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Abstract

In voice-enabled domestic or meeting environments, distributed microphone arrays

aim to process distant-speech interaction into text with high accuracy. However, with

dynamic corruption of noises and reverberations or human movement present, there is

no guarantee that any microphone array (stream) is constantly informative. In these

cases, an appropriate strategy to dynamically fuse streams is necessary.

The multi-stream paradigm in Automatic Speech Recognition (ASR) considers

scenarios where parallel streams carry diverse or complementary task-related knowl-

edge. Such streams could be defined as microphone arrays, frequency bands, various

modalities or etc. Hence, a robust stream fusion is crucial to emphasize on more

informative streams than corrupted ones, especially under unseen conditions. This

thesis focuses on improving the performance and robustness of speech recognition in

multi-stream scenarios.

With increasing use of Deep Neural Networks (DNNs) in ASR, End-to-End (E2E)

approaches, which directly transcribe human speech into text, have received greater

attention. In this thesis, a multi-stream framework is presented based on the joint

Connectionist Temporal Classification/ATTention (CTC/ATT) E2E model, where

parallel streams are represented by separate encoders. On top of regular attention

networks, a secondary stream-fusion network is to steer the decoder toward the most

informative streams.
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The MEM-Array model aims at improving the far-field ASR robustness using

microphone arrays which are activated by separate encoders. With an increasing

number of streams (encoders) requiring substantial memory and massive amounts of

parallel data, a practical two-stage training strategy is designated to address these

issues. Furthermore, a two-stage augmentation scheme is present to improve robustness

of the multi-stream model. In MEM-Res, two heterogeneous encoders with different

architectures, temporal resolutions and separate CTC networks work in parallel to

extract complementary information from the same acoustics. Compared with the

best single-stream performance, both models have achieved substantial improvement,

outperforming alternative fusion strategies.

While the proposed framework optimizes information in multi-stream scenarios,

this thesis also studies the Performance Monitoring (PM) measures to predict if

recognition results of an E2E model are reliable without growth-truth knowledge.

Four PM techniques are investigated, suggesting that PM measures on attention

distributions and decoder posteriors are well-correlated with true performances.
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Chapter 1

Introduction

1.1 Motivation

The multi-stream paradigm in speech processing considers scenarios where parallel

streams carry diverse or complementary task-related knowledge. Recent advancements

in speech technology enable a diverse set of applications. These examples include

distributed voiced-enabled speakers like Google Home or Amazon Echo in a home

environment, a meeting room equipped with close-talk and far-field microphones, and

hearing-aid devices with multi-channel processing. In these cases, an appropriate

strategy is crucial to reliably fuse streams or select the most informative source to

handle scenarios with interference (noise or reverberation) in acoustic environments.

This thesis focuses on improving the performance and robustness of Automatic Speech

Recognition (ASR) systems in the multi-stream setting.

Recently, with the increasing use of Deep Neural Networks (DNNs) in ASR, End-

to-End (E2E) speech recognition approaches, which directly transcribe human speech

into text, have received greater attention. Without relying on the complicated legacy

architectures from conventional ASR, the E2E model combines several disjoint compo-

nents (acoustic model, pronunciation model, language model) into one single DNN
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for joint training. Previously, the multi-stream scheme has been widely studied using

traditional ASR approaches. However, it has not been investigated for E2E models. In

conventional ASR, stream fusion modules are often optimized separately with different

objectives. The flexibility of E2E systems provides potentials to directly incorporate

stream fusion in the system for joint optimization. Moreover, unlike multi-channel

ASR, distant microphone arrays are often operated without time synchronization,

which makes the beamforming technique infeasible to merge far-field signals. The

multi-stream model presented in this thesis could combine parallel knowledge in the

model without this presumption.

1.2 Focus of the Thesis

In this thesis, a novel multi-stream framework is presented to address ASR scenarios

with parallel information sources. The proposed model is built on the joint Connection-

ist Temporal Classification/ATTention (CTC/ATT) end-to-end model, which takes

advantage of both Connectionist Temporal Classification (CTC) and attention-based

model for multi-task training and joint decoding.

Two representative frameworks are proposed and discussed, which are Multi-

Encoder Multi-Array (MEM-Array) framework and Multi-Encoder Multi-Resolution

(MEM-Res) framework, respectively. The MEM-Array framework aims at improving

the far-field ASR robustness using multiple microphone arrays. Several techniques are

proposed for effective training and handling a variety of unseen single-stream conditions

and inter-stream dynamics. In the MEM-Res framework, two heterogeneous encoders

with different architectures, temporal resolutions and separate CTC networks work in

parallel to extract complementary information from the same acoustics. Moreover,

four Performance Monitoring (PM) measures are presented to determine the quality of

2



an E2E system’s output based only on behavior of the system without any knowledge

of the underlying truth.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 provides an overview of the multi-stream speech recognition. We review

the basics of conventional ASR systems and three E2E approaches. A brief review of

previously proposed techniques for multi-stream ASR is then presented.

In Chapter 3, we propose a general form of the multi-stream end-to-end model

with detailed description for each module. Two representative networks, MEM-Array

and MEM-Res, are briefly introduced.

Chapter 4 focuses on the MEM-Array model in the scenario of multiple microphone

arrays. First, we explain all the components in the MEM-Array model. A practical

two-stage training strategy is then introduced to efficiently scale the training procedure

while improving the performance. Subsequently, two-stage augmentation scheme and

adaptive CTC fusion are proposed to handle mismatched scenarios.

In Chapter 5, we describe the MEM-Res model as another realization of the multi-

stream model. In the MEM-Res model, two parallel encoders with heterogeneous

structures are mutually complementary in characterizing the speech signal.

In Chapter 6, four PM measures are presented to evaluate reliability of the system

output. An analysis of these techniques on typical single-stream E2E models and

proposed multi-stream models are provided.

Chapter 7 summarizes the contributions of this thesis and highlights several

directions for future research.
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Chapter 2

Overview of Multi-Stream Speech
Recognition

2.1 Automatic Speech Recognition

An ASR system creates a monotonic mapping from T -length acoustic features X =

{xt ∈ RD|t = 1, 2, ..., T} in D dimensional space to a N -length word sequence

W = {wn ∈ V|n = 1, 2, ..., N} where V is a set of distinct words in the vocabulary.

The mathematical ASR formulation is described based on Bayesian decision theory as

follows [1, 2]:

Ŵ = arg max
W ∈V∗

p(W |X), (2.1)

where the most probable word sequence, Ŵ , is estimated among all possible word

sequences, V∗. The main focus of ASR is then to obtain the posterior probability

p(W |X).

2.1.1 Conventional Hybrid Approach

The typical paradigm for an ASR system is the so-called hybrid approach [3]. It

introduces the state sequence, S = {st ∈ J |t = 1, 2, ..., T}, from a Hidden Markov

Model (HMM) [4], where J is a set of predefined HMM states. As stated in the
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following, p(W |X) is then factorized into three components: acoustic model p(X|S),

lexicon p(S|W ), and language model p(W ):

Ŵ = arg max
W ∈V∗

p(W |X) (2.2)

= arg max
W ∈V∗

∑︂
S

p(X|S, W )p(S|W )p(W ) (2.3)

≈ arg max
W ∈V∗

∑︂
S

p(X|S)p(S|W )p(W ), (2.4)

where conditional independence assumption is employed, i.e., p(X|S, W ) ≈ p(X|S).

Using chain rule and conditional independence assumption, the acoustic model

p(X|S) is estimated as follows:

p(X|S) =
T∏︂

t=1
p(xt|x1, ..., xt−1, S) (2.5)

≈
T∏︂

t=1
p(xt|st) ∝

T∏︂
t=1

p(st|xt)
p(st)

, (2.6)

where advanced DNNs are applied to compute the frame-wise posterior distribution
p(st|xt)

p(st) . It is often required to obtain the frame-wise state alignments, {st}, provided

by an HMM/GMM (Gaussian Mixture Model) as DNN training targets. Similarly,

lexicon model is formulated using chain rule and first-order Markov assumption as

follows:

p(S|W ) =
T∏︂

t=1
p(st|s1, ..., st−1, W ) (2.7)

≈
T∏︂

t=1
p(st|st−1, W ). (2.8)

This is a deterministic mapping created with a pronunciation dictionary. The language

model p(W ) is factorized in the following:

p(W ) =
N∏︂

n=1
p(wn|w1, ..., wn−1) (2.9)

≈
N∏︂

n=1
p(wn|wn−m+1, ..., wn−1), (2.10)
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where a probabilistic chain rule and conditional independence assumption are also

applied.

Despite the impressive accuracy of the hybrid system, it requires hand-crafted

pronunciation dictionary based on linguistic assumptions, extra training steps to derive

context-dependent phonetic models, and text pre-processing such as tokenization for

languages without explicit word boundaries. Consequently, it is quite difficult for

non-experts to develop ASR systems for new applications, especially for new languages.

2.1.2 End-to-End Approach

End-to-end speech recognition approaches are designed to directly output word or

character sequences from the audio signal. Three dominant E2E architectures for

ASR are Connectionist Temporal Classification [5–7], attention-based encoder decoder

[8, 9] models and recurrent neural network transducers [10, 11]. A joint CTC/ATT

framework was proposed in [12–14] to benefit from both CTC and attention-based

models.

2.1.2.1 Connectionist Temporal Classification (CTC)

Following Bayes decision theory, CTC formulates a sequence-to-sequence model in

a speech recognition task. It enforces a monotonic mapping from a T -length speech

feature sequence, X = {xt ∈ RD|t = 1, 2, ..., T}, to an L-length letter sequence 1,

C = {cl ∈ U|l = 1, 2, ..., L}. Here xt is a D-dimensional acoustic vector at frame t,

and cl is at position l a letter from U , a set of distinct letters.

Unlike the traditional hybrid approach where forced alignment is required, when

the CTC algorithm is employed, it derives alignments between the input and the

output automatically without any intermediate process. The CTC network intro-
1It could also be a Byte-Pair Encoding (BPE) sequence.
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duces a many-to-one function from frame-wise latent variable sequences, Z = {zt ∈

U ⋃︁ blank|t = 1, 2, ..., T}, to letter predictions with shorter lengths. Note that the

additional “blank” symbol is used to handle the merging of repeating letters. This

is a many-to-one function because many CTC paths can respond to the same label

sequence by combining repeating characters and removing blank symbols. With

several conditional independence assumptions, the posterior distribution, p(C|X), is

represented as follows:

p(C|X) ≈
∑︂
Z

∏︂
t

p(zt|X) ≜ pctc(C|X), (2.11)

where p(zt|X) is a frame-wise posterior distribution. We define the CTC objective

function as pctc(C|X).

Since the frame-wise posterior probability is conditioned on all input frames, models

trained using the CTC objective typically apply encoders with Bidirectional Long

Short-Term Memory (BLSTM) [15, 16] layers to estimate p(zt|X):

p(zt|X) = Softmax(LinB(ht)), (2.12)

ht = Encoder(X). (2.13)

BLSTM-based encoder processes the full input sequence and outputs a hidden vector

ht at frame t. Encoder(·) represents the encoder component. LinB(·) is a linear layer

with a bias term converting ht to a (|U|+1) dimensional vector, followed by a Softmax

activation function.

Similar to the forward algorithm for HMMs, a dynamic programming technique

is exploited to efficiently compute the summation over all possible paths, Z. While

CTC does not fully carry out the strength of end-to-end ASR due to conditional

assumptions, it preserves the benefits that it enforces the monotonic behavior of
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speech-label alignments, avoids the HMM/GMM construction step and preparation of

pronunciation dictionaries.

2.1.2.2 Attention-based Model

As one of the most commonly used sequence modeling techniques, the attention-

based framework selectively encodes an audio sequence of variable length into a fixed

dimension vector representation, which is then consumed by the decoder to produce

a distribution over the outputs. This approach models each output letter cl with

a conditional probability distribution on previous output letters c1, ..., cl−1 and the

input features X. We can directly estimate the posterior distribution p(C|X) using

the chain rule:

p(C|X) =
L∏︂

l=1
p(cl|c1, ..., cl−1, X) ≜ patt(C|X), (2.14)

where patt(C|X) is defined as the attention-based objective function. During training,

objective function in Eq. 2.14 is conditioned on previous ground truth labels, c†
1, ..., c†

l−1.

Typically, a BLSTM-based encoder transforms the speech vectors X = {x1, ..., xT }

into a set of frame-wise hidden vectors H = {h1, ..., h⌊T/s⌋}, where the encoder often

subsamples the input by a factor s to reduce the computational complexity [8, 9].

For each prediction cl, the letter-wise context vector rl is then formed as a weighted

summation of frame-wise hidden vectors H using attention network [8]:

rl =
∑︂⌊T/s⌋

t=1 altht, (2.15)

alt = Attention({a
(i)
l−1}

⌊T/s⌋
t=1 , ql−1, ht), (2.16)

where alt is the attention weight, a soft-alignment of ht for output cl, and ql−1 is the

previous decoder state. Among a variety of attention mechanisms applicable for Eq.
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2.16, we introduce two types of attention network used in this thesis: Content-based

attention and Location-based attention [8].

Content-based attention is described as follows:

elt = g⊤tanh(Lin(ql−1) + LinB(ht)), (2.17)

alt = Softmax({elt}⌊T/s⌋
t=1 ). (2.18)

g is a learnable vector parameter. tanh(·) is a hyperbolic tangent function. {elt}⌊T/s⌋
t=1

is a ⌊T/s⌋-dimensional vector. LinB(·) and Lin(·) represent the linear transformation

with or without bias term, respectively.

Location-based attention is an extension of content-based attention with addi-

tional convolutional features computed by previous attention distributions, al−1 =

[al−1,1, ..., al−1,⌊T/s⌋]⊤:

{fl−1,t}⌊T/s⌋
t=1 = K ∗ al−1, (2.19)

elt = g⊤tanh(Lin(ql−1) + LinB(ht) + Lin(fl−1,t)), (2.20)

alt = Softmax({elt}⌊T/s⌋
t=1 ). (2.21)

In Eq. 2.19, one dimensional convolution is performed along the time axis of attention

vector, al−1, with the convolution parameter, K.

The decoder is typically a Long Short-Term Memory (LSTM) [15] network, where

ql−1 is the previous hidden state and input is the concatenated vector of letter-wise

context vector rl and vector representation of the previous prediction cl−1:

p(cl|c1, ..., cl−1, X) = Decoder(rl, ql−1, cl−1). (2.22)
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The attention-based model implicitly associates acoustic, lexicon, and language

models as encoder, attention, and decoder and combines these modules into one single

network so that all the parameters can be jointly optimized by back-propagation to

maximize p(C|X). In comparison to CTC, not requiring conditional independence

assumptions is one of the advantages of using the attention-based model. However, the

attention is too flexible to satisfy monotonic alignment constraint in speech recognition

tasks. There are previous publications to enhance the monotonic behavior in various

ways [17–21]. These studies are similar in a way that they operate local attentions on

the windowed encoder outputs to enforce monotonicity. As stated in [9], there is a

strong assumption that the training function is a combination of letter-wise objectives

conditioned on previous true labels instead of a desired sequence-level objective.

2.1.2.3 Joint CTC/ATT Model

The joint CTC/ATT model, illustrated in Fig. 2.1, takes advantage of both CTC and

attention-based model through a Multi-Task Learning (MTL) mechanism and joint

decoding. It is designed to directly map T -length acoustic features X = {xt ∈ RD|t =

1, 2, ..., T} in D dimensional space to an L-length letter sequence C = {cl ∈ U|l =

1, 2, ..., L} where U is a set of distinct letters. The attention-based structure solves

the ASR problem as a sequence mapping by using an encoder-decoder architecture.

Joint training with CTC is added to help enforce temporally monotonic behavior in

the attention alignments.

The encoder transforms the acoustic sequence X into a higher-level feature repre-

sentation H = {h1, ..., h⌊T/s⌋}, which is shared for the use of CTC and attention-based

models.
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Figure 2.1. Joint CTC/ATT end-to-end architecture
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The objective function to be maximized is as follows:

LMTL = λ log pctc(C|X) + (1 − λ) log p†
att(C|X), (2.23)

where the joint objective is a logarithmic linear combination of the CTC and attention

training objectives, i.e., pctc(C|X) and p†
att(C|X), respectively. λ ∈ [0, 1] is a trade-off

hyperparameter. p†
att(C|X) is an approximated objective from Eq. 2.14 defined as

follows:

p†
att(C|X) =

L∐︂
l=1

p(cl|c†
1, ..., c†

l−1, X) ≈ patt(C|X). (2.24)

As shown in Eq. 2.24, {c†
1, ..., c†

l−1} denotes the ground truth of previous steps.

During inference, a label-synchronous beam search is employed to predict the most

probable label sequence Ĉ:

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1 − λ) log patt(C|X) + γ log plm(C)} (2.25)

where log plm(C) is evaluated from an external Recurrent Neural Network Language

Model (RNN-LM) with a scaling factor γ. For each partial hypothesis h in the beam

search, the log probability of hypothesized label sequence, is computed as

α(h) = λαctc(h) + (1 − λ)αatt(h) + γαlm(h), (2.26)

where the attention decoder score, αatt(h), can be accumulated recursively from

hypothesis scores from one step before. In terms of the CTC score, αctc(h), we

utilize the CTC prefix probability defined as the cumulative probability of all label

sequences that have h as their prefix [22, 23]. In this work, we use the look-ahead

word-based language model to give the RNN-LM score [24], αlm(h). This language

model enables us to decode with only a word-based model, which leads competitive

accuracy and less computation in the beam search process, rather than using a multi-

level Language Model (LM) which uses a character-level LM until the identity of the

word is determined.
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2.2 Multi-Stream Speech Processing

Multi-stream speech recognition deals with scenarios where parallel information streams

are processed by an ASR system to obtain text messages from speeches. The approaches

for knowledge fusion can be grouped into two categories: front-end level approaches

and model level approaches.

2.2.1 Front-end Level Approaches

Stream combination in the front-end aims to generate single inputs from multiple inputs

in signal-level or feature-level. Multi-channel ASR is a typical multi-stream scenario,

in which several time-synchronized microphones on a single array are considered to

cope with noise and reverberation in far-field environments. Multi-channel speech

enhancement techniques that aim to produce an enhanced single-channel input are

often employed to improve ASR performance and robustness. Several studies [25,

26] in conventional ASR have shown that pre-processing with multi-channel speech

enhancement algorithms, especially beamforming techniques, achieved substantially

better performances in the presence of strong background noise.

Beamforming is a popular multi-channel approach that utilizes spatial, temporal

and spectral information. Traditional beamforming methods [27, 28], such as delay-

and-sum and filter-and-sum, are optimized independent of ASR objective. They also

require additional steps to determine steering vectors for ASR task [29]. Later on, a

complex GMM-based time-frequency mask estimation was proposed in [30] to steer

a beamformer, proven to be beneficial in real scenarios [31, 32]. On the other hand,

with recent advancements in deep learning, several neural beamformers, including ones

based on filter estimation [33–35] and mask estimation [36–43], have been proposed

in hybrid ASR. More recently, multi-channel end-to-end framework was present in
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[44–46] by jointly training a unified network including the beamforming component.

This E2E approach shows robustness against channel reordering and unseen channel

configurations. Aside from beamforming methods, a sensory attention mechanism [47,

48] is used in an end-to-end model to combine channels. The techniques mentioned

above all operate under the assumption of time synchronization. This assumption

may not be held when asynchronous audio devices are present, such as mobile phones

and laptops in addition to microphone arrays in a meeting room.

In the multi-array setting with possible asynchronous signals, session-wise approach

was present in [49, 50] by solving sampling frequency mismatch to synchronize multi-

channel observations followed by a minimum variance distortionless response (MVDR)

beamformer. Moreover, [51] proposed a system that generates speaker-annotated

meeting transcripts by incorporating audio stream alignment and blind beamforming.

A Signal-to-Noise-Ratio(SNR)-based array selection was demonstrated in [52] in

multiple-array track of CHiME-5 challenge [53]. While methods mentioned above are

investigated under hybrid ASR framework, it is still unknown towards an end-to-end

approach in the multi-array setting.

2.2.2 Model Level Approaches

Previous model level methods are discussed here in which fusion strategies are operated

based on behavior of the model. Various multi-stream applications have been studied

via model space approaches for information fusion.

Earlier work in [54] on articulatory index suggests that the human auditory system

decodes linguistic information independent in frequency bands and the final message

is merged from these sub-bands. As one source of inspiration, multi-band processing

[55] has been successfully applied to robust speech recognition [56–62], indicating the
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potential of multi-stream techniques in speech processing. For instance, in [58, 59,

63, 64], the fusion module evaluates stream performance by comparing the similarity

of DNN output statistics between training and testing conditions, resulting in a

process of stream confidence generation. These statistics could be computed using the

autocorrelation matrix of transformed probability estimates [63] or predictions from

the GMM [58] or the DNN auto-encoder [59]. In [61, 65], a DNN-based fusion module

is proposed to be trained on concatenated DNN features from individual streams with

random stream dropout strategy. This fusion technique reduces the complexity of

multi-stream architecture and enhances robustness against noisy data.

Considering far-field ASR using multiple microphone arrays, without any knowledge

of speaker-array distance or orientation, it is still challenging to speculate which array

is most informative or least corrupted. Combination using the classifier’s posterior

probabilities followed by lattice generation has been investigated in several studies

[66–69]. Compared to using the fully decoding results with paths pruning, the

combination using the posteriors preserves all the information from the test speech

as well as the classifier. For example, our previous study [68] proposed a stream

attention framework to improve far-field ASR, where reliable HMM state posterior

probabilities are generated by linearly combining the posteriors from each array, under

the supervision of ASR performance monitors, i.e., mean time distance [70] and

time-delayed DNN auto-encoder [68]. Channel-selection framework in [69] conducts

entropy analysis of neural network posterior probabilities. Study in [71] fuses the

decoding results by voting for the most confident words, for instance ROVER [72].

System combination can be also applied in multi-array setting at the transcript level,

which can be achieved using minimum Bayes risk decoding [73].

Aside from the multi-stream scenarios for noise robustness and multi-array, nu-
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merous research directions also incorporate the multi-stream idea. For instance, [74]

investigated several performance measures in spatial acoustic scenes to choose the

most reliable source for hearing aids. [75] proposed a CTC-based system combination

via procedures of subsystem selection, alignment and voting. The multi-modal ap-

plications combine visual [76] or symbolic [77] inputs together with audio signal to

improve speech recognition.
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Chapter 3

Multi-Stream End-to-End Speech
Processing

3.1 Introduction

As discussed in the previous chapter, compared to the hybrid approach, end-to-end

speech recognition approaches are designed to directly output word or character se-

quences from the input audio signal. This model subsumes several disjoint components

in the hybrid ASR model (acoustic model, pronunciation model, language model) into

a single neural network. As a result, all the components of an E2E model can be

trained jointly to optimize a single objective.

While CTC efficiently addresses a sequence-to-sequence problem (speech vectors

to word sequence mapping) by avoiding the alignment pre-construction step using

dynamic programming, it assumes the conditional independence of label sequence

given the input. The attention model does not assume conditional independence

of a label sequence resulting in a more flexible model. However, attention-based

methods encounter difficulty in satisfying the speech-label monotonic property. A

joint CTC/ATT framework, as mentioned in the previous chapter, was proposed with

the help of a monotonic model, CTC, to alleviate this issue. The joint model has
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shown to provide the state-of-the-art E2E results in several benchmark datasets [14].

The multi-stream paradigm in speech processing considers scenarios where parallel

streams carry diverse or complementary task-related knowledge. In these cases,

an appropriate strategy to fuse streams or select the most informative source is

necessary. One potential source of inspiration in this setting is from the observations

of parallel processing in the human auditory system, and resulting innovations have

been successfully applied to conventional ASR frameworks, described in the previous

Chapter. While various scenarios were explored within hybrid models, multi-stream

approaches have not been fully investigated for end-to-end ASR schemes.

In this chapter, a novel multi-stream architecture is proposed within the joint

CTC/ATT end-to-end framework. We present a general formulation to multi-stream

framework and an introduction to two practical E2E applications: Multi-Encoder

Multi-Array (MEM-Array) and Multi-Encoder Multi-Resolution (MEM-Res). The

framework has the following highlights:

1. Multiple Encoders in parallel act as information streams. Two ways of forming

the streams have been proposed in this work according to different applications:

Parallel speech signals from multiple microphone arrays are fed into separate but

identical encoders, which we refer to as Multi-Encoder Multi-Array (MEM-Array)

model; Parallel encoders with different architectures and temporal resolutions

operate on the same acoustics, which we refer to as Multi-Encoder Multi-

Resolution (MEM-Res) model.

2. The Hierarchical Attention Network (HAN) [78–80] is introduced to dynamically

combine knowledge from parallel streams. While one way of information fusion

is to apply one attention mechanism across the outputs of multiple encoder [80],

several studies demonstrated benefits of multiple attention mechanisms [78–83].
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In [84, 85], secondary attention modules provide a way to incorporate additional

contextual information beneficial to the tasks. Inspired by the advances in

hierarchical attention mechanism in document classification task [78], multi-

modal video description [79] and machine translation [80], we adopt the HAN

component into our multi-stream model. The encoder that carries the most

discriminative information for the prediction can dynamically receive a higher

weight. On top of the frame-level attention mechanism for every encoder, stream

attention is employed to steer toward the stream, which carries more task-related

information.

3. Each encoder is associated with a separate CTC network to guide the frame-wise

alignment process for each stream to potentially achieve better performance.

The MEM-Array model is one realization of our multi-stream E2E framework.

Far-field ASR using multiple microphone arrays has become important strategies

in the speech community toward a smart speaker scenario in a meeting room or

house environment [53, 86, 87]. Individually, the microphone array is able to bring

a substantial performance improvement with algorithms such as beamforming [88]

and masking [89]. However, what kind of information can be extracted from each

array and how to make multiple arrays work in cooperation are still challenging. Time

synchronization among arrays is one of the main challenges that most distributed

setups face [90]. Without any prior knowledge of speaker-array distance or video

monitoring, it is difficult to estimate which array carries more reliable information or

is less corrupted.

According to the reports from the CHiME-5 challenge [53], which targets the

problem of multi-array conversational speech recognition in home environments, the

common ways of utilizing multiple arrays in the hybrid ASR system are finding the
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one with highest Signal-to-Noise/Signal-to-Interference Ratio (SNR/SIR) for decoding

[52] or fusing the decoding results by voting for the most confident words [71], e.g.

ROVER [72]. While most of the end-to-end ASR studies engage in single-channel

task or multi-channel task from one microphone array [44, 45, 47, 48], research

on multi-array scenario is still unexplored within the E2E framework. Without

assuming time synchronization across streams, the MEM-Array model is proposed to

solve the aforementioned problem. The output of each microphone array is modeled

by a separate encoder. Multiple encoders with the same configuration act as the

acoustic models for individual arrays. Note that we integrate beamformed signals

instead of using all multi-channel signals for the multi-stream framework, which is

computationally efficient. This design can make use of the powerful beamforming

algorithm for synchronized signals as well.

In the MEM-Res model, two parallel encoders with heterogeneous structures are

mutually complementary in characterizing the speech signal. In end-to-end ASR,

the encoder acts as an acoustic model providing higher-level features for decoding.

BLSTM has been widely used due to its ability to model temporal sequences and

their long-term dependencies as the encoder architecture; Deep Convolutional Neural

Network (CNN) is introduced to model spectral local correlations and reduce spectral

variations in E2E framework [13, 91, 92]. The encoder combining CNN with recurrent

layers, is suggested to address the limitation of LSTM. While temporal subsampling

in RNN and max-pooling in CNN aim to reduce the computational complexity and

enhance the robustness, it is likely that subsampling technique results in loss of

temporal resolution. The MEM-Res model is proposed to combine RNN-based and

CNN-RNN-based networks to form a complementary multi-stream encoder setup.
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3.2 Proposed Multi-Stream Framework

The proposed multi-stream architecture of N streams is shown in Fig. 3.1. Encoders

are presented in parallel to capture information in various ways, followed by an

attention fusion mechanism together with per-encoder CTC. An external RNN-LM is

involved only during the inference step. We will describe the details of each component

in the following sections.

3.2.1 Parallel Encoders as Multi-Stream

We denote a T (i)-length sequence of D-dimensional speech vectors as X(i) = {x(i)
t ∈

RD|t = 1, 2, ..., T (i)}, where superscript i ∈ {1, ..., N} is the index for Encoder(i) cor-

responding to stream i. The multi-stream E2E model directly maps N information

sources, X = {X(1), X(2), ..., X(N)}, into an L-length label sequence, C = {cl ∈ U|l =

1, 2, ..., L}. Here U is a set of distinct labels. Similar to acoustic modeling in conven-

tional ASR, the encoder maps audio features into higher-level feature representations

for the use of CTC and attention models. Each encoder operates separately on a

parallel input X(i) to extract a set of frame-wise hidden vectors:

H(i) = Encoder(i)(X(i)), (3.1)

where H(i) = {h(i)
t ∈ RDh|t = 1, 2, ..., ⌊T (i)/s(i)⌋}. h(i)

t is a Dh-dimensional frame-

wise hidden vector of stream i. Note that it is not mandatory to have frame-level

synchronization across all streams since T (i), i ∈ {1, ..., N}, could be different in the

proposed model. Because stream-specific subsampling factor s(i) is defined by the

architecture of each encoder, stream i will have ⌊T (i)/s(i)⌋ time instances at the

encoder-output level. Rounding process of ⌊T (i)/s(i)⌋ is performed in the encoder

based on different types of architecture. For instance, in the multi-stream model
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Figure 3.1. The proposed multi-stream end-to-end ASR framework
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with N = 2, two encoders in parallel take different input features, X(1) with T (1)

frames and X(2) with T (2) frames, respectively. Each encoder operates on different

temporal resolution with subsampling factor s(1) and s(2), where subsampling could

be performed in stacked RNN layers or max-pooling layers in CNN.

3.2.2 Hierarchical Attention

In the multi-stream setting, the contribution of each stream changes dynamically.

Hence, a secondary stream attention, the HAN component, is exploited for the

purpose of robustness. We adopt a hierarchical attention network for information

fusion. The decoder with the HAN component is trained to selectively attend to an

appropriate encoder, based on the context of previous prediction and higher-level

acoustic features from encoders, to achieve better performance. With knowledge fusion

in the secondary attention network, no time alignment constraint is placed for parallel

inputs. For instance, the number of input frames for each stream could be different

with hierarchical fusion.

For single stream E2E described in Sec. 2.1.2.3, there is only frame-level attention

network connecting the encoder and the decoder. For the proposed multi-stream

setting, each stream (encoder) is assigned with a separate frame-level attention network.

To predict l-th character in the sentence, the stream-specific context vector, r(i)
l , is

computed as follows:

r(i)
l =

∑︂⌊T (i)/s(i)⌋
t=1 a

(i)
lt h(i)

t , (3.2)

a
(i)
lt = Attention({a

(i)
l−1}

⌊T (i)/s(i)⌋
t=1 , ql−1, h(i)

t ), (3.3)

⌊T (i)/s(i)⌋∑︂
t=1

a
(i)
lt = 1. (3.4)
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a
(i)
lt is the attention weight, a soft-alignment of h(i)

t for output cl. ql−1 is the previous

decoder state. In this work, content-based or location-based attention mechanisms,

described in Sec. 2.1.2.2, are applied in the frame-level attention networks for different

scenarios. Note that since the encoder may perform downsampling, summation is till

⌊T (i)/s(i)⌋ for stream i in Eq. 3.2.

The fusion context vector rl is obtained as a convex combination of r(i)
l , i ∈

{1, ..., N}, as illustrated in the following:

rl =
∑︂N

i=1β
(i)
l r(i)

l , (3.5)

β
(i)
l = HierarchicalAttention(ql−1, r(i)

l ), (3.6)

N∑︂
t=1

β
(i)
lt = 1. (3.7)

HierarchicalAttention(·) represents the secondary attention mechanism on top of the

frame-level attention. As stated in Eq. 3.6, the stream-level attention weight, β
(i)
l ,

is estimated according to the previous decoder state ql−1 and context vector r(i)
l

from an individual encoder i. β
(i)
l is one of Softmax outputs across N streams from

the HAN component, a stream-level attention weight for stream i of prediction cl.

Content-based attention is used as the stream fusion component. An LSTM-based

decoder network predicts the next letter based on rl and the previous prediction cl−1.

3.2.3 Training and Decoding with Per-encoder CTC

In the joint CTC/ATT model with a single encoder, the CTC objective serves as

an auxiliary task to speed up the procedure of realizing monotonic alignment and

providing a sequence-level objective. In the multi-stream framework, we introduce
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per-encoder CTC where a separate CTC mechanism is active for each encoder stream

during training and decoding. Sharing one set of CTC among encoders is a soft

constraint that limits the potential of diverse encoders to reveal complementary

information. Sharing CTC refers to the case that linear layers connecting hidden

vectors to CTC Softmax layers for each encoder are shared. In the case that encoders

are with different temporal resolutions and network architectures, per-encoder CTC

can further align speech with labels in a monotonic order and customize the sequence

modeling of individual streams. For each CTC network, the frame-wise posterior

probability p(z(i)
t |X(i)) is estimated in the following way:

p(zt|X) = Softmax(LinB(h(i)
t )) (3.8)

where LinB(·) is a linear layer with bias term converting ht to a (|U| + 1) dimensional

vector, followed by a Softmax activation function and zt ∈ U ⋃︁
blank. Note that the

“blank” symbol is used to handle the merging of repeating letters.

Similar to a single-stream model, the training objective function to be maximized

is a logarithmic linear combination of the CTC and attention objectives, i.e., pctc(C|X)

and p†
att(C|X):

LMTL = λ log pctc(C|X) + (1 − λ) log p†
att(C|X), (3.9)

where λ is a tunable scalar satisfying 0 ≤ λ ≤ 1. p†
att(C|X) is an approximated

letter-wise objective where the probability of a prediction is conditioned on previous

true labels. The CTC objective log pctc(C|X) is computed in the following way:

log pctc(C|X) = 1
N

∑︂N

i=1 log pctc(i)(C|X), (3.10)

where joint CTC loss is the averaged per-encoder CTC losses.

During inference, the model performs a label-synchronous beam search. The most
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probable letter sequence Ĉ given the speech input X is computed according to

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1 − λ) log patt(C|X) + γ log plm(C)}, (3.11)

where external RNN-LM probability log plm(C) is added with a scaling factor γ. For

each partial hypothesis h in the beam search, the log probability of hypothesized label

sequence can be computed as

α(h) = λαctc(h) + (1 − λ)αatt(h) + γαlm(h), (3.12)

where αatt(h), αctc(h) and αlm(h) are the hypothesis scores from attention decoder,

CTC and RNN-LM, respectively. In the beam search, the CTC prefix score of

hypothesized sequence h is altered as follows:

αctc(h) = 1
N

∑︂N

i=1αctc(i)(h), (3.13)

where equal weight is assigned to each CTC network.

3.3 Two Realizations

An end-to-end ASR model addressing the general multi-stream setting was introduced

in the previous section. Two realizations of multi-stream framework are presented here,

which are MEM-Array model and MEM-Res model targeting different applications.

In multi-array scenarios, taking advantage of all the information that each array

shared and contributed is crucial in this task. Different from multi-channel scenario,

it is often not a guarantee that distant microphone arrays operate with synchronous

signals. The MEM-Array model is proposed to fuse array knowledge dynamically

with no presumption of time synchronization. In MEM-Res architecture, one acoustic

input is characterized by two heterogeneous encoders with different configurations and

temporal resolutions. The hierarchical attention then combines diverse views from

both encoders.
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3.3.1 Multi-Encoder Multi-Array

In this section, we briefly introduce the Multi-Encoder Multi-Array (MEM-Array)

model. Detailed descriptions and experiments are carried out in the next chapter.

Figure 3.2. Part of the Multi-Encoder Multi-Array (MEM-Array) architecture

As one representative framework, MEM-Array concentrates on cases of far-field

microphone arrays to handle different dynamics of streams. The architecture of N

streams is shown in Fig. 3.2. In comparison to the general form of multi-stream

model, we specify microphone-array inputs as parallel information sources. Identical

encoder architecture is assigned to each stream. For each array, multi-channel signals

are merged to one-channel input via beamforming technique. Each encoder operates

separately on a parallel input X(i) = {x(i)
1 , ..., x(i)

T (i)} to extract a set of frame-wise

hidden vectors H(i) = {h(i)
1 , ..., h(i)

⌊T (i)/s⌋}:

H(i) = Encoder(i)(X(i)), i ∈ {1, ..., N}. (3.14)
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Subsequently, a hierarchical attention mechanism is designed to combine infor-

mation using encoder outputs {H(i)}i=1
N . In the multi-stream setting, one inherent

problem is that the contribution of each stream (array) changes dynamically. Specially,

when one of the streams takes corrupted audio, the network should be able to pay more

attention to other streams for the purpose of robustness. A stream-level fusion on the

letter-wise context vector is a natural fit to achieve the goal of encoder selectivity.

3.3.2 Multi-Encoder Multi-Resolution

Figure 3.3. Part of the Multi-Encoder Multi-Resolution (MEM-Res) architecture

As another realization of multi-stream framework, we propose a Multi-Encoder

Multi-Resolution (MEM-Res) architecture that has two encoders, RNN-based and

CNN-RNN-based. Both encoders take the same input features in parallel operating

on different temporal resolutions, aiming to capture complementary information in

the speech as depicted in Fig. 3.3.

The RNN-based encoder, denoted as stream 1, is designed to model temporal

sequences with their long-range dependencies. Subsampling in BLSTM is often used

to decrease the computational cost, but performing subsampling might result in
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lost information which could be better modeled in RNN. In MEM-Res, the BLSTM

encoder has only BLSTM layers that extract the frame-wise hidden vector H(1) without

subsampling in any layer, i.e. s(1) = 1.

The combination of CNN and RNN allows the convolutional feature extractor

applied on the input to reveal local correlations in both time and frequency dimensions.

The RNN block on top of CNN makes it easier to learn temporal structure from the

CNN output, to avoid modeling direct speech features with more underlying variations.

The pooling layer is essential in CNN to reduce the spatial size of the representation

to control over-fitting. In MEM-Res, convolutional layers together with max-pooling

layers are exploited as an initial network. It is followed by stacked BLSTM layers

with no subsampling. This CNN-RNN-based encoder is labeled as stream 2.
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Chapter 4

Multi-Encoder Multi-Array
(MEM-Array)

4.1 Proposed Multi-Array Framework

Automatic speech recognition using multiple microphone arrays has achieved great

success in the far-field robustness. Taking advantage of all the information that each

array shares and contributes is crucial in this task. As one representative framework

of multi-stream end-to-end ASR, a MEM-Array model is proposed in this chapter.

Microphone arrays, acting as information streams, are activated by separate encoders

and decoded under the instruction of both CTC and attention networks. On top of

the regular frame-level attention networks, stream attention is introduced to steer the

decoder toward the most informative encoders.

4.1.1 Introduction

Far-field ASR using multiple microphone arrays has been a widely adopted strategy

in the speech processing community. Individually, the microphone array is able to

bring a substantial performance improvement with algorithms such as beamforming

[88] and masking [89]. For a single microphone array, signals from parallel channels
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are synchronized across all channels, where advanced beamforming techniques could

be adopted to combine multi-channel inputs into single-channel audios. However,

distributed microphone arrays are often without presumption of time synchronization.

What kind of information can be extracted from each array and how to make multiple

arrays work in cooperation are still challenging, especially in a far-field environment

with noise and reverberations. For scenarios of multi-array ASR, the common ways

of utilizing multiple arrays in hybrid systems are described in Sec. 2.2. This work

tackles this issue under end-to-end ASR framework.

In the previous chapter, a general formation of multi-stream end-to-end ASR is

introduced within a joint CTC/ATT model. In this chapter, we propose an attention-

based multi-array E2E architecture, MEM-Array, to address the aforementioned issues

in far-field ASR. The framework has highlights as follows:

1. The output of each microphone array is modeled by a separate encoder. Multiple

encoders with the same configuration act as acoustic models for individual arrays.

2. The hierarchical attention mechanism is introduced to dynamically combine

knowledge from parallel streams. We adopt this network in a multi-array scheme,

where the stream-level fusion is employed on top of the frame-level attention

mechanisms.

3. Each encoder is associated with a CTC network to guide the frame-wise alignment

process for each array to potentially achieve a better performance.

4.1.2 MEM-Array Model

The MEM-Array architecture of N microphone arrays is illustrated in Fig. 4.1 as one of

the practical multi-stream ASR scenarios. Following the same notation from Chapter
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3, the MEM-Array model directly maps N parallel inputs, X = {X(1), X(2), ..., X(N)}

into an L-length letter sequence, C = {cl ∈ U|l = 1, 2, ..., L}.

Figure 4.1. The Multi-Encoder Multi-Array (MEM-Array) architecture
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4.1.2.1 Multi-Array Architecture with Stream Attention

In the MEM-Array model, multiple microphone arrays are activated by separate

encoders with identical architectures to capture diverse information. The proposed

architecture has N encoders, with each mapping the speech features of a single array

X(i) to higher level representations H(i) = {h(i)
1 , ..., h(i)

⌊T (i)/s⌋} corresponding to array i:

H(i) = Encoder(i)(X(i)), i ∈ {1, ..., N}. (4.1)

Here, ⌊T (i)/s⌋ time instances are generated for each stream at the encoder-output level

with a subsampling factor of s defined by the encoder architecture. Note that all of the

encoders have the same configurations receiving parallel speech data collected from

multiple microphone arrays. Each encoder is shared by a stream-specific frame-level

attention and a CTC network.

Two levels of attention mechanisms are designated to combine the different views

as stated in the previous chapter. A frame-level attention mechanism is assigned to

each encoder to obtain the stream-specific speech-label alignment. A hierarchical

stream-level attention mechanism then handles different dynamics across the streams.

In comparison to direct fusion on frame-wise hidden vectors h(i)
t , stream-level

fusion can deal with temporal misalignment from multiple arrays at the stream level.

Furthermore, adding an extra microphone array j could be simply implemented with

an additional term β
(j)
l r(j)

l in Eq. 3.5.

4.1.2.2 Training and Decoding with Per-encoder CTC

Following the architecture of general multi-stream framework in the previous chapter,

we assign each encoder with a separate CTC network. Per-encoder CTC modules have

predefined equal contributions for joint training and decoding, as described in Eq.
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3.10 and Eq. 3.13, respectively. The loss function to be optimized during training and

the objective function during label-synchronous beam search are the same as stated

in chapter 3.

4.1.3 Data

Two dataset, DIRHA English WSJ and AMI Meeting Corpus are used to evaluate the

MEM-Array model.

The DIRHA English WSJ [87] is a part of Distant-speech Interaction for Robust

Home Applications (DIRHA) project which addresses the challenge of speech inter-

action via distant microphones. A total of 32 microphones are used in a domestic

environment of a living room (26 microphones) and a kitchen (6 microphones). The

microphone network consists of 2 6-mic circular arrays on the ceiling of the living-room

and the kitchen, a linear array of 11 sensors in the living-room, and 9 single micro-

phones distributed on the living-room walls. Two microphone arrays, Beam Circular

Array (BCA) and Beam Linear Array (BLA) in the living room, are chosen as parallel

streams for experiments in this section. The contaminated version of the original

Wall Street Journal-0 (WSJ0) and WSJ1 corpora is used for training, providing room

impulse responses for corresponding arrays. The development set for cross validation is

simulated with typical domestic background noises and reverberations. The evaluation

set has 409 read utterances from WSJ recorded by six native English speakers in a

real domestic setting. During the recording, the speaker is asked to move to a different

position and take a different orientation after reading several sentences.

The AMI meeting corpus [86] is created in three instrumented meeting rooms

(Edinburgh, Idiap and TNO Room) focusing on developing meeting browsing tech-

nologies. There are 100 hours of far-field signal-synchronized recordings collected

35



using microphone arrays placed in each room. There are two arrays placed in each

meeting room. In every room, there is one 10 cm radius circular array between

the speakers consisting of 8 omni-directional microphones. The setup of the second

microphone array is different among the rooms: In the room of Edinburgh, it is a 10

cm radius circular array with 8 microphones placed at the end of the table; In Idiap,

a second microphone array with 4 elements is mounted on the ceiling; A 10-element

linear array is placed above the presentation screen in the TNO room. The training,

development and evaluation sets are comprised of 81 hours, 9 hours and 9 hours of

meeting recordings, respectively.

For both datasets, two microphone arrays, denoted by Arr1 and Arr2, are applied to

train a MEM-Array model, where configuration of arrays for each dataset is described

in Table 4.1. Note that for each array, multi-channel input is synthesized into a

single-channel audio using Delay-and-Sum beamforming technique with BeamformIt

Toolkit [93].

Table 4.1. Description of array configurations in the two-stream E2E experiments

Dataset Arr1 Arr2

DIRHA 6-mic Beam Circular Array 11-mic Beam Linear Array
8-mic Circular Array (Edinburgh)

AMI 8-mic Circular Array 4-mic Circular Array (Idiap)
10-mic Linear Array (TNO)

4.1.4 Experiment Setup

The MEM-Array model with N = 2 streams is used for experiments and analysis.

In this work, we explore two types of encoder structures: BLSTM (RNN-based) and
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VGGBLSTM (CNN-RNN-based)[13, 92]:

Encoder(i)() = BLSTM() or VGGBLSTM(). (4.2)

Note that every recurrent layer is equipped with an additional projection layer on

top of the outputs. In both encoder architectures, subsampling factors s(1) = s(2) = 4

is applied to decrease the computational cost. For BLSTM encoder, a subsampling

factor of 2 is applied to the first two BLSTM layers. In terms of VGGBLSTM, we

use the initial layers of the VGG net architecture [94], stated in table 4.2, followed

by BLSTM layers as VGGBLSTM decoder. Two maxpooling layers with stride = 2

downsample the input features by a factor of s(2) = 4 in both temporal and spectral

directions. There is no subsampling in the recurrent layers.

Table 4.2. Initial six-layer VGG configurations

Layer Configuration
Convolution 2D in = 1, out = 64, filter = 3× 3
Convolution 2D in = 64, out = 64, filter = 3× 3
Maxpool 2D patch = 2×2, stride = 2×2
Convolution 2D in = 64, out = 128, filter = 3× 3
Convolution 2D in = 128, out = 128, filter = 3× 3
Maxpool 2D patch = 2×2, stride = 2×2

The letter-wise context vectors, r(1)
l and r(2)

l , from individual encoders are computed

following Eq. 3.2:

r(i)
l =

∑︂T (i)/4
t=1 a

(i)
lt h(i)

t , i ∈ {1, 2} (4.3)

where the summation is performed from 1 to T (i)/4 due to subsampling. The fusion

context vector rl is obtained as a combination of r(1)
l and r(2)

l as illustrated:

rl = β
(1)
l r(1)

l + β
(2)
l r(2)

l (4.4)
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β
(i)
l = HierarchicalAttention(ql−1, r(i)

l ), i = 1, 2 (4.5)

The stream-level attention weights β
(1)
l and β

(2)
l are estimated according to the feedback

from the previous decoder state, ql−1, and context vectors, r1
l and r2

l , from individual

encoders. The fusion context vector is then fed into the decoder to predict the next

letter.

During multi-task training and joint decoding, we follow the formulas depicted by

Eq. 3.10 and Eq. 3.13 with N = 2:

log pctc(C|X) = λ

2 (log pctc1(C|X) + log pctc2(C|X)), (4.6)

αctc(h) = 1
2(αctc1(h) + αctc2(h)). (4.7)

In this work, we integrate the look-ahead word-based language model to give the

RNN-LM score, αlm(h).

All the experiments were implemented by ESPnet, an end-to-end speech processing

toolkit [95] with the configuration as described in Table 4.3. In all experiments,

80-dimensional mel-scale filterbank coefficients with additional 3-dimensional pitch

features serve as the input features. We use 52 distinct labels including 26 English

letters and other special tokens, i.e., punctuations and sos/eos.

4.1.5 Results and Analysis

We start with discussion on single-stream architectures, followed by analysis of the

effectiveness of our proposed MEM-Array model.
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Table 4.3. Experimental configuration

Feature
Each Stream 80-dim log-mel filter bank + 3-dim pitch
Number of Streams 2
Model
Encoder type BLSTM or VGGBLSTM
Encoder layers VGGBLSTM: 6(VGG)+4(BLSTM)

BLSTM: 4(BLSTM)
Encoder units 320 cells (BLSTM layers)
Encoder projection 320 cells (BLSTM layers)
Subsampling 4
Frame-level Attention 320-cell Content-based
Stream Attention 320-cell Content-based
Decoder type LSTM
Decoder layers 1
Decoder units 300 cells
Decoder Softmax 52 labels

(26 English letters+punctuation+sos/eos)
Train and Decode
Optimizer AdaDelta
Batch size 15
Training Epoch 15 epochs
CTC weight λ (train) DIRHA:0.2; AMI:0.5
CTC weight λ (decode) DIRHA:0.3; AMI:0.3
Label Smoothing Type: Unigram [96], Weight: 0.05
Beam size 30
RNN-LM
Type Look-ahead Word-level RNN-LM
Size 1-Layer LSTM with 1,000 cells
Vocabulary 65,000
Train data DIRHA:WSJ0-1+extra WSJ text; AMI:AMI
LM weight γ DIRHA:1.0; AMI:0.5
Optimizer Stochastic Gradient Descent
Batch size 300
Training Epoch DIRHA: 60; AMI: 20
Learning Rate DIRHA: 0.5; AMI: 1.0
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4.1.5.1 Single-Array Model

First, we explore the ASR performance for the individual array (single stream). As

illustrated in Table 4.4, the single-stream system with VGGBLSTM encoder noticeably

outperforms the one with BLSTM encoder, both in Character Error Rate (CER)

and Word Error Rate (WER). Joint training of CTC and attention-based model

helps in terms of CERs since CTC can enforce the monotonic behavior of attention

alignments, rather than merely estimating the desired alignment for long sequence.

With the help of word-level RNN-LM during inference , we observed substantial

improvements of the WERs on both datasets. The WERs of Arr1 are 35.1% and

56.9% for DIRHA Real and AMI Eval, respectively. The architecture with the best

performance (VGGBLSTM+CTC+ATT+RNN-LM) is chosen for further experiments

on both streams.

Table 4.4. Exploration of best encoder and decoding strategy for single-stream E2E
model

DIRHA AMI
Model (Single Stream) Real Eval

CER WER CER WER
BLSTM (Arr1)
Attention 42.7 68.7 45.1 60.9
+ CTC 38.5 74.8 41.7 63.0
+ Word RNN-LM 29.4 47.4 41.7 59.1
VGGBLSTM (Arr1)
Attention 39.5 71.4 43.2 59.7
+ CTC 30.1 61.8 40.2 62.0
+ Word RNN-LM 21.2 35.1 39.6 56.9

VGGBLSTM (Arr2) 22.5 38.4 45.6 64.0
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4.1.5.2 MEM-Array v.s. Conventional Methods

As illustrated in Table 4.5, our proposed framework is able to fuse information

successfully from both streams by achieving lower error rates than best single-array

systems, i.e., DIRHA (35.1% → 31.7%) and AMI (56.9% → 54.9%). Moreover, several

conventional fusion strategies are discussed in Table 4.5: signal-level fusion through

WAV alignment and average; feature-level frame-by-frame concatenation; word-level

prediction fusion using ROVER. The MEM-Array model outperforms all three fusion

techniques, even including the case when doubling BLSTM layers in signal-level fusion

for a comparable amount of parameters (33.7 million versus 31.6 million).

Table 4.5. Comparison between proposed multi-stream approach and alternative single-
stream strategies (WER %)

Encoder VGGBLSTM #Param DIRHA AMI
(ATT + CTC + RNN-LM) Real Eval
Single-stream model
Concatenating Arr1&Arr2 23.3M 33.5 56.7
WAV alignment and average 26.2M 43.5 56.7
+ model parameter extension 33.7M 39.6 56.9
Two single-stream models
ROVER Arr1&Arr2 52.5M(26.2×2) 37.0 60.7
Multi-stream model
Proposed framework 31.6M 31.7 54.9

4.1.5.3 Stream Fusion with Noise Corruption

To investigate the robustness of stream attention, we design an experiment with Arr1

injected with zero-mean, unit-variance Gaussian noise in the signal level while keeping

Arr2 untouched. Fig. 4.2 displays an example from DIRHA evaluation set during

inference. Noise corruption Arr1 ((a) → (c)) makes attention alignments fairly blurred,
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thus less trusted. As expected, a positive average shift of stream weights towards Arr2

is observed (upper yellow line in Fig. 4.2(e)).

Figure 4.2. Comparison of the alignments between characters (y-axix) and acoustic frames
(x-axis) before ((a) Arr1; (b) Arr2) and after ((c) Arr1; (d) Arr2) noise corruption of
Arr1. (e) shows the attention weight shift of Arr2 between two cases (x-axis is the letter
sequence).
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4.1.5.4 Comparison with Hybrid Model

Table 4.6 shows fusion results of six streams in conventional hybrid ASR systems from

a previous study [68]. DNN posterior combination approach and ROVER technique

were used in [68] for stream fusion. Relative WER reductions of 7.2% and 5.8% were

reported compared to the best single stream performance, respectively. Meanwhile,

the MEM-Array system with two streams reduces the WER by 9.7% relatively. In

spite of more training data involved in E2E, MEM-Array shows a promising direction

for fusion of more streams.

Table 4.6. Comparison between the hybrid and end-to-end system on DIRHA dataset.
#Streams denotes the number of streams. (WER %)

System #Streams Method Best Single Stream Multi Stream
Hybrid 6 Posterior Combination 29.2 27.1 (7.2%)

6 ROVER 29.2 27.5 (5.8%)

E2E 2 MEM-Array 35.1 31.7 (9.7%)

4.1.6 Conclusion

In this section, we present a multi-stream end-to-end ASR framework, MEM-Array,

targeting the distributed microphone array situation. Stream attention is achieved

through a hierarchical connection between the decoder and encoders, with each

modeling one array into higher-level representations. Thanks to the success of joint

training of per-encoder CTC and attention, substantial WER reductions are shown

in both DIRHA and AMI corpora, demonstrating the potentials of the proposed

architecture. Compared with the best single-array results, the proposed framework has

achieved relative WER reductions of 3.7% and 9.7% in the two datasets, respectively,

which is better than conventional strategies as well.
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4.2 A Practical Two-Stage Training Strategy

The previous section offers a promising direction within end-to-end ASR, where

parallel encoders aim to capture diverse information followed by a stream-level fusion

based on attention mechanisms to combine the different views. However, with an

increasing number of streams resulting in an increasing number of encoders, the

previous approach could require substantial memory and massive amounts of parallel

data for joint training. In this section, we propose a practical two-stage training

scheme. Stage-1 is to train a Universal Feature Extractor (UFE), where encoder

outputs are produced from a single-stream model trained with all data. Stage-2

formulates a multi-stream scheme intending to solely train the attention fusion module

using the UFE features and pre-trained components from Stage-1.

4.2.1 Introduction

The multi-stream paradigm in speech processing considers scenarios where parallel

streams carry diverse or complementary task-related knowledge. In these cases,

an appropriate strategy to fuse streams or select the most informative source is

necessary. The work that follows considers far-field ASR using multiple microphone

arrays, a specific case of multi-stream paradigm. Without any knowledge of speaker-

array distance or orientation, it is still challenging to speculate which array is most

informative or least corrupted.

In Chapter 3, we propose a novel multi-stream model based on a joint CTC/ATT

E2E scheme, where each stream is characterized by a separate encoder and CTC

network. A hierarchical attention network acts as a fusion component to dynamically

assign higher weights for streams carrying more discriminative information for pre-

diction. The Multi-Encoder Multi-Array (MEM-Array) framework is introduced in
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Sec. 4.1 to improve the robustness of distant microphone arrays, where each array is

represented by a separate encoder. While substantial improvements were reported

within a two-stream configuration, there are two concerns when more streams are

involved. First, during training, fitting all parallel encoders in device computing

memory is potentially impractical for joint optimization, as the encoder is typically

the largest component by far, i.e., 88% of total parameters in this work. Second, due

to the data-hungry nature of DNNs and the expensive cost of collecting parallel data,

training multiple models with excess degrees of freedom is not optimal.

In this section, we present a practical two-stage training strategy on the MEM-

Array framework targeting the aforementioned issues. The proposed technique has

the following highlights:

1. In Stage-1, a single-stream model is trained using all data for better model

generalization. The encoder will then acts as a Universal Feature Extractor

(UFE) to process parallel data individually to generate a set of high-level parallel

features.

2. Initializing components (CTC, decoder, frame-level attention) from Stage-1,

Stage-2 training only optimizes the HAN component operating directly on

UFE parallel features. The resulting memory and computation savings greatly

simplify training, potentially allowing for more hyperparameter exploration or

consideration of more complicated architectures.

3. Lack of adequate volume of data, specially parallel data, leads to overfit or is

hard to tackle unseen data. The proposed two-stage strategy better defines

the data augmentation scheme. Augmentation in Stage-1 aims to extract more

discriminative high-level features and provides well pre-trained modules for
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Stage-2, whereas Stage-2 could focus on improving the robustness of information

fusion.

4.2.2 Two-Stage Training Strategy

In this section, we present a practical two-stage training strategy for the MEM-Array

model, depicted in Fig. 4.3. The basics of MEM-Array model is described in Sec. 4.1.

The details of each stage are discussed in the following.

4.2.2.1 Stage 1: Universal Feature Extractor

The intent of Stage-1 is to obtain a single well-trained encoder, which we refer to as

universal feature extractor, to prepare a new set of high-level features for Stage-2.

Encoder in E2E model can be viewed as an acoustic model that generates sequences

H = {h1, ..., h⌊T/s⌋} with more discriminative power for prediction. We denote the

encoder outputs H as the UFE features. In general, the majority of the overall

parameters are contained in the encoder. Introducing such a highly-parameterized

nonlinear model, it is crucial in the task to make sure a well-generalized encoder.

In Stage-1, a single-stream joint CTC/ATT model is optimized as shown in Fig. 4.3.

Audio features from all available streams are used to train the model. After training,

we extract UFE features H(i) = {h(i)
1 , ..., h(i)

⌊T (i)/s⌋} for each stream i, separately. Since

subsampling mitigates the increased dimension of UFE features, it is possible to

save the UFE features at a similar size to the original speech features. Moreover,

byproducts in Stage-1, such as decoder, CTC and frame-level attention, can be used

for initialization in Stage-2.
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4.2.2.2 Stage 2: Parallel-Stream Fusion

As illustrated in Fig. 4.3, Stage-2 focuses on training the fusion component within the

multi-stream context. The MEM-Array model uses parallel encoders as information

streams. The previous strategy uses joint training with multiple large encoders, which

is expensive in memory and time for more complex models or more streams. Taking

advantage of UFE features greatly alleviates this complication.

In Stage-2, we formulate a multi-stream scheme on UFE features {H(i)}N
i=1 as

parallel inputs. In this model, parameters of all components, except the stream

attention module, are initialized from Stage-1 and frozen during optimization. The

stream fusion component is randomly initialized, and is the only trainable element in

Stage-2. Without any involvement of encoders, frame-level attention directly operates

on UFE features. This setup not only reduces the amount of required parallel data,

but it also greatly reduces memory and time requirements, allowing for more thorough

hyperparameter exploration or utilization of more complex architectures.

4.2.3 Data

We demonstrated the two-stage training strategy using the same datasets: DIHRA

English WSJ and AMI Meeting Corpus. Detailed information for both datasets are

introduced in Sec. 4.1.3. We designed both 2-stream and 3-stream settings for DIRHA

and 2-stream experiments for AMI. For DIRHA English WSJ, a single microphone

(L1C) is picked to serve as a third stream in 3-stream experiments, while keeping the

original two selected streams.
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4.2.4 Experiment Setup

Experiments are conducted using a Pytorch back-end on ESPnet configured as de-

scribed in Table 4.7

4.2.5 Results and Analysis

Firstly, we examine UFE features in a single-stream setting. Next, the full proposed

strategy is analyzed in comparison to the previous approach as well as to several

conventional fusion methods on DIRHA 2-stream case. Results on AMI and extension

with more streams on DIRHA are explored as well. Lastly, we consider the potential

benefits of data augmentation in this framework.

4.2.5.1 Multi-Stream v.s. Conventional Methods

In Table 4.8, the MEM-Array model with our two-stage training strategy consistently

outperforms the baseline model which needs joint training after random initialization.

18.8%, 32.4%, and 8.2% relative WER reductions are achieved in 2-stream DIRHA,

3-stream DIRHA, and 2-stream AMI, respectively. Note that AMI experiments are

conducted using VGGBLSTM with 2-layer BLSTM layers without any close-talk

recordings and data perturbations. It is worth mentioning that those reductions in

WERs are accomplished while simultaneously significantly decreasing the number

of unique parameters in training by avoiding costly multiples of the large encoder

component. For instance, in our setup, one single encoder has 10 million parameters

which is 88% of the total parameters in a single-stream model. Two-stage training

could greatly avoid creating separate encoders for individual streams.

In addition, results from several conventional fusion strategies are shown in Table

4.8: signal-level fusion via WAV alignment and average; feature-level frame-by-frame
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Table 4.7. Experimental configuration

Feature
Each Stream 80-dim log-mel filter bank + 3-dim pitch
Number of Streams 2 or 3
Model
Encoder type VGGBLSTM
Encoder layers 6(VGG)+2(BLSTM)
Encoder units 320 cells (BLSTM layers)
Encoder projection 320 cells (BLSTM layers)
Subsampling 4
Frame-level Attention 320-cell Location-based
Stream Attention 320-cell Content-based
Decoder type LSTM
Decoder layers 1
Decoder units 300 cells
Decoder Softmax 52 labels

(26 English letters+punctuation+sos/eos)
Train and Decode
Optimizer AdaDelta
Batch size 15
Training Epoch 30 epochs (patience:3 epochs)
CTC weight λ (train) 0.2
CTC weight λ (decode) 0.3
Label Smoothing Type: Unigram, Weight: 0.05
Beam size 30
RNN-LM
Type Look-ahead Word-level RNN-LM
Size 1-Layer LSTM with 1,000 cells
Vocabulary 65,000
Train data DIRHA:WSJ0-1+extra WSJ text; AMI:AMI
LM weight γ DIRHA:1.0; AMI:0.5
Optimizer Stochastic Gradient Descent
Batch size 300
Training Epoch 20
Learning Rate 1.0
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concatenation; word-level prediction fusion using ROVER. For fair comparison, single-

level and word-level fusion models utilized Stage-1 pre-trained models as their initial-

ization. Note that word-level fusion operates on decoding results from pre-trained

single-stream from Stage-1. Still, our proposed strategy consistently performs better

than all other fusion methods in all conditions.

Table 4.8. Comparison between proposed two-stage approach and alternative conventional
methods (WER %)

Unique # Streams
Params DIRHA AMI

Model (in million) 2 3 2
MEM-Array Model
Baseline [Sec. 4.1] 21.8(2),32.1(3) 33.0 32.1 59.5
Proposed Strategy 11.6 26.8 21.7 54.6

Other Fusion Methods
WAV Align.& Avg. 11.4 32.4 30.1 55.9
Frame Concat. 16.9(2),23.8(3) 33.7 33.8 59.4
ROVER 11.4 34.2 23.6 58.0

4.2.5.2 Effectiveness of Stage-1 Training

In this section, we discuss the results on 2-stream DIRHA to demonstrate the value

of proposed strategy. First, to evaluate Stage-1 training, CER/WER results on

single stream systems are summarized in Table 4.9. Training the model using data

from both streams improves performance substantially on the individual arrays, i.e.,

37.6% → 33.9% and 39.2% → 30.7%. The UFE features are the outputs of an encoder

trained with this improved strategy. In our setup, 320-dimensional UFE features

take slightly smaller space than 83-dimensional acoustic frames since the subsampling

factor s = 4.
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Table 4.9. Stage-1 results on 2-stream DIRHA

Arr1 Arr2
Train Data CER(%) WER(%) CER(%) WER(%)
Single Stream
Arr1 22.3 37.6 – –
Arr2 – – 23.0 39.2
Arr1, Arr2 20.1 33.9 17.9 30.7

4.2.5.3 Comparison among various Stage-2 Training Strategies

Table 4.10 illustrates several training strategies in Stage-2. Since Stage-2 operates on

UFE features directly, its training only involves, at most, frame-level attention (ATT),

decoder (DEC), hierarchical attention (HAN) and CTC. These experiments consider

which of these components should be initialized from their Stage-1 counterparts, as

well as which components should be fine-tuned or frozen during Stage-2 updates.

In both cases of fine-tuning or freezing Pre-Trained (PT) modules in Stage-2, more

noticeable improvements are reported with introducing more pretraining knowledge,

i.e., 32.9% → 28.4% and 31.8% → 26.8%, respectively. Moreover, keeping all PT

components frozen during Stage-2 and training solely the fusion module shows relative

WER reduction of 5.6% (28.4% → 26.8%) with only 0.2 million active parameters.

Overall, a substantial improvement of 18.8% relative WER reduction (33.0% → 26.8%)

is observed compared to jointly training a massive model, including encoders, from

scratch.

4.2.5.4 Discussion on Data Augmentation

The two-stage training strategy provides various opportunities for data augmentation.

Stage-1 does not consider parallel data, so any augmentation technique for regular

E2E ASR could be applied in this stage to improve the robustness of the UFE. Stage-2

52



Table 4.10. Comparison among various Stage-2 training strategies on 2-stream DIRHA.
Note that components with random initialization in Stage-2 are listed in parentheses of
the first column. The amount of trainable parameters in Stage-2 when freezing Stage-1
Pre-Trained (PT) components is stated in parentheses of the last column. (WER %)

Initialization with Fine-tune Freeze
PT Comp. (rand. init. comp.) PT Comp. PT Comp.
No Two-Stage
Baseline – 33.0 (21.82M)
Two-Stage
– (ATT, DEC, CTC, HAN) 32.9 31.8 (1.78M)
CTC (ATT, DEC, HAN) 34.4 30.7 (1.75M)
ATT (DEC, CTC, HAN) 33.3 30.6 (1.37M)
ATT, DEC (CTC, HAN) 29.0 27.4 (0.23M)
ATT, DEC, CTC (HAN) 28.4 26.8 (0.20M)

augmentation, on the other hand, would be expected to improve robustness of the

combination of corrupted individual streams. In this study, we employ a simple data

augmentation technique called SpecAugment [97], which randomly removes sections

of the input signal in a structured fashion [61], to demonstrate the potential of this

direction. SpecAugment is applied to input frames instead of UFE features in all

experiments. Table 4.11 shows the results from applying SpecAugment on two sepa-

rate training stages. For experiments on DIRHA, the best performance is from data

augmentation on Stage-1 when freezing all Stage-1 pre-trained components. With

additional Stage-2 SpecAugment, there is not a noticeable difference in terms of WERs

(22.6% v.s. 22.4% and 22.6% v.s. 22.5%). 5% absolute WER reduction is achieved in

AMI with two stage augmentation. However, it is important to remember that, while

the performance gap from fine-tuning versus freezing pre-trained components is nar-

rowed with Stage-2 augmentation, the reductions in Stage-2 memory and computation

requirements are still substantially better with frozen parameters.
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Table 4.11. Performance investigation of two-stage data augmentation using SpecAug-
ment on 2-stream DIRHA and AMI (WER %)

DIHRA
Fine-tune Freeze

Model PT Comp. PT Comp. AMI
Augmentation
no SpecAugment 28.4 26.8 54.6
Stage-1 22.6 22.4 55.8
Stage-1, Stage-2 22.5 22.6 49.2

4.2.6 Conclusion

In this section, we propose a practical two-stage training strategy to improve multi-

stream end-to-end ASR. A universal feature extractor is trained in Stage-1 with all

available data. In Stage-2, a set of high-level UFE features are used to train a multi-

stream model without requiring highly-parameterized parallel encoders. This two-stage

strategy remarkably alleviates the burden of optimizing a massive multi-encoder model

while still substantially improving the ASR performance. Separate stages focusing

on training encoder and fusion module significantly improve the performance in the

multi-stream setting. Experiments have been conducted on two datasets, DIRHA and

AMI, as a multi-stream scenario. Compared with our previous method, this strategy

achieves relative WER reductions of 8.2–32.4%, while consistently outperforming

several conventional combination methods.
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4.3 Improved Robustness of Multi-Stream End-to-
End ASR

Performance degradation of an ASR system is commonly observed when the test

acoustic condition is different from training. Hence, it is essential to make ASR

systems robust against various environmental distortions, such as background noises

and reverberations. In a multi-stream paradigm, improving robustness takes account

of handling a variety of unseen single-stream conditions and inter-stream dynamics.

In the previous section, a practical two-stage training strategy is proposed within

multi-stream end-to-end ASR, where Stage-2 formulates the multi-stream model with

features from Stage-1 universal feature extractor. In this section, as an extension, we

introduce a two-stage augmentation scheme focusing on mismatch scenarios: Stage-1

Augmentation aims to address single-stream input varieties with data augmentation

techniques; Stage-2 Time Masking applies temporal masks on UFE features of randomly

selected streams to simulate diverse stream combinations. During inference, we also

present adaptive CTC fusion with the help of hierarchical attention mechanisms.

4.3.1 Introduction

The multi-stream paradigm of speech processing has been an active research area,

in which parallel information sources are simultaneously considered for knowledge

fusion. A robust fusion strategy is crucial to reliably address a variety of scenarios

with different dynamics across streams. This work concentrates on the setting of

multiple far-field microphone arrays, e.g., meeting rooms or domestic scenarios.

The multi-stream end-to-end framework is presented in Chapter 3, in which the

MEM-Array model is introduced for multi-array applications in Sec. 4.1. It is a single

neural network that takes multiple inputs and directly outputs word/letter sequences.
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This framework is proposed based on a joint CTC/ATT E2E scheme, where each

stream is characterized by a separate encoder and CTC network. A hierarchical

attention network acts as a fusion component to dynamically guide the system towards

streams carrying more discriminative information. A practical two-stage training

strategy is introduced later in Sec. 4.2. In Stage-1, an universal feature extractor is

optimized without requiring parallel data; Stage-2 formulates a multi-stream model

directly on the UFE features with focus on solely training the HAN component.

The two-stage training strategy in Sec. 4.2 offers a promising direction to further

improve the robustness of multi-stream systems. It involves augmentation of training

data, with an emphasis on single-stream variations in Stage-1 and inter-stream dy-

namics in Stage-2. Moreover, predefined equal CTC contributions during inference

can potentially confuse the decoding procedure, especially when acoustic conditions

among streams are dramatically different.

In this section, we present a two-stage augmentation scheme and adaptive CTC

fusion targeting the aforementioned situations. The proposed techniques have the

following highlights:

1. Stage-1 Augmentation aims to train a well-generalized encoder so that the

resulting UFE features could be robust against different unseen stream conditions.

Both online augmentation (SpecAugment) and offline augmentation approaches

are explored. Stage-2 Time Masking applies temporal masks on the UFE

features. It provides a simple online augmentation technique to create inter-

stream dynamics.

2. Adaptive CTC fusion applies the stream fusion vector to the CTC networks in

the decoding step. CTC contributions then change dynamically depending on

the HAN component, instead of the previous approach of pre-fixed weights.
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4.3.2 Two-Stage Augmentation Scheme

Following the framework of the two-stage training strategy, the proposed two-stage

augmentation scheme defines individual steps to simulate single-stream variations

and inter-stream dynamics, respectively. Here we define the streams used for Stage-2

training as target streams.

4.3.2.1 Stage 1 Augmentation

The goal of Stage-1 training is to obtain a set of UFE features with more discriminative

power for Stage-2 prediction. With limited amount of data for target streams in

Stage-2, data augmentation in Stage-1 is a strategy to create more data with a diverse

set of conditions and also to involve audio from non-target arrays. In this work, we

explore two approaches to improve training with data augmentation in the multi-array

scenario:

• SpecAugment is an online augmentation technique that degrades input on the fly

in the training mini-matches. It views the spectrogram as a visual representation,

and modifies the spectrogram by warping it in the time direction and applying

masks in frequency and time.

• The second approach is offline augmentation that generates extra data before

training. In the multi-stream framework, we conduct experiments with either

simulated audio or real recordings from non-target streams. In the DIRHA

dataset, several reverberated versions of clean speech are generated using pre-

measured room impulse responses; In the AMI corpus, recordings from close-talk

microphones in addition to microphone arrays are used for Stage-1 training.
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4.3.2.2 Stage 2 Time Masking

Stage-2 augmentation aims to improve a multi-stream model’s robustness against

variations in inter-stream dynamics. For instance, the model needs to learn how to

reliably handle the situation if one of the arrays suddenly fails in a meeting setting.

Since the UFE features are the direct inputs for Stage-2, we consider augmentation

on UFE features instead of log-Mel filter bank features.

In this work, we introduce Stage-2 Time Masking, a simple but effective method to

create differences across the streams. Inspired by temporal masking in SpecAugment,

Stage-2 Time Masking masks the UFE features in time for individual streams. The

time mask is utterance-specific, in that it replaces the features with the mean value of

the UFE features for that utterance. The applied location and duration of a mask

are both randomly chosen from a uniform distribution. The Stage-2 Time Masking is

intended to mimic the situation of a partial loss of a speech segment for one of the

streams. Compared with augmentation at the acoustic level, Stage-2 Time Masking is

computationally easy to apply with no additional data.

4.3.3 Adaptive CTC Fusion

In the Sec. 4.2, the CTC component of each stream is pre-trained in Stage-1 and

kept frozen in Stage-2 for training. During inference in a multi-stream setting, equal

decoding weights across all streams are assigned to the CTC components. In the beam

search, the CTC prefix score αctc(h) of hypothesized sequence h is as follows:

αctc(h) = 1
N

∑︂N

i=1αctc(i)(h). (4.8)

These predefined CTC weights could be problematic if one array is in an acoustic

condition that is significantly worse than the others.
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In this work, we propose adaptive CTC fusion during decoding to mitigate the

problem above. For every prediction, the HAN component produces an attention vector

[β(1)
l , β

(2)
l , ..., β

(N)
l ] across all streams, which steers the system to more informative

streams:

β
(i)
l = HierarchicalAttention(ql−1, r(i)

l ), i ∈ {1, ..., N}. (4.9)

The Softmax output β
(i)
l represents a stream-level attention weight for stream i of

letter prediction cl. ql−1 is the previous decoder state and r(i)
l is the context vector

from stream i. Since a label-synchronous beam search is employed during inference,

the stream attention vector can be combined with CTC prefix scores αctc(h) for a

hypothesized sequence h:

αctc(h) =
∑︂N

i=1β
(i)
l · αctc(i)(h), (4.10)

where adaptive stream weight β
(·)
l is applied to each CTC network and l is the index

of the latest prediction of hypothesis h.

4.3.4 Data

Two datasets, DIRHA English WSJ and AMI meeting corpus, were used for experi-

ments and analysis. Both of the datasets are discussed in Sec. 4.1.3.

For experiments on DIRHA English WSJ, we included five single microphones

(depicted in Fig. 4.4) in addition to two microphone arrays, Beam Linear Array (BLA)

and Beam Circular Array (BCA). Moreover, we create a synthetic test stream, NoMic,

to replicate the scenario of signal cut-off, where inputs are all zeros after mean and

variance normalization.

The AMI meeting corpus was created in three instrumented rooms with meeting

conversations. Each meeting room is configured with two microphone arrays and

close-talk microphones for individual speakers, resulting in 100 hours of far-field
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Figure 4.4. DIRHA English WSJ microphone configuration. Streams selected are in
red circles. Beam Circular Array contains 6 microphones (LA1-LA6), Beam Linear Array
includes 11 microphones (LD02-LD12).
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signal-synchronized recordings. Table 4.12 summarizes the stream descriptions used

in subsequent experiments. For stream IHM, the close-talk microphone with the most

energy among all attendees is selected at each time frame. In contrast, stream IHM0

always takes speech from speaker-0, regardless of if speaker-0 is speaking. Similar to

the DIRHA setup, NoMic is created to mimic constant microphone dropout.

For each array in both datasets, multi-channel input is synthesized into a single-

channel audio using the Delay-and-Sum beamforming technique with the BeamformIt

Toolkit.

Table 4.12. AMI meeting corpus stream configuration

Stream Description
MDM first microphone array
SMDM second microphone array
IHM individual headset microphones
IHM0 individual headset microphones

(fixed speaker-0 for each meeting)
NoMic constant stream dropout (all-zero inputs)

4.3.5 Experiment Setup

All the experiments are conducted using the Pytorch backend on ESPnet. Table 4.13

describes the relevant setup information for the various experiments. Two model

configurations are explored: Config-1 includes two BLSTM layers in the encoder

and one LSTM layer in the decoder. A more complex model with Config-2 has an

additional two BLSTM layers and an extra LSTM layer as well. We use 52 distinct

labels including 26 English letters and other special tokens, i.e., punctuation and

sos/eos. A look-ahead word-level RNN-LM is incorporated during inference. It is

trained separately using Stochastic Gradient Descent (SGD) for 20 epochs.

61



Table 4.13. Experimental Configuration

Feature
Each Stream 80-dim log-mel filter bank + 3-dim pitch
Number of Streams 2
Model
Encoder type VGGBLSTM
Encoder layers Config-1: 6(VGG)+2(BLSTM)

Config-2: 6(VGG)+4(BLSTM)
Encoder units 320 cells (BLSTM layers)
Encoder projection 320 cells (BLSTM layers)
Subsampling 4
Frame-level Attention 320-cell Location-based
Stream Attention 320-cell Content-based
Decoder type LSTM
Decoder layers 1 (Config-1) or 2 (Config-2)
Decoder units 300 cells
Decoder Softmax 52 labels

(26 English letters+punctuation+sos/eos)
Train and Decode
Optimizer AdaDelta
Batch size 30 (Stage-1); 15 (Stage-2)
Training Epoch 30 epochs (patience:3 epochs)
CTC weight λ (train) 0.2
CTC weight λ (decode) 0.3
Label Smoothing Type: Unigram , Weight: 0.05
Beam size 30
RNN-LM
Type Look-ahead Word-level RNN-LM
Size 1-Layer LSTM with 1,000 cells
Vocabulary 65,000
Train data DIRHA:WSJ0-1+extra WSJ text; AMI:AMI
LM weight γ DIRHA:1.0; AMI:0.5
Optimizer Stochastic Gradient Descent
Batch size 300
Training Epoch 20
SpecAugment
Time mask #masks: 2; T : 40
Frequency mask #masks: 2; F : 30
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4.3.6 Results and Analysis

4.3.6.1 Stage-1 Augmentation

To investigate the effectiveness of Stage-1 augmentation, we evaluate online and offline

augmentation techniques on DIRHA and AMI datasets. Table 4.14 illustrates Stage-1

single-stream results using the proposed augmentation schemes. With each model

configuration, substantial WER reductions are reported with SpecAugment, i.e., D1

v.s. D3 and D2 v.s. D4. Moreover, the more complex network Config-2 does not

necessarily improve over the smaller model Config-1 until augmentation is utilized

in training (i.e., D1 outperforms D2, but D4 outperforms all earlier models). We

create additional reverberated copies of clean WSJ data using room impulse responses

measured for four single microphones, i.e., L1L, L2L, L3L and L4L. D11 achieves

better WERs across six streams compared to D5-D10. More importantly, D11, trained

with all six streams, outperforms D4 on the BCA and BLA evaluations, showing the

value of the additional out-of-set data. From here, D11 is selected as the Stage-1

model for the remaining DIRHA experiments.

Table 4.15 summarizes Stage-1 augmentation results of AMI in a similar way to

Table 4.14. It is clear looking at A1-A4 that online augmentation (SpecAugment)

consistently decreases error rates. Including additional the close-talk stream IHM,

D8 shows lower WERs comparing to D4. From here, D8 is utilized for AMI Stage-2

training.

4.3.6.2 Adaptive CTC Fusion

4.3.6.2.1 Issues with Predefined CTC weights

In Sec. 4.2, each CTC network in the multi-stream setting contributes equally during

inference. These pre-defined CTC weights could cause performance degradation if
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Table 4.14. Stage-1 Augmentation (DIRHA). Model size (2, 1) and (4, 2) represent
Config-1 and Config-2 in Table 4.13. (WER %)

Train Model Test Data
ID Data SpecAug Size BCA BLA L1L L2L L3L L4L
D1 BCA+BLA No (2,1) 33.9 30.7 – – – –
D2 BCA+BLA No (4,2) 34 32 – – – –
D3 BCA+BLA Yes (2,1) 27.1 24.4 – – – –
D4 BCA+BLA Yes (4,2) 24.9 22.6 – – – –
D5 BCA Yes (4,2) 27.1 – – – – –
D6 BLA Yes (4,2) – 27.7 – – – –
D7 L1L Yes (4,2) – – 28.3 – – –
D8 L2L Yes (4,2) – – – 35.4 – –
D9 L3L Yes (4,2) – – – – 33 –
D10 L4L Yes (4,2) – – – – – 30.4
D11 All Streams Yes (4,2) 19.8 17.2 22.6 24.1 22.6 22.6

Table 4.15. Stage-1 Augmentation (AMI). Model size (2, 1) and (4, 2) represent Config-1
and Config-2 in Table 4.13. (WER %)

Train Model Test Data
ID Data SpecAug Size MDM SMDM IHM
A1 MDM+SMDM No (2,1) 56.9 61.7 –
A2 MDM+SMDM No (4,2) 53.1 58.3 –
A3 MDM+SMDM Yes (2,1) 50.3 54.9 –
A4 MDM+SMDM Yes (4,2) 46.1 50.5 –
A5 MDM Yes (4,2) 50.5 – –
A6 SMDM Yes (4,2) – 55.5 –
A7 IHM Yes (4,2) – – 30.4
A8 All Streams Yes (4,2) 42.8 48.1 27.6
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one of streams is corrupted. We design simple experiments in DIRHA to illustrate

this issue. After Stage-1, we formulate a two-stream model using target streams, BLA

and NoMic for training and testing. Since BLA is known to be the only informative

source, stage-1 performance of 17.2% for BLA is viewed as the best possible result. In

Table 4.16, the Oracle Stage-2 decoding setup with CTC weights [1.0; 0.0] achieves

WER of 17.3%, essentially equivalent to the single-stream performance. However,

WER increases to 20.5% when equal weights are applied. The proposed adaptive

CTC fusion makes the model more robust with the help of stream attention, reaching

Stage-1 performance of 17.2% without any pre-existing knowledge of the relative value

of the streams.

Table 4.16. Issues with predefined CTC weights (WER %)

Model Test
Stage-1: BLA only
D11 in Table 4.14 17.2
Stage-2: BLA-NoMic
Pre-defined CTC Weights [1.0; 0.0] 17.3
Pre-defined CTC Weights [0.5; 0.5] 20.5
Adaptive CTC Fusion 17.2

4.3.6.2.2 Adaptive CTC Fusion: Matched Condition

To show the influence of adaptive CTC fusion in matched conditions, we conduct

experiments with different two-stream acoustic conditions. In each experiment, training

and evaluation data are drawn from the same arrays. Results are displayed in Table

4.17. In order to pick diverse conditions in DIRHA, three two-stream configurations

are chosen, BLA-L2L, BLA-BCA and L3L-L4L. According to the Stage-1 performance,

BLA is the most informative single stream. BCA/L2L are the most similar/different
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streams to BLA in terms of WER. L3L and L4L result in the same WER of 22.6%.

For AMI, all three combinations of the three streams are selected. WER improvements

are observed across all six cases in two datasets.

Table 4.17. Adaptive CTC fusion in matched conditions (WER %)

Decoding Strategy Train/Test Data
DIRHA BLA-L2L BLA-BCA L3L-L4L
Pre-defined CTC [0.5; 0.5] 17.2 16.5 20.4
Adaptive CTC Fusion 16.9 16.1 20.1

AMI MDM-SMDM MDM-IHM SMDM-IHM
Pre-defined CTC [0.5; 0.5] 42 29.3 29.8
Adaptive CTC Fusion 41.6 28.2 28.3

4.3.6.2.3 Adaptive CTC Fusion: Mismatched Condition

For the following experiments, we designate BLA-L2L and MDM-SMDM as the

training stream configurations for DIRHA and AMI, respectively. In DIRHA, three

mismatched test conditions are chosen: BLA-NoMic and BLA-KA6 are the unseen

scenarios where one stream (BLA) is known to greatly outperform the other. Note that

KA6 (Stage-1 WER: 61%) is a microphone in the kitchen while speakers read in the

living room; L3L-L4L are the microphones with the same Stage-1 performances. We

specify two mismatched conditions for AMI: MDM-NoMic and MDM-IHM0. Recall

IHM0 (Stage-1 WER: 73.7%) is the close-talk microphone attached to speaker-0. In

DIRHA, results in Table 4.18 report moderate improvement except BLA-NoMic, which

sees a modest decline. Stream NoMic is an extreme case and may be too aggressive

as an unseen test stream. For AMI, relative WER reductions of 6.5% and 4.8% are

shown for the mismatched conditions.
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Table 4.18. Adaptive CTC fusion in mismatched conditions (WER %)

Decoding Strategy Test Data
DIRHA (BLA-L2L) BLA-NoMic BLA-KA6 L3L-L4L
Pre-defined CTC [0.5; 0.5] 26.9 21 20.3
Adaptive CTC Fusion 27.1 20.7 20

AMI (MDM-SMDM) MDM-NoMic MDM-IHM0 –
Pre-defined CTC [0.5; 0.5] 46.1 44 –
Adaptive CTC Fusion 43.1 41.9 –

4.3.6.3 Stage-2 Time Masking

To demonstrate another potential weakness of the previous MEM-Array system, we

design experiments in DIRHA to demonstrate potential performance degradation

because of a mismatched test condition, as depicted in Table 4.19. BLA-L2L and

BLA-NoMic are used to train and test two Stage-2 models. While the matched

conditions on the diagonal of Table 4.19 exhibit reasonable results, the model trained

with BLA-L2L is unable to handle the unseen condition BLA-NoMic, degrading by

nearly 10% absolute WER decrease comparing to Stage-1 BLA performance, 17.2%.

Table 4.19. Comparison in matched and mismatched conditions (WER %)

Test Data
Model BLA-L2L BLA-NoMic
Stage-2 BLA-L2L 16.9 27.1
Stage-2 BLA-NoMic 17.6 17.2

Stage-2 Time Masking is proposed to target the scenario mentioned above with

results in Table 4.20. Two multi-stream models are trained using BLA-L2L (DIRHA)

and MDM-SMDM (AMI), respectively. During training, a time mask is created with
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the length uniformly sampled from [0, 10] (in frames). Note that 10 frames account for

0.4 second due to subsampling. The mask is applied in a randomly selected position

on the UFE features.

We experiment with different numbers of time masks. For DIRHA experiments, a

model trained with 3 time masks per stream gives the optimal results. In particular,

substantial absolute WER improvement of 9.3% is seen when evaluating BLA-NoMic,

presumably because it is essentially the situation that stage-2 augmentation is simulat-

ing. WER on BLA-KA6 also decreases while keeping other conditions unchanged or

slightly improved. In AMI experiments, Stage-2 augmentation keeps all test conditions

under similar performances. It is likely that the AMI model could already handle these

unseen conditions properly. For instance, without Stage-2 time masking, MDM-NoMic

achieves a WER of 43.1% which is close to the Stage-1 MDM performance of 42.8%.

The number of masks is set to be 3 for DIRHA and 1 for AMI based on matched

condition performances.

For comparison, input dropout on the UFE features is implemented. Stage-2 Time

Masking constantly obtains lower WERs in all conditions, which support the idea of

creating stream dynamics instead of unit dropout over the inputs.

4.3.6.4 Discussion on Amount of Parallel Data

Generally, parallel data is more expensive to collect. In this section, we examine how

much parallel data could be sufficient for Stage-2 model training with a reasonable

performance. We use BLA-L2L in DIRHA for this demonstration. As described in

Table 4.21, 1 hour data per stream could maintain fair WERs with only an average of

5.3% performance degradation, indicating a relatively low burden for data resources.
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Table 4.20. Stage-2 Time Masking (WER %)

Model Test Data
DIRHA BLA-L2L BLA-NoMic BLA-KA6 L3L-L4L
Stage2 BLA-L2L 16.9 27.1 20.7 20
- Input Dropout 0.2 17.7 38.1 22.1 20.6
- Input Dropout 0.5 19.2 21 23.6 22.6
- Time Masking (#mask=1) 17 18 19.3 20.1
- Time Masking (#mask=2) 16.9 18.2 19.4 20
- Time Masking (#mask=3) 16.6 17.8 19.2 20

AMI MDM-SMDM MDM-NoMic MDM-IHM0 –
Stage2 MDM-SMDM 41.6 43.1 41.9 –
- Input Dropout 0.2 42.3 44.5 42.6 –
- Input Dropout 0.5 45.2 49.5 46.3 –
- Time Masking (#mask=1) 41.6 43.1 41.6 –
- Time Masking (#mask=2) 41.6 43 41.9 –
- Time Masking (#mask=3) 41.7 43 41.8 –

Table 4.21. Discussion on amount of parallel data (WER %)

Training Data Test Data
(Hours) BLA-L2L BLA-NoMic BLA-KA6 L3L-L4L
0.1 17.1 24 21.3 20.4
1 17 20.4 20 20.1
10 16.7 18.1 18.9 20.2
81 (All) 16.6 17.8 19.2 20.1
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4.3.6.5 Overall

Table 4.22 summarizes the contributions of each proposed step, in this case using BLA-

L2L and MDM-SMDM as the training stream configurations for DIRHA and AMI,

respectively, while test data includes matched and mismatched conditions. Stage-1

augmentation together with a more complex model consistently reduces the WERs.

Adaptive CTC fusion and Stage-2 time masking provide notable improvements in

various scenarios. Overall, compared to the previous training strategy in Sec. 4.2, we

observe average relative WER reductions of 45.2% (DIRHA) and 30.7% (AMI). In

particular, substantial relative WER improvement of 29.7 − 59.3% is reported across

several mismatched stream conditions. For fair comparison, we also evaluate the model

where the HAN component is replaced by fixed stream fusion weights [0.5; 0.5] for

fusion of context vectors. In these cases, the components, including CTC, frame-level

attention and decoder, are optimized during Stage-2. Our proposed model greatly

outperforms the model with no stream attention.

To visualize the effect of the stream attention, Fig. 4.5 shows attention plots

of two examples from the evaluation set MDM-IHM0 in AMI. In the first example,

(a)-(c), speaker-0 was speaking, and as a result both MDM and IHM0 were informative

sources, and the stream attention in (c) gave weights to both inputs, though shifted

slightly towards IHM0 since this close-talk stream had better speech quality. In the

second example, (d)-(f), speaker-0 was not speaking and so another speaker’s audio

was recorded by MDM while IHM0 could barely capture any speech. In this case, the

stream fusion mechanism correctly attends to MDM with nearly 100% confidence.
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(a) MDM (d) MDM

(b) IHM0 (e) IHM0

(c) MDM-IHM0 (f) MDM-IHM0

Figure 4.5. Sentence analysis of attention mechanism during inference. Example 1
(speaker-0 speaking) includes (a),(b),(c); Example 2 (speaker-0 not speaking) includes
(d),(e),(f). (a) and (d) are frame-wise attention alignments of MDM; (b) and (e) are
frame-wise attention alignments of IHM0; (c) and (f) are stream attention weights of
MDM-IHM0.
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Table 4.22. Overall results (WER %)

Model Test Data
DIRHA (BLA-L2L) BLA-L2L BLA-NoMic BLA-KA6 L3L-L4L
Two-Stage Training 27.4 43.8 37.9 29.7
+ Large Model 28 57.4 37.8 29.7
+ Stage-1 Augment. 17.2 26.9 21 20.3
+ Adaptive CTC Fusion 16.9 27.1 20.7 20
+ Stage-2 Time Masking 16.6(39.4%) 17.8(59.3%) 19.2(49.3%) 20(32.7%)
No Stream Attention 36.2 66.5 49.4 37.2
AMI (MDM-SMDM) MDM-SMDM MDM-NoMic MDM-IHM0 –
Two-Stage Training 55.5 69 59.2 –
+ Large Model 52 62 55.1 –
+ Stage-1 Augment. 42 46.1 44 –
+ Adaptive CTC Fusion 41.6 43.1 41.9 –
+ Stage-2 Time Masking 41.6(25.0%) 43.1(37.5%) 41.6(29.7%) –
No Stream Attention 56 69.7 65.8 –

4.3.7 Conclusion

In this work, we present a two-stage augmentation scheme and adaptive CTC fusion

for the purpose of improving robustness of the multi-stream end-to-end model against

diverse testing conditions. Inherited from the two-stage training strategy, the two-stage

augmentation consistently improves performance across matched and mismatched

conditions; adaptive CTC fusion enhances the robustness by applying stream attention

weights dynamically. Experiments have been conducted on two datasets, DIRHA

and AMI, as a multi-stream scenario. Compared with the previous training strategy,

substantial improvements are reported with relative WER reductions of 29.7 − 59.3%

across several unseen stream combinations.
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Chapter 5

Multi-Encoder Multi-Resolution
(MEM-Res)

5.1 Introduction

In end-to-end ASR approaches, the encoder acts as an acoustic model providing higher-

level features for decoding. BLSTM has been widely used due to its ability to model

temporal sequences and their long-term dependencies as the encoder architecture; On

the other hand, deep CNN was introduced to model spectral local correlations and

reduce spectral variations in E2E framework. The encoder architecture combining CNN

with recurrent layers, was suggested to address the limitation of LSTM. While temporal

subsampling in RNN and max-pooling in CNN aim to reduce the computational

complexity and enhance the robustness, it is likely that subsampling technique results

in loss of temporal resolution.

As one realization of the multi-stream E2E model in Chapter 3, we propose

a Multi-Encoder Multi-Resolution (MEM-Res) model within the joint CTC/ATT

framework. Two heterogeneous encoders, RNN-based and CNN-RNN-based, with

different architectures, temporal resolutions and separate CTC networks work in

parallel to extract complimentary acoustic information. On top of the regular attention
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networks, the HAN component is introduced to steer the decoder toward the more

informative encoder. The encoder that carries the most discriminate information for

the prediction can dynamically receive a stronger weight. Each encoder is associated

with a CTC network to guide the frame-wise alignment process for individual encoders.

5.2 MEM-Res Model

The overall architecture is shown in Fig. 5.1. Two types of encoders with different

temporal resolutions are presented in parallel to capture acoustic information in

various ways, followed by an attention fusion mechanism together with per-encoder

CTC. An external RNN-LM is also involved during the inference step. Following

the same notation in Chapter 3, the MEM-Res model maps from a T -length speech

feature sequence, X = {xt ∈ RD|t = 1, 2, ..., T}, to an L-length letter sequence,

C = {cl ∈ U|l = 1, 2, ..., L}.

5.2.1 Multi-Encoder with Multi-Resolution

We propose a Multi-Encoder Multi-Resolution (MEM-Res) architecture that has two

encoders, RNN-based and CNN-RNN-based. Both encoders take the same input

features in parallel operating on different temporal resolutions, aiming to capture

complimentary information in the speech.

The RNN-based BLSTM encoder is designed to model temporal sequences with

their long-range dependencies. Subsampling in BLSTM is often used to decrease

the computational cost, but performing subsampling might result in lost information

which could be better modeled in RNN. In MEM-Res, the RNN-based encoder has

stacked BLSTM layers that extract frame-wise hidden vectors H(1) = {h(1)
1 , ..., h(1)

T }
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Figure 5.1. The Multi-Encoder Multi-Resolution (MEM-Res) architecture
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without subsampling in any layer:

H(1) = Encoder(1)(X) ≜ BLSTM(X), (5.1)

where the BLSTM encoder is referred to as stream 1.

The combination of CNN and RNN allows the convolutional feature extractor

applied on the input to reveal local correlations in both time and frequency dimensions.

The RNN block on top of CNN makes it easier to learn temporal structure from

the CNN output, to avoid modeling direct speech features with more underlying

variations. The max-pooling layer is essential in CNN to reduce the spatial size of the

representation to control over-fitting. In MEM-Res, we use the initial layers of the

VGG net architecture followed by stacked BLSTM layers as VGGBLSTM decoder

labeled as stream 2:

H(2) = Encoder(2)(X) ≜ VGGBLSTM(X), (5.2)

where H(2) = {h(2)
1 , ..., h(2)

⌊T/4⌋}. The configuration of convolutional layers in VGG-

BLSTM encoder is described in Table 4.2. Two max-pooling layers with stride = 2

downsample the input features by a factor of s = 4 in both temporal and spectral

directions.

5.2.2 Hierarchical Attention

Since the encoders in MEM-Res describe the speech signal differently by catching

acoustic knowledge in their own ways, encoder-level fusion is suitable to boost the

network’s ability to retrieve the relevant information. Following the general formation

of multi-stream end-to-end ASR, the HAN component is used for information fusion.

The decoder with the HAN component is trained to selectively attend to the appropriate

encoder.
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The letter-wise context vectors, r1
l and r2

l , from individual encoders are computed

as follows:

r(1)
l =

∑︂T

t=1a
(1)
lt h(1)

t , (5.3)

r(2)
l =

∑︂⌊T/4⌋
t=1 a

(2)
lt h(2)

t , (5.4)

where the attention weights are obtained using a content-based attention mechanism,

as mentioned in Sec. 2.1.2.2. Note that since Encoder(2) (VGGBLSTM) performs

downsampling by 4, the summation is till ⌊T/4⌋ in Eq. 5.4. The fusion context vector

rl is obtained as a convex combination of r1
l and r2

l as illustrated in the following:

rl = β
(1)
l r(1)

l + β
(2)
l r(2)

l , (5.5)

The stream-level attention weights β
(1)
l and β

(2)
l are estimated using a content-based

attention mechanism.

5.2.3 Per-encoder CTC

In the CTC/ATT model with a single encoder, the CTC objective serves as an auxiliary

task to speed up the procedure of realizing monotonic alignment and providing a

sequence-level objective. Similar to the general multi-stream framework, we introduce

per-encoder CTC where a separate CTC mechanism is active for each encoder stream

during training and decoding. In the case that both encoders are with different

temporal resolutions and network architectures, per-encoder CTC can further align

speech with labels in a monotonic order and customize the sequence modeling of

individual streams.

During multi-task training and joint decoding, the objective functions are the

same as the multi-stream model proposed in Chapter 3, with N = 2. Equal weight is

assigned to each CTC component.

77



5.3 Data

We demonstrate our proposed MEM-Res model using two datasets: WSJ [98] (81

hours) and CHiME-4 [99] (18 hours). WSJ is a clean speech corpora including 81

hours of transcribed speech. In WSJ, we use the standard configuration: “si284” for

training, “dev93” for validation, and “eval92” for test. The CHiME-4 dataset is a noisy

speech corpus recorded or simulated using a tablet equipped with 6 microphones in

four noisy environments: a cafe, a street junction, public transport, and a pedestrian

area. For training, we use both “tr05_real” and “tr05_simu” with additional WSJ

corpora to support end-to-end training. “dt05_multi_isolated_1ch_track” is used

for validation. We evaluate the real recordings with 1, 2, 6-channel in the evaluation

set. The BeamformIt method is applied to multi-channel evaluation.

5.4 Experiment Setup

Table 5.1 summarizes model configurations and training/decoding parameters used in

the experiments. In all experiments, 80-dimensional mel-scale filterbank coefficients

with additional 3-dimensional pitch features serve as the input features.

The Encoder(1) contains four BLSTM layers, in which each layer has 320 cells in

both directions followed by a 320-unit linear projection layer. The Encoder(2) combines

the convolution layers with an RNN-based network that has the same architecture as

Encoder(1). A content-based attention mechanism with 320 attention units is used

in encoder-level and frame-level attention mechanisms. The decoder is a one-layer

unidirectional LSTM with 300 cells. We use 52 distinct labels including 26 English

letters and other special tokens, i.e., punctuations and sos/eos.

We incorporate the look-ahead word-level RNN-LM of 1-layer LSTM with 1000
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cells and 65K vocabulary, that is, 65K-dimensional output in Softmax layer. In

addition to the original speech transcription, the WSJ text data with 37 million words

from 1.6 million sentences is supplied as training data. RNN-LM is trained separately

using Stochastic Gradient Descent (SGD) with learning rate = 0.5 for 60 epochs. Note

that the RNN-LM is shared across two datasets.

The MEM-Res model is implemented using the Pytorch backend on ESPnet.

Training procedure is operated using the AdaDelta algorithm with gradient clipping

on single GPUs, “GTX 1080ti”. The mini-batch size is set to be 15. We also apply a

unigram label smoothing technique to avoid over-confidence predictions. The beam

width is set to 30 for WSJ and 20 for CHiME-4 in decoding. For models jointly

trained with CTC and attention objectives, λ = 0.2 is used for training, and λ = 0.3

for decoding. RNN-LM scaling factor γ is 1.0 for all experiments with the exception

of using γ = 0.1 in decoding attention-only models.

5.5 Results and Analysis

5.5.1 Overall Results

The overall experimental results on WSJ and CHiME-4 are shown in Table 5.2.

Compared to joint CTC/ATT single-encoder models, the proposed MEM-Res model

with per-encoder CTC and HAN achieves relative improvements of 9.6% (29.2% →

26.4%) in CHiME-4 and 21.7% in WSJ (4.6% → 3.6%) in terms of WER. We compare

the MEM-Res model with other end-to-end approaches, and it outperforms all of the

systems from previous studies. We also conduct experiments using ROVER technique

to fuse two single-encoder models in the word level, and our proposed models show

substantial improvements. We design experiments with fixed encoder-level attention

β1
l = β

(2)
l = 0.5. The MEM-Res model with the HAN component outperforms the
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Table 5.1. Experimental configuration

Feature
Each Stream 80-dim log-mel filter bank + 3-dim pitch
Number of Streams 2
Model
Encoder type BLSTM or VGGBLSTM
Encoder layers VGGBLSTM: 6(VGG)+4(BLSTM)

BLSTM: 4(BLSTM)
Encoder units 320 cells (BLSTM layers)
Subsampling BLSTM: 1

VGGBLSTM: 4
Frame-level Attention 320-cell Content-based
Stream Attention 320-cell Content-based
Decoder type LSTM
Decoder layers 1
Decoder units 300 cells
Decoder Softmax 52 labels

(26 English letters+punctuation+sos/eos)
Train and Decode
Optimizer AdaDelta
Batch size 15
Training Epoch 15 epochs
CTC weight λ (train) 0.2
CTC weight λ (decode) 0.3
Label Smoothing Type: Unigram, Weight: 0.05
Beam size WSJ:30; CHiME-4: 20
RNN-LM
Type Look-ahead Word-level RNN-LM
Size 1-Layer LSTM with 1,000 cells
Vocabulary 65,000
Train data WSJ0-1+extra WSJ text
LM weight γ 0.5
Optimizer Stochastic Gradient Descent
Batch size 300
Training Epoch 60
Learning Rate 0.5
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ones without parameterized stream attention. Moreover, per-encoder CTC constantly

enhances the performance with or without the HAN component. Especially in WSJ, the

model shows a notable decrease (4.3% → 3.6%) in WER with per-encoder CTC. Our

results further confirm the effectiveness of joint CTC/ATT architecture in comparison

to models with either CTC or attention networks.

5.5.2 MEM-Res Model v.s. Single-Stream Model

For fair comparison, we increase the number of BLSTM layers from 4 to 8 in Encoder(2)

to train a single-encoder model. In Table 5.3, the MEM-Res system outperforms the

single-encoder model by a significant margin with similar amounts of parameters, 21.9

million versus 21.3 million. In CHiME-4, we evaluate the model using real test data

from 1, 2, 6-channel resulting in an average of 19% relative improvement from all

three setups. In WSJ, we achieved 3.6% WER in eval92 in our MEM-Res framework

with relatively 32.1% improvement.

5.5.3 Analysis of Hierarchical Attention Mechanism

As shown in Table 5.4, We analyze the average stream-level attention weight for

Encoder(2) when we gradually decrease the number of LSTM layers while keeping

Encoder(1) with the original configuration. It aims to show that the HAN component is

able to attend to the appropriate encoder seeking for the right knowledge. As suggested

in the table, more attention goes to Encoder(1) from Encoder(2) as we intentionally

make Encoder(2) weaker.

5.5.4 Effect of Multi-Resolution Configuration

Since the convolution layers of the VGGBLSTM encoder downsamples the input

features by a factor of 4, there is no subsampling in the recurrent layers of Encoder(2).
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Table 5.2. Comparison among single-encoder end-to-end models with BLSTM or VG-
GBSLTM as the encoder, the MEM-Res model and prior end-to-end models. (WER
%)

CHiME-4 WSJ
Model et05_real_1ch eval92
BLSTM (Single-Encoder)
CTC 62.7 36.4
ATT 50.2 20.8
CTC+ATT 29.2 4.6
VGGBLSTM (Single-Encoder)
CTC 50.6 19.1
ATT 42.2 17.2
CTC+ATT 29.6 5.6
BLSTM+VGGBLSTM (ROVER)
CTC+ATT 30.8 5.9
BLSTM+VGGBLSTM (MEM-Res)
CTC 49.1 15.2
ATT 44.3 18.9
CTC(shared)+ATT 26.8 4.4
CTC(shared)+ATT+HAN 26.9 4.3
CTC(per-enc)+ATT 26.6 4.1
CTC(per-enc)+ATT+HAN 26.4 3.6

Previous Studies
RNN-CTC [6] - 8.2
Eesen [7] - 7.4
Temporal LS + Cov. [100] - 6.7
E2E+regularization[101] - 6.3
Scatt+pre-emp[102] - 5.7
Joint e2e+look-ahead LM[24] - 5.1
RCNN+BLSTM+CLDNN [75] - 4.3
EE-LF-MMI [103] - 4.1
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Table 5.3. Comparison between the MEM-Res model and VGGBSLTM single-encoder
model with similar network size (WER %)

Single-Encoder Proposed Model
Data (21.9M) (21.3M)
CHiME-4
et05_real_1ch 32.2 26.4 (18.0%)
et05_real_2ch 26.8 21.9 (18.3%)
et05_real_6ch 21.7 17.2 (20.8%)

WSJ
eval92 5.3 3.6 (32.1%)

Table 5.4. Analysis of hierarchical attention mechanism when fixing Encoder(1) and
changing the number of LSTM layers in Encoder(2) (WER %: CHiME-4)

# LSTM Layers Average Stream Attention
in VGGBLSTM for VGGBLSTM WER %

0 0.27 30.6
1 0.52 29.8
2 0.75 28.9
3 0.82 27.8
4 0.81 26.4
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Therefore, we experiment the effect of multi-resolution by changing the subsampling

rate in the BLSTM encoder. The results in Table 5.5 show the contribution of multiple

resolutions. When s(1) = 2, we subsample every other output feature from the first

BLSTM layer. In addition, the same subsampling strategy is operated on the second

BLSTM layer as well for the case of s(1) = 4. The WER goes up when increasing

subsampling factor s(1) closer to s(2) = 4 in both datasets. In other words, the

fusion works better when two encoders are more heterogeneous which supports our

hypothesis.

Table 5.5. Effect of multi-resolution configuration (s(1), s(2)). s(1) and s(2) are subsampling
factors for Encoder(1) and Encoder(2). (WER %)

Data (4,4) (2,4) (1,4)
CHiME-4
et05_real_1ch 29.1 27.0 26.4

WSJ
eval92 4.5 4.2 3.6

5.6 Conclusion

In this work, we present our MEM-Res framework to build an end-to-end ASR system.

Higher-level frame-wise acoustic features are carried out from RNN-based and CNN-

RNN-based encoders with subsampling only in convolutional layers. Stream fusion

selectively attends to each encoder via a content-based attention. We observe that

assigning a CTC network to an individual encoder further enhances the heterogeneous

configuration of encoders. To demonstrate the effectiveness of the proposed model,

experiments are conducted on WSJ and CHiME-4, resulting in a relative WER

reduction of 18.0 − 32.1%. Moreover, the proposed MEM-Res model achieves 3.6%
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WER in the WSJ eval92 test set.
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Chapter 6

Performance Monitoring (PM) for
End-to-End Model

6.1 Introduction

In recent years, significant improvement for conventional ASR has been achieved via

advancements with deep neural networks. The main paradigm for an ASR system

is the so-called hybrid approach, which involves training a DNN to predict context

dependent phoneme states (or senones) from the acoustic features. However, if test

data comes from a very different domain than DNN training data, it is possible for the

recognizer to fail without any warning, e.g., confident prediction of incorrect labels.

Predicting these failures is the goal of the work that follows. Humans are often aware

of the uncertainty of decisions they are making [104]. Performance Monitoring (PM)

techniques aim for the same goal - to determine the quality of a system’s output -

based only on the behavior of the system and without any knowledge of the underlying

truth. In conventional ASR systems, several PM techniques have been well-developed

to monitor performance by looking at tri-phone posteriors or pre-softmax activations

from neural network acoustic modeling. An effective PM measure could be useful in a

number of applications, such as multi-stream selection scenario [55, 65, 68, 74, 105,
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106] or semi-supervised training [107].

Unlike conventional ASR, end-to-end speech recognition approaches are designed

to directly output word or character sequences from the input audio. This model

subsumes several disjoint components in the hybrid ASR model (acoustic model,

pronunciation model, language model) into a single neural network. As a result, all

the components of an end-to-end model can be trained jointly to optimize a single

objective. Three dominant E2E architectures for ASR are Connectionist Temporal

Classification, attention-based encoder-decoder models and recurrent neural network

transducers. A joint CTC/ATT framework is proposed to take advantage of both

architectures within a multi-task scheme. Unlike hybrid ASR systems, strategies

for monitoring more recently developed end-to-end ASR systems have not yet been

explored, and that is the focus of this Chapter.

In the previous chapters, intelligence of each stream is examined using a hierarchical

attention network in a multi-stream scenario. In this chapter, we propose several

performance monitoring measures to evaluate the reliability of transcriptions from

an end-to-end ASR model. In the hybrid approach, tri-phone posterior distributions

and their corresponding pre-softmax activations are typically treated as PM features.

Averaged entropy over temporal frames was proposed as a confidence measure in stream-

selection [66, 105]. Mean temporal distance on posteriors estimates the performance

by capturing the divergence of any two frames over several time spans [70, 108].

Reconstruction error of an auto-encoder trained on pre-softmax features was also used

as the selection criterion in a multi-stream system [59, 64].

In the end-to-end setting, there are two levels of probability distributions: attention

weights and decoder posteriors. Instead of temporal posteriors in the conventional case,

each probability distribution corresponds to a character-level prediction. Therefore,
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we must adapt the techniques used for hybrid systems to the joint CTC/ATT model.

Moreover, inspired by the success of discriminatively-trained DNNs, we propose using

a RNN regression model trained to directly predict performance. Our analyses demon-

strate strong correlations between PM measures and true performance, indicating that

end-to-end ASR systems are indeed amenable to effective monitoring.

We present four different PM measures: Entropy, Mean Character Distance (MCD),

Auto-Encoder, RNN-Predictor to assess the credibility of predictions from an joint

CTC/ATT model. Three types of features are exploited to predict the CERs: attention

distributions, decoder posterior distributions, and their pre-softmax activations.

6.2 Data

We conduct all our experiments based on the WSJ corpus and its variants with

additional noises or reverberation conditions. Table 6.1 summarizes various databases

that are used in our experiments. For end-to-end ASR, the clean WSJ SI-284 corpus

and Aurora4 multi-condition training data are used in multi-style training. The

Aurora4 set [109] contains simulated recordings of WSJ utterances in 14 different

acoustic conditions, varying noise types and channel conditions. WSJ dev93 and

Aurora4 dev set serve as the validation set for ASR training. We also use the same

data configuration to train the auto-encoder. For the RNN predictor, in order to

see data with a reasonable balance across different CERs, we use clean WSJ SI-84

together with its two artificially noise-corrupted versions, Aurora4 and CHiME-4-Sim.

CHiME-4-Sim [99] consists of single-channel WSJ data with four additive noises.

To evaluate the predictability of each PM measure, a linear regression model is

applied to map between PM scores and truth performance. The regression model

is computed according to development sets from WSJ, Aurora4 and CHiME-4-Sim.
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We refer to the data to train the ASR and linear regression model as Train and Dev,

respectively. Fig. 6.1(a) and Fig. 6.1(b) show histograms of utterance CERs for

both sets. Performance of Dev is more widely spread out than Train. We test the

effectiveness of PM measures with data from two different domains. Seen test domains

include evaluation sets from WSJ, Aurora4 and CHiME-4-Sim which are drawn from

the same domains as ASR and PM training; Unseen test domains consist of evaluation

sets from CHiME-4-Real [99] (real noisy recordings), Reverb-Sim [110] (simulated

reverberation), DIRHA-Sim [87] (simulated reverberation) and DIRHA-Real [87] (real

reverberated recordings). All the test data together are referenced as Test, with

utterance CERs shown in Fig. 6.1(c).

Table 6.1. Datasets for experiments with CER (%) of test set

Task Dataset
Train
ASR WSJ(SI-284), Aurora4
AE WSJ(SI-284), Aurora4
RNN WSJ(SI-84), Aurora4, CHiME-4-Sim
Dev
Linear Regr WSJ, Aurora4, CHiME-4-Sim
Test
All Tasks WSJ (5.7%) Aurora4 (14.5%)

CHiME-4-Sim (52.2%) DIRHA-Sim (68.2%)
CHiME-4-Real (59.0%) DIRHA-Real (70.7%)
Reverb (41.6%)

6.3 Experiment Setup

In the end-to-end model, the encoder contains four BLSTM layers, each with 320 cells

in both directions, followed by a 320-unit linear projection layer. A content-based

attention mechanism with 320 attention units follows. The decoder is a one-layer
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(a) Train

(b) Dev

(c) Test

Figure 6.1. Histogram of CERs (%) in various datasets
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unidirectional LSTM with 300 cells. We use 52 distinct labels at the decoder softmax

layer, including 26 English letters and additional special tokens (i.e., punctuations

and sos/eos).

The model is optimized using the AdaDelta algorithm with a mini-batch size of 15.

We also apply a unigram label smoothing technique to avoid over-confident predictions.

The beam width is set to 30 for all results. For joint training with CTC and attention

objectives, λ = 0.2 is used for training, and λ = 0.3 for decoding. All results are

reported as CER. In all experiments, 80-dimensional mel-scale filter-bank coefficients

with additional 3-dimensional pitch features serve as the input features. Attention

distributions, decoder posteriors, and pre-softmax features are extracted during joint

decoding. Decoding results of each Test set are shown in Table. 6.1. No external

language model is involved in this work. Model configurations are described in Table

6.2.

6.4 Performance Measures

6.4.1 Entropy

In the hybrid ASR framework, it was observed [66, 105] that the discriminative power

of a clean phoneme classifier decreases for input speech with reduced signal-to-noise

ratios. As the phoneme posteriors tend to be more uniformly distributed, entropy was

proposed as a measure of uncertainty. In end-to-end ASR, which has no phoneme

distributions, we investigate if entropy on either the attention probabilities or the

decoder posteriors could be a reasonable indicator of model performance.

We denote a K-dimensional probability distribution vector associated with pre-

diction cl as pl = [p(1)
l , p

(2)
l , ..., p

(K)
l ]. pl is either a frame-level attention probability

vector al = [a(1)
l , a

(2)
l , ..., a

(T )
l ] or a decoder posterior distribution ol = [o(1)

l , o
(2)
l , ..., o

(S)
l ].
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Table 6.2. Experimental configuration

Feature
Each Stream 80-dim log-mel filter bank + 3-dim pitch
Number of Streams 1
Model
Encoder type BLSTM
Encoder layers 4
Encoder units 320 cells
Encoder projection 320 cells
Subsampling 4
Frame-level Attention 320-cell Content-based
Decoder type LSTM
Decoder layers 1
Decoder units 300 cells
Decoder Softmax 52 labels

(26 English letters+punctuation+sos/eos)
Train and Decode
Optimizer AdaDelta
Batch size 15
Training Epoch 30 epochs (patience:3 epochs)
CTC weight λ (train) 0.2
CTC weight λ (decode) 0.3
Label Smoothing Type: Unigram, Weight: 0.05
Beam size 30
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Note that T is the number of input frames at the attention level. S is the Softmax

dimension at the decoder output.

Entropy is first computed on the character-level distribution pl.

Entropy(pl) = −
K∑︂

k=0
p

(k)
l log p

(k)
l , (6.1)

where pl could be al or ol. The utterance-level score is obtained by averaging entropy

scores over all predictions.

Escore = 1
L

L∑︂
l=0

Entropy(pl), (6.2)

where L is the number of predictions. Note that the dimension of the attention

distribution is equal to the number of time frames T at encoder output, which varies

per utterance. Hence, we normalize the entropy by its upper bound log(T ) for a

consistent range [0, 1].

6.4.2 M-Measure: Mean Character Distance

The Mean Temporal Distance (MTD) or M-Measure was proposed to show the mean

distance of pairwise probability distributions from DNN outputs [70]. Symmetric

Kullback–Leibler divergence was selected as a distance metric for distributions p =

[p(1), p(2), ..., p(N)] and q = [q(1), q(2), ..., q(N)], which are each posteriors from different

time frames.

D(p, q) =
K∑︂

k=0
p(k) log p(k)

q(k) +
K∑︂

k=0
q(k) log q(k)

p(k) (6.3)

A high MTD score indicates a greater difference between p and q, meaning the model

is choosing different output classes at different times. In noisy conditions or other

cases with low model confidence, the distributions at different times should be more

similar. In MTD, M-Measure often needs to sample frame pairs more than 200 ms
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apart due to phonetic coarticulation; for shorter time spans, small divergence could

be caused by high confidence in the same phoneme.

In end-to-end framework, we propose Mean Character Distance (MCD), adapted

from mean temporal distance. Since each probability estimate pl in the attention

or decoder posterior corresponds to a character prediction, the distance measure is

suitable even for adjacent frames without concern for a co-articulation effect. So, we

take the mean of distance over all pairs from various windows {△l} = {1, 2, 3, 4, 5}.

Mscore =
∑︁

{△l}
∑︁L

l=△l D(pl−△l, pl)∏︁
{△l}(L − △l) (6.4)

Equal weights are applied to all pairs, instead of assigning higher weights for more

distant pairs, as with MTD.

6.4.3 Auto-Encoder

Mean squared error (MSE) of auto-encoder outputs was proposed in [59] to measure

the mismatch between train and test data as an indicator of DNN performance. The

auto-encoder is trained to minimize the reconstruction error of the DNN pre-softmax

activations from training data. The previous study illustrated that if a data vector

is sampled from training data distribution, the corresponding reconstruction error

should be low, while a high error could be observed in a mismatched condition.

In the end-to-end network, it is natural to apply this technique to 52-dimensional

decoder pre-softmax activations. The auto-encoder used here is a five-layer 512-unit

feed-forward neural network, including a 24-dimensional bottleneck layer in the middle

as shown in Fig. 6.2. PM score per utterance is derived as average MSE across all

frames.
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Figure 6.2. Configurations of auto-encoder PM techniques
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Figure 6.3. Configurations of RNN predictor
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6.4.4 RNN Predictor

In this work, we propose an RNN-based regression model which directly maps pre-

softmax features of one utterance into error rates in the range of CER [0, +∞]. The

model is depicted in Fig. 6.3. Two BLSTM layers of 320 units are employed to

handle temporal dependencies of inputs. Each layer subsamples every other output

frame. A mean-pooling layer is then used on top of BLSTM outputs to formulate one

summary vector per utterance, which is fed into a linear layer of 300 units and an

output layer with one Rectified Linear Unit (ReLU). The model is optimized with

MSE loss between predictions and truth CERs. The PM score is derived from the

model output.

6.5 Results and Analysis

6.5.1 PM Score versus Truth Performance

Fig. 6.4 shows scatter plots of PM scores versus truth performance (CER %) on Test,

where each point in the plot represents one utterance. A linear model CER = a∗PM+b

learned to minimize the mean squared error over Dev is also shown for each measure.

In Fig. 6.4(a)(d) , entropy scores on the decoder output clearly demonstrate a

linear relationship with true performance, while linear correlation for attention-level

distributions holds only for error rates less than 0.5, resulting in larger prediction error

overall. As shown in Fig. 6.4(b)(e) for MCD, similar to the observations for entropy

measures, PM on decoder posteriors is better for predicting CERs than PM with

attention probabilities. Furthermore, MCD is more linearly correlated with CERs than

seen with entropy at attention level. In Fig. 6.4(c) for the measure using auto-encoder

, reconstruction error prediction is consistent with the fitted line for CERs lower than

0.4, while the prediction error diverges for utterances with higher CERs. It might
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be the case that since the auto-encoder only sees the “good” data in training, there

is lack of knowledge of how “bad” data looks. The scatter plot in Fig. 6.4(f) shows

that the predictions of RNN predictor are well-aligned with the fitted line from linear

regression. Since it is a direct estimation of CER, the ideal fit should be CER = PM .

The derived model using Dev is CER = 0.98 ∗ PM + 0.06, which is slightly offset and

tilted from the ideal case.

6.5.2 Linear Regression Models on PM Measures

Table 6.3 summarizes MSEs of linear regression models trained on various PM tech-

niques across different Test sets. It is worth noting that decoder features work more

effectively than attention probabilities in all cases for predicting CERs. Entropy

gives the lowest MSEs for WSJ and Aurora4, domains which have been seen in ASR

training. The RNN predictor achieves best performance in CHiME-4-Sim (not surpris-

ing, since this domain was seen in RNN predictor training) and real recordings from

CHiME-4-Real and DIRHA-Real, domains not seen in any training stage at all. MCD

measure performs the best at the two unseen simulated domains with reverberant

conditions. Overall, entropy, MCD, and RNN prediction all provide reasonably good

CER predictions, with average prediction errors (square root of MSE) of 10.1%, 8.8%

and 10.1%, respectively, where MCD outperforms the rest of PM measures across all

test set.

6.5.3 PM Measures on Multi-Stream Model

In this section, we discuss the effectiveness and limitation of PM measures on a

multi-stream end-to-end model. In Sec. 6.5.2, MCD shows the best overall prediction

power among four PM measures on a single-stream model. Therefore, MCD on decoder

posteriors is chosen to be evaluated on a multi-stream model.
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(a) Entropy (Attention Posteriors) (d) Entropy (Decoder Posteriors)

(b) MCD (Attention Posteriors) (e) MCD (Decoder Posteriors)

(c) Auto-encoder (Decoder Pre-softmax) (f) RNN (Decoder Pre-softmax)

Figure 6.4. Performance monitoring score versus truth performance (CER %)
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(a) K = 0 (c) K = 10

(b) K = 5 (d) K = 15

Figure 6.5. Discussion on minimal duration K in scatter plots of MCD scores versus true
performance (CER %)
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Table 6.3. Mean Square Error (×10−2) of linear regression trained on performance
monitoring techniques. All results are reported on test sets.

Entropy MCD
Dataset/Domain Dec Att Dec Att AE RNN
Seen (ASR, PM)
WSJ 0.17 0.88 0.25 0.77 0.82 0.29
Aurora4 0.44 1.43 0.47 1.14 1.12 0.74
Seen (PM only)
CHiME-4-Sim 1.13 5.11 1.07 1.87 2.68 1.01

Unseen
CHiME-4-Real 1.50 5.77 1.24 2.02 3.62 1.05
Reverb-Sim 0.94 3.42 0.78 2.20 1.88 1.50
DIRHA-Sim 2.23 6.75 1.16 2.05 6.07 1.43
DIRHA-Real 2.77 11.80 1.26 2.39 6.97 1.25

All Together(deg=1) 1.02 3.83 0.79 1.67 2.49 1.02
All Together(deg=3) 0.99 1.66 0.74 1.63 2.20 0.99
All Together(deg=5) 2.44 5.03 0.77 1.35 3.36 0.99

We select the MEM-Array model from Table 4.22, which is the best model on the

AMI dataset. Similar to single-stream scenario, a linear regression model is trained on

AMI Dev set and tested on three Eval sets: MDM-SMDM (seen condition), MDM-

NoMic and MDM-IHM0 (unseen conditions). The CER results with no additional

RNN-LM are 28.4% (MDM-SMDM), 29.9% (MDM-NoMic), and 29.1%(MDM-IHM0).

Fig. 6.5 (a) shows the scatter plot of MCD scores versus performance (CER) on

three Eval sets. We observe that a large amount of short utterances form horizontal

lines on the scatter plot, which indicates that the PM measure could not well predict

performances for these utterances. This is expected since MCD measure is computed as

a sample mean of distribution distance (symmetric KL divergence). Lack of collected

samples in short utterances may affect the predictive power of MCD. Hence, we created

subsets from both Dev and Eval , where utterances only with duration longer than K
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seconds are kept. Fig. 6.5 (b-d) illustrate the scatter plots using subsets generated

with K = 5, 10, 15. Improved predictive power is reported on utterances with longer

duration. Fig. 6.6 shows that the average prediction error decreases to below 20%

with duration requirement K ≥ 10, further supporting our hypothesis. Similar trend

is also observed in entropy for the similar reason.

Figure 6.6. Average prediction error versus minimal duration K

6.6 Conclusion

In this chapter, we adapt previous PM measures (Entropy, M-measure and Auto-

encoder) and apply our proposed RNN predictor in the end-to-end setting. These

measures utilize the decoder output layer and attention probability vectors, and

their predictive power is measured with simple linear models. Our findings suggest

that decoder-level features are more feasible and informative than attention-level

probabilities for PM measures. Entropy and MCD are very simple, effective measures

where MCD shows the overall best performance with an average prediction error 8.8%.
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Analysis on a multi-stream model suggests that both measures demonstrate better

predictive power for long utterances. While auto-encoder methods may be suitable to

handle mismatched conditions within a certain level of data corruption, an RNN-based

regression model shows potential in the direction of performance estimation using

deep neural networks, especially for unseen conditions. Overall, these results show

great promise for performance prediction of end-to-end ASR models.
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Chapter 7

Conclusion

7.1 Contributions

In this thesis, we focus on building an effective and robust multi-stream system within

end-to-end ASR. The proposed framework is applied to two multi-stream scenarios

with substantial improvements compared to best single streams and conventional

fusion methods.

In Chapter 3, a general form of multi-stream E2E framework is proposed based on

the joint CTC/ATT model. Parallel inputs are processed by separate encoders, which

are further customized by individual CTC and attention networks. With flexibility

for diverse encoder configurations, the proposed model is able to adapt to various

multi-stream situations. The hierarchical attention network acts as an embedded

performance monitor to dynamically guide the system towards more informative

streams. Two representative frameworks targeting different applications, MEM-Array

and MEM-Res, are present in Chapter 4 and Chapter 5, respectively.

Chapter 4 introduces the MEM-Array model addressing scenarios with distributed

microphone arrays. Each encoder takes an array signal as input. Two levels of attention

mechanisms combine knowledge in the output level, where frame synchronization
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across arrays is not required. Sec. 4.1 presents a direct adaptation of the general multi-

stream form to multi-array applications. The experimental results show noticeable

performance improvements over multiple single-stream models and conventional fusion

strategies. A toy example with one-stream noise injection illustrates robust selectivity

of the HAN component. Furthermore, a practical two-stage training strategy in

Sec. 4.2 offers a framework for effective training with less computational cost while

substantially improving performance. Stage-1 concentrates on optimizing a universal

feature extractor to benefit from all non-parallel data, whereas Stage-2 greatly scales

the training with focus solely on the multi-stream fusion. In our experiments, this

strategy achieves relative WER reductions of 8.2 − 32.4% compared with our previous

method. To make systems robust against various environmental distortions, such as

background noises and reverberation, we further propose a two-stage augmentation

scheme and adaptive CTC fusion in Sec. 4.3: Stage-1 Augmentation intends to handle

unseen single-stream conditions via online and offline augmentations; Stage-2 Time

Masking mimics random microphone dropout to deal with inter-stream dynamics;

Adaptive CTC takes advantage of stream attention vectors without using predefined

knowledge for CTC fusion. Substantial improvements are reported with relative

WER reductions of 29.7 − 59.3% across several unseen stream combinations. Our

analysis also shows that a smaller amount of parallel data is sufficient for an improved

MEM-Array model.

In Chapter 5, the MEM-Res model is a multi-stream formulation based on a

single input. Parallel encoders with different configurations and temporal resolutions

aim to represent diverse information from the same acoustic. Hierarchical attention

then combines these complementary knowledge dynamically. Our investigation of

multi-resolution demonstrates that diverse temporal resolution enhances knowledge
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fusion, supporting our hypothesis. By matching single-stream models with similar

parameters for fair comparison, this multi-stream realization still achieves lower WERs.

The MEM-Res model also beats multi-stream models without the HAN component

illustrating the fusion power of the framework. Especially, the result on WSJ is

reported with 3.6% WER outperforming several previous studies.

It is beneficial in many scenarios to inform users for potential system failure

without knowing ground-truth beforehand. In Chapter 6, we develop four performance

monitoring measures customized for the E2E setting: Entropy, Mean Character

Distance, Auto-encoder, and RNN predictor. Our results show that PM measures on

decoder features are more effective for predicting true error rates than PM measures

on attention probabilities. Entropy and MCD are very simple, effective measures

where MCD shows the overall best performance. While auto-encoder methods might

be suitable to handle mismatched conditions within a certain level of data corruption,

an RNN-based regression model shows potential in the direction of performance

estimation using DNNs. We also discuss the statistical nature of MCD and Entropy

measures in which both measures tend to perform more effectively with long duration

utterances.

The proposed multi-stream architecture has been implemented in ESPnet [95], an

open source toolkit mainly focusing on end-to-end speech recognition and end-to-end

text-to-speech.

7.2 Future Directions

We outline a number of promising future directions based on the approaches described

in the preceding chapters.
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Strategy when adding extra streams. With increasing use of voice-controlled

devices in domestic settings, it is practical to consider the scenario when adding an

extra stream (microphone array) into a well-established system. It is fairly expensive

and unrealistic to retrain the whole giant network when adding one stream every

time. The proposed two-stage training strategy better defines a scheme for additional

stream: Directly utilizing the UFE from Stage-1 for the new stream, Stage-2 optimizes

the stream fusion integrating with the additional stream. The future direction remains

to demonstrate the efficiency of this approach.

Sophisticated stream fusion. In the setup in Sec. 4.1, due to the memory issue,

the stream fusion module only uses a fairly simple content-based attention mechanism,

which is just a one-layer neural network. Later on, the proposed two-stage training

alleviates the burden of excessive memory use during training, which makes it possible

to explore more complex stream fusion mechanisms for noise robustness. There are

two proposals in this direction:

1. Provide information across streams for stream fusion. Currently, stream

weight is computed using features from each stream independently, followed by

a Softmax module to normalize weights across all streams. Intuitively, it would

be helpful to feed information from other streams to well model the hierarchical

attention across streams. Applying self-attention across all contextual vectors

is one possible approach; Averaging the contextual vectors from other streams

could provide an additional input to compute stream attention.

2. Add stream specific layer for training. In the current setting, the stream

fusion module does not distinguish stream-specific characteristics. In most of

the cases, when an array is placed in a home domestic scenario, the acoustic

condition in its surroundings stays similar. Injecting such information in a multi-
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stream framework could be beneficial for robustness. In Stage-2 of two-stage

strategy, adding trainable parameters for each stream is worth investigating.

CTC influence in multi-stream. In the CTC/ATT model with a single encoder,

the CTC objective serves as an auxiliary task to speed up the procedure of realizing

monotonic alignment. In multi-stream framework, per-encoder CTC is introduced

where a separate CTC mechanism is active for each encoder stream during training and

decoding. Instead of assigning stream weights for each CTC, another approach could

be decreasing the effect of CTC and replying on attention-based modules for inference.

In the two-stage strategy, Stage-2 focuses on fusion module training. Training with

CTCs in Stage-2 is redundant since monotonic behavior is the focus of Stage-1 training.

Hence, methods to eliminate influence from CTC are worth exploring for a simplified

system.
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