grid graphs”. PhD thesis. University of

South Florida, 1992.

[24] Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs and Digraphs. 5th Edition.

Chapman and Hall/CRC, 2011.

57

https://doi.org/10.26493/2590-9770.1344.20c
https://doi-org.proxy.library.vcu.edu/10.26493/2590-9770.1344.20c
https://doi-org.proxy.library.vcu.edu/10.26493/2590-9770.1344.20c
https://doi.org/10.48550/arXiv.2307.06623
https://arxiv.org/abs/2307.06623
https://arxiv.org/abs/2307.06623
https://doi.org/10.1016/j.dam.2019.11.011
https://doi.org/10.1016/j.dam.2019.11.011
https://doi.org/10.1016/j.dam.2019.11.011
https://doi.org/https://doi.org/10.1016/S0012-365X(03)00194-8
https://doi.org/https://doi.org/10.1016/S0012-365X(03)00194-8
https://www.sciencedirect.com/science/article/pii/S0012365X03001948
https://www.sciencedirect.com/science/article/pii/S0012365X03001948
https://scholarscompass.vcu.edu/etd/3811/
https://scholarscompass.vcu.edu/etd/3811/
https://doi.org/10.26493/1855-3974.2340.a61
https://amc-journal.eu/index.php/amc/article/view/2340
https://doi.org/10.1088/0022-3719/12/1/008
https://iopscience.iop.org/article/10.1088/0022-3719/12/1/008
https://iopscience.iop.org/article/10.1088/0022-3719/12/1/008
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[34] Ante Graovac and Tomaž Pisanski. “On the Wiener index of a graph”. In: Journal of

Mathematical Chemistry 8.1 (1991), pp. 53–62. doi: 10.1007/BF01166923.

[35] Sylvain Gravier and Abdelkader Khelladi. “On the domination number of cross prod-

ucts of graphs”. In: Discrete Mathematics 145.1-3 (1995), pp. 273–277. doi: 10.1016/

0012-365X(95)00091-A. url: https://doi.org/10.1016/0012-365X(95)00091-A.

[36] Luciano N. Grippo, Adrián Pastine, Pablo Torres, Mario Valencia-Pabon, and Juan C.

Vera. “On the P3-hull number of Kneser graphs”. In: Electronic Journal of Combina-

torics 28.3 (2021), Paper No. 3.32, 9. doi: 10.37236/9903. url: https://doi.org/

10.37236/9903.
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