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Abstract

In this thesis, we propose three acoustic modeling techniques for robust auto-
matic speech recognition (ASR). Firstly, we propose a DNN-based acoustic modeling
technique which makes the best use of the inherent noise-robustness of DNN is pro-
posed. By applying this technique, the DNN can automatically learn the complicated
relationship among the noisy, clean speech and noise estimate to phonetic target
smoothly. The proposed method outperformed noise-aware training (NAT), i.e., the
conventional auxiliary-feature-based model adaptation technique in Aurora-5 DB.

The second method is multi-channel feature enhancement technique. In the gen-
eral multi-channel speech recognition scenario, the enhanced single speech signal
source is extracted from the multiple inputs using beamforming, i.e., the conventional
signal-processing-based technique and the speech recognition process is performed
by feeding that source into the acoustic model. We propose the multi-channel fea-
ture enhancement DNN algorithm by properly combining the delay-and-sum (DS)
beamformer, which is one of the conventional beamforming techniques and DNN.
Through the experiments using multichannel wall street journal audio visual (MC-
WSJ-AV) corpus, it has been shown that the proposed method outperformed the
conventional multi-channel feature enhancement techniques.

Finally, uncertainty-aware training (UAT) technique is proposed. The most of



the existing DNN-based techniques including the techniques introduced above, aim
to optimize the point estimates of the targets (e.g., clean features, and acoustic
model parameters). This tampers with the reliability of the estimates. In order to
overcome this issue, UAT employs a modified structure of variational autoencoder
(VAE), a neural network model which learns and performs stochastic variational in-
ference (VIF). UAT models the robust latent variables which intervene the mapping
between the noisy observed features and the phonetic target using the distributive
information of the clean feature estimates. The proposed technique outperforms the

conventional DNN-based techniques on Aurora-4 and CHiME-4 databases.

Keywords: Robust speech recognition, feature enhancement, feature compensa-
tion, acoustic modeling, deep neural network (DNN), variational autoencoder

(VAE), variational inference (VIF), uncertainty decoding (UD)

Student number: 2012-20822
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Chapter 1

Introduction

In recent years, deep learning techniques have grown prevalent in the field of
signal processing research, which continuously provided venues for drastic improve-
ments in solving automatic speech recognition (ASR) tasks. In acoustic modeling,
in particular, the introduction of the deep neural network (DNN)-hidden Markov
model (HMM) framework, which exploits DNN instead of the conventional Gaus-
sian mixture model (GMM) in order to compute the likelihood of the HMM states,
has proven to be a breakthrough [1], [2]. Its capability to automatically learn the
complicated non-linear relation between the input and the target vector has placed

DNN as one of the most dominant approaches in robust ASR.

DNN-based approaches to robust ASR can generally be categorized into two
types: feature-based and model-based techniques. The feature-end techniques [3]-
[6] train a DNN by directly mapping the corrupted speech features to their clean
counterparts, whereas other conventional techniques require the signal corruption
process to be formulated into a specific model. The featureont-end techniques using

DNN has shown outstanding performance in reconstructing clean features from the

1



noisy ones. The joint training strategy, in which acoustic and the feature processing
DNNs are jointly optimized via concatenation, further improved performance.

The model-based techniques [7]-[12], on the other hand, rely on DNN parame-
ters for automatically learning the mapping from the observed noisy speech to the
phonetic targets, while the actual observations remain unaltered. These techniques,
then, call for a carefully designed strategy to incorporate the environmental char-
acteristics as the DNN-based acoustic model learns relevant parameters. Among
various approaches, adaptation techniques employing auxiliary features with acous-
tic context information have shown impressive performance in robust ASR. These
techniques enhance the performance of the acoustic model by augmenting additional
information (e.g., background noise estimate and speaker information) to the input
or target vector in order to improve the modeling power of the DNN. As an example,
the technique referred to as noise-aware training (NAT) attained the notable results
on Aurora-4 task [10]. NAT enables the DNN to learn the relationship among noisy
input, noise features and target vectors corresponding to the phonetic identity by
augmenting an estimate of the noise present in the input signal. As a result, although
these two approaches are different in the detailed method they are same in perspec-
tive of aiming to mitigate the input data and trained acoustic model. Especially,
when DNNs are introduced in both feature- and model-based techniques, the two
DNNSs can be seen as single larger network which performs the acoustic modeling.

In this thesis, DNN-based acoustic modeling techniques for robust ASR. are pro-
posed. In Chapter 3, we propose a technique which helps the DNN to address the
complicated connection between the input and target vectors of NAT smoothly.
The main idea of the proposed approach is to let the DNN clarify the relationship

among noisy features, noise estimates and phonetic targets only after reconstruct-



ing the clean features. In order to accomplish this, the proposed technique cascades
two individually fine-tuned DNNs into a single DNN and training the unified DNN
jointly. The first DNN performs reconstruction of the clean features from noisy fea-
tures when noise estimates are augmented. Then the next DNN attempts to learn
the mapping between the reconstructed features and the phonetic targets. It has
been shown that the proposed technique outperforms the conventional DNN-based
techniques on Aurorab-task [13] and mismatched noise conditions.

While the above DNN-based techniques targets the close-talking scenario where
the distance between the speaker and microphone is close, a multi-channel-based fea-
ture mapping technique is proposed in Chapter 4. In the general multi-channel speech
recognition scenario, the enhanced single speech signal source is extracted from the
multiple inputs using beamforming, i.e., the conventional signal-processing-based
technique and the speech recognition process is performed by feeding that source
into the acoustic model. The proposed multi-channel feature enhancement DNN
algorithm combines the delay-and-sum (DS) beamformer, which is one of the con-
ventional beamforming techniques and DNN. By this way, the proposed technique
models the complicated relationship between the array inputs and clean speech fea-
tures effectively by employing intermediate target. Through the experiments using
multichannel wall street journal audio visual (MC-WSJ-AV) corpus [14], it has been
shown that the proposed method outperformed the conventional multi-channel fea-
ture enhancement techniques.

Although these conventional DNN-based techniques have shown better perfor-
mances, there still exists the limitation of them. The conventional DNN-based tech-
niques aim to obtain the optimal point estimates of the target such as clean features

and model parameters. So the estimated clean features or the phonetic targets may
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still be unreliable due to various sources of uncertainty. Yet, these sources of uncer-
tainty are mostly overlooked when applying DNN-based techniques, which eventually
tampers with model performance. When the test data contains unseen environmen-
tal effects (e.g., noise, reverberation, and speaker and channel mismatch) which are
seldom observed in the training data, the accuracy of the estimator decreases and
this degrades the overall performance of the ASR system.

In Chapter 5, we propose a deep learning-based acoustic modeling technique
which systematically measures and takes account of the uncertainty inherent in the
input features using a single deep network. Our proposed technique, the uncertainty-
aware training (UAT), namely, employs variational autoencoder (VAE), one of the
widely used variational inference (VIF) techniques, which allows the extraction of
robust features along with the associated uncertainties. VAE performs efficient in-
ference under the assumption that the observed data is generated from a random
variable. UAT modifies both the input and output structures of VAE so as to take the
full advantage of DNN-based approach with auxiliary features, a structure similar to
those introduced. UAT provides robust latent variables which intervene the mapping
between the noisy observed features and the phonetic target by using the distribu-
tive information of the clean feature estimates. The proposed technique, along with
the conventional DNN-based techniques, is evaluated on Aurora-4 and CHiME-4
databases [15]. Experimental results show that the proposed technique outperforms
the conventional DNN-based techniques. Moreover, we confirm that the latent vari-
ables obtained from the proposed technique can be utilized as an effective measure
of uncertainty.

The rest of the thesis is organized as follows: The next chapter introduces the ba-

sic structure of the DNN and the experimental database used in this thesis. In Chap-
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ter 3, a DNN-based acoustic modeling technique for noise-robust ASR is proposed. In
Chapter 4, DNN-based feature enhancement for robust multichannel speech recog-
nition is introduced. Finally, a uncertainty-aware training for DNN-HMM system
using variational inference is proposed in Chapter 5. The conclusions are drawn in

Chapter 6.
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Chapter 2

Background

This chapter presents some background for the research presented in this thesis.
Firstly, we introduces DNN, which is the key algorithm of DNN-HMM system and
the thesis. Also, various databases (DBs) used for evaluating the proposed techniques

are described.

2.1 Deep Neural Networks

DNN is a multi-layer perceptron network with many hidden layers. A DNN
consists of input, hidden and output layers as shown in Fig. 2.1. For simplicity, we
denote the input layer as layer 0 and the output layer as layer L for an (L + 1)-layer
DNN.

The hidden representation of the DNN at the [-th layer can be written by

vi=0(z)) = o(WivI"L 4 b)), for0<i< L (2.1)
where vl = [v! v} .. vévl]', 7zl = Wivli=l + bl = [} 2} ... zﬁvl]', Wi, bl =
v bl .- bévl]’ and NV; denote the activation vector, excitation vector, weight ma-
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trix with size N; x N;_1, bias vector and the number of neurons at the I-th layer,
respectively. Here, the prime denotes the transpose of a vector or a matrix. In (2.1),
o(x) =1/(1+e77) is the sigmoid function which is usually employed as an activation
function in many applications. The function o(-) is applied to the excitation vector
element-wisely. At the O-th layer, v = [vf v§ --- o} ]’ is the input vector and Ny
is the input feature dimension.

The data type at the output layer is decided based on the target task. For a

multi-class classification task, each output neuron represents a class membership for

which the softmax function is applied to z” as follows:

i+
vl = softmax; (zl) = eiL (2.2)

Zj‘\f:ﬁ e
Np
> v =1 (2.3)
i=1

L zZL and Ny, indicate the i-th component of the output activation, the i-th

where v;
component of the excitation vector and the number of classes at the output layer,
respectively.

For supervised fine-tuning, a labeled training set (o,d) = {(os, d¢)[1 <t < T} is
needed where o; represents the ¢t-th observation vector, dy = [d¢1 dia -+ - dy, NL]’ is
the corresponding target vector with size Ny and T' denotes the number of training
samples. The DNN input v = [v)} vy -+ vy | at time ¢ usually consists of a
number of concatenated observation vectors. During fine-tuning, the DNN param-
eters are updated by using the back-propagation procedure according to a proper

objective function. For multi-class classification, the cross-entropy (CE) is usually

adopted as an objective function as given by

1 I NL
_ . L
Jop = T E - ;_1 dei log(vt7z~)] (2.4)

t=1




Output layer

— Hidden layers

Input layer

Figure 2.1: The structure of DNN.

where d; ; and vfi indicate the i-th component of the desired target value and the i-th
component of the generated DNN output value given the ¢-th observation. Basically,

d;; can be regarded as the posterior probability of the i-th output class.

2.2 Experimental Database

In this thesis, the four different DBs are used: Aurora-4 DB [16], Aurora-5 DB
[13], MC-WSJ-AV DB [14] and CHiME-4 DB [15].

For that, we choose two kinds of DBs widely used in robust speech recognition
area: Aurora-4 and Aurora-5 DBs. Meanwhile, all the recordings of distorted data
in Aurora-4 and Aurora-5 DBs are performed artificially. From this point, CHiME-
4 DB can be supplementary to the artificial recording issue. Originated from the
popular ASR workshop (CHiME challenge), CHiIME-4 DB consists of both real and

simulated recordings with additive noise and reverberation.
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2.2.1 Aurora-4 DB

Aurora-4 DB [16] was made using 5k-word vocabulary based on the Wall Street
Journal (WSJ) DB. The WSJ data were recorded with a primary Sennheiser mi-
crophone and with a secondary microphone in parallel. The recordings with the
secondary microphone are used for enabling recognition experiments with differ-
ent frequency characteristics in the transmission channel. An additional filtering is
applied to consider the realistic frequency characteristics of terminals and equip-
ment in the telecommunication area. Two standard frequency characteristics are
used which have been defined by the ITU. The abbreviations G.712 and P.341 have
been introduced as reference to these filters. The G.712 characteristic is defined for
the frequency range of the usual telephone bandwidth up to 4 kHz and has a flat
characteristic in the range between 300 and 3400 Hz. P.341 is defined for the fre-
quency range up to 8 kHz and represents a band pass filter with a very low cut off
frequency at the lower end and a cut off frequency at about 7 kHz at the higher end
of the bandpass. These two filters can be applied to data sampled at 8 or 16 kHz,

respectively. We use the 16 kHz sampled data.

The corpus has two training sets: clean- and multi-condition. Both clean- and
multi-condition sets consist of the same 7138 utterances from 83 speakers. The clean-
condition set consists of only the primary Sennheiser microphone data. One half of
the utterances in the multi-condition set were recorded by the primary Sennheiser
microphone and the other half were recorded using one of 18 different secondary
microphones. Both halves include a combination of clean speech and speech cor-
rupted by one of six different types of noises (car, babble, restaurant, street, airport

and train station) at a range of signal-to-noise ratios (SNRs) between 10 and 20

10



Table 2.1: Aurora-4 DB (m: male, f: female).

Training data | Development data | Evaluation data

Hour 15.1471 8.9694 9.4026
Utterance 7138 4620 4620
Speaker | 83 (m: 42, f: 41) 10 (m: 6, f: 4) 8 (m: 5, f: 3)

dB. These noises represent realistic scenarios of application environments for mobile
telephones. Some noises are fairly stationary like e.g. the car noise. Others contain
non-stationary segments like e.g. the recordings on the street and at the airport. The
SNR was defined as the ratio of signal to noise energy after filtering both speech

and noise signals with P.341 filter characteristic.

The evaluation was conducted on the test set consisting of 330 utterances from
8 speakers. This test set was recorded by the primary microphone and a number
of secondary microphones. These two sets were then each corrupted by the same
six noises used in the training set at SNRs between 5 and 15 dB, creating a total
of 14 test sets. These 14 sets were then grouped into 4 subsets based on the type
of distortions: none (clean speech), additive noise only, channel distortion only and
noise + channel distortion. For convenience, we denote these subsets by Set_A, Set_B,
Set_C and Set_D, respectively. Note that the types of noises are common across

training and test sets but the SNRs of the data are not.

For the validation test, we used the development set in Aurora-4 DB consisting
of 330 utterances from 10 speakers not included in the training and test set speakers.
A total of 14 sets with the same conditions as the test set were constructed. More

detail information for Aurora-4 DB is given in Table 2.1.
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2.2.2 Aurora-5 DB

Aurora-5 DB was developed to investigate the influence on the performance of
ASR for a hands-free speech input in noisy room environments [13]. In Aurora-5, two
test conditions are also included to study the influence of transmitting the speech in
a mobile communication system. The number of test utterances was 8700 for each

test condition.

In the Aurora-5, the test data consisted of two sets: G. 712 filtered and non-
filtered sets summarized in Tables 2.2 and 2.3. The G. 712 filtered set comprised
clean speech utterances to which randomly selected car or public space noise samples
were added at SNR levels 0 to 15 dB. A car noise segment was randomly selected
from 8 recordings that were made in two different cars under different conditions.
As noise at public places a segment was randomly selected from 4 recordings at
an airport, at a train station, inside a train and on the street. The GSM radio
channel is also applied to simulate an influence for transmitting the noisy speech
over a cellular telephone network. For the simulation of the GSM transmission, AMR
speech codec was applied with various modes of bitrates and carrier-to-interference
levels. The non-filtered set consisted of clean speech utterances to which randomly
selected interior noises were added at SNR levels from 0 to 15 dB. The interior noise
samples were recorded at a shopping mall, a restaurant, an exhibition hall, an office
and a hotel lobby. Furthermore, to simulate the hands-free speech in a room, the
clean speech signals are convoluted with the impulse responses of three different
acoustic scenarios: hands-free in car (HFC), hands-free in office (HFO) and hands-
free in living room (HFL). For this simulation, the reverberation times for the office

and living rooms were randomly varied inside ranges of 0.3-0.4 and 0.4-0.5 seconds,

12



Table 2.2: G. 712 filtered test data set

Noise Car Noise Street Noise
Hands-free in Car | HFC & GSM GSM
(HFC) (HFC-GSM)
Clean Clean Clean Clean
15 15 15 15
SNR 10 10 10 10
5 5 5 5
0 0 0 0
Table 2.3: Non-filtered test data set
Noise Interior Noise
Hands-free in Office | Hands-free in Living Room
(HFO) (HFL)
Clean Clean Clean
15 15 15
SNR 10 10 10
5 5 5
0 0 0
respectively.
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2.2.3 MC-WSJ-AV DB

MC-WSJ-AV corpus [14] can be categorized into three scenarios: single speaker
stationary, single speaker moving and overlapping speakers scenarios. Since we are
dealing with only the audio data in the single speaker stationary scenario, this section
overviews the recording of the single speaker stationary scenario in MC-WSJ-AV

database.

For the recording of the single speaker stationary scenario data, the data is
recorded in three sites: The centre for speech technology research, edinburgh (UEDIN),
The IDIAP research institute, Switzerland (IDIAP) and TNO Human Factors, the
Netherlands (TNO). Instrumented meeting rooms installed at the three sites allow
the audio to be fully synchronized. The layout of the UEDIN room with the posi-
tions of the microphone arrays and the six reading positions, is shown in Fig. 2.2.
The room contains two eight-element circular microphone arrays, one mounted at
the center and one at the end of the meeting room table. Array microphones are
numbered 1-16. Cameras are mounted under Array 1 to give closeup views of par-
ticipants in the seated locations. The six reading locations are indicated as Seat 1-4,

Presentation and Whiteboard.

In addition, the speakers are provided with close-talking radio headset and lapel
microphones. The TNO and IDIAP rooms contain the similar recording equipments,
but differ in their physical layout and acoustic conditions. In the single speaker sta-
tionary condition, the speaker was asked to read sentences from six positions within
the meeting room: four seated around the table, one standing at the whiteboard and

one standing at the presentation screen. For each speaker, one sixth of the sentences.
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Figure 2.2: The layout of the UEDIN Instrumented Meeting Room.

2.2.4 CHiME-4 DB

The CHiME-4 [15] speech recordings were made using a 6-channel microphone
array constructed by embedding omnidirectional microphones around the edge of
a frame designed to hold a tablet computer. The array was designed to be held in
landscape orientation with three microphones positioned along the top and bottom
edges as indicated in 2.3. All microphones are forward facing except for channel 2
(shaded gray) which faces backwards and is flush with the rear of the 1 cm thick
frame.

The microphone signals were recorded sample-synchronously using a 6-channel
digital recorder. All recordings were made with 16 bits at 48 kHz and later downsam-
pled to 16 kHz. Speech was recorded for training, development and test sets. Four
native US talkers were recruited for each set (two male and two female). Speakers

were instructed to read sentences that were presented on the tablet PC while holding
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Figure 2.3: The geometry of the 6-channel CHiME-4 microphone array.

the device in any way that felt natural. Each speaker recorded utterances first in
an TAC single-walled acoustically isolated booth and then in each of the following
environments: on a bus (BUS), on a street junction (STR), in a cafe (CAF) and in
a pedestrian area (PED).

The task was based on the WSJ0 5K ASR task. For the training data, 100 utter-
ances were recorded by each speaker in each environment, totalling 1600 utterances
selected at random from the full 7138 WSJO SI-84 training set. Speakers assigned
to the 409 utterance development set or the 330 utterance final test set each spoke
a 1/4 of each set in each environment resulting in 1636 (4x409) and 1320 (4x330)

utterances for development and final testing respectively.
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Chapter 3

Two-stage Noise-aware Training
for Environment-robust Speech

Recognition

3.1 Introduction

Ever since the deep neural network (DNN)-based acoustic model appeared, the
recognition performance of automatic speech recognition (ASR) has been greatly
improved [1], [2], [17], [18]. Based on this achievement, researches on DNN-based
techniques for noise robustness are also in progress. Among various approaches,
adaptation technique employing auxiliary features with acoustic context information
demonstrated their potential.

One of the simplest methods of these approaches is to augment the auxiliary fea-
tures with the input vector of the network. As an example, the technique referred to

as noise-aware training (NAT) attained state-of-the-art results on Aurora-4 task [10].
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NAT enables the DNN to learn the relationship among noisy input, noise features
and target vectors corresponding to the phonetic identity by augmenting an esti-
mate of the noise present in the input signal. Due to its simple implementation and
good performance, NAT has already been applied actively in speech enhancement
and robust ASR.

Despite its success in robust ASR, we cannot be certain whether NAT is an opti-
mal method in taking advantage of the inherent robustness of the DNN framework.
Although NAT somewhat contributes to the noise robustness of DNN, its perfor-
mance in adverse environment is still far from that shown in clean condition. One of
the fundamental reasons for this phenomenon is that the current NAT framework is
considered insufficient to make the DNN implement the mapping from noisy speech
and noise estimates to phonetic targets as clearly as it addresses the relationship
between clean speech and the corresponding phonetic targets. A promising way to
improve NAT may be to extract some representation relevant to clean speech fea-
tures and then to implement the mapping from this representation to the phonetic
targets.

In this chapter, we propose a novel approach to DNN training which can be a so-
lution to the aforementioned issue of NAT. The main idea of the proposed approach
is to let the DNN clarify the relationship among noisy features, noise estimates and
phonetic targets only after reconstructing the clean features. In order to accomplish
this, the proposed technique cascades two individually fine-tuned DNNs into a sin-
gle DNN. The first DNN performs reconstruction of the clean features from noisy
features when noise estimates are augmented. Then the next DNN attempts to learn
the mapping between the reconstructed features and the phonetic targets. The per-

formance of the proposed approach is evaluated on the Aurora-5 task and also in
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Figure 3.1: DNN structure of noise-aware training.

some mismatched noise conditions, and better performance is observed compared to

the conventional NAT.

3.2 Noise-aware Training

The structure of NAT is represented in Fig. 3.1. For a simple problem formula-
tion, we consider acoustic environments where the background noises are dominant
factors of speech degradation. Let us denote an observed noisy feature, the corre-
sponding unknown clean feature, the corrupting noise and a HMM state identity
being extracted at the ¢-th frame as y:, X¢, n; and s;, respectively. Additionally,
we denote a subsequence of vectors X, Xy, +1 - - - Xpm, from frame index m; to mg as

X, :my- Under the general framework of HMM-based recognition, we assume that
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there exists an unknown underlying function that approximates the posterior prob-

abilities of the HMM states given as follows:

p(Stb’t) = f(Yt*TZt+T7 nth:t+‘r) (31)

where f(-) represents the function that maps the noisy and noise features to the
corresponding HMM state identity which contains phonetic information and the
subscript 7 represents the temporal coverage which is required for figuring out the
contextual information of the speech signal.

Since the true noise features n;_,.;4, in (3.1) are unknown, NAT replaces them
with a single noise estimate. The input vector of NAT is formed by augmenting the

noise estimate with a window of consecutive frames of noisy feature, i.e.,

Vi = [Yi—rittr, Ny (3.2)

where a window of 27 + 1 frames of noisy speech features and n; represents a noise
estimate. The target vector of the NAT network is given as the one-hot encoding
label concerned with the tied HMM states (senone) like common DNN-based acoustic
models. By applying this simple process to both training and decoding, the DNN can
automatically learn the complex mapping from the noisy speech and noise estimate
to the HMM state labels.

However, even though this approach guarantees a certain level of improvement in
noise robustness, we need to check whether the non-linear mapping obtained from
NAT can be generalized well. Although NAT aims to generate internal represen-
tations that are robust to noise, when comparing its recognition performance in
noisy environment with that in clean environment, we can easily discover that there
still exists a large performance gap. For this reason, we need a more sophisticated

technique to improve the modeling power of the NAT.
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3.3 Two-stage NAT

In this section, we propose a novel approach to improve NAT. The basic idea of
the proposed approach starts from the assumption that the underlying function f(-)

in (3.1) can be expresses as a composition of two separate functions as follows:

p(stb’t) = f(}’th:tJrn ntf‘l':t+7') = ho g(yt7T2t+Ta ntf‘r:t+7') (33)

where the output of g(-) is a clean feature vector stream,

Xporitgr = g(yt—T:t+7'7 nt—T:t+T)7 (34)

and

p(Stb’t) = h(xt—Tlt-i-T)* (35)

In (3.3)-(3.5), g(-) represents a function dealing with the mapping from the noisy
and noise features to the clean speech features and h(-) is a function predicting the
phonetic target based on the clean speech feature stream. To mimic this function
structure, we propose a DNN as shown in Fig. 3.2. The whole DNN is constructed
by concatenating two individually fine-tuned DNNs and each separate DNN approx-
imates the function ¢(-) and A(-) in (3.3). The first DNN is applied to separate the
clean speech features from the corruption noises. We call this DNN the lower DNN
since it is placed in the lower part of the DNN in Fig. 3.2. The second DNN which
is called the upper DNN, deals with modeling the relationship between the output

vector generated by the lower DNN and the phonetic target.

3.3.1 Lower DNN

The output layer of the lower DNN corresponds to the clean speech features and

the noise features and the input layer is given by (3.2). The output vector of the
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Figure 3.2: DNN structure of proposed technique.

lower DNN can be represented as follows:
Vi = [Xi—rettr] (3.6)

where a window of 27 + 1 frames of clean speech feature estimates. To obtain the
noise estimate 1n; in (2), a time-varying environmental estimation approach based on
interacting multiple model (IMM) algorithm is utilized. By reflecting the dynamic
environmental information estimated from the IMM technique to the input of the
network at each frame, we can expect the lower DNN to reconstruct clean features
irrespective of environmental conditions.

Meanwhile, insufficient information about the true noise makes the lower DNN
distort reconstructed clean features and this naturally leads to improper mapping
between the input and phonetic target. To compensate for this problem, we addi-

tionally apply multi-task learning (MTL). In a general MTL framework, multi-task
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objective function Jy;7y is expressed as follows:
Jurr = J + aJouz (37)

where J and Jg,, denote the objective functions of primary and secondary tasks
respectively, and « is the weight parameter which determines how much importance
the secondary task has. After the training is over, only the primary task is performed
and the parameters associated with the output of the secondary task are discarded.

In the lower network training, MTL is applied to the lower DNN with true
noise feature. Specifically, the target vector of the lower DNN adds noise feature
corresponding to noise estimate feature of the input vector. Therefore, the objective

function of the extended lower DNN J, can be represented as follows:

Jo=Y llo: =oill> +a)_ |In; — 1 ? (3.8)
t t

where o; and 0; denote the target and output vectors of the lower DNN. By flowing
back the information of the true noise feature, the extended lower DNN can absorb
the environmental information more distinctly. Particularly, the shared structure
serves to improve the generalization of the model and its accuracy on an unseen test

set. In this technique, o was set to 1.

3.3.2 Upper DNN

In the stage of upper DNN training, the network learns the mapping between the
output vector of the lower DNN v, in (3.6) and the corresponding one-hot encoding
label which contains information of the HMM states. Through the mapping, the
prediction of the posterior probabilities of the HMM states from the reconstructed

features can be enacted. Since v; is acquired by the lower DNN, the reconstructed
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vector is free from information loss caused by using linear approximations which are

used in the conventional techniques.

3.3.3 Joint Training

After the training of the upper DNN is over, two different networks are cascaded
to form a single larger DNN and the unified DNN jointly adjusts the weights using
the backpropagation algorithm. In detail, the error signal between the phonetic
target and the output of the unified DNN flows back to the clean estimate feature
layer and the extended lower DNN, consequently training all the parameters. With
this series of processes, learning the relationship among the noisy, noise estimate,
true noise features and phonetic target labels can be enhanced by guiding the DNN

through the intermediate level features.

3.4 Experiments

To evaluate the speech recognition performance of the proposed approach, we
performed a series of experiments in both matched and mismatched noise conditions.
While the matched noise conditions were obtained from Aurora-5 task where the
detailed information is given in 2.2.2.The mismatched noise conditions were made

using 100 non-speech environmental sounds.

3.4.1 GMM-HMM System

In these experiments, we used multi-condition training data for construction of
all the DNN-based acoustic models. In order to create phonetic labels of the training

data, the GMM-HMM systems were built based on the clean speech data provided by
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the G. 712 filtered and non-filtered data sets which is counterpart of multi-condition
training data. These systems consisted of 179 HMMs states and 4 Gaussians per
state trained using maximum likelihood estimation. The number of utterances used
for HMM training was 8623 for each data set. The input features were 39-dimensional
MFCC features (static plus first and second order delta features) and cepstral mean
normalization was performed. The training of the HMM parameters and Viterbi

decoding for speech recognition was carried out using HTK [19].

3.4.2 Training and Structures of DNN-based Techniques

The performance of the proposed method was compared with three different

versions of DNN-based approaches. The compared techniques are

e Baseline: Basic multi-condition DNN-HMM,
e NAT: Noise-aware training [10],

e Proposed: Two-stage noise-aware training

For training all the DNN-based acoustic models, LMFB feature of 23-dimension
was used. As in the case of MFCC feature above, both the first and second-order
derivative of LMFB features were used.

The input layer for Baseline was formed from a context window of 11 frames
having 759 visible units for the network and that of NAT had total 828 visible units
by augmenting the input vector of NAT with the IMM-based noise estimate. Both
DNNs had 11 hidden layers with 2048 ReL.Us in each layer and the final soft-max
output layer had 179 units, each corresponding to the states of the HMM systems.
The fine-tuning of the two networks were performed using cross entropy as the loss

function by error back propagation supervised by senones for frames.

25



The lower DNN had hidden five layers in total and the number of nodes in each
hidden layer was set to be 2048 ReLUs. The input layer of the lower DNN was equal
to that of NAT.

The upper DNN had 5 hidden layers with 2048 ReLLUs. And the final soft-max
output layer had 179 units in common with the other DNN-HMMs above. The rest of
the training configurations were the same with those of the other DNN-HMMSs. The
parameters of the DNN-based techniques were randomly initialized and fine-tuned
using SGD algorithm.

Mini-batch size for the SGD algorithm was set to be 256 for all of the DNN-based
techniques. The momentum was set to be 0.5 at the first epoch and increased to 0.9
afterward. The learning rate was initially set to be 0.01 and exponentially decayed
over each epoch with a decaying factor of 0.9 except for the cases of two lower
DNNs and joint training of the proposed method. For two lower DNNs and the joint
training, learning rate was initially set to be 0.0005 and exponentially decayed over
each epoch with a decaying factor of 0.95. All the training of DNN-based techniques
were stopped after 50 epochs.

All the techniques evaluated in this experiments were based on wide and very
deep DNN structures. To prevent overfitting, dropout was also applied [20]. The

retention rate of dropout was 0.8.

3.4.3 Performance Evaluation

Table 4.1 shows the results of the various DNN-based techniques. We can see
that the proposed method outperformed other DNN-based techniques irrespective
of the SNRs. Further improvement was observed when the dropout training was

applied. The average relative error rate reductions (RERRs) of Proposed over NAT
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Table 3.1: WERs (%) on Aurora-5 task according to variety of DNN-based acoustic

models
SNR (dB) Non-filtered G.712 filtered

Method Baseline | NAT | Proposed | Baseline | NAT | Proposed

Clean 1.38 1.28 0.89 0.95 0.78 0.70

15 1.85 1.87 1.28 1.32 1.18 0.82

10 3.21 3.14 2.35 2.18 1.87 1.37

) 7.67 7.55 6.23 4.65 4.35 3.52

0 20.55 20.01 18.87 12.91 12.25 11.29

Average 6.93 6.77 5.92 4.40 4.09 3.54

Table 3.2: WERs (%) on the noise-mismatched test set according to variety of DNN-

based acoustic models

SNR (dB) Non-filtered G.712 filtered
Method Baseline | NAT | Proposed | Baseline | NAT | Proposed
Clean 1.38 1.28 0.89 0.95 0.78 0.70

15 3.68 3.12 2.62 4.39 4.29 4.05
10 9.42 5.88 5.01 10.28 10.35 7.89
) 23.78 12.11 10.56 22.58 18.12 14.89
0 44.25 24.02 19.76 41.52 29.75 16.78
Average 16.50 9.28 777 15.94 12.66 10.86

were 12.5% and 13.36% in non-filtered and G.712 filtered set.
To evaluate the proposed technique in training-test mismatched noise condi-
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Table 3.3: Computation complexity measurement of variety of DNN-based acoustic

models

Method Baseline NAT Proposed

No. of param. 43.9 M 44.0 M 38.7 M

xRT 0.025 0.125 0.122

tions, we constructed the noise-mismatched test sets by mixing the clean speech
of non-filtered and G. 712 filtered sets with four noises included in 100 non-speech
environmental sounds [21]. Four types of noise were chosen from 100 noise types :
animal, water, wind sound and phone dialing. Each noise types were added to the G.
712 filtered and non-filtered sets at SNRs between 0 and 15 dB with equal rate. From
the results in Table 4.4, we can see that the proposed technique is more effective
in mismatched noise conditions. Especially, when dropout training is performed the
average relative error rate reductions (RERRs) of Proposed over NAT were 16.31%

and 14.19% in noise-mismatched non-filtered and G.712 filtered set.

3.5 Summary

In this chapter, we have proposed a novel technique of DNN-based acoustic model
designed for effective usage of multi-condition data and its noise estimate. The pro-
posed technique addressed the mapping from noisy speech and noise estimates to
phonetic targets effectively by concatenating two fine-tuned DNNs and training the
unified network jointly. Through a series of experiments on Aurora-5 task and mis-
matched noise conditions, we have found that the proposed technique outperforms

NAT in word accuracy on both matched and mismatched conditions.
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Chapter 4

DNN-based Feature

Enhancement for Robust
Multichannel Speech

Recognition

4.1 Introduction

Since the introduction of deep neural network (DNN)-based acoustic model to
automatic speech recognition (ASR), various studies on DNN-based techniques for
robust ASR have been in progress. Due to the progresses above, the ASR system has
achieved great performance in close-talking environments. However, recent develop-
ments in speech and audio applications such as hearing aids and hands-free speech

communication systems require speech acquisition in distant-talking environments.
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Unfortunately, as the distance from the speaker and the microphone increases, the
recorded speech becomes more distorted due to the background noise and room
reverberation. Although it may be possible to acquire the speech in close-talking
environments by using a headset microphone, it is not a general solution because
of the inefficiency in terms of cost and ease of use. Consequently, ASR performance
in distant-talking environments is still far from that shown in close-talking environ-
ments.

In order to overcome this difficulty, various researches have focused on techniques
for efficiently integrating the information obtained from multiple distant micro-
phones to improve the ASR performance. One of the most conventional multichannel-
based techniques is the beamformer method, which enhances the signals emanating
from a particular location by individual microphone arrays. The simplest technique
is the delay-and-sum (DS) beamformer [22], which compensates the delays of the
microphone inputs so that only the target signal from a particular direction synchro-
nizes with. In addition, there are many sophisticated beamforming methods [23], [24]
which optimize the beamformers to produce a spatial pattern with a dominant re-
sponse for the location of interest.

Feature mapping techniques based on DNN have been also investigated recently.
DNN-based feature enhancement techniques [3], [4] have already been widely em-
ployed in robust ASR due to their advantage in directly representing the arbitrary
unknown mapping between the noisy and clean features unlike the conventional
techniques [25]-[28] which usually require specific assumptions or formulations. Es-
pecially, [4] showed that the feature mapping technique combining beamformer and
DNN improves the performance of the ASR system in multichannel distant speech

recognition.
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Meanwhile, recent researches on joint training technique of DNN [8], [9] have
drawn attention. builds a DNN by concatenating two independently trained DNNs
and jointly adjusting the parameters. Through this training technique, the synergy
between two DNNs can be amplified. Traditionally, this joint training framework
has been applied to incorporate two different tasks into one universal task, i.e.,
integrating speech separation and acoustic modeling [9]. In addition to the usage
above, the joint training technique can be used for training a DNN in charge of a
single task elaborately. In these circumstances, the performance of DNN depends
on deciding which types of features are represented in the intermediate layer where
junction between two DNNs occur. In [29], a performance of DNN was enhanced
by giving appropriate intermediate concepts which the DNN should represent in the

mid-level.

In this chapter, we propose a novel DNN-based feature enhancement technique
for multichannel distant speech recognition in modern multichannel environments
where various types of microphone data are given as training data. The main con-
tribution of the proposed approach is to construct a multichannel-based feature
mapping DNN algorithm by properly combining a conventional beamformer, DNN
and its joint training technique with lapel microphone data which has an intermedi-
ate level of acoustic information between DNN input and the target. To implement
the technique making use of various microphone types and evaluate the performance,
we used a data set of single speaker scenario from MC-WSJ-AV corpus [14] which
is a re-recorded version of WSJCAMO [30] in a meeting room environment. More

detail information for MC-WSJ-AV corpus is given in 2.2.3.
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Figure 4.1: Reverberant noisy environment in multi-channel scenario.

4.2 Observation Model in Multi-Channel Reverberant

Noisy Environment

We consider a typical hands-free scenario for ASR in which multiple microphones
are used as shown in Fig. 4.1. The target speaker is located in a certain distance from
the microphones in an enclosed room, which results in acoustic reverberation. Let
¥i[t] be the signal obtained from the i-th microphone with ¢ € {0,1, - - } denoting the
time index. If Z[t] is the target speech signal and h; ¢[p] represents the RIR from the
target speaker to the i-th microphone with corresponding tap index p € {0,1,---},

then

yilt] = th t[p]Z[t — p] + n4[t] (4.1)

where 7;[t] is the background noise added to the i-th microphone input.
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Figure 4.2: The schematic diagram of proposed technique.
4.3 Proposed Approach

In this chapter, the (m)-th array microphone feature, the DS-beamformed feature
from the array, lapel microphone feature and headset microphone feature being
(

extracted at the t-th frame are denoted as atm), b, 1; and hy, respectively.

We propose a novel DNN-based feature enhancement approach for multichannel
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distant speech recognition. The purpose of our technique is to estimate the clean
features from the distant array features. However, there exists two problems for
enabling the DNN to achieve this adverse task. The first problem is the phase differ-
ences among each signal of array microphones originated from the distances between
the speaker and each microphone. And the second problem, which is more serious,
is the lack of acoustic information of the array. Due to the distances between each
of the array microphones and the speaker, the microphones have low ratio of direct-
to-reverberant speech energy which becomes a huge limitation on reconstructing the
clean speech entirely. To compensate for these problems, we propose the DNN as

shown in Fig. 4.2.

The proposed DNN is constructed by concatenating two individually fine-tuned
DNNs and training the unified DNN jointly. We call the first DNN as lower DNN
since it is placed in the lower part of the DNN in Fig. 4.2. The second DNN which
is called the upper DNN, deals with modeling the relationship between the output

vector generated by the lower DNN and the headset microphone feature.

4.3.1 Lower DNN

For training the lower DNN, DS beamforming [22] is employed to the microphone
array to align the phases of microphone inputs. Once the beamforming has been
applied, the input vector of the lower DNN v, is formed by concatenating a window
of several adjacent frames of feature from the beamformed source and additional
windows covering each array microphone features, i.e.,

Vi = [al(fl—)T:t—H'?agg—)T:t—f—T’ T 7a$5¥7’_:t1—277a7(f¥72:t+7" by ritir] (4.2)
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where 7 represents the temporal coverage required for figuring out the clean fea-
ture of ¢-th frame and M represents the number of the array elements. This input
structure helps the lower DNN to learn the correlations among features of array
microphones. As the target vector of the network, we used a window of several
frames of feature obtained from lapel microphone which has a much higher ratio of
direct-to-reverberant speech energy than those of the array microphones but lower
than those of the headset microphones. Therefore, the lower DNN output can be

represented as follows:

6% = [/l\t—TZt-f—T]- (43)

4.3.2 Upper DNN and Joint Training

In the training stage of the upper DNN training, the network learns the map-
ping between the output vector of the lower DNN and the corresponding headset
microphone feature which can be interpreted as a ideal clean feature. The mapping

can be represented as follows:
o) = [h]) = f(l;_rsr). (4.4)

Here, function f is a function which deals with the mapping from the reconstructed
lapel microphone features to the headset microphone feature. Since the clean fea-
tures are estimated from the reconstructed lapel features which have more abundant
acoustic information than the array features, we can expect more accurate recon-
struction of clean features.

After training the upper DNN, two different networks are cascaded to form a
single larger DNN and the unified DNN jointly adjusts the weights using the back-

propagation algorithm. In detail, the error signal between the clean target and the
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output of unified DNN flows back to the lapel microphone feature layer and the lower
DNN, and consequently training all the parameters. With this series of processes,
learning the relationship between the array features and the headset features can be
enhanced by guiding the DNN through the intermediate level features. For training
all the DNNs in the proposed method, the SGD algorithm is used to minimize the

mean squared error (MSE) function which is given by
1 X
— O, 112
Cuse = T ;1 [|0¢ — O (4.5)

where Oy, 6,5, and T denote the target, output vector of network and number of

training samples, respectively.

4.4 Experiments

The proposed technique was trained on development set (DEV) and its perfor-
mance was evaluated on evaluation set (EVAL1) of MC-WSJ-AV DB. The selection
of read sentences for these sets was based on the development and evaluation sets
of the WSJCAMO British English corpus [30]. Each speaker prompt contained 17
adaptation sentences, 40 sentences from the 5000-word sub-corpus, respectively.

In this section, some basic experimental results obtained from DS-beamformed
source (DS) of microphone array, headset microphone (Headset), lapel microphone
(Lapel) and single distant microphone (SDM) recordings were presented. Here, the
microphone array refers to Array 1 which is the left one among the two arrays in
Figure 1 and single distant microphone is the no. 1 microphone of the Array 1.
Also, the comparison of performances with conventional DNN-based feature map-

ping methods were included.
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4.4.1 Recognition System and Feature Extraction

A baseline DNN-HMM system was trained on the WSJCAMO database. The
training set consisted of 53 male and 39 female speakers. We used the Kaldi speech
recognition toolkit [31] for feature extraction, acoustic modeling of ASR and ASR
decoding. For feature extraction, 13-dimensional MFCCs (including Cp) with their
first and second derivatives were extracted and the cepstral mean normalization
algorithm was applied for each speaker. In order to provide the target alignment
information for the DNN-based acoustic model, we built a GMM-HMM system with
2047 senones and 15026 Gaussian mixtures in total. The target senone labels of the
DNN-HMM system were obtained over the training data. As for the language model,

we applied the standard 5k WSJ trigram language models.

For the DNN training of the acoustic model, we applied five hidden layers with
2048 nodes. As for the input of the DNNs, input features consisted of consecutive 11-
frame (5 frames on each side of the current frame) context window of 13 dimensional
MFCC features with their first and second order derivatives, resulting with the input
dimension of 429. The input features of the DNNs were normalized to have zero
mean and unit variance. The output dimension of the DNN was 2047. Generative
pre-training algorithm for the restricted Boltzmann machines was carried out to
initialize the DNN parameters as described in [32]. The errors between the DNN
output and the target senone labels were calculated according to the cross-entropy
criterion [2]. In order to speed up the training, we applied the learning rate scheduling

scheme and the stop criteria presented in [32].
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4.4.2 Training and Structures of DNN-based Techniques

The performance of the proposed method was compared with different versions

of DNN-based feature enhancement approaches. The compared techniques are
e FE-SDM: mapping single array microphone into a clean target source,
e FE-DS: mapping DS-beamformed source of the array into a clean target source,

o FE-PMWEF: mapping adaptive beamformed source of the array into a clean

target source,

e FE-Array: mapping multiple sources from microphone array into a clean target

source,

e FE-PMWF&Array: mapping multiple sources including the sources from the
microphone array and adaptive beamformed source of the array into a clean

target source,

e FE-DS&Array: mapping multiple sources including the sources from the mi-
crophone array and DS-beamformed source of the array into a clean target

source,

e FE-Array-Joint: mapping multiple sources from microphone array into a clean
target source with applying the joint training framework via the lapel micro-

phone feature,

o FE-PMWFE& Array-Joint: mapping multiple sources including the sources from
the microphone array and adaptive beamformed source of the array into a
clean target source with applying the joint training framework via the lapel

microphone feature.
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In implementing DNN-based techniques using the adaptive beamforming, spectro-
temporal parameterized multichannel non-causal Wiener filter-based enhancement
technique (PMWF') was used. For training all the DNN-based feature enhancement
techniques, we used cepstral mean normalized MFCC feature of 13 dimension with
their first and second derivatives as an input. All the techniques used one or more
windows depending on the number of sources and each window consists of 11 con-
secutive MFCCs. Meanwhile, the feature mapping DNNs commonly estimated 13-
dimensional static MFCC of current frame and the outputs of DNNs were fed into
the recognizer after extraction of their dynamic component. Table 4.4 shows the
input and output dimensions of each DNN-based techniques. The networks had 5
hidden layers with 1024 ReLUs [33] are applied except for the proposed technique
which contains the intermediate layer because of its unique structure. The param-
eters of the DNN-based techniques are randomly initialized and fine-tuned using
SGD algorithm with minimum MSE objective function like those of the proposed

method.

Mini-batch size for the SGD algorithm was set to be 256 for all of the DNN-based
feature enhancement techniques. The momentum was set to be 0.5 at the first epoch
and increased to 0.9 afterward. The learning rate was initially set to be 0.01 and
exponentially decayed over each epoch with decaying factor of 0.9 except for the
cases of the lower DNN and joint training of the proposed method. For lower DNN
and the joint training, learning rate was initially set to be 0.001 and exponentially
decayed over each epoch with a decaying factor of 0.95. All the training of DNN-

based techniques were stopped after 50 epochs.
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Table 4.1: WERs (%) on EVALI1 according to various source types

Channel WER (%)
SDM 58.00
PMWF 46.14
DS 41.97
Lapel 13.18
Headset 7.49

4.4.3 Dropout

As one of the most well-known regularization techniques, dropout was also ap-
plied. Dropout is a method that improves the generalization ability of the DNN.
It can be easily implemented by randomly dropping the input and hidden neuron
units. As pointed out by Hinton et al. [34], dropout can be considered as a bagging
technique that averages over a large amount of models with shared parameters of
the DNN. A dropout percentage of 20% was applied to every DNN-based feature

enhancement technique.

4.4.4 Performance Evaluation

Table 4.1 and Table 4.3 show the results according to various source types
and DNN-based techniques, respectively. Comparison among the DNN-based ap-
proaches shows that high variety of input structure of the DNN guarantees better
performance. We can see that the proposed method outperformed other DNN-based

techniques including FE-DS&Array which has the same input structure but more
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Table 4.2: Input and output dimensions of the DNN-based techniques.

Method Input dim. | Output dim.
FE-SDM 429 13
FE-DS 429 13
FE-PMWF 429 13
FE-Array 3432 13
FE-PMWF&Array 3861 13
FE-DS&Array 3861 13
FE-Array-Joint 3432 13
FE-PMWFE& Array-Joint 3861 13
Proposed 3861 13

parameters than the proposed approach. Meanwhile, when the techniques employ-
ing DS The average relative error rate reductions (RERRs) of the proposed method
over FE-DS&Array was 9.8%. This confirms that our proposed approach which in-
tervenes the DNN through information of reconstructed lapel microphone data can
be effective in making the network to learn the complicated relationship between fea-
tures from the distant microphone array, DS-beamformer and headset microphone

sources.
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Table 4.3: WERs (%) on EVALL according to variety of DNN-based feature en-

hancement techniques.

Method WER (%)
FE-SDM 25.88
FE-DS 23.52
FE-PMWF 21.91
FE-Array 20.44
FE-PMWF&Array 20.11
FE-DS&6Array 19.63
FE-Array-Joint 18.38
FE-PMWF&Array-Joint 18.06
Proposed 17.70

4.5 Summary

In this paper, we have proposed a novel DNN-based feature enhancement ap-

proach for multichannel distant speech recognition. The proposed approach con-

structed a multichannel-based feature mapping DNN using conventional beamformer

)

DNN and its joint training technique with lapel microphone data. Through a series

of experiments on MC-WSJ-AV corpus, we have found that the proposed technique

clarifies the relationship between the features obtained from distant microphone

array and clean speech.
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Table 4.4: Computation complexity measurement of the DNN-based techniques.

Method No. of param. xRT
FE-SDM 4.65 M 0.003
FE-DS 4.65 M 0.047
FE-PMWF 4.65 M 0.073
FE-Array 7.72 M 0.006
FE-PMWFE&Array 8.61 M 0.051
FE-DS&Array 8.61 M 0.077
FE-Array-Joint 6.50 M 0.005
FE-PMWF& Array-Joint 6.94 M 0.049
Proposed 6.94 M 0.075
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Chapter 5

Uncertainty-aware Training for
DNN-HMM System using

Variational Inference

5.1 Introduction

Although the DNN-based techniques introduced in previous chapters have shown
better performances, there still exists the limitation of them., the estimated clean
features or the phonetic targets may still be unreliable due to various sources of
uncertainty. Yet, these sources of uncertainty are mostly overlooked when applying
DNN-based techniques, which eventually tampers with model performance. When
the test data contains unseen environmental effects (e.g., noise, reverberation, and
speaker and channel mismatch) which are seldom observed in the training data, the
accuracy of the estimator decreases and this degrades the overall performance of the

ASR system.
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Uncertainty decoding (UD) is a well-known approach in HMM-based ASR to
addresses such issues effectively [35]-[40]. The main idea is to employ a stochastic
process, instead of a deterministic one, in order to describe the mapping from the
observed noisy features to the clean features. More specifically, UD, given a degraded
input data, exploits a statistical model from which the posterior distributions of the
unknown clean speech features are learned.

The key to the successful implementation of the UD technique is to determine
how to model the posterior distribution based on which the marginalized likelihoods
are computed. Amongst myriads of propositions, [41]-[50] attempt to reflect the
input uncertainty in the feature domain with the assumption that uncertainty may
be represented by specific statistical models (e.g., Gaussians and GMM). Especially,
studies that additionally consider modified variances of each Gaussian component in
the update of GMM-HMM parameters obtained remarkable performance [35]-[37],
[51].

Inspired by prior work, efforts have been recently made to utilize deep learn-
ing techniques in the UD setting. For example, [52] and [53] implement Gaussian
marginalization approximation approach to the conventional DNN-based inference.
Despite their impressive performance, these neural network-based techniques cannot
utilize softmax layers, which serve as the output layer, of the DNN-based acoustic
model. This makes the techniques in [52] and [53] incompatible with the neural
network-based acoustic model. On the other hand, [54]-[57] use numerical sampling
in order to account for uncertainty in their DNN-HMM framework. However, these
approaches process a single sample input by feeding in multiple samples, hence invok-
ing inefficiency in terms of computational costs. Although [57] attempts to tackle

this issue by the means of unscented transformation which considers only a rela-
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tively reasonable number of samples during the training and decoding processes as
compared to the other conventional sampling-based approach, the trade-off between
performance and computational burden still remains to be an issue in the real world.

In this chapter, we propose a novel deep learning-based acoustic modeling tech-
nique which systematically measures and takes account of the uncertainty inherent in
the input features using a single deep network. Our method distinguishes itself from
the existing UD studies using NN-based acoustic model in two perspectives. Firstly,
we divide the input uncertainty into two different domains: clean feature estimation
and environment estimation. Secondly, instead of sampling, uncertainty information
is fed into the NN-based acoustic model in the form of supplementary features as
introduced in [7]-[12]. Such an approach allows our method to take account of input
uncertainty in estimation with a relatively little increase in computational cost.

Our proposed technique, the uncertainty-aware training (UAT), namely, employs
variational autoencoder (VAE) [58], [59], one of the widely used variational inference
(VIF) techniques, which allows the extraction of robust features along with the
associated uncertainties. VAE performs efficient inference under the assumption that
the observed data is generated from a random variable. UAT modifies both the
input and output structures of VAE so as to take the full advantage of DNN-based
approach with auxiliary features, a structure similar to those introduced in [7]-[12].
UAT provides robust latent variables which intervene the mapping between the noisy
observed features and the phonetic target by using the distributive information of
the clean feature estimates.

UAT trains the latent variable parameters according to the maximum likelihood
(ML) criterion, similar to those used in the conventional UD framework. Our method

tackles the limitations posed by the traditional Gaussian-based approaches by in-
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corporating the VIF-based latent variable to the stochastic noisy-to-clean mapping
scheme, hence successfully modeling input uncertainty.

The proposed technique, along with the conventional DNN-based techniques, is
evaluated on Aurora-4 [16] and CHiME-4 databases [15]. Experimental results show
that the proposed technique outperforms the conventional DNN-based techniques.
Moreover, we confirm that the latent variables obtained from the proposed technique

can be utilized as an effective measure of uncertainty.

5.2 Uncertainty Decoding for Noise Robustness

Under the general framework of HMM-based recognition, the likelihood p“#) (y,|q;)

with respect to a HMM state q; given a noisy feature vector y; can be written as

follows:

plady)p(ye)

p(at) 5-1)

P(LH) (yilat) =

In (5.1), p(a¢]y:) and p(q;) respectively represent the posterior and prior proba-
bilities of q; and p(y;) is the prior probability density of y; which does not influence
the recognition process. In DNN-based acoustic model the posterior probability is

usually given by

placlyt) & fq,(yt-ritir) (5.2)

where fq,(-) represents a mapping from the noisy features to the corresponding HMM
state identity q; implemented by a DNN. The subscript 7 indicates the temporal
coverage considered as the contextual information of the speech signal. The function
fq,(+) is directly learned based on a collection of noisy data in the multi-condition

training scenario [10].
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Moreover, if an auxiliary feature a; is provided as an augmented input, (5.2) can

be modified into

placly:) = o, (Yi—ritrr ar) (5.3)

where fau®

a () represents a function predicting the corresponding phonetic target

based on both the noisy input and auxiliary features. By applying this simple process
to both training and decoding, the DNN can automatically learn the complicated
mapping from the noisy speech possibly with the auxiliary features to the HMM
state labels [10]-[12].

The feature-based techniques, on the other hand, map the noisy features into the
corresponding clean features via a DNN and the obtained clean feature estimates

are fed to the acoustic model. This can be described as

placlys) = p(Qe| fx(Yi—rit+r)) (5.4)

where the output of fx(-) is a stream of clean feature estimates,

)A(t—'r:t—l—T - fx(yt—T:t—i-T)- (55)

In (5.4) and (5.5), fx(-) represents a function dealing with the mapping from the
noisy to the clean speech features. As in the model-based techniques, the perfor-
mance of a feature mapping technique can be improved with the incorporation of
the auxiliary features [7].

Most of the DNN-based techniques [3]-[12], [60] aim to optimize the point esti-
mates of the targets (e.g., clean features, and acoustic model parameters). Despite
their success in robust ASR, the performance of these approaches usually degrades

when there exist some mismatches between the training and test data. While the
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training data set is limited to rather narrow environments, the test data may un-
dergo distortions not observed in the training data. UD attempts to compensate the
imperfection of the estimators in the decoding process.

In order to take account of the estimation errors, the UD provides a somewhat
different view for the observation likelihood formulation. UD models begin by assum-
ing that there does exist some training-test mismatch. In other words, UD assumes
that the acoustic model is trained on clean speech data while the observed inputs are
distorted versions of the underlying clean feature vectors [40]. And the mapping from
the clean to the distorted feature is assumed to follow a stochastic process. Given
the underlying assumptions, the observation likelihood can now be formulated via
two steps: estimating the posterior densities of the clean features and marginalizing

over the clean features. The likelihood is given by

P (yilan) = ply) [ PO gy, (5:6)

where we assume that p(y:|x¢, ;) = p(y¢|x¢). Then, by formulation, the influence
of unreliable estimates can be de-emphasized in the decoding process.

The toughest challenge in implementation of the UD techniques resides in marginal
integration as found on the RHS of (5.6), since it is often computationally intractable.
Conventionally, such issues were tackled by approximating the likelihood using Gaus-
sian or Gaussian mixture densities. In a GMM-HMM system, all three density terms,
ie., p(x¢|as), p(x¢]y:) and p(x;) on the RHS of Equation (5.6), are assumed to be a
Gaussian or Gaussian mixtures.

In contrast, DNN-HMM based UD techniques allows numerical evaluation of
the integral [54]-[57]. The posterior probability p(q:|y:) is obtained by computing

the expectation of clean posterior p(q:|x;) over the estimated distribution of clean
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feature, i.e.,

paely:) = Elp(aelxe)|%e, bz,] (5.7)

where b}%t represents the variance-related term of x;. The process estimating X
and bf{t is called uncertainty estimation. In general, additional speech enhancement
techniques, such as nonnegative matrix factorization or Wiener filter, are employed
to compute X; during the uncertainty estimation process [57]. Similarly, it is common
to obtain bx, using some heuristic approaches or approximation methods, yet this
sometimes causes performance degradation of the overall UD process [42], [43], [45],
[48]. Once the information of the clean feature distribution is given, the expectation
of the clean posterior is approximately computed by the numerical sampling. This
process is referred to as uncertainty propagation.

Although uncertainty estimation and propagation may serve as options for resolv-
ing the uncertainty issues, there is a tradeoff with increased computational burdens.
When the tradeoff between performance and computation burden is too costly, then
the current UD framework may not be the most optimal choice for the DNN-HMM
structure when utilizing uncertainty in the DNN acoustic model. Such issues call for

a new method in lieu of the existing ones when dealing with uncertainty.

5.3 Variational Autoencoder

VAE is a generative model which combines the idea from an autoencoder with
statistical inference. One of the most important characteristics of the VAE is that
it can perform efficient approximate inference in the presence of continuous latent
variables with intractable posterior distributions [58]. Through the stochastic gra-

dient variational Bayes (SGVB) algorithm, the VAE parameters are optimized to
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carry out an efficient posterior inference without the need for expensive iterative
inference schemes (e.g., Markov Chain Monte Carlo).

Analogous to the model structure of the standard autoencoder, the VAE is com-
posed of two directed networks: encoder and decoder networks. However, unlike the
standard autoencoder, the VAE assumes that the observed data o is generated by
a Gaussian random variable z which has normal prior distribution. The encoder
network of the VAE outputs the mean and covariance of the posterior Gaussian
distribution given the input and the decoder network tries to reconstruct the input
pattern from that information.

In the mathematical perspective of the VAE framework, the network parameters

are trained to maximize the likelihood given an observation o, which is given by

po(0) = / po(2)ps(o|z) dz (5.8)

where 0 represents the generative parameters of the VAE. The integral in the RHS
of (5.8) usually becomes intractable when the generative model pg(o|z) is imple-
mented by a deep structured neural network. This also makes the true posterior
density pp(z|o) = pp(o|z)ps(z)/pg(0) intractable. Therefore, it is hard to evaluate
or differentiate the marginal likelihood using the general neural network training
framework.

In order to alleviate this problem, the VAE framework introduces g4(z|o), a
probabilistic function which provides a variational approximation of the intractable
true posterior pg(z|o) with ¢ denoting the variational parameters. Here, the encoder
specifying g4(z|o) approximates the posterior probability py(z|o) given an observa-
tion o. The decoder implements pg(o|z) by reconstructing o from the latent variable

generated by the encoder network.
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VAE parameters are trained to maximize the log-likelihood given a training

sample o which can be written as follows [58]:

logpg(0) = Di1(g4(z[0)[|pe(2]0)) + Z(0, ¢; 0). (5.9)

The first term in the RHS of (5.9) represents the Kullback-Leibler divergence (KL di-
vergence) between the approximated posterior ¢4 (z|o) and the true posterior ps(z|o).
Since the KL divergence is non-negative, the second term in the RHS of (9) becomes

the variational lower bound on the log-likelihood and it is given by

logpg(0) >.Z(0, $;0)
= — Dk1(gy(2]0)l|po(2))

+ Eg, (20 [log po(0]2)]. (5.10)

The encoder and the decoder networks of the VAE can be trained jointly by maxi-
mizing the variational lowerbound .Z (0, ¢; 0) with respect to ¢ and . The first term
in the RHS of (5.10) represents the KL divergence between the prior and the pos-
terior distributions of the latent variable z, which acts as a regularization penalty.
Since both distributions are described as Gaussians the KL divergence term has a

simple closed form determined in terms of their parameters.

The second term in the RHS of (5.10), i.e., the expectation of conditional log-
likelihood E, (5/0) [log py(0|2)] means the reconstruction error between the input and
output of the VAE. This can be approximated by the reparameterization trick which
computes the Monte Carlo (MC) estimate of the variational lower bound. Based on

the assumption that the prior and posterior densities are Gaussian with diagonal
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covariance matrices, .2 (6, ¢; 0) is now given by

—_

D
Z 1+ log( azd — (,uzd)Q + (Uzd)z)
d:l

L
Z og pg(o|z!

(5.11)

where z() ~ g4(z|o) and D denote the dimensionality of z, and u,, and o,, are
respectively the d-th element of the posterior mean and standard deviation of z, i.e.,
1z and o. Also, L indicates the number of samples used for estimation and the I-th

sample z() can be reparameterized as
2" = p, + oge (5.12)

where € ~ N(0,1I) is an auxiliary noise variable. Summarizing, the VAE training
attempts to minimize the reconstruction error while maximizing the similarity be-
tween the prior and posterior distributions of the latent variable. Interested readers

are referred to [58] for more detail on VAE.

5.4 VIF-based uncertainty-aware Training

In this section, we propose a new VIF-based uncertainty-aware training tech-
nique, UAT, namely, which systematically measures and takes account of the un-
certainty inherent in the input features by using a single deep neural network. UAT
provides a novel network design substituting the existing uncertainty modules in
the current UD approaches for DNN-HMM. More specifically, UAT uses individual
DNNs for uncertainty estimation and propagation, employing various DNN-based

techniques and VIF. For implementation, we begin by introducing the DNN-based
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Figure 5.1: The training procedure of uncertainty-aware training.

acoustic models to the conventional UD scheme. In this case, (5.6) is modified as

follows:

J plaglxe)p(xe]ye)dxq
p(ar)

P (yilae) = plye) (5.13)

where p(x;|q;) and p(x;) are respectively substituted by p(q:|x;) and p(q;) since the
DNN-based acoustic model provides the posterior probability of the states. In (5.13),
p(y:) can be treated as a constant and we remove it from the likelihood formulation
for simplicity.

As pointed out in the previous section, marginal integration over the clean fea-

ture is almost intractable when using DNN. In this study, we propose a DNN struc-
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Figure 5.2: The network structure of uncertainty-aware training.

ture designed specifically to tackle this intractability issue. When we analyze (5.13),
we can see that the likelihood with a corrupted feature y; is determined by the
conditional distribution p(x;|y:). The conditional distribution p(x;|y;) enables the
likelihood to account for the uncertainty originating from the distorted input feature.
In the conventional feature-based techniques, a point estimate X; is derived from yy,
ie., p(x¢|ly:) = d(x¢ — X¢), and it can be clearly seen that it does not consider any
distributional characteristics of the enhanced feature. Meanwhile, if p(x;|y;) is spec-
ified as a parametric distribution, the likelihood should depend on its parameters,
too. Especially, among the parameters, the variance-related terms of the distribution
which represent the reliability of the estimated mean is directly related to the input

uncertainty.

Therefore, under the assumption that the clean feature x; given the noisy feature

y: follows a certain parametric distribution, the RHS of (5.13) can be defined as a
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function of the parameters of p(x;|y:)

P (yilar) = g, (&) (5.14)

where, g, (-) represents a mapping from the parameters of p(x:|y:) to the corre-
sponding HMM state q; and &, denotes the parameters. By utilizing the capability
of DNN to implement g,,, we can implicitly build the complicated relationship be-
tween y; and q; including the marginalization with respect to x;. Analogous to this,
if £x, is expressed as a function of yy, i.e., &, (y+), then (5.14) can be described as a
sequential two-stage DNN mapping, where the first stage carries out the parameter
estimation of clean feature distribution, and the second stage, the subsequent HMM
state prediction using the parameters resulting from the first stage.

However, there still exists some difficulty in this approach. Although the rela-
tionship between the distorted feature y; and the corresponding HMM state q; is
described in terms of the intermediate distributional information of the clean fea-
ture x; as defined in (5.13), its performance in adverse environment is still far worse
when in adverse environment as compared to the clean conditions.

Since the conditional distribution p(x;|y:) is estimated by a DNN from the train-
ing data, the aforementioned design still does not resolve the training-test data mis-
match issues perfectly. Therefore, still required is the inclusion if additional latent
variables which effectively accounts for the uncertainty coming from the unknown
environment factors in the mapping between y;, x; and qs.

We address above issue and supplement our UAT technique by introducing a
latent variable z; to Equation (5.13) as an additional environment feature that
intervenes the mapping from the corrupted feature y; to the corresponding state q,

which the clean feature x; cannot explain. Now (5.13) is modified to incorporate the
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environment latent variable z; as follows:

J Iplailxi, 20)p(xi, 24|yt ) dx i dzy
p(ar)

S p(adxe, z)p(zelxe, y o) p(xe|y ) dxdz,

N p(ar) '

P (v ay) o

(5.15)

It can be seen from (5.15) that p(“) (y;|q;) is determined not only by the clean
feature but also by the latent variable. If p(x;|y;) and p(z;|x;,y:) are parameterized

with parameters &, and &z,, respectively, then we have

P (yilae) 22 g5 (6w, o) (5.16)

where gq,”"(+) is the function predicting the target q; based on the parameters &,
and &,,. The relationship between (5.14) and (5.16) is similar with that between
(5.2) and (5.3). As the auxiliary feature a; in (5.3) supplements the mapping from
the noisy input feature y; to the corresponding HMM state q; by providing an
information which y; cannot consider, the parameters of the latent variable &, in
(5.16) assist the clean feature parameters £, with the prediction of q;, especially
well under the training-test mismatch condition.

In order to implement (5.16), the UAT technique carries out two tasks: feature
extraction for uncertainty awareness and HMM state prediction. The former task
involves derivation of &, and &, given an input feature y;. Then, the during the
HMM state prediction phase, the posterior probability estimation over the HMM
states given the input containing not only the point estimates of x; and z; but also
the parameters of their posterior distributions is performed based on gg;” (¢x,,&z,)
shown in (5.16). This allows the likelihood p(*)(y|q;) to be characterized by the
distribution of both x; and z; conditioned on y; so as to take advantage of the

uncertainty of the estimation.
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In this work, we assume that both the conditional distributions, p(x;|y:) and
p(z¢|x¢,y¢) are given by Gaussian pdfs where each component of x; and z; is un-

correlated.

p(x¢lyt) = N(Xt; fix, (Y1)s 2, (¥t)) (5.17)

P(ze|xe, Y1) = N (245 g, (X0, Y1), Doy (X, Y1) (5.18)

We should note that px, and Yk, depend on y; while u,, and X,, depend on both
x; and y;. In this parametric formulation &, = {ux,, 2x,} and &z, = {pz;, 2z, },
respectively. In the proposed technique, p(x;|y;) is computed by a neural network
which we call the clean uncertainty network (CUN), and p(z¢|x;, y¢) is derived from
the VAE of modified structure which we call the environment uncertainty network
(EUN). In this paper, the clean uncertainty represents the uncertainty appearing in
the process of clean feature estimation which has the same meaning of the conven-
tional meaning of the uncertainty. On the other hand, the environment uncertainty
means the uncertainty that cannot be fully resolved by the CUN due to the some
unseen factors. Hence, by definition, the two types of the uncertainties are comple-
mentary of each other and fully encompasses the sources of uncertainties especially
in the training-test mismatch condition. The input of CUN is the noisy feature y;
and the output is &, = {/x,, 2x, }. The parameters of CUN are trained to maximize
the log-likelihood log p(x¢|y¢).

Now we apply the modified VAE framework to model p(z:|x¢,y:) in (5.18). In
order to model p(x|y:), the practical implementation of the VAE calls for an ap-
proximation of (5.15) into a simplified form. Meanwhile, the parametric information

of p(x¢|y¢) has already been given by CUN. Therefore, we take an advantage of
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the given parameters of x4, i.e., {,, for modeling p(z:|x:,y:). EUN replaces the
marginalization over x; in (5.15) by a parametric dependency on &, instead. Based
on this, (5.15) may be approximated as following:
fpe(qt|£xlt7Zt)Q¢(Zt|£xzaYt)dzt

p(ae)

_ pr(Qt‘:u'xta ZX:? Zt)q¢>(zt|ﬂx“ sza yt)dzt
par)

p(LH)(Yt|Qt) X

(5.19)

where 6 and ¢ represent the parameters of the decoder and encoder, respectively.
Here, q4(2¢|pix,, X, y+) takes over the role played by p(z¢|x;,y:).

In order to combine the above processes in a single network, the training proce-
dure and network structure of the UAT are designed as in Figs. 5.4 and 5.4. The UAT
network is composed of three individually trained DNNs and ultimately fine-tuned
via joint training. The first network, CUN derives px, (y:) and Xy, (y+) from the given
noisy input feature y; as in (5.17). The second network, EUN corresponds to the en-
coder network of the UD-based VAE which computes fiz, (x¢,y:) and Xy, (x4, y:) in
(5.18) with an approximation shown in (5.19). The last DNN predicts the posterior
probability corresponding to each HMM state, i.e., gq;" (€x; &z, ) in (5.16), which we

call the prediction network (PN).

5.4.1 Clean Uncertainty Network

The main goal of CUN is to derive the parametric information of the clean
feature distribution given the noisy input feature p(x;|y;). The objective function

of the network for training CUN can be formulated as follows:

T
1
Joun = T § log p(x¢|y+), (5.20)
t=1
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with

D (Xt,d - ,Ué‘(t d)2
logp(xilys) = p —log(y/22%, ,7) — ——F—— (5.21)
d=1 22&”

where g, , and Xz | are the d-th elements of uz, and Xy, , respectively. Also, Dy

denote the dimensionality of x;. The output vector o¢UY of CUN is given by:
of " = [uz," log(5%,)'T (5.22)
where

2% = [Eﬁt,lla Eﬁt,gla ey Eﬁt,Dx/],' (523)

While the mean term, i.e., pg,, sets the clean feature as its target, the variance
term, i.e., J,, does not require a specific target. The variance term is computed
autonomously as CUN minimizes the objective function given x;, the ultimate target
of the mean term. That is, in other words, CUN is structured so as to be able to

generate the variance terms without needing any target or heuristics.

5.4.2 Environment Uncertainty Network

In the training state of EUN, we slightly modify the conventional VAE in order
to successfully model the latent variable z;. The encoder of the modified VAE com-
putes qg(z¢|fix, 2x,,yt) in (5.19) and the decoder tries to estimate the posterior
probability of the corresponding HMM state q; given the reparameterized latent
variable z; generated by the encoder network, i.e., EUN, and the clean feature pa-
rameters. The reparameterization of z; is performed by sampling from the posterior

distribution N (z¢; iz, (X¢,¥t), 2z, (X¢,y¢)) as follows [58]:

Zt = [z, + 0z,€ (5.24)
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where 05, is the standard deviation of the latent variable.

The input vector vZUN of the encoder of the EUN and that of the decoder vPF¢"

are

/
VtEUN = [ytlv M}’Et,a IOg(Eﬁt) ]/ (525)

vPEC = [z, g, 1og(5%,) ] (5.26)

As shown in (5.25) and (5.26), conditioning the input of both the encoder and
decoder networks on the parametric information of the clean speech features, the
VAE can successfully model the latent variables which assist the clean features with

mapping the noisy features to the corresponding HMM states [61], [62].

The objective function of the modified VAE, i.e., EUN is given by

Jeun =Drr(96(2¢|pg,, Xz, yo)llp(zil iz, 2%,))
L

1 !
— > log(pa(ailiz, Zx,. (). (5.27)
=1

The first RHS terms in (5.10) and (5.27) are almost identical except that o from
(5.10) is substituted with vZUV in (5.27). The second term on the RHS of (5.27)
represents the cross-entropy between the output vector of the decoder and the corre-
sponding HMM state. Therefore, the modified VAE is trained to maximize not only
the estimated posterior probability but also the similarity between the prior and
the posterior distributions of the latent variable. Optimizing this objective function
leads EUN to extract the environmental uncertainty of the input in the process of
mapping to the phonetic target based on the UD. The conditional prior distribution
p(z¢| iz, Xx,) is assumed to follow A(0,I) as in the standard VAE [58], [61], [63],

[64].
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5.4.3 Prediction Network and Joint Training

Once the training of CUN and EUN is completed, PN computes gq,” (&x,,&z;) in

(5.16). The input vector of PN vV is given by
Vit = [ug," log(Zz,)', iz, og(Zz,)']' (5.28)

By using the variance terms of both x; and z; as the input without any additional
process (e.g., MC sampling), we can let the acoustic modeling to consider the un-
certainty of clean speech and environment information simultaneously.

After PN is optimized, CUN, EUN, and PN are concatenated together to form
a unified single DNN. Then, the unified network is trained jointly according to
the cross-entropy criterion. Specifically, the error signal between the output of the
unified DNN and the corresponding phonetic target flows back to PN, EUN and
CUN, and consequently trains all the parameters. With this series of processes,
learning the relationship between the noisy features and the corresponding HMM
state can be enhanced by guiding the DNN through the intermediate level features,

i.e., the parametric information of the clean estimates and the latent variables.

5.5 Experiments

In this section, we present a series of experiments on two different tasks: Aurora-4
and CHiME-4 databases. The detailed information for Aurora-4 and CHiME-4 DBs
is given in 2.2.1 and 2.2.4, respectively.

In order to verify the performance of the proposed technique, several DNN-
based acoustic modeling techniques were implemented and their performances were

compared with that of the proposed UAT. In addition to the ASR performance eval-
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uations of all the DNN-based techniques, we analyze whether the proposed system

can represent the uncertainty inherent in the observed inputs effectively.

5.5.1 Experimental Setup: Feature Extraction and ASR System

We used the Kaldi speech recognition toolkit [31] for feature extraction, GMM-
HMM training, alignment, and ASR decoding. Meanwhile, all the DNN-based tech-
niques were implemented by Keras [65] and trained using the ADADELTA optimiza-
tion technique [66]. Also, dropout [20] with a fraction of 0.2 and L2 regularization

with a weight of 0.00002 were applied for training all the networks.

The two GMM-HMM systems were trained uniformly by the standard recipe
of Kaldi. 13-dimensional MFCCs (including Cjy), as well as their first- and second-
order derivatives, were processed using linear discriminant analysis (LDA) with a
context size of 7 frames (i.e., £3) and maximum likelihood linear transform (MLLT)
sequentially. The numbers of senones in the Aurora-4 and CHiME-4 were 2006 and
1987, respectively. As for the language model, we applied the standard 5k open tri-
gram. The tri-gram in CHiME-4 DB, meanwhile, was rescored by a RNN language

model which is provided as one of the baseline language models in CHiME.

Feature extraction for the DNN techniques was performed by the default con-
figuration of Kaldi. For Aurora-4 DB, mean-normalized 24-dimensional LMFB fea-
tures including their first- and second-order derivatives were used as input of all the
networks. In the case of the CHIME-4 DB, we used the same configuration while

variance normalization was performed additionally.
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5.5.2 Network Structures

The performance of the proposed technique was compared with five different
methods of acoustic modeling incorporating the various DNN-based techniques for

robust ASR. The compared techniques are

e DNN-Baseline: Multi-condition DNN-HMM,

e DNN-Conventional: Conventional DNN-based acoustic modeling using the clean

feature estimates as intermediate features [60],

e DNN-ID: Standard DNN-based acoustic modeling with the same structure to

UAT,
e VAE-Conventional: Conventional VAE-based acoustic modeling [67],

e DNN-UD-MC: Conventional uncertainty decoding technique for DNN-based

acoustic modeling based on MC sampling [54], [55],
e UAT: Proposed UAT.

Details on the architecture of the techniques, except for DNN-Baseline are provided
in Fig. . The input layer of all the models had a total of 792 visible units obtained
by windowing 11 consecutive LMFB features, i.e., 7 was set to be 5. Also, all the
models had 7 hidden layers and a softmax output layer where each unit corresponds
to a senone, and each hidden layer of DNN-Baseline consisted of 2048 rectified linear
units (ReLUs).

All the techniques except for DNN-Baseline attempts to guide the mapping from
the observed input to the corresponding HMM state via each of the intermediate

feature layers. As shown in Fig. 5.4 and described in Section 5.4, UAT exploits the
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mean and variance terms of x; and z; as the intermediate features at the sixth
hidden layer. From the perspective of practical implementation of the parametric

representation of x;, it is more beneficial for the CUN to consider the contextual

coverage of the observed input y; ,.;,. In the experiments, we modify oYV and
vPN in (5.22) and (5.28) as follows:
of "N =z, ...  og(Z%, ..,..)" (5.29)
VI = iz 108( Y%,y ) iz Jog ()] (5-30)
where
[ [T Ay T
X trir = (D! s oy Dy’ (5.31)

to take a longer contextual window into consideration. CUN applied in UAT and
DNN-ID was composed of 3 hidden layers with 2048 ReLU nodes and an output
layer with a total of 1584 linear units including g, _.

and log(Xg ) of 792

t+1 t—T1:it+T

dimensions, respectively. For the VAE-based techniques, we ran the experiment with
latent variables whose dimensions were 128 and 256.

Among the various techniques compared in this experiment, DNN-Conventional
is the representative conventional DNN-based technique employing the deterministic
estimates of the clean features without any source of uncertainty. DNN-Conventional
exploits the clean feature estimates, i.e, the output of the conventional feature en-
hancement network X; ,.;+-, as the intermediate features at the fourth hidden layer.
The enhancement network performs the role of fx(-) in (5.5). In this paper, we refer
the enhancement network as clean deterministic network (CDN). CDN was trained
according to the minimum mean squared error (MMSE) criterion and outputs the

corresponding 792-dimensional clean feature estimates.
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DNN-ID was included in the experiment in order to check and compare the effect
of EUN in UAT. DNN-ID had an identical structure with that of UAT but used a
standard DNN instead of a VAE, i.e., i, and log(Xy,) of UAT at the sixth layer were
substituted with ReLLUs of the same dimensionality, i.e., 256 and 512. By comparing
the results of UAT to that of DNN-ID, we assess how the latent variable parameters
of UAT supplement the environment information.

At the same time, we compare the results of UAT to that of the VA E-Conventional
in order to assess whether the effectiveness of the latent variable representation varies
dependent on different modeling approaches. VAE-Conventional trains parameters
by maximizing the marginal log-likelihood of the observed features. In this process,
VA E-Conventional lacks any other resources such as the clean features and phonetic
targets in the training. Such an approach may result in different representations for
the latent variables in VA E-Conventional as compared to those in UAT.

Finally, we include DNN-UD-MC'in our experiment in order to test competitive-
ness of UAT against the existing UD approach of DNN-HMM structures employing
uncertainty propagation based on the MC sampling [54]. The implementation of
DNN-UD-MC originates from (5.7). In order to assure fair comparison, CDN was
employed for estimating X; instead of speech enhancement model (e.g., Wiener fil-
ter). In the estimation of b2 , Delcroix’s uncertainty (DU) estimator which is one
of most widely known techniques for uncertainty estimation was used [55]. The DU
estimator is obtained by assuming the uncertainty to be proportional to the squared

difference between the enhanced features X; and the noisy features yy:
by, = aly: — %¢)° (5.32)

where o was set 0.8 by the a series of experiments checking the best ASR perfor-
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Table 5.1: Comparison of averaged Euclidean distance between the clean feature
targets and the unprocessed inputs, Gaussian means of CUN and outputs of CDN

over the test set.

Database || Unprocessed | CUN | CDN

Aurora-4 0.290 0.233 | 0.231

CHiME-4 0.204 0.150 | 0.147

mance. Once the uncertainty estimation is given, the uncertainty propagation is

carried out by utilizing the MC sampling as following:
1 L
Elp(aux)l%, b%,] = L;bgpmtrxt(”) (5.33)
where [-th sample of x;, x;(!) can be reparameterized as
x 0 = ¢ + by, e. (5.34)

L was set 20.

Mini-batch size for the ADADELTA algorithm was set to 512 for all the DNNs.
The learning rate was set to be 1 for training all the networks, except for the cases
of joint training where the learning rate was set to be 0.1. Training of each network

was stopped after 20 epochs.

5.5.3 Effects of CUN on the Noise Robustness

We first examined the noise robustness of CUN by plotting the trajectories of its
output over an utterance in the test sets of Aurora-4 and CHiME-4 DBs. Figs. 5.6-(a)

and (c) display the trajectories of the clean, noisy features, clean feature estimates
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obtained from CDN, and Gaussian means of the clean feature estimates obtained
from CUN on Aurora-4 and CHiME-4 DBs, respectively. Both the deterministic
estimates and the Gaussian means follow the clean feature trajectory except for
the cases when the Euclidean distance between the noisy features and the clean
features is large. In order to compare the accuracy of the deterministic estimates and
Gaussian means, we calculated the average Fuclidean distances between Gaussian
means of CUN and the corresponding clean feature targets, as well as the clean
targets and outputs of CDN, over the test sets of the two databases. The result is
reported in Table 5.1. Results show that the difference between the Gaussian mean
and deterministic estimate is almost negligible regardless of the databases.

Figs. 5.6-(b) and (d) plot the noise features and the log-variances of the clean
estimates obtained from CUN trained on Aurora-4 and CHiME-4 databases, respec-
tively. Since the variance term is representative of the reliability of the estimated
value, we claim it to increase as the distortion level of the input feature grows higher.
The results indeed agree with our claim, from which we may conclude that the out-
put of CUN contains additional uncertainty-related information which CDN cannot

provide.

5.5.4 Uncertainty Representation in Different SNR Condition

As mentioned in the previous section, UAT utilizes the variance of the latent
variable as an index of environment uncertainty. Now we test whether the latent
variable parameters of UAT are in fact effective representation of the environment
uncertainty. More specifically, we compute the frame-wise differential entropies of
the latent variables.

The differential entropy is one of the most classical measures of the uncertainty
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of a continuous random variable. Since the latent variable z; from the VAEs follows

a Gaussian distribution, the differential entropy may be computed in the following:
1 1. =

H(zy) = 51og(27re)Dz + glogﬂzw (5.35)
d=1

where D, denotes the dimensionality of z;. Also, X, , is the d-th element of X,,.

t,d
For each test set of Aurora-4 DB and SIMU in CHiME-4 DB, we calculated the
differential entropy of the latent variable with the dimension of 128 inferred from

the two VAE-based techniques, UAT and VAE-Conventional. We also computed

CUN as it can serve as a measure of

the differential entropy of CUN outputs, i.e., o
the input uncertainty. DNN-UD-MC was excluded in the differential entropy com-
parison, since its clean distribution cannot be described as Gaussian. Because the

tc UN is different from that of the latent variable, the entropy is

dimensionality of o
scaled by the dimensionality of each variable.

We averaged the differential entropies obtained from six different segmental SNR
(SSNR) groups. SSNR is one of commonly-used speech quality measures, which
computes the average of the SNR values of short segments instead of the entire
signal. By calculating the differential entropy separately by each SSNR group, we

can now analyze the effect of speech deterioration on uncertainty in the feature

estimation process. Mathematically speaking, SSNR, is computed as follows:

M—1 Nm+N—-1_2/.

10 D e y*(7)
SSNR = — loglo m Ziivm ) ' 5
Mmzo NN (y (i) — w(i))2

where y(i) and x(7) are the noisy and clean speech samples indexed by 4, and N and

(5.36)

M are the segment length and the number of segments respectively. In this work,
we set N =128 and M = 11.
The differential entropies on Aurora-4 DB and CHiME-4 DB were averaged into

6 different SSNR, groups: higher than 12 dB, 12~-9 dB, 9~-6 dB, 6~-3 dB, 3~-0
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dB and lower than 0 dB groups and higher than -1 dB, -1~-2 dB, -2~-3 dB, -3~-4
dB, -4~-5 dB and lower than 5 dB groups. Averaged entropies were scaled to fit the
dynamic range between 0 and 1 according to each technique. Figs. 5.6-(a) and 5-
(b) present the histograms of the differential entropies on two databases, computed
using the outputs of CUNs. The plots show that the scaled average entropies were
somewhat irregular across different SSNR groups. Especially in the case of CHIME-
4 DB, it can be seen that the differential entropy decreases slightly as SSNR, value
increases. Graphical observations lead to the conclusion that SSNR is not the dom-
inant feature in determining the clean uncertainty.

The differential entropies obtained from the latent variables of the two VAE-
based techniques, UAT and VAE-Conventional, display tendencies different from the
differential entropies from CUN. While the entropy of VA E-Conventional shows little
variation, UAT clearly tends to increase as the SSNR condition becomes poorer. The
relative increment in the differential entropy of the VAE-based techniques between
the first group and the sixth group obtained from VAFE-Conventional and UAT
were 2.33% and 36.12% in Aurora-4 DB and -0.69% and 14.36% in CHiME-4 DB,
respectively. The results lead to a conclusion that the methods adopted by the
UAT framework to model the latent variable show superior performance in terms of
capturing uncertainty as compared to those used in VA E-Conventional. Moreover,
we observe encouraging results from which we may assume that CUN and EUN
complement each other in a sense that each network shows distinctively different
responses under certain environmental conditions.

On the other hand, in order to test EUN’s effectiveness in providing the unseen
environment condition information as a form of supplementary feature which CUN

cannot directly capture, we check whether the results of EUN effectively represent
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different environment conditions frame-by-frame. However, since the environment
uncertainty is a latent feature that cannot be observed directly, finding an appropri-
ate measure for it still remains a challenge. This issue can be addressed by observing
the variations of EUN outputs with respect to the test set samples which contain
different environmental distortions. More specifically, we focus on the variations of
the degrees of training-test mismatch given the entire test set samples with various
environment distortions rather than examining the output value of a specific sample.
The degree of training-test mismatch is measure frame-by-frame, and the variation of
the EUN output is computed frame-wise. Here, we define the training-test mismatch
as the disparity between the training and test data sets invoked by environmental
factors of unseen patterns. It is nevertheless a difficult task to correctly quantify the
degree of mismatch since it is not observed directly, so as environment factors are
not. Hence, we approximate the degree of mismatch by measuring the intensity of
some phenomenon in the aftermath of training-test mismatch.

The degradation of clean estimate accuracy is one of the foremost phenomenon
arising due to the training-test mismatch. Meanwhile, Fig. 5.6 shows that the dis-
tance between the noisy and the clean estimate increases more as the gap between
the clean and clean estimates grows larger. Such a result provides grounds for us-
ing the Euclidean distance between the noisy and the clean estimate feature as the
measure of the degree of mismatch.

In order to check whether the EUN outputs effectively represent environment
uncertainty with respect to the chosen mismatch measure, we applied PCA to the
supervectors including the mean and the log-variance of the latent variables, i.e.,
[1z,",10g(%y,)"]’, and visualized the results. For comparison with other techniques,

PCA was applied to the latent variable parameters of VA E-Conventional and CUN
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outputs. Fig. 5.6 visualizes the two resulting dominant components, mean- and
variance-normalized, which are plotted separately for 4 different Euclidean distance
groups of CHiME-4 SIMU and REAL. For the sake of visual interpretability, we ran-
domly selected 2000 samples for each database. In both CHIME-4 SIMU and REAL,
it can be easily seen that the distribution of the EUN outputs is shifted slightly ac-
cording to the Euclidean distance, of which the result is clearly in contrast to those of
the latent variable parameters of VAE-Conventional and CUN outputs. Particularly,
when the distances between the red and cyan dots, i.e., representing the poorest and
the best Euclidean condition respectively, are compared, the distribution of EUN
outputs is evident from those of the others clearly. It may be interpreted that the
latent variable parameters of EUN provide distinctive information. From this, we
conclude that EUN of the proposed technique may potentially provide supplemen-
tary information about the environment uncertainty which CUN and conventional

VAE technique fail to provide, especially under the training-test mismatch condition.

5.5.5 Result of Speech Recognition

Table 5.2 and 5.4 list performance on the ASR tasks tested on Aurora-4 and
CHiME-4 DBs using all of the acoustic modeling techniques in the comparison
group. The results show that UAT reports the best performance for every test con-
dition. It is especially encouraging that UAT improves performance in regards to
the artificial noise as well as the real noise originally unobserved in the training
set (i.e., REAL). In contrast, DNN-UD-MC performs poorly as compared to other
techniques. Although it shows a light improvement from the DNN-Baseline, it may
not be sufficient enough of an improvement so as to compensate the increase in the

computational cost. With the consideration of the tradeoff between computational
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cost and model performance, then, UAT framework proves to be quite competitive
against the existing DNN-based UD framework in the scope of uncertainty control.
On the other hand, VAE-Conventional shows the lowest performance. This helps
explaining why UAT showed persistently better results as compared to those of the
VAE-based techniques in terms of the latent variable performance in various aspects
within the scope of uncertainty capturing as reported in Figs. 5.6 and 5.6.
Additionally, we computed relative error rate reductions (RERRs) for all of the
techniques in the comparison group. Compared with the conventional DNN-based
techniques including DNN-Conventional and DNN-ID, the relative error rate reduc-
tions (RERRs) of UAT (128) are 10.66% and 9.74% in Aurora-4 DB. Also, in SIMU
and REAL the RERRs of UAT (256) over DNN-Conventional and DNN-ID-512
are 10.61% and 9.36%, and 13.36% and 8.99%, respectively. This result shows that,
in overall, the proposed UAT technique outperforms the conventional DNN-based

techniques.

5.5.6 Result of Speech Recognition with LSTM-HMM

From the previous ASR experiments, the proposed UAT technique has shown
better performance in various environment conditions. This is due to the fact that
the outputs of CUN and EUN play a useful role in the DNN-based acoustic model. As
an extension, we have conducted experiments where UAT is applied to RNN-based
acoustic models. The underlying assumption here is that, if the uncertainties mod-
eled by CUN and EUN are fed to the RNN-based acoustic model covering sufficient
size of context information in a sequential manner, the advantages of identifying and
including the two different uncertainties in the training may be amplified.

More specifically, we applied the UAT framework to long-short term memory
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Table 5.2: WERs (%) on the compared acoustic modeling techniques on Aurora-4

testset.

Method(L.V. Dim.) A B C D Avrg.

DNN-Baseline 312 | 743 | 7.33 | 17.84 11.58

DNN-Conventional 2.97 | 6.60 | 6.13 | 16.81 10.69

DNN-ID-256 291 | 6.62 | 6.14 | 16.63 | 10.61

DNN-ID-512 287 | 6.56 | 6.46 | 16.57 | 10.58

VAE-Conventional (128) | 2.96 | 7.41 | 7.33 | 18.66 || 11.91

VAE-Conventional (256) | 3.00 | 7.52 | 7.44 | 18.94 | 12.09

DNN-UD-MC 3.01 | 7.07 | 6.98 | 17.06 | 11.05
UAT (128) 2.62 | 5.86 | 5.72 | 15.03 || 9.55
UAT (256) 2.59 | 5.92 | 5.70 | 15.11 | 9.61

(LSTM)-HMM [68], one of the state-of-the-art acoustic model on CHiME-4 DB.
We call this technique LSTM-UAT. In order to compare the performance of LSTM-
UAT, we also implemented LSTM-Baseline and LSTM-ID which are the basic multi-
condition LSTM-HMM and the LSTM-HMM version of DNN-ID technique intro-
duced in the previous subsections, respectively. LSTM-Baseline had 3 layers of 1024
memory cells. We specifically chose LSTM-ID as one of the comparison models, since
its DNN-analogous, DNN-ID, shows the most competitive results against the rest
of the comparison techniques in the previous performance tests. In order to ensure
fair comparison in terms of the number of parameters, LSTM-UAT and LSTM-ID

were derived from UAT (128) and DNN-ID (256), respectively. LSTM-UAT and
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Table 5.3: WERs (%) on the compared acoustic modeling techniques on CHiME-4

testset.

Method(L.V. Dim.) | SIMU | REAL

DNN-Baseline 12.84 20.66

DNN-Conventional 12.35 19.99

DNN-ID-256 12.27 | 19.25

DNN-ID-512 12.18 | 19.03

VAE-Conventional (128) | 13.71 | 20.75

VAE-Conventional (256) | 13.79 | 20.91

DNN-UD-MC 12.54 | 20.43
UAT (128) 11.19 | 17.43
UAT (256) 11.04 | 17.32

LSTM-ID replace individual PNs of UAT (128) and DNN-ID (256) with 3 layers of
1024 memory cells. The output state label was delayed by 5 frames. The network
structures of the two LSTM-based techniques except LSTM-Baseline are shown in
Fig. 5.6. One distinctive property of the two LSTM-based techniques is that they
only take in the t-th element of 0of'U", while maintaining the 256-dimensional EUN
output and the ReLUs. This assures that the input vector structure of LSTM-based

PN is identical to vV in (5.27).

Meanwhile, LSTM requires data of greater volume than DNN for training. In this
context, the size of CHIME-4 DB’s training set is moderately small for optimization

via LSTM-HMM system. We addressed this issue by employing the training data
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Table 5.4: Computation complexity measurement of the compared acoustic modeling

techniques.
Method(L.V. Dim.) No. of param. | xRT
DNN-Baseline 309 M 0.021
DNN-Conventional 24.8 M 0.013
DNN-ID-256 24.6 M 0.013
VAE-Conventional (128) 23.6 M 0.011
DNN-UD-MC 24.8 M 0.263
UAT (128) 24.6 M 0.013

Table 5.5: WERs (%) on the compared LSTM-based acoustic modeling techniques

on CHIME-4 testset.

Method(L.V. Dim.) | SIMU | REAL

LSTM-Baseline 10.76 16.68

LSTM-ID-256 10.13 | 15.63

LSTM-UAT (128) | 9.25 | 14.17

from all channels available for training LSTM-part of our proposed model. Such
an approach is referred to as multi-microphone training [69]. The multi-microphone
training is known to enhance the robustness of LSTM-based acoustic models in
response environment variability by feeding more abundant data for training.

In order to train these LSTMs, truncated backpropagation through time (BPTT)

was used. As in the DNN-based techniques, ADADELTA was again used for the
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Table 5.6: Computation complexity measurement of the compared LSTM-based

acoustic modeling techniques.

Method(L.V. Dim.) | No. of param. | xRT

LSTM-Baseline 23.3 M 0.10
LSTM-ID-256 40.0 M 0.14
LSTM-UAT (128) 40.0 M 0.12

LSTM optimization and the other settings for training the LSTMs such as mini-
batch size and learning rate remained identical as set for the DNN training. Note
that regularization settings such as dropout [20] and L2 regularization were not
retained when training the LSTMs. Also, the training of all the LSTMs including
joint training of the unified networks was stopped after 10 epochs.

As shown in Table 5.6, LSTM-UAT (128) was better than LSTM-Baseline and
LSTM-ID-256 in ASR performance in both tested conditions. In SIMU and REAL,
the RERRs of LSTM-UAT (128) over LSTM-Baseline and LSTM-ID-256 were
14.03% and 8.69%, and 15.05% and 9.34%, respectively. The reported results sug-
gest that the parametric information of the clean and environment estimates of the
UAT framework performs well with a network whose structure involves sequential

training.

5.6 Summary

In this paper, a novel deep learning-based acoustic modeling technique for un-

certainty awareness was proposed. In order to consider the input uncertainty in the
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decoding process, the proposed technique employed a modified structure of VAE for
modeling the robust latent variables which mediate the mapping between the noisy
observed features and the phonetic target. The VAE of the proposed technique was
trained according to the maximum likelihood (ML) criterion which was driven from
the uncertainty framework optimized to be used with the deep learning-based acous-
tic models. The latent variable variances were employed as the uncertainty measure
of the input along with the distributive information of the clean feature estimates.
To evaluate the performance of our proposed technique, Aurora-4 and CHiME-4
databases were used. From the experimental results, we observed that the latent
variables of the proposed technique effectively represent the level of uncertainty
according to the SSNR and the clean uncertainty conditions. Moreover, we compared
the performance of our proposed technique with the DNN-based technique of the
identical network structure in two kinds of back-end model, i.e., DNN-HMM and

LSTM-HMM.
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Figure 5.4: Effects of CUN. Trajectories of the 0-th LMFB features of clean, observed
noisy speech, clean estimates, and Gaussian means of clean estimates on (a) Aurora-
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Chapter 6

Conclusions

In this thesis, the n model-based and data-driven approaches for the environment-
robust speech recognition have been proposed. The sequential characteristic of the
speech was modeled by HMM. According to the way to calculate the emission prob-
abilities of the HMM, the type of the speech recognition decoder was divided into
GMM-HMM and DNN-HMM systems. In the GMM-HMM system, the acoustic
model was trained using the clean-condition training data and model-based tech-
nique was proposed in order to match the reverberant noisy input features with the
characteristic of the trained acoustic model. In the DNN-HMM system, the DNN was
trained using the multi-condition training data to obtain the relationship between
the input and the target labels. In accordance with these concepts, we proposed four
techniques for the environment-robust speech recognition.

In this thesis, four novel DNN-based acoustic modeling techniques for robust au-
tomatic speech recognition have been proposed. Firstly, we have proposed a DNN-
based acoustic model designed for effective usage of multi-condition data and its

noise estimate has been proposed. The proposed technique dealt with the mapping
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from noisy speech and noise estimates to phonetic targets by concatenating two
fine-tuned DNNs and training the unified network jointly. Through a series of ex-
periments on Aurora-5 task and mismatched noise conditions, it has been shown
that the proposed technique outperforms NAT in word accuracy on both matched
and mismatched conditions.

Secondly, we have proposed a DNN-based feature enhancement approach for mul-
tichannel distant speech recognition. The proposed approach built a multichannel-
based feature mapping DNN using conventional beamformer, DNN and its joint
training technique with lapel microphone data. Through a series of experiments on
MC-WSJ-AV corpus, we have found that the proposed technique clarifies the re-
lationship between the features obtained from distant microphone array and clean
speech.

Finally, a deep learning-based acoustic modeling technique for uncertainty aware-
ness has been proposed. In order to consider the input uncertainty in the decoding
process, the proposed technique employed a modified structure of VAE for modeling
the robust latent variables which mediate the mapping between the noisy observed
features and the phonetic target. The VAE of the proposed technique was trained
according to the maximum likelihood (ML) criterion which was driven from the
uncertainty framework optimized to be used with the deep learning-based acoustic
models. The latent variable variances were employed as the uncertainty measure
of the input along with the distributive information of the clean feature estimates.
To evaluate the performance of our proposed technique, Aurora-4 and CHiME-4
databases were used. From the experimental results, we observed that the latent
variables of the proposed technique effectively represent the level of uncertainty ac-

cording to the SSNR and the clean uncertainty conditions. Moreover, we compared
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the performance of our proposed technique with the DNN-based technique of the
identical network structure in two kinds of back-end model, i.e., DNN-HMM and

LSTM-HMM.
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