111 research outputs found

    Exploiting Single-Channel Speech for Multi-Channel End-to-End Speech Recognition: A Comparative Study

    Full text link
    Recently, the end-to-end training approach for multi-channel ASR has shown its effectiveness, which usually consists of a beamforming front-end and a recognition back-end. However, the end-to-end training becomes more difficult due to the integration of multiple modules, particularly considering that multi-channel speech data recorded in real environments are limited in size. This raises the demand to exploit the single-channel data for multi-channel end-to-end ASR. In this paper, we systematically compare the performance of three schemes to exploit external single-channel data for multi-channel end-to-end ASR, namely back-end pre-training, data scheduling, and data simulation, under different settings such as the sizes of the single-channel data and the choices of the front-end. Extensive experiments on CHiME-4 and AISHELL-4 datasets demonstrate that while all three methods improve the multi-channel end-to-end speech recognition performance, data simulation outperforms the other two, at the cost of longer training time. Data scheduling outperforms back-end pre-training marginally but nearly consistently, presumably because that in the pre-training stage, the back-end tends to overfit on the single-channel data, especially when the single-channel data size is small.Comment: submitted to INTERSPEECH 2022. arXiv admin note: substantial text overlap with arXiv:2107.0267

    AN EFFICIENT AND ROBUST MULTI-STREAM FRAMEWORK FOR END-TO-END SPEECH RECOGNITION

    Get PDF
    In voice-enabled domestic or meeting environments, distributed microphone arrays aim to process distant-speech interaction into text with high accuracy. However, with dynamic corruption of noises and reverberations or human movement present, there is no guarantee that any microphone array (stream) is constantly informative. In these cases, an appropriate strategy to dynamically fuse streams is necessary. The multi-stream paradigm in Automatic Speech Recognition (ASR) considers scenarios where parallel streams carry diverse or complementary task-related knowledge. Such streams could be defined as microphone arrays, frequency bands, various modalities or etc. Hence, a robust stream fusion is crucial to emphasize on more informative streams than corrupted ones, especially under unseen conditions. This thesis focuses on improving the performance and robustness of speech recognition in multi-stream scenarios. With increasing use of Deep Neural Networks (DNNs) in ASR, End-to-End (E2E) approaches, which directly transcribe human speech into text, have received greater attention. In this thesis, a multi-stream framework is presented based on the joint Connectionist Temporal Classification/ATTention (CTC/ATT) E2E model, where parallel streams are represented by separate encoders. On top of regular attention networks, a secondary stream-fusion network is to steer the decoder toward the most informative streams. The MEM-Array model aims at improving the far-field ASR robustness using microphone arrays which are activated by separate encoders. With an increasing number of streams (encoders) requiring substantial memory and massive amounts of parallel data, a practical two-stage training strategy is designated to address these issues. Furthermore, a two-stage augmentation scheme is present to improve robustness of the multi-stream model. In MEM-Res, two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complementary information from the same acoustics. Compared with the best single-stream performance, both models have achieved substantial improvement, outperforming alternative fusion strategies. While the proposed framework optimizes information in multi-stream scenarios, this thesis also studies the Performance Monitoring (PM) measures to predict if recognition results of an E2E model are reliable without growth-truth knowledge. Four PM techniques are investigated, suggesting that PM measures on attention distributions and decoder posteriors are well-correlated with true performances

    ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ DNN ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€๋‚จ์ˆ˜.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•ด์„œ DNN์„ ํ™œ์šฉํ•œ ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” DNN์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์žก์Œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ฐ•์ธํ•จ์„ ๋ณด์กฐ ํŠน์ง• ๋ฒกํ„ฐ๋“ค์„ ํ†ตํ•˜์—ฌ ์ตœ๋Œ€๋กœ ํ™œ์šฉํ•˜๋Š” ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ DNN์€ ์™œ๊ณก๋œ ์Œ์„ฑ, ๊นจ๋—ํ•œ ์Œ์„ฑ, ์žก์Œ ์ถ”์ •์น˜, ๊ทธ๋ฆฌ๊ณ  ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์›ํ™œํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๊ธฐ๋ฒ•์€ Aurora-5 DB ์—์„œ ๊ธฐ์กด์˜ ๋ณด์กฐ ์žก์Œ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋ธ ์ ์‘ ๊ธฐ๋ฒ•์ธ ์žก์Œ ์ธ์ง€ ํ•™์Šต (noise-aware training, NAT) ๊ธฐ๋ฒ•์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” DNN์„ ํ™œ์šฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค ์ฑ„๋„ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ธ ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ํ–ฅ์ƒ๋œ ๋‹จ์ผ ์†Œ์Šค ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ทธ๋ฅผ ํ†ตํ•˜์—ฌ ์Œ์„ฑ์ธ์‹์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด์˜ ๋น”ํฌ๋ฐ ์ค‘์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์  ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ delay-and-sum (DS) ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•๊ณผ DNN์„ ๊ฒฐํ•ฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” DNN์€ ์ค‘๊ฐ„ ๋‹จ๊ณ„ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๋™ ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์™œ๊ณก๋œ ๋‹ค ์ฑ„๋„ ์ž…๋ ฅ ์Œ์„ฑ ์‹ ํ˜ธ๋“ค๊ณผ ๊นจ๋—ํ•œ ์Œ์„ฑ ์‹ ํ˜ธ์™€์˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ multichannel wall street journal audio visual (MC-WSJAV) corpus์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ๊ธฐ์กด์˜ ๋‹ค์ฑ„๋„ ํ–ฅ์ƒ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถˆํ™•์ •์„ฑ ์ธ์ง€ ํ•™์Šต (Uncertainty-aware training, UAT) ๊ธฐ๋ฒ•์ด๋‹ค. ์œ„์—์„œ ์†Œ๊ฐœ๋œ ๊ธฐ๋ฒ•๋“ค์„ ํฌํ•จํ•˜์—ฌ ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ๋„คํŠธ์›Œํฌ์˜ ํƒ€๊ฒŸ์„ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๊ฒฐ์ •๋ก ์ ์ธ ์ถ”์ • ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ์ถ”์ •์น˜์˜ ๋ถˆํ™•์ •์„ฑ ๋ฌธ์ œ ํ˜น์€ ์‹ ๋ขฐ๋„ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” UAT ๊ธฐ๋ฒ•์€ ํ™•๋ฅ ๋ก ์ ์ธ ๋ณ€ํ™” ์ถ”์ •์„ ํ•™์Šตํ•˜๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์ธ ๋ณ€ํ™” ์˜คํ† ์ธ์ฝ”๋” (variational autoencoder, VAE) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. UAT๋Š” ์™œ๊ณก๋œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ์™€ ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋งค๊ฐœํ•˜๋Š” ๊ฐ•์ธํ•œ ์€๋‹‰ ๋ณ€์ˆ˜๋ฅผ ๊นจ๋—ํ•œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ •์น˜์˜ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค. UAT์˜ ์€๋‹‰ ๋ณ€์ˆ˜๋“ค์€ ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋œ uncertainty decoding (UD) ํ”„๋ ˆ์ž„์›Œํฌ๋กœ๋ถ€ํ„ฐ ์œ ๋„๋œ ์ตœ๋Œ€ ์šฐ๋„ ๊ธฐ์ค€์— ๋”ฐ๋ผ์„œ ํ•™์Šต๋œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ Aurora-4 DB์™€ CHiME-4 DB์—์„œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.In this thesis, we propose three acoustic modeling techniques for robust automatic speech recognition (ASR). Firstly, we propose a DNN-based acoustic modeling technique which makes the best use of the inherent noise-robustness of DNN is proposed. By applying this technique, the DNN can automatically learn the complicated relationship among the noisy, clean speech and noise estimate to phonetic target smoothly. The proposed method outperformed noise-aware training (NAT), i.e., the conventional auxiliary-feature-based model adaptation technique in Aurora-5 DB. The second method is multi-channel feature enhancement technique. In the general multi-channel speech recognition scenario, the enhanced single speech signal source is extracted from the multiple inputs using beamforming, i.e., the conventional signal-processing-based technique and the speech recognition process is performed by feeding that source into the acoustic model. We propose the multi-channel feature enhancement DNN algorithm by properly combining the delay-and-sum (DS) beamformer, which is one of the conventional beamforming techniques and DNN. Through the experiments using multichannel wall street journal audio visual (MC-WSJ-AV) corpus, it has been shown that the proposed method outperformed the conventional multi-channel feature enhancement techniques. Finally, uncertainty-aware training (UAT) technique is proposed. The most of the existing DNN-based techniques including the techniques introduced above, aim to optimize the point estimates of the targets (e.g., clean features, and acoustic model parameters). This tampers with the reliability of the estimates. In order to overcome this issue, UAT employs a modified structure of variational autoencoder (VAE), a neural network model which learns and performs stochastic variational inference (VIF). UAT models the robust latent variables which intervene the mapping between the noisy observed features and the phonetic target using the distributive information of the clean feature estimates. The proposed technique outperforms the conventional DNN-based techniques on Aurora-4 and CHiME-4 databases.Abstract i Contents iv List of Figures ix List of Tables xiii 1 Introduction 1 2 Background 9 2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Experimental Database . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Aurora-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Aurora-5 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 MC-WSJ-AV DB . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 CHiME-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Two-stage Noise-aware Training for Environment-robust Speech Recognition 25 iii 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Noise-aware Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Two-stage NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Upper DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 GMM-HMM System . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Training and Structures of DNN-based Techniques . . . . . . 37 3.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 40 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 DNN-based Feature Enhancement for Robust Multichannel Speech Recognition 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Observation Model in Multi-Channel Reverberant Noisy Environment 49 4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Upper DNN and Joint Training . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Recognition System and Feature Extraction . . . . . . . . . . 56 4.4.2 Training and Structures of DNN-based Techniques . . . . . . 58 4.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 62 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 iv 5 Uncertainty-aware Training for DNN-HMM System using Varia- tional Inference 67 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Uncertainty Decoding for Noise Robustness . . . . . . . . . . . . . . 72 5.3 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 VIF-based uncertainty-aware Training . . . . . . . . . . . . . . . . . 83 5.4.1 Clean Uncertainty Network . . . . . . . . . . . . . . . . . . . 91 5.4.2 Environment Uncertainty Network . . . . . . . . . . . . . . . 93 5.4.3 Prediction Network and Joint Training . . . . . . . . . . . . . 95 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Experimental Setup: Feature Extraction and ASR System . . 96 5.5.2 Network Structures . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.3 Eects of CUN on the Noise Robustness . . . . . . . . . . . . 104 5.5.4 Uncertainty Representation in Dierent SNR Condition . . . 105 5.5.5 Result of Speech Recognition . . . . . . . . . . . . . . . . . . 112 5.5.6 Result of Speech Recognition with LSTM-HMM . . . . . . . 114 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Conclusions 127 Bibliography 131 ์š”์•ฝ 145Docto

    An analysis of environment, microphone and data simulation mismatches in robust speech recognition

    Get PDF
    Speech enhancement and automatic speech recognition (ASR) are most often evaluated in matched (or multi-condition) settings where the acoustic conditions of the training data match (or cover) those of the test data. Few studies have systematically assessed the impact of acoustic mismatches between training and test data, especially concerning recent speech enhancement and state-of-the-art ASR techniques. In this article, we study this issue in the context of the CHiME- 3 dataset, which consists of sentences spoken by talkers situated in challenging noisy environments recorded using a 6-channel tablet based microphone array. We provide a critical analysis of the results published on this dataset for various signal enhancement, feature extraction, and ASR backend techniques and perform a number of new experiments in order to separately assess the impact of diโ†ตerent noise environments, diโ†ตerent numbers and positions of microphones, or simulated vs. real data on speech enhancement and ASR performance. We show that, with the exception of minimum variance distortionless response (MVDR) beamforming, most algorithms perform consistently on real and simulated data and can benefit from training on simulated data. We also find that training on diโ†ตerent noise environments and diโ†ตerent microphones barely aโ†ตects the ASR performance, especially when several environments are present in the training data: only the number of microphones has a significant impact. Based on these results, we introduce the CHiME-4 Speech Separation and Recognition Challenge, which revisits the CHiME-3 dataset and makes it more challenging by reducing the number of microphones available for testing

    Sample Drop Detection for Distant-speech Recognition with Asynchronous Devices Distributed in Space

    Full text link
    In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we address the issue of sample drop detection in the context of a conversational speech scenario, recorded by a set of microphones distributed in space. The goal is to design a neural-based model that given a short window in the time domain, detects whether one or more devices have been subjected to a sample drop event. The candidate time windows are selected from a set of large time intervals, possibly including a sample drop, and by using a preprocessing step. The latter is based on the application of normalized cross-correlation between signals acquired by different devices. The architecture of the neural network relies on a CNN-LSTM encoder, followed by multi-head attention. The experiments are conducted using both artificial and real data. Our proposed approach obtained F1 score of 88% on an evaluation set extracted from the CHiME-5 corpus. A comparable performance was found in a larger set of experiments conducted on a set of multi-channel artificial scenes.Comment: Submitted to ICASSP 202
    • โ€ฆ
    corecore