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Polymorphic Rewriting Conserves Algebraic Confluence !

Val Breazu-Tannen? Jean Gallier®

Department of Computer and Information Science
University of Pennsylvania
200 South 33rd St., Philadelphia, PA 19104, USA

Abstract. We study combinations of many-sorted algebraic term rewriting systems and poly-
morphic lambda term rewriting. Algebraic and lambda terms are mixed by adding the symbols
of the algebraic signature to the polymorphic lambda calculus, as higher-order constants.

We show that if a many-sorted algebraic rewrite system R has the Church-Rosser property (is
confluent), then R + B + type-8 + type-n rewriting of mixed terms has the Church-Rosser
property too.

n reduction does not commute with algebraic reduction, in general. However, using long normal
forms, we show that if R is canonical (confluent and strongly normalizing) then equational
provability from R + 3 + n + type-# + type-n is still decidable.

1 Introduction

From a very general point of view, this paper is about the interaction between “first-order compu-
tation” modeled by algebraic rewriting, and “higher-order polymorphic computation” modeled by
reduction in the Girard-Reynolds polymorphic lambda calculus. Our results permit us to conclude
that this interaction is quite smooth and pleasant.

Changing the perspective, we regard algebraic rewrite systems as tools for the proof-theoretic
analysis of algebraic equational theories, and we recall that such algebraic theories are used to
model data type specifications [EM85]. Then, our results continue to confirm a thesis put forward
in a series of papers [MR86, BTM8&7, BT88] , namely that strongly normalizing type disciplines
interact nicely with algebraic data type specifications.

The preservation of the confluence of algebraic rewriting is a case in point. We show in this paper
that the very powerful, impredicative, but strongly normalizing, polymorphic type discipline yields
confluent rewriting when combined with confluent algebraic rewriting. In contrast, this fails for
type disciplines which allow the type-checking of fized points, as in lambda calculi with recursive
types, in particular in the untyped lambda calculus. Klop has shown that the untyped lambda

'To appear in Information and Computation
2Partially supported by ONR Grant NOOO14-88-K-0634 and by ARO Grant DAAG29-84-K-0061
3Partially supported by ONR Grant NOOO14-88--0593.



calculus enriched with surjective pairing reduction does not have the Church-Rosser (CR) property
(see [K1080], or [Bar84], pp. 403-407; the proof uses Turing’s fixed point combinator), even though
the rewrite system consisting of the surjective pairing rules alone is Church-Rosser, and, of course,
B-reduction in isolation is CR. Another counterexample can be adapted from [BTMS87], see [BT88].
We present here a further simplification observed by J. W. Klop (personal communication).

Consider the following algebraic rewrite system, call it R. There is one sort int, the signature is
minus : int —int—int  succ: int—int 0,1: int
and the rules are

mimuszzr — 0

minus (succx)r — 1.

(We write the algebraic terms in curried form, anticipating their mixing with lambda terms.)

This algebraic system has the CR property (use Newman’s Lemma [New42]). However, the CR
property fails for 3 R-reduction on typed lambda terms with recursive types (in particular untyped
lambda terms) constructed using also symbols from R’s signature.

Indeed, let £ be a type such that £ = £ — int and let

o ¥ (Az:&. suce (xz) ) ( Ax:€. suce (zx) ) .

We see that ® type-checks with type int and is a fixed point of succ in the sense that ® 2, succ .

Thus, we have

0 L minus ® & 2~ minus (succ @) @ £

All these counterexamples exploit the capability of expressing fixed points. Because of the nor-
malization property, no such fixed points can be expressed in the polymorphic lambda calculus
(AY). And, in fact, we make essential use of the normalization property to prove the main result of
this paper, (see section 4) which states that combining a confluent many-sorted algebraic rewrite
system with almost all kinds (except 1) of polymorphic term reduction notions gives a system that,
globally, is confluent.

A brief summary of the technical setting for our result goes as follows. Given a many-sorted
signature ¥, we construct mized lambda terms with the sorts of ¥ as constant “base” types and
from the symbols in X, seen, by currying, as higher-order constants. Then, given a set R of rewrite
rules between algebraic ¥-terms, we show that if R is CR on algebraic ¥-terms, then R + 8 +
type-B + type-n rewriting of mixed terms has the Church-Rosser property too. (Notice the absence
of n; a counterexample appears in section 4.) An obvious, but important, feature of R-rewriting
on mixed terms is that this is done such that the variables occurring in the algebraic rules can be
instantiated with any mixed terms, as long as they are of the same “base” type as the variables
they replace.

Our result and its proof are direct generalizations of the corresponding result for the simply typed
lambda calculus presented in [BT88]. However, since the publication of [BT88], we have found an
error in the proof of one of its lemmas (specifically lemma 2.2) used there for the confluence result.



In this paper we correct the error, and generalize the statement of the lemma—from simply typed
normal forms to arbitrary polymorphic terms (see theorem 3.19).

We compare this result with those of [Toy87] and [K1o80]. Toyama shows that the direct sum of two
CR algebraic rewriting systems is also CR. For the direct sum, the two components are required to
have disjoint signatures. In our case, note that while the symbols of the algebraic signature do not
play any special role in defining S-reduction, there is one “operation” which is implicit in algebraic
rewriting and which is therefore shared with S-reduction, namely application, and indeed, Toyama’s
methods do not seem to help in this situation. Our putting together of an algebraic rewrite system
and a lambda calculus is more like Klop’s direct sum of combinatory reduction systems for which, as
shown in [Klo80], preservation of the CR property fails, in general, (see the examples above). Klop
proves preservation of CR under certain restrictions, but he keeps the untyped lambda calculus as
one of the components and imposes the restrictions on the algebraic reduction rules. In contrast,
our algebraic reduction rules are totally arbitrary, but we restrict the lambda terms using the
polymorphic type discipline. 4

Some related work has been done since [BT88] appeared. Dougherty [Dou91] shows that our
reduction mapping technique (see section 4) can also be used to show conservation of CR when
one adds algebraic rewriting to 3-reduction of strongly normalizing terms of the untyped lambda
calculus. It is not clear how one could, from such a result about untyped terms, directly derive the
main result of this paper, or even a weaker version of it involving just one-sorted algebraic theories.
Working in a different direction, Howard and Mitchell [HM90] impose restrictions on the algebraic
rewrite systems similar to those used in [Klo80], and show conservation of CR when such rewriting
is added to the simply typed lambda calculus enriched with fixed point operators.

Our result about CR preservation is relevant to the implementation of functional programming
languages, especially using parallel reduction strategies (see [Hud86] for a survey). Since it guar-
antees that results are independent of the computational strategy, the Church-Rosser property is
the theoretical foundation for parallel evaluation. For functional languages based on the untyped
lambda calculus (such as SCHEME [AS85]) CR depends on the choice of the first-order compu-
tational rules. Useful optimizations such as (2 —2) — 0 and (succ(z) —2) — 1 (see the
counterexample above) or (if bthen 2 else2) — & (see [Klo80]) are ruled out. Our result shows
that, in contrast, strongly typed functional languages (such as ML [GMW79] and Miranda [Tur85])
are completely flexible from this point of view. Beware: even typed functional languages feature
recursion which causes the failure of CR just like the untyped fixed points do. The difference is that
in languages in which the use of recursion can be decidably isolated one can identify the chunks of
program for which CR holds and parallel-execute them. This is not the case in untyped languages
where non-typable “hacks” may hide the failure of CR.

Combining our result with the one on strong normalization in a companion paper [BTG91], we
obtain the following: if R is canonical (confluent and strongly normalizing) on algebraic terms,
then R + 3 + type-8 + type-n is canonical on mixed terms. Again, we should point out that even

*In the presence of types, the surjective pairing rules must be postulated for every pair of types, which takes us
out of the framework of algebraic rewrite systems. Nonetheless, it is still true that the simply typed lambda calculus
with product types and surjective pairing has the CR property [Pot81]. The weak CR property is easy to check,
hence, by Newman’s Lemma [New42], the CR result also follows from the fact that the typed lambda calculus with
surjective pairing is strongly normalizing (SN) [LS86]. (We also know of three unpublished proofs of this SN result,
all obtained independently [dV82, Ber84, Dou86).)



direct sums of canonical systems are not necessarily canonical, as was shown by Barendregt and
Klop [Kl1o87].

The reader may wonder what happens with 7-reduction. An example is given in section 4 which
shows that n-reduction does not commute even with the simplest kind of algebraic reduction. We
do not regard this as a significant fact since the computational interpretation of n-reduction is
quite unclear. However, 7, regarded as an equational ariom, may be useful when reasoning about
programs. In view of this, we examine the problem of deciding equational reasoning from R + 3
+ 1 + type-8 + type-n. We show in section 5 that if R is canonical then such reasoning is still
decidable.

2 Mixing algebra and polymorphic lambda calculus

This section is devoted to developing the notation used in the paper. Our notation will depart from
that of recent presentations of the polymorphic lambda calculus [BMM90, BT C88]. These papers
exhibit a notation using typing judgements or typing relationships, based on the ideas of [Rey74].
Such a notation allows elegant presentations of some of the equational proof systems and of the
set-theoretic and categorical models. We feel however that it does not best support the intuition
needed in proofs depending heavily on the combinatorics of terms. For example, the analysis of the
reduction mechanisms is made more cumbersome by the presence of type assignments (contexts).
Ideally, we would like a notation as simple as that developed for the untyped lambda calculus
in [Bar84]. As demonstrated very well by Statman’s work, the traditional notation for the simply
typed lambda calculus (e.g., [Fri75]) also helps the combinatorial intuition [Sta82]. This notation
uses variables which come from an a priori type-indexed collection: therefore a variable has the
same type everywhere it is used. Can the same be done in the polymorphic lambda calculus?

In fact, this is the notation used by Girard [Gir72] and later adopted in [Sta81, FLO83]. It poses
the following conceptual problem: if 2 is a variable of type o which occurs bound in a term M
how do we define the result of a type substitution on M which might modify 0?7 We would rather
avoid this problem, but, of course, we also want to avoid the use of judgements. The idea is to
fix the types of the free variables, but only within each term in which they occur. Some checks
will be needed in the definition of terms in order for this to be done consistently. Based on this
idea and starting with an arbitrary many-sorted algebraic signature, we will define mized terms
i.e., polymorphic lambda terms constructed with the symbols of the signature seen as higher-order
constants, as follows.

Let S be a set of sorts and let £ an S-sorted algebraic signature. Each function symbol f € X has
an arity, which is a string s1---s, € 5%, n > 0, and a sort s € § intending to symbolize a possibly
heterogenous operation which takes arguments of sorts (in order) s;,...,s, and returns a result of
sort s.

Definition 2.1 (Types)
Let V be a countably infinite set of type variables. The set T of type expressions (types) is defined
by the following grammar:

og:i:= s|t|o—o|Vt.o



where s ranges over S, and t over V.

Therefore, the “base” types are exactly the sorts of the signature. Free and bound variables are
defined in the usual way. We denote by FTV (o) the set of type variables which are free in o.
We will identify the type expressions which differ only in the name of the bound variables, and
then adopt Barendregt’s variable convention [Bar84}: in a given mathematical context, such as a
definition or a proof, all bound variables are chosen to be different from all free variables.

A type substitution is a partial map # : V —— 7 with finite domain. In agreement with the variable
convention, it is always assumed that the variables belonging to the domains of the substitutions
differ from the bound variables used in the same mathematical context. The result of applying 4 to
o (its straightforward definition is omitted) is denoted by o[6] and, if 6 is the identity everywhere
except 6(t) = 7, also by o[r/t].

We give now a simultaneous inductive definition of the terms M, their types, their set of free
variables FV (M), and the types those free variables have in M.

Definition 2.2 (Terms)
Let X be a countably infinite set of (term) variables.

Variables. For any z € X, and any o € 7, the pair (z,0) is a term of type o with exactly one

free variable, z, (F'V((z,0)) . {z}) whose type in (z,0) is 0.

Constants. For any f € ¥, f is a term of type sy —---— s, — s (where s;---s, and s are the
arity and the sort of f) without free variables (FV( f) def 0).

Application. If M is a term of type o — 7 and N is a term of type o, and each common free

variable of M and N has the same type in M and N, then (M N) is a term of type T with

FV(MN) % FV(M)UFV(N) and such that the type of each free 2 in MN is the same as

the type of z in M or else in V.

Abstraction. For any z € X, and any o0 € 7, if M is a term of type T such that if 2 € FV(M)

then z has type o in M, then (Az:o. M) is a term of type 0 — 7. with FV(Az:0. M) def
FV(M)\{z} and whose free variables have the same types as in Al.

Type application. For any 7 € 7, if M is a term of type Vt.o then (M) is a term of type o[7/1],
whose free variables are the same as those of M and have the same types as in M.

Type abstraction. For any ¢t € V, if M is a term of type o such that for any @ € FV(M), t is
not free in the type of 2 in M, then (At. M) is a term of type Vt. 0 whose free variables are
the same as those of M and have the same types as in M.

We denote by A the set of all terms. This kind of definition produces only “well-typed” terms

(compare with the approach using “raw” terms and type-checking judgements [BTC88]). We will
sometimes abbreviate “the type of M iso” as M : 0.

Once past the stage of formal definitions, we will never need to use the cumbersome notation
(z,0) for terms which consist of just a variable. The type will always be understood from the



mathematical context in which the term is used so we can omit it and write simply z. Moreover,
we will make the convention that when we write (M N), it is understood that M and N satisfy
the conditions in the (Application) clause above, and thus (M N) is a term. Similarly for the other
term constructions. Of course, we adopt the usual notational conventions that facilitate using less
parantheses, such as “application associates to the left”, etc., [Bar84].

Bound type variables and bound term variables in terms are defined as usual. We identify terms
which differ only in the name of bound type variables or bound term variables, and we adopt again
Barendregt’s variable convention (see above).

Definition 2.3 (Free type variables of a term)
The set of free type variables of a term, notation FTV (M), is defined as follows:

FTV((z,0)) ¥ FTV(0)
FTV(f) ¥ ¢

FTV(MN) % FTV(M)uFTV(N)
FTV(\z:o. M) ¥ FTV(e)UFTV(M)
FTV(M7) ¥ FTV(M)U FTV(7)

FTV(M. M) ¥ FTVOANO\{)

Definition 2.4 (Type substitution in a term)
The result of applying a type substitution 8 to a term M, notation M[#)]. is defined as follows:

(,0)0] = (2,0l0])
O
(MN)) = MIBINE)
(Az:0. M)[6] e ol8]. M[6]
(Mo} = Me)(ri6])
(6. M)8] € e M)
One can check that M[f] is always defined, that it is a term, that its type is o[f], where o is the

type of M, that FV(M[8]) = FV (M), and that the type of each free variable z in M[6] is 7[6]
where 7 is the type of z in M.

Definition 2.5 (Term substitution in a term)

A term substitution is a partial map ¢ : X —— A whose domain, denoted domy, is finite. As
for type substitutions, it is always assumed that the variables belonging to the domains of the
substitutions differ from the bound variables used in the same mathematical context. The result of
applying a term substitution ¢ to a term A, notation M|[y], is defined. when possible, as follows:

(z,0)[¢] ) @(x) : 0 then ¢(z) else undefined



def .
(MN)lp] = Mp)(N[p]) (if defined)
(Az:0. M)[¢] € o M{¢p] (if defined)
(MT)[e] &f Mp]r (if defined)
(At M)[¢] % At M[y] (if defined)
Thus, M[g] is not always defined, but when it is, its type is the same as that of M, and one can
also give a characterization of the set of free variables of M[p] and their types in M{[¢] (this is a

bit tedious to state but straightforward). Again, we will make the convention that whenever we
write M[¢], it is understood that M and ¢ satisfy sufficient conditions for M{p] to be defined.

We also denote by [My/zy,...,M,/z,] the substitution ¢ such that domy = {zy,...,z,} and
o(z;) = M;, (hence we denote M[p] by M[My/z1,...,M,/z,)).

We have followed Barendregt [Bar84] in our definitions of substitutions. As pointed out in [Bar84],
appendix C, the strictly rigorous approach is to define substitution before identifying expressions
which differ only in the name of bound variables (a-congruent expressions) and then show that
substitution is compatible with a-congruence, hence is well-defined on «-congruence classes. How-
ever, when this is done, the resulting substitution operation will coincide with the one given above
in a manner that exploits the variable convention.

In defining term rewriting, it is convenient to use contexts [Bar84]. We will only need contexts
with exactly one hole. Let () be a new symbol, distinct from both the symbols in ¥ and from the
variables.

Definition 2.6 (Contexts)

Let w € 7. Conteats with a hole of type w, their types, their set of free variables, and the types
those free variables have, are given by a simultaneous inductive definition using the same clauses
we gave for terms (definition 2.2), plus ezactly one use of the following clause

Hole. The pair {(O,w) is a context of type w and with no free variables.
Instead of “C is a context” we will often write just C[].

Definition 2.7 (Placing a term in a context)
The result of placing a term M in ([ ], notation C'[M], is defined as follows:

(O,w)[M] 4 if M : wthen M else undefined

(CN)M] = C[M]N (if defined)

(NO)M] % NC[M](if defined)

(Az:0. C)[M] o C[M] (if defined)
(CrM] ¥ C[M]r (if defined)

(At.C)M) ¥ At C[M)] (if defined)



Thus, C[M] is not always defined, but when it is, one can see that it is a term, that its type is the
same as that of C, and that one can also give a characterization of the set of free variables of C[M]
and their types in C[M] (this is again a bit tedious to state but straightforward). Yet again, we
will make the convention that whenever we write C[M], it is understood that C[] and M satisfy
sufficient conditions for C[M] to be defined.

It is important to note that contexts are not considered modulo a-congruence. An essential feature
of contexts is that a free variable of M may become bound in C[M]. However, C[M] is a term
and thus it is again considered modulo a-congruence. Note also that for C[M] to be defined, it is
not sufficient that M have the same type as the hole in C[]. For example, if z is free in M with
type o1 and we want to place M in a context of the form Az:03.C, and, moreover, z is still free in
C[M], then we must have o1 = o,.

We are now ready to define the usual reduction relations.
Definition 2.8 (Reduction)

(B-reduction) M L. N iff
there exist C[],z,0, X,Y such that M = C[(Az:0. X)Y] and N = C[X[Y/z]].

(y-reduction) M - N iff
there exist C[),z,0,Z, where @ ¢ FV(Z), such that M = C[Az:0. Z2] and
N = C[Z].

(type-3 reduction) M T8 N
there exist C[],¢,7,X such that M = C[(At. X)r] and N = C[X[r/t]].

(type-n reduction) M I N it
there exist C[],t,Z, where t ¢ FTV(Z), such that M = C[M. Zt] and N = C[Z].

Clearly, if M <% N, where p is any one of 3,1,78 or Tn, then M and N have the same type.
Moreover, FV(M) 2 FV(N) and any common free variable has the same type in both terms. Let

Y 3
Al 5oy I8y

and
A" def /3 U _’_T_,i

T
U =

It is well-known that both AY-reduction and A~-reduction are canonical (i.e., strongly normalizing
and confluent) on all terms. We denote by AVnf(X) and A~ nf(X) the corresponding normal forms
of an arbitrary term X.

Next, we will introduce our notation for algebraic terms and algebraic rewrite rules. There is a well-
known transformation, known as currying, that maps algebraic X-terms into applicative (mixed)
terms. This transformation is an injection. In view of that, we will use directly the curried notation.



Definition 2.9 (Algebraic terms)
Algebraic terms A, their sorts, their set of occurring variables, V(4), and the sorts those variables
have in A are defined by simultaneous induction, as follows.

Variables. For any z € X, and any s € S, the pair (z, s) is an algebraic term of sort s with exactly

one variable, z, (V({z,s)) def {z}) whose sort in (z,s) is s.

Application. If f € ¥ has arity s1 - - - s, and sort s, and if Ay,..., A, are algebraic terms of sorts
S15...,8n respectively, and such that any variable in V(A;)U---UV(A,) has the same sort
in all the terms in which it occurs, then (---(f 41)--- A, ) is an algebraic term, of sort s, with

V(fAr--An) o V(A;)U---UV(A,) and such that the sort of each 2 in f Ay --- A, is the
same as the sort of z in the A;’s in which it occurs.

Clearly, any algebraic term A is a term, its type is its sort, FV(A) = V(A), and the types its free
variables have in A are the sorts they have in A.

Definition 2.10 (Algebraic rewrite rules)
An algebraic rewrite rule is an ordered pair of algebraic terms, written A — B, such that

e A and B have the same sort,
e FV(A) D FV(B) and any common variable has the same sort in both terms, and

e A is not a variable.

Each algebraic rewrite rule determines a reduction relation on all mixed terms, not only the algebraic
ones.

Definition 2.11 (Algebraic reduction)
Given an algebraic rewrite rule r = A — B, we define a reduction relation on terms as follows

M- N iff
there exists a context C and a term substitution ¢ such that

M = C[Al¢]] N = C[B[¢]]

Note that the range of ¢ is not restricted to algebraic terms. Clearly, if M —— N then M and
N have the same type. Moreover, FV(M) D FV(N) and any common free variable has the same
type in both terms. One can easily check the following fact.

Lemma 2.12  If A is algebraic, r is an algebraic rewrite rule, and A —— M, then M is algebraic.



Thus, we can talk about algebraic rewriting on algebraic terms. It is easy to see that currying
establishes the expected relation between many-sorted algebraic rewriting of X-terms [MG85] and
our definition of algebraic rewriting. Indeed, for any many-sorted X-rewrite rule m = p—p’ and
any many-sorted X-terms g, q’

e(m)

¢ = ¢ iff curry(q) — curry(q)

where ¢(m) = curry(p) — curry(p’).

Definition 2.13
Let R be a set of algebraic rewrite rules. Define the following reduction relations on terms:

R def U T AYR def \Y R A"R def )\~ R
—5 = _, — = —U—, — = —U—

r€ER

P
. . p . . . L. p
For any reduction relation —, we will denote by —» its reflexive and transitive closure, by «—

P ) X X
its converse, and by «— the converse of —-. Moreover, the equivalence relation generated by £,
is called the p-convertibility relation while - el 2. U <2 s called the one-step p-convertibility

relation. Clearly, the p-convertibility relation is the same as the reflexive and transitive closure of
p

. . . p
<2 and also the same as the reflexive and transitive closure of —s U «—.

Finally, we state precisely our main result:

. R . . ATR.
(Conservation of Confluence.) If — is confluent on algebraic terms then —= is confluent on
all terms.

3 Algebraic rewriting of higher-order terms

In this section, we show that if algebraic reduction has the Church-Rosser property on algebraic
terms then it also has this property on arbitrary mixed terms. The main result of this section is
the following claim, proved later as theorem 3.19.

. R . . R . .
Claim. If — is confluent on algebraic terms then — is confluent on all terms.

The proof is surprisingly involved, and requires a number of auxiliary lemmas. To understand
where the difficulty lies, we begin sketching the proof.

We show by induction on the size of M that R-confluence holds from M. The only case in which
the induction hypothesis does not immediately apply is the case of an application term. For an
application term M = H Ty --- Ty such that H is an abstraction, a type abstraction, a variable, or
a constant which takes > k arguments, each R-reduction out of M is completely inside H or inside
one of the T;’s. By the induction hypothesis, confluence holds from each of these, and it is easy to
see that this implies that confluence holds from M.

This only leaves us with the case when H is a constant which takes exactly & arguments, in which
case the type of M is a sort. We need to analyze algebraic reductions on such terms, in particular

10



to separate “trunk” (close to the “root” of terms) algebraic reductions from other reductions.
However, this analysis is quite subtle because non-linear rewrite rules (i.e., the left-hand side of the
rule contains multiple occurrences of some variable) can cause problems, as example 3.4 will show.
But first, we develop the necessary technical tool, the notion of trunk decomposition (Toyama

defines a similar concept in [Toy87]).

Definition 3.1 (Algebraic trunk decomposition)
An algebraic trunk decomposition of a term M consists of an algebraic term A (the “trunk”) and

a term substitution ¢ such that M = A[p], dome = FV(A), each variable in A occurs only once,
and for all z € FV(A) the term ¢(z) has the form H T} --- T} where H can only be an abstraction,
a type abstraction, or a variable, and T3,...,T} are terms or types.

The following terminology will be useful. A term whose type is a sort and which has the form
HT,---T; where H can only be an abstraction, a type abstraction, or a variable, and T7,...,T}
are terms or types, is called a nontrunk term. A term fT,...T; whose tvpe is a sort and where f
is a constant taking k arguments, is called a trunk term.

Clearly the type of any term that has an algebraic trunk decomposition must be a sort, but in fact
that’s all it takes:

Lemma 3.2
Any term M whose type is a sort has an algebraic trunk decomposition M = Al[p]. Moreover, this

decomposition is unique up to renaming the free variables of A, and when M is a trunk term, A is

not a variable.

Equipped with this, we attempt to finish the proof of the claim. For an algebraic trunk decompo-
sition M = A[¢p], an algebraic redex must occur either entirely within one of the subterms ¢(z), or
“essentially” within the trunk part. It will be useful to distinguish between such reduction steps.

Definition 3.3 R
We say that A[p] — A'[¢’] is an algebraic trunk reduction step if the R-redex is not a subterm of

one of the p(z)’s. We shall denote algebraic trunk reductions by -E—R—t, and algebraic reductions in the
non-trunk part by ntk (non-trunk reductions). A rewrite step A[p] 1R, () for some z € FV(A)

is called an erasing step, and is denoted as A[y] <R, elz).

Separating the trunk reductions is somewhat subtle because algebraic rewrite rules may be non-
linear, or may erase some of their arguments. Part of the proof of lemma 2.2 (page 85) of [BT88]
is invalidated by this problem. However, the argument can be repaired, as shown in the rest of

R
this section. The following example shows exactly what the problem is: A[p] — A'[¢’] does not

R
necessarily imply that 4 — A’

Example 3.4
Consider the signature {f,g,a.b.c} with one sort s, where f is binary, ¢ is ternary, and a,b,c
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are nullary, and the term rewrite system R = {fzz — gz22, a — b, b — ¢} . Let z be a
higher-order variable of type s —s. While we have the rewrite sequence

flza)(zb) B f(zb)(2b)
B g(2b)(2b)(2b)

nk g(zb)(zc)(zb),
R .
we do not have that fzix2 — gy1y2y3 even if we rename the y’s.

Example 3.4 also shows that nontrunk rewrite steps and trunk rewrite steps cannot always be
permuted. The problem is caused by non-linear rewrite rules.

On the positive side, it is important to note that if a nontrunk term M R-reduces to another term

tR
N, then N cannot be a trunk term. This implies that for a non-trunk reduction M = N, if
M = Aly] is a trunk decomposition of M, then N = A[¢'] for the same trunk A, i.e., the trunk
does not grow in a non-trunk R-reduction.

We will proceed now with the formal development of the proof.

Lemma 3.5
If M = Al iR N, then the following holds:

(1)if M BN, then we can write N = A'l¢'], where for every y € domy’, there is some x € domep
such that ¢'(y) = ¢(2), and A’ is some algebraic term;

(2) if M azid N, then we can write N = A[¢'], where ¢(z;) iR &'(@;) for some z; € domy and

¢ (z;) = p(x;) for all j # 1.

Note that case (2) holds because a nontrunk term cannot rewrite to a trunk term. Thus, the trunk
cannot grow.

Definition 3.6
Given two substitutions ¢ and ¢,, we write ¢; T o iff for every y € domsy there is some

R
z € domp; such that ¢i(z) — 2(y).

Lemma 3.7 A
If M = Alg] — M' = A'[¢], then ¢ T .

Proof. An easy induction on the number of rewrite steps using lemma 3.5. []

Another key observation leading to the proof of the main theorem of this section is the following:
R
M — N iff

ntR tR ntR tR ntR tR ntR tR
M—wo—M —0—...—0— M,y —0—N,
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R
for some My,..., M,_1, where o is relation composition. Stated more concisely, — is the reflexive
L. ntR tR . R ntR tR N
transitive closure of —» o —», notation —» = (—» 0 —»)*.

Then, observe that if we can show the confluence of each square (“tile”) in the diagram below, then
by an induction on the number of such tiles, it is possible to prove our result.

MoME o Bp

l ntR l ntR l ntR

A/ " ntR QI tR P,

e lo
N ME N B9

However, there are some technical difficulties. In particular, the bottom leftmost and top right-
most squares only commute if certain conditions are met. In order to state these conditions, it is
convenient to define the relation « (this relation was introduced by Toyama [Toy87]). The relation
 is needed to deal with rewrite rules that are not left-linear.

Definition 3.8

Given two term substitutions with the same domain, ¢ and ¢, we write ¢; x @2 iff p2(2) = wa(y)
for any z,y such that ¢;(z) = ¢1(y). Given two trunk terms M; = Ay[p1] and My = Azfp,], we
write My «x M, iff A3 = Ay and 1 x pa.

Given any trunk term M = Algq], if M ROM', we know by lemma 3.5 that M’ = A’[¢]] and
that for every y € dom¢], there is some & € dompy such that ¢j(y) = ¢1(z). Thus, we can define
a function h:domey)| — domepy such that ¢} (y) = ¢1(h(y)) for every y € dome). The following
lemmas show the significance of the relation .

Lemma 3.9
Let M and N be trunk terms such that M x N. If M AR, M’, then there is some N' such

that N “& N’ and M' < N'. Furthermore, if M = Alpy], M’ = A'[¢)], and N = Alp;] (with
dompy = domey), letting h: domy| — domepy be any function such that ¢i(y) = ¢1(h(y)) for
every y € domy}, we have N' = A'[¢)] where domyy, = dome| and ¢(y) = @2(h(y)) for every
y € doml,.

Proof. Since M x N, we have ¢; x 3. The left-hand side of the rule used in M B, M’ occurs
completely within A, and since ¢; x ¢y, this same rule also applies to N. It is easily seen by lemma
3.5 that defining ¢ such that domy), = domyy and ©h(y) = @2(h(y)) for every y € domy), letting
N’ = A'[ph)], we have M’ BN and M« N ]

Definition 3.10

We introduce a notation that will be convenient to use in what follows: if FV(A4) = {z1,...,z,}

then we will sometimes write A[By,..., By] instead of A[B1/z1,....Bn/Tn).
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We now prove lemmas that show that each kind of tile involved in the diagram showed earlier
commutes, provided that appropriate conditions hold.

Lemma 3.11

R ntR
Let M be a trunk term. If M = P, M e N, and M x N, then there is some @ such that

ntR tR
P—Q, PxQ@, and N — Q.

tR
Proof. First, note that if M — P contains some erasing step, because all the steps are trunk
tR
rewrites, it must be the last step. We first prove that if M 1R, P, M = N,and M x N, then
tR
there is some ¢} such that P = Q, PxQ,and N 1R, Q.

M B op
lntR lntR
N 2 og

I M 2 Pis not an erasing step, the claim follows from lemma 3.9. If M R pisan erasing
step, then M = A[B1,...,Bn] ek, B; = P. Since M x N, we have N = A[B],...,B},] where

ntR
(B1,...,Bm) x (By,...,B,,)and (Bi,...,Bn) — (Bi,...,B},). Because M x N, therule! — z;
applied to M also applies to N, and the claim holds:

M £ p.
l ntR l ntR
N £ p

tR
We conclude by induction on the length of the reduction sequence M — P, as indicated by the
diagram below:

M oy B op

lntR lntR lntR
N R, Q' R, Q

The details are straightforward. []

We add a few more convenient notations.
Definition 3.12

R R
Given ¢ and ¢’ with domp = dom¢’, the notation ¢ —+ ¢’ means that ¢(z) — ¢'(z) for every
x € domep.
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Definition 3.13 R
For any term M, we write C R(M) iff confluence holds from M, that is, whenever M —» M; and

R R R
M —» M, there is some N such that M; —» N and M; —» N. For any two terms M, N, we
R R
write M | N iff there is some @ such that M — @ and N — Q.

Let S = {M;,...,M,} be a finite set of terms, and assume that C R(M;) holds for every M; € §.
If M; | M; and M; | Mg, then using the confluence from Mj, we also have M; | My. Thus, | is an
equivalence relation on S. Then, for every equivalence class C of |, using the confluence from each

R
M in C, it is easily seen that there is some term Mo € C such that M — M for every M € C.
Consequently, we have the following lemma.

Lemma 3.14
Let ¢ = [My/z1,...,M,[z,] and assume that C R(M;) holds for every M;. Then there is some

R
¢ =[M{/zy,..., M, [2,] such that ¢ — &', and M; | M; implies that M] = M;.
Using lemma 3.14, as in Toyama [Toy87], we have the following.

Lemma 3.15 R R

Let ¢ = [My/21,...,M,/2,] and assume that C R(M;) for every M;. If o —+ ¢1 and ¢ —» @3,
R R

then there is some ¢’ such that p; — ¢, p3 — ¢, and 1 x ¢, Y3 x ¢'.

Using lemma 3.15, we can show the following result analogous to a result of Toyama [Toy87].

Lemma 3.16 iR
Let M = Alg] be a term such that CR(p(x;)) holds for every z; € domep. If M =5 N and

ntR . ntR ntR
M —» P, then there is some Q such that N — @, N x @, P— @, and P x Q.
. B R R
Proof. If M is a trunk term, we have N = A[p1] and P = A[yp;] where ¢ —= ¢ and ¢ —» 5.
R

R
Using lemma 3.15, we obtain some ¢’ such that ¢ — ¢', 03 —» ¢, and 1 x ¢, Py x ¢'. Thus
we can take @ = A[]. If M is a nontrunk term, the lemma holds trivially because M = ¢(z;) for
some z; and C R(¢(z;)) holds by hypothesis. []

Lemma 3.17 a
t
Let M be a trunk term, and assume that R is confluent on algebraic terms. If M — N and
tR tR tR
M —» P, then there is some @) such that N — @ and P — Q.

Proof. Since all the steps are trunk rewrites, every redex occurs within the trunk, and confluence
follows from the confluence of R on algebraic terms. []

We can now prove confluence on terms M = A[y], provided that confluence holds for its nontrunk

, R ntR R
subterms. We use the fact noted earlier that — = (— 0o —)*.
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Lemma 3.18

Let M = A[p]. If CR(p(x;)) holds for every z; € domp and R is confluent on algebraic terms
then CR(M) also holds.

ntR tR

ntR tR
Proof. We first prove that if M — o —» N and M — o —» P, there is some  such that

R R R R
e 5 Q and P g it Q). The result follows from lemma 3.16, lemma 3.11, and lemma
3.17, which allow us to obtain the following diagram where M’ x Q’, M” x @', P « P’, and
N x N':

M Mo R p
l ntR l ntR l ntR
" MEoor R pr
l tR l tR l tR
N MRy R

R
From lemma 3.7, if M = Alg] — M' = A'[¢'], then ¢ T ¢'. Since CR(¢(z;)) holds for every

R
z; € domy and for every y € domy' there is some & € domy such that o(z) — ¢'(y), we conclude
that C R(¢'(y)) holds for every y € domy'. Thus, we can use induction on the number of blocks of
tR tR
i Pid steps to obtain the following confluence diagram:

R ntR tR
— —5

M — P p P
ln o Ln L
NS Q' - Q1 P
lnt}? lntR lntR lnm
N Q- ntR 05 R 0
l tR ltR l ‘R lm
N Eop 2o Eg

O

We can finally prove the main theorem of this section.

Theorem 3.19

R . . R .
If — is confluent on algebraic terms, then — is confluent on all terms.

Proof. We proceed by induction on the size of terms. The case of a variable of non-base type is
trivial, and so is the case of a variable of base type or an algebraic constant of base type since R is
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confluent on algebraic terms. In the case of a term of the form Az:0. M or At. M, since algebraic
rewrite rules only apply within M, we apply the induction hypothesis. In case of an application,
the only case in which the induction hypothesis does not immediately apply is the case of a trunk
term M = fM;... M,. However, if we decompose M as M = A[y], since A is not a variable, each
@(z;) has size strictly smaller that the size of M, and by the induction hypothesis, C R(¢(z;)) holds
for every z; € domp. We conclude by applying lemma 3.18. []

4 Conservation of the Church-Rosser property

The key to the conservation result is the following lemma which shows that algebraic reduction
“commutes” with A™-reduction to normal form.

Lemma 4.1 .
Let r be an algebraic rewrite rule and M, N two terms. If M —— N then A" nf(M) —» A" nf(N).

Proof. Let r=A — B ,let {2y,...,2,} = FV(A),let z1:51,...,2,:5, be the sorts that these
variables have in A (and B), and let s be the sort of A (and B). Since M —— N, there exist C[]
and a substitution ¢ such that M = C[A[g]] and N = C[B[¢]] . Let P; def ele;) i=1,...,n)
SO we can write

M = C[A[P1 /21, . ... Paf24]) N = C[B[Py/21,..., Py/a,]]
Introducing the notation AZ:§. D def AT1:181. . AT Sy D, let
M ¥ ol E AP, - P N € C[(A#:5. B)P, -+ Py

B 8
Clearly, M' — M and N’ — N . Let z be a fresh variable of type s; —---— s, —s. Then

M'=Clz P PJAF:5 A/ 2] N =C[zP--- PJ[A#:5. B 2]

Let Q def A™nf(C[z P1--- P,]) . We claim that @ has the following property:

(*) Any occurrence of z is at the head of a subterm of the form =z P/--- P, where P/ has type
si (¢=1,...,n) and z P[--- P} has type s (and thus cannot be further applied to terms or
types).

Indeed, property (*) holds for C[z P;---P,] and it is easy to check that it is preserved under
B-reduction, 7 3-reduction and 77-reduction (but not under n-reduction; see example 4.4).
Let

M"Y BnfQAT: 5 A/ 2) N" ' Bnf(QIN\+:5. B/ z2)) .
We will show that M is in A™-normal form and since clearly M A~ -converts to M”, we must have
M" = A~nf(M) . Similarly, N” = A™nf(N) . It remains then to prove that M" . N" . Both
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the fact that M” and N” are in A\~-normal form and the fact that M” —» N” are consequences
of the following claim.

Claim. If Z is a term in A~ -normal form having property (*) then

X Y gnf(Z]r7:5. A/ 7)) Y € Bnf(Z\:5. B/ )

are in A~ -normal form and X N Y.

The proof of the claim is by induction on the size of Z. Since Z is in A”-normal form, Z =
Avy. -+ Avg R Ty - - - Ty, where the v;’s are either type variables or of the form y: 7, h is a variable or
a constant, the T};’s are either types or terms in A™-normal form, and, we do nothave v =T, =t

for some type variable ¢ (to avoid having a 7n-redex). As before, we introduce the simpler notation

M. ATy Th, def Avy. oL Avg. BTy - - Ty, . We distinguish two cases.

(h # z) Let D be A or B. Then, Bnf(Z[A#:5. D [z]) = A6.hT]---T;, where T} def T; ifT;is a

type and T def Bnf(T;(AZ:5. D[ z]) if Tj is a term. In the latter case, T} is a A™-normal
form of strictly smaller size than Z. Since property () is inherited by subterms, we can apply
the induction hypothesis and the statement of the claim for Z easily follows.

(h = 2) In this case, by property (), m = n and Z = M. 22Z;---Z, where Z; is a term of type
s$; (i=1,...,n). Each of the Z;’s is a A™-normal form having property (%) and of strictly
smaller size than Z so the induction hypothesis applies. Let

X; ¥ gnfzipw:5A/z) Y ¥ Bnf(zi)75 B/ 2) (i=1,...,n)

Consider X' ¥ )7 A[Xy/®y,.... Xy /2] . By the induction hypothesis, the X;’s are in
A~ -normal form and since their type is a sort, they cannot create A~ -redexes by substitution.
Thus X' is in A™-normal form. Since Z[A7:3. A/z] B-reduces to X’ and since X' is, in
particular, also in #-normal form, we have X = X' . Similarly, Y = A8.B[Y1/21,...,Y,/z,]
and Y is in A7-normal form. Moreover, by induction hypothesis X; - Yi t=1,...,n),
hence X — Y .

This ends the proof of the claim and that of the lemma. []

Remark. At first glance, the previous proof may seem unnecessary complex . Note, however, that,
in general, the simple minded

ATnf(ClA[Py /1, .., Pa/z,]]) = A7 nf (CHAN nf(Py) /21, ... . A" nf (Pp) /4]

fails. Our solution protects the r-redex through §-expansion in order to trace its behavior during
A7 -normalization. Note also that the normalization process can make copies of the r-redex, modify
the arguments P;, and even substitute copies of the modified redex inside the arguments of another
copy of the redex. This “nesting” is resolved by noting the invariance of the property (*) and by
the slightly more general statement that we prove in the claim.
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Lemma 4.2 (Reduction mapping)

AR R
Let R be a set of algebraic rewrite rules, and M, N two terms. If M — N then A" nf(M) —»
A" nf(N).

Proof. By induction on the length of the reduction chain from M to N. Immediate from lemma 4.1.

L

Finally, the main result of the paper:

Theorem 4.3
If R-reduction is confluent on algebraic terms then A\~ R-reduction is confluent on all terms.

AR AR
Proof. Suppose that N «— 1\/[ —= P . By mappmg everything to A™-normal form, we obtain
from lemma 4.2 that A~ nf(N) a— A"nf{(A) — A= nf(P). Then, by 1]1001em 3.19, there exists

A~ A~
a @ such that A™nf(N) — Q — A" nf(P). Thus N — A"nf(N) — Q “«— A"nf(P)«— P.
The proof is summarized by the {ollowing (llagl am.

M
ATR A= NN R
ATnf(M)
\ A" nf(N) ATnf(P

\/

The theorem fails if we replace A~ with AY, as we can see from the following simple example.

Example 4.4

Let s be a sort, and f:s—s. a: s be constants. Consider the algebraic rule r = fz — «a
where z has type s and the term M = Ay:s. fy. Then, M —— Ay:s.a and M - f. Since f
and \y:s. a are AYr-normal forms, confluence fails.
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It is instructive to see how the proof of lemma 4.1 breaks down if we try to extend it to AY-
reduction. Take r and M as before and N = Ay:s.a . Then Ay:s.zy has property (), but after
one n-reduction we obtain just z for which property () fails.

Remark. In short, the proof of theorem 4.3 consists of the observation that the reduction mapping
lemma (lemma 4.2) and the confluence of algebraic reduction on algebraic terms imply the conflu-
ence of mixed reduction on mixed terms. Thérése Hardin uses similar reduction mapping lemmas to
prove confluence results in the strong categorical combinatory logic (see the interpretation method
in [Har89])5. Moreover, Hardin makes the nice observation that reduction mapping lemmas also
work “in reverse”. In our case, using also lemma 2.12, this comes down to the fact that the reduc-
tion mapping lemma (lemma 4.2) and the confluence of mixed reduction on mixed terms imply the
confluence of algebraic reduction on algebraic terms. However, there is no need in our case for the
reduction mapping lemma in order to show that the confluence of mixed reduction on mixed terms

R R
implies the confluence of algebraic reduction on algebraic terms. Indeed, let By «— A —» By

be algebraic reductions on algebraic terms. By confluence of mixed reduction there exists M such
- AR
that By — M «— B, . But the B;’s cannot contain any A~-redex and using lemma 2.12 we
AR AR
conclude that all the terms and reduction steps in the reduction chains B; — M «— B, are

actually algebraic.

5 Deciding equational reasoning (even with )

If we set aside the operational semantics issues, the interest in rewrite systems stems from their
use in automated equational reasoning. How are the results that we have established applicable
to deciding equational provability? The answer depends on what kind of equational reasoning we
have in mind as differences arise depending on whether we insist or not on models with empty
sorts or types. Some care is needed to formulate equational reasoning that is sound in models with
empty types [GM82, LS86, MMMS87]. In particular, one tags equations with finite sets of variables
(which include, but may not be limited to, the variables that are actually free in the equation) and
one defines truth by universally quantifying over all the variables in the tag set. Since we need to
know over which parts of the semantic universe to quantify, we assign tvpes to the variables in the
tag sets.

Definition 5.1 (Equations)

A declaration (sometimes called a type assignment) is a partial function A : X' — T with finite
domain. At the same time, we will also regard declarations as finite sets of pairs z: o such that no
z occurs twice. This allows us to write A C A’ instead of “ domA C domA’ and A'(z) = A(z)

for every z € domA”. We agree to write A,z:0 for AU {2:0} and, by convention, the use of this
notation implies that @ € domA.

A term M is compatible with a declaration A if FV (M) C domA and each x € FV(M) has type
A(z)in M.

An equation is a triple M 2 N such that both M and N are compatible with A.

®We note that the observations were made independently, cf. [BT88].
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We will consider equational proofs in the form of chains of one-step conversions. Just using the
convertibility relation won’t do, because we want to distinguish reasoning that is sound in models
with empty types. This will be done using the declaration part of the equations.

Definition 5.2 (Compatible convertibility)

Let -2 be a reduction relation. M and N are p-convertible under A whenever there exist
Py,..., P (k> 0) such that each P; is compatible with A and such that

M=P & ..., P=N.

Note that if M and N are p-convertible under A then, in particular, they are also p-convertible in
the usual sense, and, moreover, M and N are compatible with A. We are now ready to define two
kinds of equational provability, one that is sound in models which may have empty types and one
that is sound in models which have all types non-empty.

Definition 5.3 (Equational provability)
Let 25 be a reduction relation.

e The equation M =

convertible under A.

N is (MAYBE EMPTY)-provable from p whenever M and N are p-

e The equation M 2 Nis (NOT EMPTY)-provable from p whenever there exists A’ D A such
that M and N are p-convertible under A’.

Remark. These notions of provability can be shown to be equivalent to others given by proof rules

and axioms, as in [BTCS88]. In that case, the correspondent of the algebraic rewrite rule A — B

would be the axiom A 2 B where domA &' FV(A) and A(z) is the type that 2 has in A. The

difference between the correspondents of (MAYBE EMPTY) and (NOT EMPTY) would be that
the latter would have the additional “discharge” rule

Azio
/] =

M N

— where @ ¢ FV(M)U FV(N).
M=N

(See [GM82, LS86, MMMS87, BTC88] for more on these and related proof systems and their
(in)completeness properties.)

As a corollary of the main result of this paper (theorem 4.3) and the main result of a companion
paper (theorem 5.7 of [BTG91]), we obtain that if R is canonical (confluent and strongly normaliz-
ing) on algebraic terms then both (MAYBE EMPTY)- and (NOT EMPTY)-provability from A" R
= R + B + type-8 + type-n are decidable. This follows from the following simple fact.

Proposition 5.4
Let R be confluent on algebraic terms. Then, M and N are A\~ R-convertible under A iff M and

AR _ A"R
N are compatible with A and there exists P such that M —s P «— N
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Proof. By theorem 4.3 TR s confluent, therefore in one direction we can show by induction
on the length of chain of conversions that we can obtain two chains of reductions to the same P
(well-known argument). In the other direction, we need only observe that if M is compatible with

AR
A and M —» X then X is also compatible with A. [7]
This proposition, together with theorem 5.7 of [BTG91], yields immediately the following.

Corollary 5.5

If R is confluent on algebraic terms then M A N is (MAYBE EMPTY)-provable from A~ R iff it is
(NOT EMPTY)-provable from the same. Moreover, if R is also strongly normalizing on algebraic
terms, the provabilities are further equivalent to A~ nf(M) = A" nf(N).

Therefore, when R is canonical on algebraic terms, the decision procedure for the provability (both
kinds) of an equation from A~ R is to take both sides of the equation to A~ R-normal form and to
test if the results coincide.

Now, what happens if we insist that 7 be available too? In view of the counterexample presented
in section 4 (example 4.4), there are algebraic rewrite systems R which are canonical but such that
MY R-reduction is not confluent, so we cannot repeat the previous arguments. Nonetheless, we will
show that we can still decide provability from AYR. This will require some formal development.

The decision procedure will use conversion to long normal forms, a straightforward generalization
of the n-ezpanded normal forms in [Hue75] called long Sn-normal forms in [Sta82].

Definition 5.6 (Long normal form)

A term M is in long normal form if M = Avy. -+ . Avg. ATy --- T, where the v;’s are either type
variables or of the form y:7, A is a variable or a constant, the T}’s are either type expressions or
(inductively) terms in long normal form, we do not have vy = T}, =t for some type variable ¢ (to
avoid having a 7n-redex), and the type of hTj---T,, is either a sort, or a type variable, or of the

form Vi. 0. (We will often use the shorter notation A¢. ATy ---T), def Avic o A R Ty - Ty ).

While long normal forms are in general not in -normal form, the name is justified by the following
result.

Lemma 5.7
Any term is A¥-convertible to a unique long normal form.

Proof. Since every long normal form is also a A~ -normal form, it is sufficient to show how to
n-convert any A~ -normal form to a unique long normal form. If M is in A™-normal form then
already M = Avy. ---. Avg. ATy ---T,, where the v;’s are either type variables or of the form
y:7, h is a variable or a constant, the T}’s are either type expressions or terms in A~ -normal form,
and, we do not have v, = T,, =t for some type variable {. Suppose that in Av. hT}--- Ty

we have already (recursively and, for the uniqueness, inductively) n-converted those T; which are
terms (and therefore A~-normal forms of strictly smaller size) to their unique long normal form.
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Let the type of hTy.--T,, be 0y —:--—0c,— 1 where n >0 and 7 is either a sort, or a type
variable, or of the form V¢. o (any type is of this form). From this, the unique long normal form
is reached by performing the 7-expansions that give A\v.Azqi:0q1. ---. Azpio, . R Ty - T Uy -+ Uy
where U; is the long normal form of z;. []

We denote by Inf(M) the long normal form of M. It turns out that while in general we do not have
a reduction mapping result for mapping to n-normal form, we will have such a result for mapping
to long normal form.

Lemma 5.8 .
Let v € R, and let M, N be two terms. If M -+ N then Inf(M) — Inf(N).

Proof. The proof is almost the same as that of lemma 4.1. The only notable addition is that one
must check that property (x) is preserved under the kind of n-expansion used to reach long normal
form (see the proof of lemma 5.7). To see this, let Q' be a term of the form A#.hTy---T,, and
such that the type of hTy---T,, is 7— 7/, and assume that Q' has property (x). Since the type
of hTy---T,, is of the form 7— 7', we can’t have h = z , hence z can only occur within the
T;’s. Clearly then, A#. Ay:7.hT,---T,, y also has the property (x). []

Lemma 5.9
If M MYR-converts to N then Inf(M) R-converts to Inf(N).

Proof. By induction on the length of the conversion chain from M to N. Immediate from
lemma 5.8. []

When R is canonical on algebraic terms, it is also canonical on all terms, by theorem 3.19 of this
paper and theorem 3.10 of the companion paper [BTG91]. In that case, we denote with Rnf(M)
the R-normal form of a term M.

Proposition 5.10
Let R be canonical on algebraic terms. Then, M and N are A¥R-convertible under A iff M and
N are compatible with A and Raf(Inf(M)) = Rnf(Inf(N)) .

Proof. Suppose that M and N are AYR-convertible under A. Then, they are also AYR-convertible
in the usual sense, hence by lemma 5.9 Inf( M) and Inf(N) are R-convertible, hence their R-normal
forms coincide. For the converse. we need only observe that if M is compatible with A then for
any X appearing in the conversion chain from M to Inf(M) (see the proof of lemma 5.7) X is also
compatible with A. Indeed, 5-expansions (as opposed to other kinds of expansion) do not introduce
new variables. []

Corollary 5.11

If R is canonical on algebraic terms then M &N s (MAYBE EMPTY)-provable from AR iff it
is (NOT EMPTY)-provable from the same iff Rnf(Inf(M)) = Rnf(Inf(N)) .

Therefore, when R is canonical on algebraic terms, the decision procedure for the provability (both

kinds) of an equation from AYR is to take both sides of the equation to long normal form, then to
take these to R-normal form, and finally to test if the results coincide.
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6 Directions for Further Research

Of course, one would also like to know what to do in the absence of an equivalent canonical rewrite
system. We conjecture that the proof-theoretic reduction from simply typed theories with algebraic
axioms to algebraic theories, given in [BT88], can be generalized to polymorphic theories.

Our results show that some important properties of algebraic systems are preserved when algebraic
rewriting and polymorphic lambda-term rewriting are mixed. As applications to the results of this
paper, we intend to investigate higher-order unification modulo an algebraic theory. For the simply-
typed lambda calculus, we conjectured earlier that adding the lazy paramodulation rule investigated
in [GS89a] to the set of higher-order transformations investigated in [GS89b] yields a complete set
of transformations for higher-order E-unification. This has been confirmed by Snyder, using the
reduction mapping result in lemma 5.8 [Sny90]. We also intend to investigate the possibility of
extending Knuth-Bendix completion procedures to polymorphic theories with algebraic axioms.

Another direction of investigation is to consider more complicated type disciplines, such as that of

the Calculus of Constructions [CHS88].

More generally, we feel that the results of this paper are only a first step towards extending the
important field of term rewriting systems to include higher-order rewriting. One of our main goals
is to provide rigorous methods for understanding higher-order functional and logic programming.
In particular, one is interested in rules which describe the behaviour of higher-order operations
(such as maplist, for example). In any case, a lot of care will be needed with higher-order rules
because, for example, fixed points are also described this way: Y F = F(Y F). Rules in which
higher-order variables are applied to one or more arguments in the left hand side term also cause
problems. Consider a signature with one sort s, a unary operation f and a nullary operation a,
and the higher-order rewrite rule f(za) — a where z is a variable of type s— s. Then

fa L f((Ax:s.x)a) — a

Since fa and a are distinct Sr-normal forms, confluence fails.
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