
ar
X

iv
:1

31
0.

65
72

v2
 [

m
at

h.
G

R
]

 8
 J

an
 2

01
5

Rewriting systems and biautomatic structures
for Chinese, hypoplactic, and sylvester monoids

Alan J. Cain, Robert D. Gray, António Malheiro

[AJC] Centro de Matemática e Aplicações,
Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

Email: a.cain@fct.unl.pt
Web page: www.fc.up.pt/pessoas/ajcain/

[RDG] School of Mathematics, University of East Anglia,
Norwich NR4 7TJ, United Kingdom

Email: Robert.D.Gray@uea.ac.uk

[AM] Departamento de Matemática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

and
Centro de Álgebra da Universidade de Lisboa,
Av. Prof. Gama Pinto 2, 1649–003 Lisboa, Portugal

Email: ajm@fct.unl.pt

Dedicated to Stuart W. Margolis on the occasion of his 60th birthday

abstract

This paper studies complete rewriting systems and biautomatic-
ity for three interesting classes of finite-rank homogeneous mon-
oids: Chinese monoids, hypoplactic monoids, and sylvester mon-
oids. For Chinese monoids, we first give new presentations via
finite complete rewriting systems, using more lucid construc-
tions and proofs than those given independently by Chen & Qui
and Güzel Karpuz; we then construct biautomatic structures. For
hypoplactic monoids, we construct finite complete rewriting sys-
tems and biautomatic structures. For sylvester monoids, which
are not finitely presented, we prove that the standard presen-
tation is an infinite complete rewriting system, and construct
biautomatic structures. Consequently, the monoid algebras cor-
responding to monoids of these classes are automaton algebras
in the sense of Ufnarovskij.

Acknowledgements: During the research that led to this paper, the first author was supported
by an Investigador FCT fellowship (IF/01622/2013/CP1161/CT0001). This work was de-
veloped within the research activities of the Centro de Álgebra da Universidade de Lisboa,
FCT project PEst-OE/MAT/UI0143/2014, and of the Departamento de Matemática da Fac-
uldade de Ciências e Tecnologia da Universidade Nova de Lisboa.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/41989295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1310.6572v2
http://www.fc.up.pt/pessoas/ajcain/

1 introduction

The aim of this paper is to study whether certain homogeneous
monoids admit presentations via finite complete rewriting systems or are
biautomatic. The focus is on Chinese monoids, hypoplactic monoids, and
sylvester monoids of finite rank. All three classes of monoids are related to
Plactic monoids. In a previous paper [CGM15], we answered a question of
Zelmanov by constructing biautomatic structures and presentations via finite
complete rewriting systems for Plactic monoids of finite rank. The present
paper is partly motivated by that earlier work, but the techniques we use here
are original. As we discuss below, our results also have consequences for the
study of the corresponding monoid algebras.

The Chinese monoid was introduced by Duchamp & Krob [DK94], as one
of the (few) multi-homogeneous monoids with the same multihomogeneous
growth as the Plactic monoid. Cassaigne et al. [CEK+01] made the first fun-
damental study of the Chinese monoid, and the Chinese algebra has also been
studied [CO13, JO06, JO11]. The result that finite-rank Chinese monoids are
presented by finite complete rewriting systems was obtained in the context
of Gröbner–Shirshov bases by Chen & Qiu [CQ08], and later in the context
of rewriting systems by Güzel Karpuz [GK10]. In both approaches the stan-
dard presentation of the Chinese monoid is the starting point. Chen & Qiu
apply the Shirshov algorithm; Güzel Karpuz applies the Knuth–Bendix com-
pletion procedure. These procedures parallel each other [Hey00] and consist
of adding rewriting rules which arise from the analysis of all possible over-
laps. In both papers, proving confluence of the resulting rewriting system by
checking the 37 possible critical pairs is left as an exercise for the interested
reader. In § 3.2, we use different generating sets to construct presentations
via a finite complete rewriting systems for Chinese monoids: we think these
rewriting systems are easier to understand and the proofs more elegant. We
then proceed to prove that finite-rank Chinese monoids are biautomatic in §
3.5, exhibiting en route a left-handed analogue of the algorithm of Cassaigne
et al. [CEK+01, § 2.2] for right-multiplying an element of the Chinese monoid
by a generator.

The hypoplactic algebra was introduced by Krob & Thibon [KT97] as a
quotient of the Plactic algebra. The fundamental study of the underlying hy-
poplactic monoid, which is a quotient of the Plactic monoid, is due to Novelli
[Nov00]. In § 4.2, we give a neat construction and proof that finite-rank hy-
poplactic monoids admit presentations via finite complete rewriting systems.
In § 4.3, we prove that hypoplactic monoids of finite rank are biautomatic.

The sylvester monoid was defined by Hivert, Novelli & Thibon [HNT05] as
an analogue of the plactic monoid where Schensted’s algorithm for insertion
into Young tableaux (see [Lot02, ch. 5]) is replaced by insertion into a binary
search tree; from the sylvester monoid, they then recover the Hopf algebra of
planar binary trees defined by Loday & Ronco [LR98]. Finite-rank sylvester
monoids are not finitely presented, but in § 5.1, we show that the standard pre-
sentations for finite-rank sylvester monoids form (infinite) complete rewriting
systems. In § 5.2, we proceed to show that sylvester monoids of finite rank are
biautomatic.

The existence of finite complete rewriting systems for the Chinese and
hypoplactic monoids immediately implies the existence of finite Gröbner–
Shirshov bases for the Chinese and hypoplactic algebras [Hey00]. From the
biautomaticity of the Chinese, hypoplactic, and sylvester monoids, we imme-

2

diately recover the solvability of the word problem in quadratic time [CRRT01,
Corollary 3.7]. Furthermore, the biautomaticity of these monoids implies that
each admits a regular cross-section [CRRT01, Corollary 5.6], which in turn im-
plies that the corresponding monoid algebras are automaton algebras in the
sense of Ufarnovskij [Ufn95].

In related work [CGM], we give examples of homogeneous and multiho-
mogeneous monoids that do not admit finite complete rewriting systems or
biautomatic structures, and indeed we show that the two notions are inde-
pendent within the classes of homogeneous and multihomogeneous monoids.
Thus the results in this paper are not simply consequences of more general
results for homogeneous or multi-homogeneous monoids.

Since Chinese, hypolactic, and sylvester monoids are biautomatic, they
have decidable conjugacy problem. (To be precise, one can decide the o-
conjugacy relation, define by Otto [Ott84], using reasoning similar to the
group case [ECH+92, Theorem 2.5.7].) The algorithm for biautomatic monoids
is exponential-time in general. An interesting open question is whether one
can improve this exponential bound for homogeneous biautomatic monoids.
(However, there are (non-biautomatic) homogeneous and even multihomoge-
neous monoids in which conjugacy is undecidable [CM, Theorem 4.1].)

2 preliminaries

2.1 Words and presentations

We denote the empty word (over any alphabet) by ε. For an al-
phabet A, we denote by A∗ the set of all words over A. When A is a generating
set for a monoid M, every element of A∗ can be interpreted either as a word
or as an element of M. For words u, v ∈ A∗, we write u = v to indicate that
u and v are equal as words and u =M v to denote that u and v represent the
same element of the monoid M. The length of u ∈ A∗ is denoted |u|, and, for
any a ∈ A, the number of symbols a in u is denoted |u|a.

For any relation R on A∗, the presentation 〈A | R〉 defines [any monoid
isomorphic to] A∗/R# , where R# denotes the congruence generated by R.
The presentation 〈A | R〉 is homogeneous (respectively, multi-homogeneous) if for
every (u, v) ∈ R and a ∈ A, we have |u| = |v| (respectively, |u|a = |v|a). That
is, in a homogeneous presentation, defining relations preserve length; in a
multi-homogenous presentation, defining relations preserve the numbers of
each symbol. A monoid is homogeneous (respectively, multi-homogeneous) if it
admits a homogeneous (respectively, multi-homogeneous) presentation.

Any total order 6 on an alphabet A induces a total order 6lex on A∗,
where w 6lex w ′ if and only if either w is proper prefix of w ′ or if w = paq,
w ′ = pbr and a 6 b for some p, q, r ∈ A∗, and a, b ∈ A. The order 6lex is the
lexicographic order induced by 6. Notice that 6lex is not a well-order, but that it
is left compatible with concatenation.

2.2 String rewriting systems

A string rewriting system, or simply a rewriting system, is a pair
(A,R), where A is a finite alphabet and R is a set of pairs (ℓ, r), usually written
ℓ → r, known as rewriting rules or simply rules, drawn from A∗×A∗. The single
reduction relation →R is defined as follows: u →R v (where u, v ∈ A∗) if there

3

exists a rewriting rule (ℓ, r) ∈ R and words x, y ∈ A∗ such that u = xℓy and
v = xry. That is, u →R v if one can obtain v from u by substituting the word
r for a subword ℓ of u, where ℓ → r is a rewriting rule. The reduction relation
→∗

R is the reflexive and transitive closure of →R. The process of replacing a
subword ℓ by a word r, where ℓ → r is a rule, is called reduction by application
of the rule ℓ → r; the iteration of this process is also called reduction. A word
w ∈ A∗ is reducible if it contains a subword ℓ that forms the left-hand side of a
rewriting rule in R; it is otherwise called irreducible.

The rewriting system (A,R) is finite if both A and R are finite. The rewrit-
ing system (A,R) is noetherian if there is no infinite sequence u1, u2, . . . ∈ A∗

such that ui →R ui+1 for all i ∈ N. That is, (A,R) is noetherian if any process
of reduction must eventually terminate with an irreducible word. The rewrit-
ing system (A,R) is confluent if, for any words u,u ′, u ′′ ∈ A∗ with u →∗

R u ′

and u →∗

R u ′′, there exists a word v ∈ A∗ such that u ′ →∗

R v and u ′′ →∗

R v.
A rewriting system that is both confluent and noetherian is complete. If (A,R)

is a complete rewriting system, then for every word u there is a unique ir-
reducible word w such that u →∗

R w; this word is called the normal form of
u.

The rewriting system (A,R) is globally finite if, for each w ∈ A∗, there are
only finitely many words w ′ such that w →∗

R w ′. It is acyclic if there is no
word w such that w →+

R w. An acyclic globally finite rewriting system is
noetherian [BN98, Lemma 2.2.5].

The Thue congruence ↔∗

R is the equivalence relation generated by →R. The
elements of the monoid presented by 〈A | R〉 are the ↔∗

R-equivalence classes.
If (A,R) is complete, then the language of normal form words forms a cross-
section of the monoid: that is, each element of the monoid presented by 〈A | R〉
has a unique normal form representive.

2.3 Automaticity and biautomaticity

This subsection contains the definitions and basic results from
the theory of automatic and biautomatic monoids needed hereafter. For fur-
ther information on automatic semigroups, see [CRRT01]. We assume famil-
iarity with basic notions of automata and regular languages (see, for example,
[HU79]) and transducers and rational relations (see, for example, [Ber79]).

Definition 2.1. Let A be an alphabet and let $ be a new symbol not in A.
Define the mapping δR : A∗ ×A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→

(u1, v1) · · · (um, vn) if m = n,

(u1, v1) · · · (un, vn)(un+1, $) · · · (um, $) if m > n,

(u1, v1) · · · (um, vm)($, vm+1) · · · ($, vn) if m < n,

and the mapping δL : A∗ ×A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→

(u1, v1) · · · (um, vn) if m = n,

(u1, $) · · · (um−n, $)(um−n+1, v1) · · · (um, vn) if m > n,

($, v1) · · · ($, vn−m)(u1, vn−m+1) · · · (um, vn) if m < n,

where ui, vi ∈ A.

Definition 2.2. Let M be a monoid. Let A be a finite alphabet representing a
set of generators for M and let L ⊆ A∗ be a regular language such that every

4

element of M has at least one representative in L. For each a ∈ A ∪ {ε}, define
the relations

La = {(u, v) : u, v ∈ L, ua =M v}

aL = {(u, v) : u, v ∈ L, au =M v}.

The pair (A, L) is an automatic structure for M if LaδR is a regular languages
over (A ∪ {$}) × (A ∪ {$}) for all a ∈ A ∪ {ε}. A monoid M is automatic if it
admits an automatic structure with respect to some generating set.

The pair (A, L) is a biautomatic structure for M if LaδR, aLδR, LaδL, and
aLδL are regular languages over (A ∪ {$}) × (A ∪ {$}) for all a ∈ A ∪ {ε}. A
monoid M is biautomatic if it admits a biautomatic structure with respect to
some generating set. [Note that biautomaticity implies automaticity.]

Unlike the situation for groups, biautomaticity for monoids and semi-
groups, like automaticity, is dependent on the choice of generating set [CRRT01,
Example 4.5]. However, for monoids, biautomaticity and automaticity are in-
dependent of the choice of semigroup generating sets [DRR99, Theorem 1.1].

Hoffmann & Thomas have made a careful study of biautomaticity for semi-
groups [HT05]. They distinguish four notions of biautomaticity for semi-
groups:

• right-biautomaticity, where LaδR and aLδR are regular languages;

• left-biautomaticity, where LaδL and aLδL are regular languages;

• same-biautomaticity, where LaδR and aLδL are regular languages;

• cross-biautomaticity, where aLδR and LaδL are regular languages.

These notions are all equivalent for groups and more generally for cancellative
semigroups [HT05, Theorem 1] but distinct for semigroups [HT05, Remark 1

& § 4]. In the sense used in this paper, ‘biautomaticity’ implies all four notions
of biautomaticity above.

2.4 Rational relations

In proving that RδR or RδL is regular, where R is a relation on
A∗, a useful strategy is to prove that R is a rational relation (that is, a relation
recognized by a finite transducer [Ber79, Theorem 6.1]) and then apply the
following result, which is a combination of [FS93, Corollary 2.5] and [HT05,
Proposition 4]:

Proposition 2.3. If R ⊆ A∗ ×A∗ is rational relation and there is a constant k such
that

∣

∣|u| − |v|
∣

∣ 6 k for all (u, v) ∈ R, then RδR and RδL are regular.

Remark 2.4. When constructing transducers to recognize particular relations,
we will make use of certain strategies.

One strategy will be to consider a transducer reading elements of a relation
R from right to left, instead of (as usual) left to right. In effect, such a transducer
recognizes the reverse of R, which is the relation

Rrev = {(urev, vrev) : (u, v) ∈ R},

where urev and vrev are the reverses of the words u and v respectively. Since
the class of rational relations is closed under reversal [Ber79, p.65–66], con-
structing such a (right-to-left) transducer suffices to show that R is a rational
relation.

5

Another important strategy will be for the transducer to non-determinis-
tically guess some symbol yet to be read. More exactly, the transducer will
non-deterministically select a symbol and store it in its state. When it later
reads the relevant symbol, it checks it against the stored guessed symbol. If the
guess was correct, the transducer continues. If the guess was wrong, the trans-
ducer enters a failure state. Similarly, the transducer can non-deterministically
guess that it has reached the end of its input and enter an accept state. If it
subsequently reads another symbol, it knows that its guess was wrong, and it
enters a failure state.

3 chinese monoid

3.1 Staircases

Let n ∈ N. Let A be the finite ordered alphabet {1 < 2 < . . . < n}.
Let R be the set of defining relations

{
(zyx, zxy), (3.1)

(zxy, yzx) : x 6 y 6 z
}
. (3.2)

Then the Chinese monoid of rank n, denoted Cn, is presented by 〈A | R〉.
Cassaigne et al. [CEK+01, § 2] give a set of normal forms for elements of

the Chinese monoid. They point out that every element has a unique repre-
sentative of the form

ℓ(1)ℓ(2)ℓ(3) · · · ℓ(n) (3.3)

with
ℓ(k) = (k1)σk1(k2)σk2 · · · (k(k− 1))σk(k−1)kσk , (3.4)

where the exponents σkj and σk lie in N
0. (Notice that in (3.4), k − 1 is a

single symbol.) Cassaige et al. arrange the exponents σkj and σk in a Chinese
staircase, which is an analogue of the planar representation of a tableau for the
Plactic monoid (see [Lot02, ch. 5]). For example, in the case n = 4 the σki and
σk are arranged as follows:

σ1

σ2 σ21

σ3 σ32 σ31

σ4 σ43 σ42 σ41

1

2

3

4

4 3 2 1

Notice that rows are indexed from top to bottom and columns from right
to left. Because the k-th row of the staircase contains the exponents for the
word ℓ(k), each such word ℓ(k) (see (3.4)) is called a Chinese row. A normal
form word (3.3) is called a Chinese staircase word.

3.2 Finite complete rewriting system

As noted in the introduction, Chen & Qiu [CQ08] and Güzel
Karpuz [GK10] independently constructed finite complete rewriting systems

6

for finite-rank Chinese monoids. However, proving confluence of these sys-
tems relies on checking that all 37 possible critical pairs resolve. In this section
we present an alternative finite complete rewriting system. By changing the
generating set, we obtain a rewriting system whose language of irreducible
words corresponds closely to the Chinese staircase words. Once we prove that
the rewriting system is noetherian, we can deduce confluence quickly from
the fact that Chinese staircase words form a set of unique representatives for
the monoid.

Let
D = {dαβ : α,β ∈ A,α > β} ∪ {dα : α ∈ A}.

The idea is that symbols dαβ and dα represent, respectively, the elements αβ

and α of Cn. Therefore the original generating set A is essentially included in
this new set, and so D also generates Cn.

Consider a Chinese staircase word (3.3). By replacing each Chinese row
ℓ(k) (as in (3.4)) by

dσk1

k1 dσk2

k2 · · · d
σk(k−1)

k(k−1)
dσk

k ,

we obtain a word over the generating set D representing the same element of
Cn; we call such a word a D-Chinese staircase word. Notice that we can start
from a D-Chinese staircase word and recover the original Chinese staircase
word by simply reading off the subscripts of the symbols in D. Thus there is
a one-to-one correspondence between Chinese staircase words and D-Chinese
staircase words, and so the set of D-Chinese staircase words is also a language
of unique normal forms for Cn.

Define a relation � on the alphabet D as follows: for d, d ′ ∈ D, we have
d � d ′ if and only if dd ′ is a D-Chinese staircase word. As an immediate
consequence of this definition, notice that d � d ′ if and only if d and d ′

can appear in that order, not necessarily as adjacent symbols, in a D-Chinese
staircase word. Thus � is a total order.

Now define a set of rewriting rules T on D∗ as follows:

T = {dd ′ → CSD(dd ′) : d ≻ d ′},

where CSD(w) denotes the unique D-Chinese staircase word that equals dd ′

in Cn. It is obvious from the definition that T is finite and each rewriting rule
in T holds in the Chinese monoid Cn.

The next lemma is immediate from the definition of T.

Lemma 3.1. The irreducible words of the rewriting system (D,T) are the D-Chinese
staircase words.

As a consequence we deduce that the presentation 〈D | T〉 defines the Chi-
nese monoid Cn. In the next lemma we show that (D,T) is noetherian, and
thus it will follow from the previous lemma that (D,T) is complete. In order
to show termination of T we will fully characterize the relation ≻ on D.

Let α,β, γ, δ ∈ A. From the definition of � and the form of D-Chinese
staircase words, we have:

dα ≻ dβ ⇐⇒ α > β;

dαβ ≻ dγ ⇐⇒ α > γ;

dα ≻ dβγ ⇐⇒ α > β;

dαβ ≻ dγδ ⇐⇒ (α > γ)∨ (α = γ∧ β > δ).

7

Each of the left hand sides of a rewriting rule in T corresponds to one of the
above cases. In the proof of the next lemma we will see the resulting Chinese
staircase words for each of the left hand sides in T.

Lemma 3.2. The rewriting system T is noetherian.

Proof of 3.2. We will show that, for any w,w ′ ∈ D∗, if w →T w ′ then w ≻lex
w ′. Since ≻lex is left compatible with concatenation, it suffices to show that
(w1,w2) ∈ T implies w1 ≻lex w2.

So let (w1,w2) ∈ T. Depending on the form of w1 we divide the proof into
four cases:

1. w1 = dαdβ with dα ≻ dβ. Then α > β. Therefore CSD(dαdβ) = dαβ. We
have dα ≻ dαβ and so dαdβ ≻lex dαβ.

2. w1 = dαβdγ with dαβ ≻ dγ. Then α > γ (and α > β by the definition of
D). Now, consider two sub-cases:

(a) β > γ. Then

αβγ =Cn
αγβ (by (3.1))

=Cn
βαγ (by (3.2))

Therefore CSD(dαβdγ) = dβdαγ. Since α > β, we have dαβ ≻ dβ and
so dαβdγ ≻lex dβdαγ.

(b) γ > β. Then αβγ =Cn
γαβ by (3.2). Therefore CSD(dαβdγ) = dγdαβ.

Since α > γ, we have dαβ ≻ dγ and so dαβdγ ≻lex dγdαβ.

3. If w1 = dαdβγ with dα ≻ dβγ. Then α > β (and β > γ by the definition
of D). We have

αβγ =Cn
αγβ (by (3.1))

=Cn
βαγ. (by (3.2))

Now consider two sub-cases:

(a) α = β. Then CSD(dαdβγ) = dαγdβ. Since α > γ, we have dα ≻ dαγ

and so dαdβγ ≻lex dαγdβ.
(b) α > β. Then CSD(dαdβγ) = dβdαγ. Since α > β, we have dα ≻ dβ

and so dαdβγ ≻lex dβdαγ.

4. If w1 = dαβdγδ, with dαβ ≻ dγδ. Then either α > γ, or α = γ and β > δ.
(In both sub-cases, α > β and γ > δ by the definition of D.) Consider these
sub-cases separately:

(a) α = γ and β > δ. Then α = γ > β > δ, so

αβγδ = αβαδ

=Cn
ααβδ (by (3.1) applied to αβα)

=Cn
ααδβ (by (3.1) applied to αβδ)

=Cn
αδαβ (by (3.1) applied to ααδ)

= γδαβ.

Therefore CSD(dαβdγδ) = dγδdαβ. Since α = γ and β > δ, we have
dαβ ≻ dγδ and so dαβdγδ ≻lex dγδdαβ.

(b) α > γ. Now consider two sub-sub-cases separately:

8

i. β > γ. Then α > β > γ > δ and so

αβγδ =Cn
αγβδ (by (3.1) applied to αβγ)

=Cn
βαγδ (by (3.2) applied to αγβ)

=Cn
βαδγ (by (3.1) applied to αγδ)

=Cn
βγαδ. (by (3.2) applied to αδγ)

Consider two sub-sub-sub-cases separately:
A. β = γ. Then CSD(dαβdγδ) = d2

βdαδ. Since α > β, we have
dαβ ≻ dβ and so dαβdγδ ≻lex d2

βdαδ.
B. β > γ. Then CSD(dαβdγδ) = dβγdαδ. Since α > β, we have

dαβ ≻ dβγ and so dαβdγδ ≻lex dβγdαδ.
ii. γ > β. Then α > γ > β, δ and so αβγδ =Cn

γαβδ by (3.2) applied
to αβγ. Depending on β and δ we get two sub-sub-sub-cases:
A. β > δ. Then

γαβδ =Cn
γαδβ (by (3.1) applied to αβδ)

=Cn
γβαδ. (by (3.2) applied to αδβ)

Therefore CSD(dαβdγδ) = dγβdαδ. Since α > γ, we have
dαβ ≻lex dγβ and so dαβdγδ ≻lex dγβdαδ.

B. δ > β. Then γαβδ =Cn
γδαβ by (3.2) applied to αβδ. Therefore

CS(dαβdγδ) = dγδdαβ. Since α > γ, we have dαβ ≻lex dγδ and
so dαβdγδ ≻lex dγδdαβ.

For any w ∈ D∗, the word in A∗ that can be read from the subscripts
represents the same element of Cn as w. Since the original presentation (3.1)–
(3.2) is homogeneous, if w,w ′ ∈ D∗ are such that w =Cn

w ′, the words in
A∗ read from the subscripts have the same length. So there are only finitely
many possible words in D∗ representing each element of Cn. In particular,
the (A,T) is globally finite.

Notice that there is no word w such that w ≻lex w. Hence (A,T) is acyclic.
Since (A,T) is globally finite and acyclic, it is noetherian. 3.2

Combining Lemmata 3.1 and 3.2 and the fact that D-Chinese staircase
words form a language of unique normal forms for Cn, we obtain the de-
sired result:

Theorem 3.3. (A,T) is a finite complete rewriting system presenting Cn.

3.3 Algorithm for right-multiplication

Cassaigne et al. [CEK+01, § 2.2] give the following algorithm
that takes a symbol γ ∈ A and the staircase σ corresponding to a Chinese
staircase word w and computes the staircase corresponding to the unique
staircase word equal to wγ. By starting with the empty staircase diagram
(where all the entries are 0, corresponding to the empty staircase word ε) and
iteratively applying this algorithm, one can recover the staircase word equal
in Cn to an arbitrary word. For the purposes of describing this algorithm,
the top k rows of a staircase diagram form a k-staircase diagram. A k-staircase
diagram corresponds to the k-staircase word ℓ(1) . . . ℓ(k), which is a prefix (not
necessarily proper) of a staircase word (3.3). The algorithm will recursively
work with a k-staircase diagram and a symbol γ 6 k; to start the computation,
we simply begin with k = n.

9

Algorithm 3.4.
Input: A k-staircase diagram σ corresponding to a k-staircase word ℓ(1) · · · ℓ(k)

and a symbol γ 6 k.
Output: A k-staircase diagram σ · γ corresponding to the k-staircase word

equal to ℓ(1) · · · ℓ(k)γ in Cn.
Method: Write σ = (σ ′, R1), where R1 is the bottom (k-th) row of the dia-

gram and σ ′ the remaining (k− 1)-staircase diagram.

1. If γ = k, then σ · γ = (σ ′, R ′

1), where R ′

1 is obtained from R1 adding 1 to
σk.

2. If γ < k, let β be maximal such that the entry in column β of R1 is non-zero.
If no such β exists, then set β = γ.

(a) If γ > β, then σ · γ = (σ ′ · γ, R1).
(b) If γ < β and β < k, then σ · γ = (σ ′ · β, R ′

1), where R ′

1 is obtained from
R1 by subtracting 1 from σkβ and adding 1 to σkγ.

(c) If γ < β and β = k, then σ · γ = (σ ′, R ′

1) where R ′

1 is obtained from R1

by subtracting 1 from σk and adding 1 to σkγ.

3.4 Algorithm for left-multiplication

When we construct the biautomatic structure for the Chinese
monoid and prove that the left-multiplication relation is recognized by a fi-
nite transducer, we will use the following left-handed analogue of Algorithm
3.4. We believe this algorithm is new and potentially of independent interest.

Algorithm 3.5.
Input: A Chinese staircase σ corresponding to a Chinese staircase word w,

and a symbol γ ∈ A.
Output: A Chinese staircase γ · σ corresponding to the unique Chinese

staircase equal in Cn to γw.
Method: Store a symbol β from {1, . . . , n} ∪ {⊥}, initially set to ⊥. There are

two stages. In the first stage, iterate the following for ρ = 1, . . . , γ − 1:

1. If every entry in row ρ is empty, do nothing for this row.

2. Otherwise, let η be the index of the rightmost non-zero entry (that is, η is
minimal with σρη > 0). Then:

(a) If β = ⊥:

i. If η < ρ, decrement σρη by 1, increment σρ by 1, and set β = η.
ii. If η = ρ, decrement σρ by 1 and set β = η.

(b) Otherwise, when β 6= ⊥:

i. If η < β, decrement σρη by 1, increment σρβ by 1, and set β = η.
ii. Otherwise, when η > β, do nothing.

In the second stage, for ρ = γ,

1. If β = ⊥, increment σρ by 1.

2. Otherwise, when β 6= ⊥, increment σρβ by 1.

Finally, output the current staircase.

Proposition 3.6. Algorithm 3.5 always halts with the correct output.

10

Proof of 3.6. First of all, notice that by setting x = y in (3.2), we obtain

x(zx) =Cn
(zx)x; (3.5)

and by setting y = z in (3.1), we obtain

z(zx) =Cn
(zx)z, (3.6)

that is, zx commutes with x and with z for x 6 z. Furthermore, for w 6 x 6

y 6 z, by applying (3.2) twice we obtain

(zw)(yx) = zwyx =Cn
yzwx =Cn

yxzw = (yx)(zw) (3.7)

that is, zw and yx commute for w 6 x 6 y 6 z.
We consider a staircase word (3.3) and a symbol γ and the process of turn-

ing γℓ(1) · · · ℓ(n) into a staircase word m(1) · · ·m(n) (where the m(i) are the
row words) using the relations (3.1–3.2). Let i be minimal such that ℓ(i) is
non-empty.

Depending on whether i > γ or i < γ, we distinguish two cases. Suppose
first that i > γ. Then for ρ = 1, . . . , γ − 1, the iterative step in the algorithm
always proceeds via case 1, and these rows of the output staircase are the same
as those of the input staircase. This is the correct output since

γℓ(1) · · · ℓ(n) =Cn
ℓ(1) · · · ℓ(γ−1)γℓ(γ) · · · ℓ(n)

When the algorithm reaches the step for ρ = γ, it still has β = ⊥, and so it
increments σγ by 1 and halts. This produces a new word

m(γ) = (γ1)σγ1 · · · (γ(γ − 1))σγ(γ−1)γσγ+1

that is equal in Cn to γℓ(γ), by repeated application of (3.6). Now, the resulting
staircase word m(1) · · ·m(n) is equal in Cn to γℓ(1) · · · ℓ(n), since m(γ) =Cn

γℓ(γ) and m(j) = ℓ(j) for j 6= γ. Hence in this case the algorithm produces the
correct output.

Suppose now that i < γ. Then the iterative step in the algorithm proceeds
via case 1 for ρ = 1, . . . , i − 1, and these rows of the output staircase are the
same as those of the input staircase. That is, m(j) = ℓ(j) for j = 1, . . . , i − 1.
This is the correct output since

γℓ(1) · · · ℓ(n) =Cn
ℓ(1) · · · ℓ(i−1)γℓ(i) · · · ℓ(n).

For ρ = i the algorithm proceeds via case 2(a). If η < ρ, then

γℓ(i)

= γ(iη)σiη · · · (i(i− 1))σi(i−1)iσi

= γiη(iη)σiη−1 · · · (i(i− 1))σi(i−1)iσi (since σiη 6= 0)

=Cn
γηi(iη)σiη−1 · · · (i(i− 1))σi(i−1)iσi (by (3.1))

=Cn
γη(iη)σiη−1 · · · (i(i − 1))σi(i−1)iσi+1 (by (3.6))

=Cn
(iη)σiη−1 · · · (i(i− 1))σi(i−1) iσi+1γη (by (3.7), and (3.2) when σi = 0)

= m(i)γη

and the algorithm, proceeding via case 2(a)i, outputs the i-th row correspond-
ing to m(i) and now has β = η. (This parameter β works as a letter that is

11

‘dragged’ by γ as it moves rightward through the word to its proper place.)
If, on the other hand, η = i, then

γℓ(i)

= γiσi

= γiiσi−1 (since σi 6= 0)

=Cn
iσi−1γi, (by (3.7), and (3.2) when σi = 2)

and the algorithm, proceeding via case 2(a)ii, outputs the i-th row correspond-
ing to m(i) = iσi−1 and now has β = i. Notice that in either case we have
γℓ(i) =Cn

m(i)γβ and β 6 ρ, and so in the next iteration β will be strictly less
than the new value of ρ. We shall see by induction that β is always less than
ρ when a new iteration begins.

For ρ = i+ 1, . . . , γ− 1, the algorithm produces empty rows whenever ℓ(ρ)

is empty and does not change β. So suppose ℓ(ρ) is not empty. Then since
β 6= ⊥, the algorithm proceeds via case 2(b). We know that β < ρ. If η < β,
then

γβℓ(ρ)

= γβ(ρη)σρη · · · (ρ(ρ− 1))σρ(ρ−1)ρσρ

= γβρη(ρη)σρη−1 · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (since σρη−1 6= 0)

=Cn
ργβη(ρη)σρη−1 · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (by (3.2))

=Cn
ργηβ(ρη)σρη−1 · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (by (3.1))

=Cn
γηρβ(ρη)σρη−1 · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (by (3.2))

=Cn
ρβ(ρη)σρη−1 · · · (ρ(ρ− 1))σρ(ρ−1)ρσργη (by (3.7), and (3.2) for σρ = 1)

=Cn
(ρη)σρη−1 · · · (ρβ)σρβ+1 · · · (ρ(ρ− 1))σρ(ρ−1)ρσργη (by (3.7)),

= m(ρ)γη,

and the algorithm, proceeding via case 2(b)i, outputs the ρ-th row correspond-
ing to m(ρ) and now has β = η. If, on the other hand, η > β, then

γβℓ(ρ)

= γβ(ρη)σρη · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ

=Cn
(ρη)σρη · · · (ρ(ρ− 1))σρ(ρ−1)ρσργβ (by (3.7), and (3.2) when σρ = 1)

= m(ρ)γβ.

and the algorithm, proceeding via case 2(b)ii, outputs the same ρ-th row (cor-
responding to m(ρ) = ℓ(ρ)) and has β unchanged. Notice that in either case
γβℓ(ρ) =Cn

m(ρ)γβ̂, where β̂ is the new value of β obtained by executing the
algorithm. Also, β 6 ρ, and so in the next iteration β will be strictly less than
the new value of ρ.

Finally, for ρ = γ,

γβℓ(ρ)

= ρβ(ρη)σρη · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (since γ = ρ)

=Cn
(ρη)σρη · · · (ρβ)σρβ+1 · · · (ρ(ρ − 1))σρ(ρ−1)ρσρ (by (3.7)),

= m(ρ)

12

and so the algorithm, proceeding via case 2, outputs the ρ-th row correspond-
ing to m(ρ) and halts.

For j > ρ, we have ℓ(j) = m(j) and so, at the end of the algorithm,
we have the staircase diagram corresponding to the Chinese staircase word
m(1) · · ·m(n). 3.6

3.5 Biautomaticity

The essential idea in constructing our biautomatic structure is
to have a language of normal forms related to (3.3) and to show that Algo-
rithms 3.4 and 3.5 can be performed by a transducer. We will initially use the
generating set D introduced in § 3.2, but we will later switch to the standard
generating set A.

Let
K(k) = d∗

k1d
∗

k2 · · ·d
∗

k(k−1)d
∗

k

and
K = K(1)K(2) · · ·K(n−1)K(n);

notice that K is regular.

3.5.1 Right-multiplication by transducer

Let us show that the relation Kdγ
= {(u, v) : u, v ∈ K,udγ =Cn

v}

is recognized by a finite transducer for any γ ∈ {1, . . . , n}. We only need to
consider right multiplication by dγ, where γ ∈ A, because we will later switch
back to the generating set A.

We imagine a transducer reading a pair of words in K from right to left
with the aim of checking whether this pair is in Kdγ

. It is easiest to describe
the transducer as reading symbols from the top tape and outputting symbols
on the bottom tape. As it reads a symbol from the top tape, the transducer
knows which language K(k) (corresponding to the k-th row) the current sym-
bol comes from, for symbols dkβ and dk occur only in subwords from K(k).
The transducer stores a symbol α from {1, . . . , n} ∪ {∞} that records the sym-
bol to be inserted into the (k− 1)-staircase word from K(1) · · ·K(k−1). Initially
α = γ. The value α = ∞ indicates that no further insertion is necessary. In
this case the transducer simply reads symbols from the top tape and outputs
the same symbols on the bottom tape until the end of input.

When α 6= ∞, the transducer functions as follows. As remarked above, the
transducer knows when it starts reading a subword from K(k). If α = k, the
transducer outputs an extra symbol dk (corresponding to case 1 in Algorithm
3.4) and sets α = ∞. If α < k, the transducer needs to calculate β in accordance
with case 2 of Algorithm 3.4. But β can be determined from the rightmost
symbol of the subword from K(k), which is the first symbol of this subword
it encounters, since it is reading right-to-left: this symbol is dkβ or dk, in
which case β = k. [If there is no symbol from K(k) on the top tape, then
the next symbol it reads is from K(j) for some j < k. No special action is
required here, for the automaton now proceeds to insert α into the subword
from K(1) · · ·K(j), which is in accordance with the recursion in case 2(a) of
Algorithm 3.4.]

If α > β, the transducer reads each symbol of the subword from K(k) and
outputs it on the bottom tape, all the while keeping the same value of α. It

13

then arrives at the rightmost end of the next subword with the correct value
of α (this corresponds to the recursion in case 2(a) of Algorithm 3.4).

If α < β and β < k, then the transducer reads each symbol of the subword
from K(k) and outputs it on the bottom tape, with the following exceptions:

• It does not output anything on reading the first symbol dkβ (corresponding
to decrementing σkβ by 1).

• It outputs an extra symbol dkα immediately after reaching the leftmost end
of the (possibly empty) subword of symbols dkα (it can non-deterministically
predict when it has reached the end of this subword; this corresponds to
incrementing σkα by 1).

On reaching the end of the subword from K(k), it sets α = β, corresponding
to the recursion in case 2(b) of Algorithm 3.4).

If α < β and β = k, then the transducer reads each symbol of the subword
from K(k) and outputs it on the bottom tape, with the following exceptions:

• It does not output anything on reading the first symbol dk (corresponding
to decrementing σk by 1).

• It outputs an extra symbol dkα immediately after reaching the leftmost end
of the (possibly empty) subword of symbols dkα (it can non-deterministically
predict when it has reached the end of this subword; this corresponds to
incrementing σkα by 1).

On reaching the end of the subword from K(k), it sets α = ∞, corresponding
to case 2(c) of Algorithm 3.4).

This shows that Kdγ
is recognized by a transducer; Kdγ

is therefore a ra-
tional relation.

3.5.2 Left-multiplication by transducer

Let us show that the relation dγ
K = {(u, v) : u, v ∈ K, dγu =Cn

v}

is recognized by a finite transducer for any γ ∈ {1, . . . , n}.
We imagine a transducer reading a pair of words in K from left to right

and checking whether this pair is in dγ
K. As before, we will describe the

transducer as reading symbols from the top tape and outputting symbols on
the bottom tape. As it reads a symbol from the top tape, the transducer knows
which K(k) the current symbol comes from, for symbols dkα and dk occur
only in subwords from K(k). The transducer also non-deterministically looks
ahead one symbol on the top tape, so it knows when it has reached the end of
a substring (possibly empty) of symbols dkα or dk.

In its state, the transducer stores the symbol β ∈ {1, . . . , n}∪{⊥,∞}. Initially
β = ⊥. The value β = ∞ indicates that no further changes are necessary
and the transducer simply reads symbols from the top tape and outputs the
same symbols on the bottom tape. When β 6= ∞, the transducer functions as
follows.

Suppose it is reading some subword from K(ρ) from the top tape, where
ρ < γ. If this subword is empty, then the corresponding output subword is
empty, as per case 1 of the iterative part of Algorithm 3.5. When this subword
is non-empty, and the algorithm proceeds via case 2(a) or 2(b), the transducer
can determine η from the first symbol dρη or dρ of the subword. It reads
each symbol of this subword and outputs the same symbol with the following
exceptions:

14

• If β = ⊥ and η < ρ (case 2(a)i), it outputs ε on reading this symbol dρη

(corresponding to decrementing σρη by 1), outputs an extra symbol dρ

immediately after reading the last symbol of this subword (corresponding
to incrementing σρ by 1), and sets β = η.

• If β = ⊥ and η = ρ (case 2(a)ii), it outputs ε on reading the first symbol dρ

(corresponding to decrementing σρ by 1), and sets β = η.

• If β 6= ⊥ and η < β (case 2(b)i), it outputs ε on reading this symbol dρη

(corresponding to decrementing σρη by 1), outputs an extra symbol dρβ

immediately after reading the last symbol dρβ (corresponding to incre-
menting σρβ by 1), and sets β = η.

[Notice that in case 2(b)ii, the transducer simply reads symbols and outputs
them: there are no exceptions in this case.]

Finally, on reading the subword from K(γ), again it reads symbols and
outputs them, except that if β = ⊥ it outputs an extra symbol dγ at the end
of the (possibly empty) string of symbols dγ, and if β 6= ⊥, it outputs an extra
symbol dγβ at the end of the (possibly empty) string of symbols dγβ. On
doing this, it sets β = ∞ and simply reads to the end of the top tape and
outputs the same symbols on the bottom tape.

This shows that dγ
K is recognized by a transducer; dγ

K is therefore a ra-
tional relation.

3.5.3 Deducing biautomaticity

Let Q ⊆ D∗ ×A∗ be the rational relation
{
(dαβ, αβ), (dα, α) : α,β ∈ A,α > β

}
∗
.

Let
L = K ◦ Q =

{
u ∈ A∗ : (∃u ′ ∈ K)((u ′, u) ∈ Q)

}
;

then L is a regular language over A that maps onto Cn. [In fact, L is the set
of Chinese staircase words, but we do not need to know this.] Then for any
γ ∈ A,

(u, v) ∈ Lγ ⇐⇒ u ∈ L∧ v ∈ L∧ uγ =Cn
v

⇐⇒ (∃u ′, v ′ ∈ K)((u ′, u) ∈ Q ∧ (v ′, v) ∈ Q ∧ u ′dγ =Cn
v ′)

⇐⇒ (∃u ′, v ′ ∈ K)((u ′, u) ∈ Q ∧ (v ′, v) ∈ Q ∧ (u ′, v ′) ∈ Kdγ
)

⇐⇒ (u, v) ∈ Q−1 ◦ Kdγ
◦ Q.

Therefore Lγ is a rational relation. Now, if (u, v) ∈ Lγ, then |v| = |u| + 1

since the defining relations (3.1–3.2) preserve lengths of words over A. By
Proposition 2.3, LγδR and LγδL are regular.

Similarly, from the fact that cγ
K is a rational relation, we deduce that γL =

Q−1 ◦ dγ
K ◦Q is a rational relation and thus, by Proposition 2.3, that γLδR and

γLδL are regular.
This proves the result:

Theorem 3.7. (A, L) is a biautomatic structure for the Chinese monoid Cn.

15

1 1 1 1

2 2 3

4

5 5

6 6 7 7

8

figure 1. Example of a quasi-ribbon tableau.

4 hypoplactic monoid

4.1 Quasi-ribbon tableaux

Let n ∈ N. Let A be the ordered alphabet {1 < 2 < . . . < n}. Let
R be the set of defining relations for the Plactic monoid; that is,

R = {(acb, cab) : a 6 b < c} ∪ {(bac, bca) : a < b 6 c}.

and let
S = {(cadb, acbd), (bdac, dbca) : a 6 b < c 6 d}.

The hypoplactic monoid of rank n, denoted Hn, is presented by 〈A | R ∪ S〉.
A column is a strictly decreasing word in A∗ (that is, a word α = α1 · · ·αk,

where αi ∈ A, such that αi > αi+1 for all i = 1, . . . , k − 1). Any word
α ∈ A∗ has a decomposition as a product of columns of maximal length α =

α(1) · · ·α(k). Such a word α is a quasi-ribbon word if the last (smallest) symbol
of α(i+1) is greater than or equal to the first (greatest) symbol of α(i) for all
i = 1, . . . , k− 1.

For example, 1 1 1 21 2 543 65 6 7 87 is a quasi-ribbon word. (For clarity,
spaces indicate the decomposition into columns of maximum length.) Any
quasi-ribbon word has a planar representation as a quasi-ribbon tableau, where
the columns are written vertically from bottom to top and arranged left to
right so that the last (uppermost) symbol in each column aligns with the first
symbol of the previous column. The quasi-ribbon tableau corresponding to
1 1 1 21 2 543 65 6 7 87 is shown in Figure 1; notice that each row in the
quasi-ribbon tableau is non-decreasing.

Theorem 4.1 ([Nov00, Theorem 4.17]). The quasi-ribbon words form a cross-
section of the hypoplactic monoid.

For any w ∈ A∗, let Q(w) denote the unique quasi-ribbon word such that
w =Hn

Q(w).

Theorem 4.2 ([Nov00, Theorem 5.12]). For any w ∈ A∗, the quasi-ribbon word
Q(w) is the lexicographically minimum word such that w =Hn

Q(w). That is,
Q(w) 6lex w for all w ∈ A∗.

Algorithm 4.3 ([Nov00, Algorithm 4.4]).
Input: A quasi-ribbon word w and a symbol a.
Output: The quasi-ribbon word Q(wa).
Method:

16

Let T be the quasi-ribbon tableau corresponding to w. If there is no entry
in T that is less than or equal to a, output the word corresponding to the
tableau obtained by putting a and gluing T to the bottom of a.

Otherwise, let x be the right-most and bottom-most entry of T that is less
than or equal to x. Put a new entry a to the right of x and glue the remaining
part of T (below and to the right of x) onto the bottom of the new entry a.
Output the quasi-ribbon word corresponding to the new tableau.

The symmetry of the presentation 〈A | R ∪ S〉 and of the definition of quasi-
ribbon words means that Algorithm 4.3 has the following symmetrical version,
describing how to left-multiply a quasi-ribbon word by a generator.

Algorithm 4.4.
Input: A quasi-ribbon word w and a symbol a.
Output: The quasi-ribbon word Q(aw).
Method:
Let T be the quasi-ribbon tableau corresponding to w. If there is no entry

in T that is greater than or equal to a, output the word corresponding to the
tableau obtained by putting a and gluing T to the top of a.

Otherwise, let x be the left-most and upper-most entry of T that is greater
than or equal to x. Put a new entry a to the left of x and glue the remaining
part of T (above and to the left of x) onto the top of the new entry a. Output
the quasi-ribbon word corresponding to the new tableau.

4.2 Finite complete rewriting system

Let T = {w → Q(w) : w ∈ A∗ ∧w 6= Q(w)∧ |w| 6 max{2n, 4}}.

Theorem 4.5. (A,T) is a finite complete rewriting system presenting Hn.

Proof of 4.5. First of all notice that every rules in T holds in Hn and thus is a
consequence of the relations in R ∪ S. On the other hand, every relation in
R ∪ S is a consequence of the rules in T (since T includes all rules w → Q(w)

for all |w| 6 4). Hence 〈A | T〉 presents Hn.
Next, notice that there are only finitely many rules in T since there are only

finitely many possibilities for w and Q(w) is uniquely determined.
Suppose u →T v. Then |u| = |v| and v <lex u by Theorem 4.2 (since a

rule w → Q(w) is applied where w 6= Q(w) and Q(w) 6lex w for all w ∈ A∗).
Hence (A,T) is acyclic. Furthermore, since |w| = |Q(w)|, rewriting using (A,T)

preserves lengths, and so for each u ∈ A∗, there are only finitely many words
v such that u →∗

T v; thus (A,T) is globally finite. Hence (A,T) is noetherian.
Let u ∈ A∗. Since (A,T) is noetherian, applying rewriting rules from T to

u will always yield an irreducible word v.
With the aim of obtaining a contradiction, suppose that v is not a quasi-

ribbon word. Let v = v(1)v(2) · · · v(k) be the decomposition of v into columns
of maximum length. Since v is not a quasi-ribbon word, for some i the word
v(i)v(i+1) is not a quasi-ribbon word. Since columns are strictly descending
words, they have maximum length n. So v(i)v(i+1) has length at most 2n.
Since v(i)v(i+1) is not a quasi-ribbon word, v(i)v(i+1) 6= Q(v(i)v(i+1)). Hence
v(i)v(i+1) → Q(v(i)v(i+1)) is a rule in T. Since v contains the left-hand side of
this rule, it is not irreducible, which is a contradiction. This proves that v is a
quasi-ribbon word.

17

Hence the set of irreducible words for (A,T) are the quasi-ribbon words,
which form a cross-section of Hn by Theorem 4.1. Hence (A,T) is confluent.

4.5

4.3 Biautomaticity

4.3.1 Right- and left-multiplication by transducer

Let
C = {cα : α ∈ A+ is a column}.

Each symbol cα represents the element α of Hn. Since this holds in particular
when |α| = 1, the original generating set A is essentially contained in C. Thus
C also generates Hn.

Define a relation � on columns by α � β if the first (greatest) symbol of
α is less than or equal to the last (smallest) symbol of β. That is, α � β if α
can appear immediately to the left of β in the decomposition of a quasi-ribbon
word into maximal columns.

Now let

K =
{
cα(1)cα(2) · · · cα(k) : k ∈ N ∪ {0}, cα(i) ∈ C,α(j) � α(j+1) for all j

}
.

Notice that K is regular since an automaton checking whether cα(1)cα(2) · · · cα(k) ∈
C∗ lies in K need only store the previous letter in its state in order to check
whether α(j) � α(j+1) for all j.

We will first of all prove that for any γ ∈ A the relation Kcγ
is recognized

by a finite transducer.
We imagine a transducer reading a pair of words

(cα(1) · · · cα(k) , cβ(1) · · · cβ(l)) ∈ K× K

from right to left, with the aim of checking whether this pair is in Kcγ
. It

is easiest to describe the transducer as reading symbols from the top tape
and outputting symbols on the bottom tape. Essentially, the transducer will
perform Algorithm 4.3 using the alphabet C to store columns quasi-ribbon
words.

The transducer non-deterministically looks one symbol ahead (that is, fur-
ther left) on the top tape. In its state it stores either γ or ∞, with the latter
indicating that γ has already been inserted into the quasi-ribbon.

While the transducer is storing γ in its state, it examines each column cα(j)

it reads and proceeds as follows:

• If γ is less than every symbol of α(j) and j > 1 and γ is less than the first
symbol of α(j−1), then the transducer outputs cα(j) and proceeds to read
the next symbol cα(j−1) . (Notice that the transducer knows whether j > 1

since it non-deterministically looks ahead one symbol.)

• If γ is greater than or equal to some symbol of α(j), then the transducer
outputs cβ ′cβγ, where α(j) = ββ ′ and the first letter of β ′ is the first
symbol of α(j) that is less than or equal to γ. It then stores ∞ in its state in
place of γ.

• If γ is less than every symbol of α(j) and either j = 1 or j > 1 and γ

is greater than or equal to the first symbol of α(j−1), then the transducer
outputs cα(j)γ. It then stores ∞ in its state in place of γ.

18

When the transducer is storing ∞ in its state, it simply reads every input
symbol and outputs the same symbol until it reaches the end of the input.

Finally, if the top tape is the empty word ε, the transducer simply outputs
γ.

Since Kcγ
is recognized by a finite transducer, it is a rational relation.

Since Algorithms 4.3 and 4.4 are symmetric, it is clear that cγ
K is also

recognized by a finite transducer (which effectively performs Algorithm 4.4
using the alphabet C to store column quasi-ribbon words). So cγ

K is a rational
relation.

4.3.2 Deducing biautomaticity

Let Q ⊆ C∗ ×A∗ be the relation
{
(cα(1)cα(2) · · · cα(k) , α

(1)α(2) · · ·α(k)) : k ∈ N ∪ {0}, each α(i) is a column
}
.

It is easy to see that Q is a rational relation. Let

L = K ◦ Q =
{
u ∈ A∗ : (∃u ′ ∈ K)

(

(u ′, u) ∈ Q
)}

.

Then L is a regular language over A that maps onto Mn, since the set of regular
languages is closed under applying rational relations. (In fact, L is the set
of quasi-ribbon words, but this is not important for proving biautomaticity.)
Then for any γ ∈ A,

(u, v) ∈ Lγ ⇐⇒ u ∈ L∧ v ∈ L∧ uγ =Hn
v

⇐⇒ (∃u ′, v ′ ∈ K)((u ′, u) ∈ Q ∧ (v, v ′) ∈ Q ∧ u ′cγ =Hn
v ′)

⇐⇒ (∃u ′, v ′ ∈ K)((u ′, u) ∈ Q ∧ (v, v ′) ∈ Q ∧ (u ′, v ′) ∈ Kcγ
)

⇐⇒ (u, v) ∈ Q−1 ◦ Kcγ
◦ Q.

Therefore, Lγ is a rational relation. Now, if (u, v) ∈ Lγ, then |v| = |u| + 1

since uγ =Hn
v and the defining relations R∪ S preserve lengths of words. By

Proposition 2.3, LγδR and LγδL are regular.
Similarly, from the fact that cγ

K is a rational relation, we deduce that γL =

Q−1 ◦ dγ
K ◦Q is a rational relation and thus, by Proposition 2.3, that γLδR and

γLδL are regular.
Thus we have proved the desired result:

Theorem 4.6. (A, L) is a biautomatic structure for the hypoplactic monoid Hn.

5 sylvester monoid

Let n ∈ N. Let A be the finite ordered alphabet {1 < 2 < . . . < n}.
Let R be the (infinite) set of defining relations

{(cavb, acvb) : a 6 b < c, v ∈ A∗}.

Then the sylvester monoid of rank n, denoted Sn, is presented by 〈A | R〉. This is
simply a restriction to finite rank of the sylvester monoid as defined by Hivert
et al. [HNT05, Definition 8].

19

4

1

1 3

2 4

5

5 6

figure 2. Example of a binary search tree T . The root has label 4, so every label
in the left subtree of the root is less than or equal to 4 (and indeed the label 4
does occur) and every label in the right subtree of the root is strictly greater than
4. Notice that (for example) T = T(265415314), and that LRP(T) = 124315654.

5.1 Complete rewriting system

The aim of this section is to prove that (A,R) is a complete
rewriting system. The proof will depend on two results proved by Hivert
et al. (Propositions 5.1 and 5.2 below), and we need to define some new con-
cepts first.

A (right strict) binary search tree is a labelled rooted binary tree where the
label of each node is greater than or equal to the label of every node in its left
subtree, and strictly less than every node in its right subtree; see the example
in Figure 2.

Given a binary search tree T and a symbol a ∈ A, one inserts a into T as
follows: if T is empty, create a node and label it a. If T is non-empty, examine
the label x of the root node; if a 6 x, recursively insert a into the left subtree
of the root node; otherwise recursively insert a into the right subtree of the
root note. Denote the resulting tree a · T . It is easy to see that a · T is also a
binary search tree.

Given any word w ∈ A∗, define its corresponding binary search tree T(w)

as follows: start with the empty tree and iteratively insert the symbols in w

from right to left; again, see the example in Figure 2.
The left-to-right postfix reading LRP(T) of a binary search tree T is defined

to be the word obtained as follows: recursively perform the left-to-right postfix
reading of the left subtree of the root of T , then recursively perform the left-to-
right postfix reading of the right subtree of the root of T , then output the label
of the root of T ; again, see the example in Figure 2. Note that T(LRP(T)) = T .

Proposition 5.1 ([HNT05, Theorem 10]). Let w,w ′ ∈ A∗. Then w =Sn
w ′ if

and only if T(w) = T(w ′).

Proposition 5.2 ([HNT05, Proposition 15]). Let w ∈ A∗. Then LRP(T(w)) is the
lexicographically minimal word representing the same element of Sn as w.

Proposition 5.3. (A,R) is a complete rewriting system, and the irreducible words
are the lexicographically minimal words representing elements of Sn.

Proof of 5.3. Notice that an application of a rewriting rule from R strictly de-
creases a word with respect to the lexicographic order. Hence (A,R) is acyclic.
Since it does not alter the length of a word, and since there are only finitely
many words of a given length, (A,R) is globally finite. Hence (A,R) is noethe-
rian.

20

To see that (A,R) is confluent, we prove that the irreducible words are pre-
cisely those words that arise as left-to-right postfix readings of binary search
trees.

First, let us show that any word that arises as a left-to-right-postfix reading
of a binary search tree must be irreducible. Let w be a left-to-right postfix read-
ing of some binary search tree. That is, w = LRP(T(w)). Then by Proposition
5.2, w is the lexicographically minimal word among all words representing
the same element of Sn as w. Since an application of a rewriting rule from R

always decreases a word in the lexicographic order, it follows that no rule in
R can be applied to w. Thus w is irreducible.

Now we prove that any irreducible word arises as a left-to-rise postfix
reading of a binary search tree. We proceed by induction on the length of the
word. First, if w ∈ A∗ has length less than 3, no relation in R can be applied
to w and hence there is no other word in A∗ representing the same element of
Sn; thus w = LRP(T(w)). This proves the base of the induction.

Now suppose that all irreducible words of length less than k arise from
left-to-right postfix readings of binary search trees. Let w be an irreducible
word of length k. Let w = w ′b, where b ∈ A. Since w is irreducible, there is
no left-hand side of a rule in R in w, and thus there is no subword ca in w ′

such that a 6 b < c. Therefore w ′ factors as w ′ = uv, where every symbol
in u is less than or equal to b and every symbol in v is greater than b. The
words u and v are irreducible and of length less than k, and thus u = LRP(Tu)

and v = LRP(Tv) for some binary search trees Tu and Tv. Form a new tree T

whose root is labelled by b and has left subtree Tu and right subtree Tv. Since
every symbol in u is less or equal to than b and every symbol in v is greater
than v, it follows that T is a binary search tree. Finally, by the definition of
left-to-right postfix reading, we have LRP(T) = LRP(Tu)LRP(Tv)b = uvb = w.
This completes the induction step.

Thus irreducible words are precisely those arising from left-to-right post-
fix readings of binary search trees, which are precisely the lexicographically
minimal representatives of the elements of Sn by Proposition 5.2. Hence there
is a unique irreducible representative of each element of Sn, and so (A,R) is
confluent. 5.3

As a consequence of Proposition 5.3, Sn admits a regular language of
unique normal forms, namely the language of words that do not include a
left-hand side of a rule in R:

L = A∗ −A∗{cavb : a 6 b < c, v ∈ A∗}A∗.

Thus L is the language of irreducible words of the rewriting system (A,R).

5.2 Biautomaticity

The aim of this section is to prove that (A, L) is a biautomatic
structure for Sn. It is necessary to prove that γLδL, γLδR, LγδL, and LγδR are
regular.

5.2.1 Left-multiplication

We begin by analyzing the reduction that can occur when we
left-multiply a normal form word by a single generator and then rewrite back

21

to a normal form word. Let w ∈ L and γ ∈ A and consider reducing γw to
normal form.

Lemma 5.4. After k steps, the reduction of γw must yield a word ukγvk such that

1. w = ukvk;

2. γ is greater than every symbol of uk;

3. if a rule cavb →R acvb applies to ukγvk, then c is the distinguished symbol γ,
the first symbol of vk is a, and some other symbol of vk is b.

Proof of 5.4. The proof is by induction on k. Let u0 = ε and v0 = w. Then for
k = 0, conditions 1 and 2 hold immediately. Since vk = w is irreducible, if any
rule in R applies to ukγvk = γw, it must apply as condition 3 specifies. This
proves the base case of the induction.

Now assume that the result holds for k = ℓ−1; we aim to show it holds for
k = ℓ. So after ℓ−1 steps, reduction of γw yields uℓ−1γvℓ−1 with conditions 1–
3 being satisfied for k = ℓ − 1. We will use the fact that conditions 1–3 hold
for k = ℓ − 1 to prove conditions 1 and 2 for k = ℓ; condition 3 for k = ℓ then
follows from conditions 1 and 2 for k = ℓ.

If uℓ−1γvℓ−1 is irreducible, no further reduction takes place and there is
nothing more to prove. So suppose uℓ−1γvℓ−1 is not irreducible. Then by
condition 3 for k = ℓ−1 we can let α ∈ A and vℓ ∈ A∗ be such that vℓ−1 = αvℓ
and any rule in R that applies to uℓ−1γvℓ−1 has c = γ, a = α, and b being
some symbol in vℓ. Note that by the definition of R, we have c > a and so
γ > α. Applying this rule yields uℓ−1αγvℓ. Let uℓ = uℓ−1α.

By condition 1 for k = ℓ− 1, we have w = uℓ−1vℓ−1 and so w = uℓ−1αvℓ =

uℓvℓ; this establishes condition 1 for k = ℓ.
By condition 2 for k = ℓ − 1, we know γ is greater than every symbol of

uℓ−1. Since γ > α, we deduce that γ is greater than every symbol of uℓ; this
proves condition 2 for k = ℓ.

Finally, suppose some rule cavb →R acvb (where a 6 b < c) applies
to uℓγvℓ. If b lies in uℓ, then cavb is a subword uℓ and thus of w, which
contradicts w being irreducible. If b is the distinguished letter γ, then c lies in
uℓ, which contradicts condition 2 for k = ℓ. Hence b must be some symbol of
vℓ. If ca is a subword of either uℓ or vℓ, then cav ′b is a subword of w = uℓvℓ
for some v ′, contradicting the irreducibility of w. If a is the distinguished
letter γ, then c lies in uk, again contradicting the condition 2 for k = ℓ. The
only remaining possibility is that c is the distinguished symbol γ, with a being
the first symbol of vk. This proves condition 3 for k = ℓ. 5.4

Let w ∈ L and γ ∈ A. By Lemma 5.4, rewriting γw to an irreducible word
consists of moving γ to the right by applying rules cavb →R acvb. Let us
consider the symbols in γw that play the role of b in these rules. Let β1 be
the first symbol playing this role. Apply rules involving β1 as many times as
possibly, say k1 times. This yields a word uk1

γvk1
. Let αk1

be the first symbol
of vk1

. Suppose this word uk1
γvk1

is not irreducible. So some rule from R

applies, with some symbol β2 6= β1 playing the role of b. Then αk1
> β1

(since otherwise a rule from R would apply with c = γ, a = αk1
, and b = β1).

Since a rule applies with c = γ, a = αk1
, and b = β2, we have β2 > αk1

> β1.
Apply rules involving β2 as many times as possible, say k2 times, yielding
uk2

γvk2
. Either this word is irreducible or, via the reasoning above, it can

be reduced by a rule in R with b being β3 > β2. Repeating this reasoning,

22

we set a sequence β1 < β2 < . . . which must terminate at some βℓ with an
irreducible word ukℓ

γvkℓ
since the alphabet A is finite.

Let

Hb =
{
(pcqrbs, pqcrbs) : p, r, s ∈ A∗,

b, c ∈ A,

c > b,

q ∈ {a ∈ A : a 6 b}+
}
.

Clearly, (pcqrbs, pqcrbs) ∈ Hb if and only if pcqrbs reduces to pqcrbs using
only rules from R applied to the distinguished letters c and b with a being the
successive letters of q. Hence, by the reasoning in the preceding paragraph,
and using the same notation,

(γw,ukℓ
γvkℓ

) ∈ Hβ1
◦Hβ2

◦ · · · ◦Hβℓ
.

Therefore,

(w, x) ∈ γL ⇐⇒ (γw, x) ∈
(

(γL)× L
)

∩

n
⋃

ℓ=0

⋃

β1,...,βℓ∈A
β1<...<βℓ

Hβ1
◦ · · · ◦Hβℓ

,

or equivalently

(γ, ε)γL =
(

(γL)× L
)

∩

n
⋃

ℓ=0

⋃

β1,...,βℓ∈A
β1<...<βℓ

Hβ1
◦ · · · ◦Hβℓ

.

(Note that the intersection with (γL) × L is necessary because Hb also relates
pairs of words that are not in this set.)

It is easy to see that Hb is a rational relation, since a transducer recognizing
it only needs to store the symbol c in its state, check that the other symbols on
the two tapes match, and that the contents of the two tapes are of the required
form. Hence (γ, ε)γL is a rational relation and so γL is a rational relation.
Since (w, x) ∈ γL implies |x| = |w| + 1, it follows from Proposition 2.3 that
γLδR and γLδL are regular.

5.2.2 Right-multiplication

We now turn to right multiplication. By analogy with the hy-
poplactic monoid, we will call any strictly decreasing word in A∗ a column.
Notice that since A is finite, there are only finitely many distinct columns.

Lemma 5.5. Let w ∈ L, and let w = α(1) · · ·α(k) be the decomposition of w into
maximal columns. If α(i) = α(i+h) with h > 1, then |α(i)| = |α(i+h)| = 1.

Proof of 5.5. Suppose that α(i) = α(i+h). Suppose, with the aim of obtaining
a contradiction, that |α(i)| > 2. Suppose α(i) = α ′ca, where c, a ∈ A and
α ′ ∈ A∗. Let b = a. Then c > a (since α(i) is a decreasing word) and so the
condition a 6 b < c holds. Thus the rewriting rule cavb →R acvb applies
with c, a being the rightmost two symbols in α(i) and b being the rightmost
symbol in α(i+h) (which is, by hypothesis, equal to α(i)). Hence w is not
irreducible, which contradicts w lying in L 5.5

23

We will analyze the reduction that can occur when we right-multiply a
normal form word by a single generator and then rewrite back to a normal
form word. Let w ∈ L and γ ∈ A and consider reducing wγ to normal form.
Suppose w = α1 · · ·α|w| for αi ∈ A. Let G = {i ∈ {1, . . . , |w|} : αi 6 γ} and
consider the word

x =
[∏

16i6|w|
i∈G

αi

][∏

16j6|w|
j/∈G

αj

]

γ.

Lemma 5.6. The word x is irreducible with respect to R, and wγ →∗

R x. Furthermore,
rewriting of wγ to x only requires applying rules from R with b = γ.

Proof of 5.6. First of all, notice that the rules in R apply with b = γ to move
all letters less than or equal to γ to the left of those strictly greater than γ.
So wγ certainly rewrites to x in the given way; it remains to show that x is
irreducible.

Suppose, with the aim of obtaining a contradiction, that some rule in R

applies to x. Then x contains a subword cavb for some a 6 b < c and v ∈ A∗.
Now, it is impossible to have b = γ, for this implies a = αi for some i ∈ G

and c = αj for some j /∈ G, which in turn implies that a appears to the left of
c in x, which contradicts the form of the subword cavb.

It is also impossible to have c = αi for i ∈ G and b = αj for j /∈ G, for then
(by definition of G) c 6 γ < b, contradicting the form of the subword cavb.

So c and b (and hence the whole subword cavb) must either both lie within
the product of the αi with i ∈ G, or both lie within the product of the αj with
j /∈ G. In either case, if the letters ca were adjacent in the original word w,
it would not have been irreducible, since the rewriting of wγ to x using R

preserves the order in which the αi (with i ∈ G) appear and the order in
which the αj (with j /∈ G) appear.

Consider first the case that cavb lies wholly within the product αi with
i ∈ G. Then, since ca were not adjacent in the original word w, we have
c = αi and a = αi+h with i, i + h ∈ G and i + 1, . . . , i + h − 1 /∈ G for some
h > 2. Let c ′ = αi+h−1. Then, by definition of G, we have a 6 b < c ′ and so
there is a left-hand side of a rule in R in w, contradicting w being irreducible.

Now consider the second case, where cavb lies wholly within the product
αj with j /∈ G. Then, since ca were not adjacent in the original word w, we
have c = αj and a = αj+h with j, j+h /∈ G and j+1, . . . , j+h−1 ∈ G for some
h > 2. Let a ′ = αj+1. Then, by definition of G, we have a ′ 6 b < c and so
there is a left-hand side of a rule in R in w, contradicting w being irreducible.

So each case leads to a contradiction. Hence x is irreducible. 5.6

Recall that a word w ∈ L admits a decomposition w = α(1)α(2) · · ·α(k)

into maximal columns. Let I be the set of indices i such that the letter αi

of w is itself one of the columns α(j). That is, αi does not lie in a column
α(j) containing two or more symbols from A. Since the length of columns is
bounded by n, there is a bounded number of possible columns of length at
least 2. Each of these columns appears at most once in w by Lemma 5.5. Since
each of these columns has length at most n, there is a bound M (dependent
only on n) on the number of indices not in I.

Lemma 5.7. For all i, i+ h ∈ I, we have αi 6 αi+h.

Proof of 5.7. Suppose, with the aim of obtaining a contradiction, that for some
i, i + h ∈ I, we have αi > αi+h. Since αi+h is a column (a maximal strictly

24

decreasing subword of), we have αi+h−1 6 αi+h. In particular, h > 2. Since
αi > αi+h > αi+h−1, the sequence αi, . . . , αi+h−1 starts greater than αi+h

and ends less than or equal to αi+h. So there must be some g ∈ {0, . . . , h− 2}

such that αi+g > αi+h > αi+g+1. Hence a rule from R applies to w with c =

αi+g, a = αi+g+1, and b = αi+h, which contradicts w being irreducible. 5.7

Thus, the rewriting of wγ to x does not alter the relative positions of sym-
bols αi with i ∈ I. So only symbols with subscripts not in I have to be moved
rightwards using rules in R with b = γ in order to rewrite wγ to x. That is,
at most M symbols, each greater than γ, must be moved to the right of all
symbols less or equal to γ (excepting γ itself).

Since the symbol γ is not moved during this rewriting, we will consider
the relation

L ′

γ = {(w, x ′) : w ∈ L,w →∗

R x ′γ ∈ L},

Notice that Lγ = L ′

γ(ε, γ), and so if a synchronous transducer recognizes L ′

γ,
it recognizes Lγ.

Let

Jγ =
{
(pcqr, pqcr) : p ∈ A∗

q ∈ {a ∈ A : a 6 γ}+

r ∈ {a ∈ A : a > γ}∗

c ∈ A, c > γ
}
.

Notice that if (pcqr, pqcr) ∈ Jγ, then pqcrγ is the word obtained from pcqrγ

by applying rewriting rules cavb →R acvb with γ being b and successive
letters from q being a. Thus if we start with our word w and apply Jγ, we
move the rightmost letter c that is greater than γ but which lies to the left
of some letter less than or equal to γ into its proper place. Iterating this
process will therefore yield x ′. Since there are at most M symbols that have
to be moved rightwards to their proper places to obtain x ′ from w, at most M
iterations are required. Therefore

L ′

γ = (L× (L/γ)) ∩

M
⋃

ℓ=1

Jγ ◦ · · · ◦ Jγ
︸ ︷︷ ︸

ℓ times

(Recall that L/γ = {w ∈ A∗ : wγ ∈ L}. Note that we have to take the intersec-
tion with L× (L/γ) because Jγ ◦ · · · ◦ Jγ may contains pairs (y, z) where y and
zγ are not irreducible.)

It is easy to see that Jγ is a rational relation, since a transducer recognizing
it only needs to store the symbol c in its state, check that the other symbols on
the two tapes match, and that the contents of the two tapes are of the required
form. Hence L ′

γ is a rational relation and so Lγ is a rational relation. Since
(w, x) ∈ Lγ implies |x| = |w| + 1, it follows from Proposition 2.3 that LγδR and
LγδL are regular.

In the previous section, we proved that γLδR and γLδL are regular. Thus
we have proved:

Theorem 5.8. (A, L) is a biautomatic structure for the sylvester monoid Sn.

25

6 references

[Ber79] J. Berstel. Transductions and context-free languages, vol. 38 of Leitfäden der
Angewandten Mathematik und Mechanik [Guides to Applied Mathematics
and Mechanics]. B.G. Teubner, Stuttgart, 1979.

[BN98] F. Baader & T. Nipkow. Term rewriting and all that. Cambridge Univer-
sity Press, Cambridge, 1998.

[CEK+01] J. Cassaigne, M. Espie, D. Krob, J. C. Novelli, & F. Hivert. ‘The Chinese
monoid’. Internat. J. Algebra Comput., 11, no. 3 (2001), pp. 301–334. doi:
10.1142/S0218196701000425.

[CGM] A. J. Cain, R. Gray, & A. Malheiro. ‘On finite complete rewriting
systems, finite derivation type, and automaticity for homogeneous
monoids’. arXiv: 1407.7428.

[CGM15] A. J. Cain, R. D. Gray, & A. Malheiro. ‘Finite Gröbner–Shirshov
bases for Plactic algebras and biautomatic structures for Plactic
monoids’. J. Algebra, 423 (2015), pp. 37–53. arXiv: 1205.4885, doi:
10.1016/j.jalgebra.2014.09.037.

[CM] A. J. Cain & A. Malheiro. ‘Deciding conjugacy in sylvester monoids
and other homogeneous monoids’. arXiv: 1404.2618.

[CO13] F. Cedó & J. Okniński. ‘Minimal Spectrum and the Radical of Chinese
Algebras’. Algebr. Represent. Theory, 16, no. 4 (2013), pp. 905–930. doi:
10.1007/s10468-012-9339-1.

[CQ08] Y. Chen & J. Qiu. ‘Gröbner-Shirshov basis for the Chinese
monoid’. J. Algebra Appl., 7, no. 5 (2008), pp. 623–628. doi:
10.1142/S0219498808003028.

[CRRT01] C. M. Campbell, E. F. Robertson, N. Ruškuc, & R. M. Thomas. ‘Au-
tomatic semigroups’. Theoret. Comput. Sci., 250, no. 1–2 (2001), pp.
365–391. doi: 10.1016/S0304-3975(99)00151-6.

[DK94] G. Duchamp & D. Krob. ‘Plactic-growth-like monoids’. In Words, lan-
guages and combinatorics, II (Kyoto, 1992), pp. 124–142. World Sci. Publ.,
River Edge, NJ, 1994.

[DRR99] A. J. Duncan, E. F. Robertson, & N. Ruškuc. ‘Automatic monoids and
change of generators’. Math. Proc. Cambridge Philos. Soc., 127, no. 3

(1999), pp. 403–409. doi: 10.1017/S0305004199003722.

[ECH+92] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
& W. P. Thurston. Word Processing in Groups. Jones & Bartlett, Boston,
Mass., 1992.

[FS93] C. Frougny & J. Sakarovitch. ‘Synchronized rational relations of finite
and infinite words’. Theoret. Comput. Sci., 108, no. 1 (1993), pp. 45–
82. International Colloquium on Words, Languages and Combinatorics
(Kyoto, 1990). doi: 10.1016/0304-3975(93)90230-Q.

[GK10] E. Güzel Karpuz. ‘Complete rewriting system for the Chinese monoid’.
Appl. Math. Sci. (Ruse), 4, no. 21-24 (2010), pp. 1081–1087.

[Hey00] A. Heyworth. ‘Rewriting as a special case of non-commutative Gröb-
ner basis theory’. In Computational and geometric aspects of modern
algebra (Edinburgh, 1998), vol. 275 of London Math. Soc. Lecture Note
Ser., pp. 101–105. Cambridge Univ. Press, Cambridge, 2000. doi:
10.1017/CBO9780511600609.009.

[HNT05] F. Hivert, J. C. Novelli, & J. Y. Thibon. ‘The algebra of binary search
trees’. Theoret. Comput. Sci., 339, no. 1 (2005), pp. 129–165. doi:
10.1016/j.tcs.2005.01.012.

[HT05] M. Hoffmann & R. M. Thomas. ‘Biautomatic semigroups’. In Funda-
mentals of computation theory, vol. 3623 of Lecture Notes in Comput. Sci.,
pp. 56–67. Springer, Berlin, 2005. doi: 10.1007/11537311_6.

26

http://dx.doi.org/10.1142/S0218196701000425
http://arxiv.org/abs/1407.7428
http://arxiv.org/abs/1205.4885
http://dx.doi.org/10.1016/j.jalgebra.2014.09.037
http://arxiv.org/abs/1404.2618
http://dx.doi.org/10.1007/s10468-012-9339-1
http://dx.doi.org/10.1142/S0219498808003028
http://dx.doi.org/10.1016/S0304-3975(99)00151-6
http://dx.doi.org/10.1017/S0305004199003722
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1017/CBO9780511600609.009
http://dx.doi.org/10.1016/j.tcs.2005.01.012
http://dx.doi.org/10.1007/11537311_6

[HU79] J. E. Hopcroft & J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison–Wesley Publishing Co., Reading,
Mass., 1979.

[JO06] J. Jaszuńska & J. Okniński. ‘Chinese algebras of rank 3’. Comm. Algebra,
34, no. 8 (2006), pp. 2745–2754. doi: 10.1080/00927870600651760.

[JO11] J. Jaszuńska & J. Okniński. ‘Structure of Chinese algebras’. J. Algebra,
346 (2011), pp. 31–81. doi: 10.1016/j.jalgebra.2011.08.020.

[KT97] D. Krob & J. Y. Thibon. ‘Noncommutative symmetric functions. IV.
Quantum linear groups and Hecke algebras at q = 0’. J. Algebraic
Combin., 6, no. 4 (1997), pp. 339–376. doi: 10.1023/A:1008673127310.

[Lot02] M. Lothaire. Algebraic combinatorics on words, vol. 90 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2002.

[LR98] J. L. Loday & M. O. Ronco. ‘Hopf algebra of the planar binary trees’.
Adv. Math., 139, no. 2 (1998), pp. 293–309. doi: 10.1006/aima.1998.1759.

[Nov00] J. C. Novelli. ‘On the hypoplactic monoid’. Discrete Math., 217, no. 1-3
(2000), pp. 315–336. Formal power series and algebraic combinatorics
(Vienna, 1997). doi: 10.1016/S0012-365X(99)00270-8.

[Ott84] F. Otto. ‘Conjugacy in monoids with a special Church-Rosser presen-
tation is decidable’. Semigroup Forum, 29, no. 1-2 (1984), pp. 223–240.
doi: 10.1007/BF02573327.

[Ufn95] V. A. Ufnarovskij. ‘Combinatorial and asymptotic methods in algebra’.
In Algebra, VI, vol. 57 of Encyclopaedia of Mathematical Sciences, pp. 1–
196. Springer, Berlin, 1995.

27

http://dx.doi.org/10.1080/00927870600651760
http://dx.doi.org/10.1016/j.jalgebra.2011.08.020
http://dx.doi.org/10.1023/A:1008673127310
http://dx.doi.org/10.1006/aima.1998.1759
http://dx.doi.org/10.1016/S0012-365X(99)00270-8
http://dx.doi.org/10.1007/BF02573327

	Title
	Dedication
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Words and presentations
	2.2 String rewriting systems
	2.3 Automaticity and biautomaticity
	2.4 Rational relations

	3 Chinese monoid
	3.1 Staircases
	3.2 Finite complete rewriting system
	3.3 Algorithm for right-multiplication
	3.4 Algorithm for left-multiplication
	3.5 Biautomaticity
	3.5.1 Right-multiplication by transducer
	3.5.2 Left-multiplication by transducer
	3.5.3 Deducing biautomaticity

	4 Hypoplactic monoid
	4.1 Quasi-ribbon tableaux
	4.2 Finite complete rewriting system
	4.3 Biautomaticity
	4.3.1 Right- and left-multiplication by transducer
	4.3.2 Deducing biautomaticity

	5 Sylvester monoid
	5.1 Complete rewriting system
	5.2 Biautomaticity
	5.2.1 Left-multiplication
	5.2.2 Right-multiplication

	6 References

