351 research outputs found

    Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category

    Full text link
    In this paper, we introduce a rewriting theory of linear monoidal categories. Those categories are a particular case of what we will define as linear (n, p)-categories. We will also define linear (n, p)-polygraphs, a linear adapation of n-polygraphs, to present linear (n -- 1, p)-categories. We focus then on linear (3, 2)-polygraphs to give presentations of linear monoidal categories. We finally give an application of this theory in linear (3, 2)-polygraphs to prove a basis theorem on the category AOB with a new method using a rewriting property defined by van Ostroom: decreasingness

    Cyclic rewriting and conjugacy problems

    Full text link
    Cyclic words are equivalence classes of cyclic permutations of ordinary words. When a group is given by a rewriting relation, a rewriting system on cyclic words is induced, which is used to construct algorithms to find minimal length elements of conjugacy classes in the group. These techniques are applied to the universal groups of Stallings pregroups and in particular to free products with amalgamation, HNN-extensions and virtually free groups, to yield simple and intuitive algorithms and proofs of conjugacy criteria.Comment: 37 pages, 1 figure, submitted. Changes to introductio

    Polygraphs: From Rewriting to Higher Categories

    Full text link
    Polygraphs are a higher-dimensional generalization of the notion of directed graph. Based on those as unifying concept, this monograph on polygraphs revisits the theory of rewriting in the context of strict higher categories, adopting the abstract point of view offered by homotopical algebra. The first half explores the theory of polygraphs in low dimensions and its applications to the computation of the coherence of algebraic structures. It is meant to be progressive, with little requirements on the background of the reader, apart from basic category theory, and is illustrated with algorithmic computations on algebraic structures. The second half introduces and studies the general notion of n-polygraph, dealing with the homotopy theory of those. It constructs the folk model structure on the category of strict higher categories and exhibits polygraphs as cofibrant objects. This allows extending to higher dimensional structures the coherence results developed in the first half

    Languages Generated by Iterated Idempotencies.

    Get PDF
    The rewrite relation with parameters m and n and with the possible length limit = k or :::; k we denote by w~, =kW~· or ::;kw~ respectively. The idempotency languages generated from a starting word w by the respective operations are wDAlso other special cases of idempotency languages besides duplication have come up in different contexts. The investigations of Ito et al. about insertion and deletion, Le., operations that are also observed in DNA molecules, have established that w5 and w~ both preserve regularity.Our investigations about idempotency relations and languages start out from the case of a uniform length bound. For these relations =kW~ the conditions for confluence are characterized completely. Also the question of regularity is -k n answered for aH the languages w- D 1 are more complicated and belong to the class of context-free languages.For a generallength bound, i.e."for the relations :"::kW~, confluence does not hold so frequently. This complicatedness of the relations results also in more complicated languages, which are often non-regular, as for example the languages WWithout any length bound, idempotency relations have a very complicated structure. Over alphabets of one or two letters we still characterize the conditions for confluence. Over three or more letters, in contrast, only a few cases are solved. We determine the combinations of parameters that result in the regularity of wDIn a second chapter sorne more involved questions are solved for the special case of duplication. First we shed sorne light on the reasons why it is so difficult to determine the context-freeness ofduplication languages. We show that they fulfiH aH pumping properties and that they are very dense. Therefore aH the standard tools to prove non-context-freness do not apply here.The concept of root in Formal Language ·Theory is frequently used to describe the reduction of a word to another one, which is in sorne sense elementary.For example, there are primitive roots, periodicity roots, etc. Elementary in connection with duplication are square-free words, Le., words that do not contain any repetition. Thus we define the duplication root of w to consist of aH the square-free words, from which w can be reached via the relation w~.Besides sorne general observations we prove the decidability of the question, whether the duplication root of a language is finite.Then we devise acode, which is robust under duplication of its code words.This would keep the result of a computation from being destroyed by dupli cations in the code words. We determine the exact conditions, under which infinite such codes exist: over an alphabet of two letters they exist for a length bound of 2, over three letters already for a length bound of 1.Also we apply duplication to entire languages rather than to single words; then it is interesting to determine, whether regular and context-free languages are closed under this operation. We show that the regular languages are closed under uniformly bounded duplication, while they are not closed under duplication with a generallength bound. The context-free languages are closed under both operations.The thesis concludes with a list of open problems related with the thesis' topics

    Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids

    Get PDF
    This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then construct biautomatic structures. For hypoplactic monoids, we construct finite complete rewriting systems and biautomatic structures. For sylvester monoids, which are not finitely presented, we prove that the standard presentation is an infinite complete rewriting system, and construct biautomatic structures. Consequently, the monoid algebras corresponding to monoids of these classes are automaton algebras in the sense of Ufnarovskij

    A PC Chase

    Get PDF
    PC stands for path-conjunctive, the name of a class of queries and dependencies that we define over complex values with dictionaries. This class includes the relational conjunctive queries and embedded dependencies, as well as many interesting examples of complex value and oodb queries and integrity constraints. We show that some important classical results on containment, dependency implication, and chasing extend and generalize to this class

    Polymorphic Rewriting Conserves Algebraic Confluence

    Get PDF
    We study combinations of many-sorted algebraic term rewriting systems and polymorphic lambda term rewriting. Algebraic and lambda terms are mixed by adding the symbols of the algebraic signature to the polymorphic lambda calculus, as higher-order constants. We show that if a many-sorted algebraic rewrite system R has the Church-Rosser property (is confluent), then R + β + type-β + type-η rewriting of mixed terms has the Church-Rosser property too. η reduction does not commute with algebraic reduction, in general. However, using long normal forms, we show that if R is canonical (confluent and strongly normalizing) then equational provability from R + β + η + type-β + type-η is still decidable
    corecore