
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

January 1992 

Polymorphic Rewriting Conserves Algebraic Confluence Polymorphic Rewriting Conserves Algebraic Confluence 

Val Tannen 
University of Pennsylvania, val@cis.upenn.edu 

Jean H. Gallier 
University of Pennsylvania, jean@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Val Tannen and Jean H. Gallier, "Polymorphic Rewriting Conserves Algebraic Confluence", . January 1992. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-37. 
Revised: January 1992 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/565 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/565
mailto:repository@pobox.upenn.edu


Polymorphic Rewriting Conserves Algebraic Confluence Polymorphic Rewriting Conserves Algebraic Confluence 

Abstract Abstract 
We study combinations of many-sorted algebraic term rewriting systems and polymorphic lambda term 
rewriting. Algebraic and lambda terms are mixed by adding the symbols of the algebraic signature to the 
polymorphic lambda calculus, as higher-order constants. We show that if a many-sorted algebraic rewrite 
system R has the Church-Rosser property (is confluent), then R + β + type-β + type-η rewriting of mixed 
terms has the Church-Rosser property too. η reduction does not commute with algebraic reduction, in 
general. However, using long normal forms, we show that if R is canonical (confluent and strongly 
normalizing) then equational provability from R + β + η + type-β + type-η is still decidable. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-37. 
Revised: January 1992 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/565 

https://repository.upenn.edu/cis_reports/565


Polymorphic Rewriting Conserves 
Algebraic Confluence 

MS-CIS-90-37 
LOGIC & COMPUTATION 21 

Val Breazu-Tannen 
Jean Gallier 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

Revised 
January 1992 



Polymorphic Rewriting Conserves Algebraic Confluence 

Val Breazu- Tannen2 Jean Gallie? 

Department of Computer and Information Science 
University of Pennsylvania 

200 South 33rd St., Philadelphia, PA 19104, USA 

Abstract. We study combinations of many-sorted algebraic term rewriting systems and poly- 
morphic lambda term rewriting. Algebraic and lambda terms are mixed by adding the symbols 
of the algebraic signature to the polymorphic lambda calculus, as higher-order constants. 

We show that if a many-sort.ed algebraic rewrite system R has the Church-Rosser property (is 
confluent), then R + p + type-B + type-17 rewriting of mixed terms has the Church-Rosser 
property too. 

q reduction does not commute with algebraic reduction, in general. However, using long normal 
forms, we show that if R is canonical (confluent and strongly normalizing) then equational 
provability from R + /3 + 11 + type-P + type-11 is stJill decidable. 

1 Introduction 

From a very general point of view, this paper is about the interaction between "first-order compu- 
tation" modeled by algebraic rewriting, and "higher-order polymorphic computation" modeled by 
reduction in the Girard-Reynolds polyn~orphic lambda calculus. Our results permit us to  conclude 
that  this interaction is quite smooth a.nd pleasmt. 

Changing the perspective, we rega.rd algebraic rewrite systems as tools for the proof-theoretic 
analysis of algebraic equational theories, and we recall that such algebraic theories are used t o  
model data type specificatioils [EM85]. Then, our results continue t o  confirm a thesis put forward 
in a series of papers [MR86, BTRi187, BT88] , namely tha.t strongly nornznlizing type disciplines 
interact nicely with algebraic data type specifications. 

The preservation of the coilfluence of algebraic rewriting is a case in point. We show in this paper 
that  the very powerful, impredicative, but strongly normalizing, polymorphic type discipline yields 
confluent rewriting when combined with conflueilt algebraic rewriting. In contrast, this fails for 
type disciplines which allow the type-checking of fixed points, as in lambda calculi with recursive 
types, in particular in the untyped lambda calculus. Klop has shon-11 that the untyped lambda 

'To appear in Information and Computatioii 
2Partially supported by ONR Grant N00014-88-I<-0634 and by ARO Grant DXhG29-84-I<-0061 
3Partially supported by ONR Grant N00014-88-I<-0593. 



calculus enriched with surjective pairing reduction does not have the Church-Rosser (CR) property 
(see [Klo80], or [Bar84], pp. 403-407; the proof uses Turing's fixed point combinator), even though 
the rewrite system consisting of the surjective pairing rules alone is Church-Rosser, and, of course, 
P-reduction in isolation is CR. Another counterexample can be adapted from [BTM87], see [BT88]. 
We present here a further simplification observed by J. W. Klop (personal communication). 

Consider the following algebraic rewrite system, call it R. There is one sort i~zt, the signature is 

minus : int -+ int 4 int succ : int + int 0 ,  1 : iizt 

and the rules are 

minus x x 0 

minus (succ x) x - 1 

(We write the algebraic terms in curried form, anticipating their mixing with lambda terms.) 

This algebraic system has the CR. property (use Newman's Lemma [New42]). However, the CR 
property fails for PR-reduction on typed la.mbda terms with recursive t y p s  (in particular untyped 
lambda terms) constructed using also synlbols from R's signature. 

Indeed, let be a type such t11a.t ( = [ + int a.nd let 

def @ = ( Ax: (. succ (xx) ) ( Ax: [. succ (2%) ) 

P We see that @ type-checks with type irzt and is a fised point of succ in the sense that @ -+ succ a. 
Thus, we have 

R i3 R 0 +- nzinus cI, cI, --i nzinus (succ a) @ - 1 

All these counterexamples exploit the capability of expressing fixed points. Because of the nor- 
malization property, no such fised poinbs ca.n be expressed in the polymorphic lambda calculus 
(Av). And, in fact, we make essent,ial use of the normalization property to prove the main result of 
this paper, (see section 4) which st,a.tes tl1a.t combining a confluent ma.ny-sorted algebraic rewrite 
system with almost all kinds (except 7 )  of polymorphic term reduction notions gives a system that, 
globally, is confluent. 

A brief summary of the technical setting for our result goes as follows. Given a many-sorted 
signature C, we construct mized lambda terms with the sorts of C as constant "base" types and 
from the symbols in C,  seen, by currying, as higher-order constants. Then, given a set R of rewrite 
rules between algebraic C-terms. we show that if R is CR on algebraic C-terms, then R + ,8 + 
type-,O + type-77 rewriting of mixed terms has the Church-Rosser property too. (Notice the absence 
of 7; a counterexample appears in section 3 . )  ,4n obvious, but important, feature of R-rewriting 
on mixed terms is that this is done such that the variables occurring in the algebraic rules can be 
instantiated with any mixed terms. as long as they are of the same "base" type as the variables 
they replace. 

Our result and its proof are direct generaliza.tions of the corresponding result for the simply typed 
lambda calculus presented in [BTSs]. However, since the publica.tion of [BT88], we have found an 
error in the proof of one of its lernmas (specifically leillilla 2.2) used bhere for the confluence result. 



In this paper we correct tlze error, and generalize the statement of the lemma-from simply typed 
normal forms to arbitrary polymorphic terms (see theorem 3.19). 

We compare this result with those of [Toy871 and [Klo80]. Toyama shows that the direct sum of two 
CR algebraic rewriting systems is also CR. For the direct sum, the two components are required to  
have disjoint signatures. In our case, note that while the symbols of the algebraic signature do not 
play any special ro1.e in defining P-reduction, there is one "operation" which is implicit in algebraic 
rewriting and which is therefore shared with P-reduction, namely application, and indeed, Toyama's 
methods do not seem to  help in this situation. Our putting together of an algebraic rewrite system 
and a lambda calculus is more like Klop's direct sum of combinatory reduction systems for which, as 
shown in [Klo80], preservation of the CR property fails, in general, (see the examples above). Klop 
proves preservation of CR under certain restrictions, but he keeps the untyped lambda calculus as 
one of the components and imposes the restrictions on the algebraic reduction rules. In contrast, 
our algebraic reduction rules are totally arbitrary, but we restrict the lambda terms using the 
polymorphic type discipline. 

Some related work has been done since [BT88] appeared. Dougherty [Doug11 shows that our 
reduction mapping technique (see section 4) can also be used to show conservation of CR when 
one adds algebraic rewriting to P-reduction of strongly llormalizing terms of the untyped lambda 
calculus. It is not clear how one could, from such a result about untyped terms, directly derive the 
main result of this paper, or even a weaker version of it involving just one-sorted algebraic theories. 
Working in a different direction, Howard and Mitchell [HM90] impose restrictions on the algebraic 
rewrite systems similar to those used in [KlosO], and show conservation of CR when such rewriting 
is added to  the simply typed la,mbda calculus enriched with fixed point opera,tors. 

Our result about CR preservation is relevant to the inlplementation of functional programming 
languages, especially using parallel reduction strategies (see [Hud$G] for a survey). Since it guar- 
antees that results are independent of the computational strategy, the Church-Rosser property is 
the theoretical foundation for parallel evaluation. For functional languages based on the untyped 
lambda calculus (such a,s SCHEME [AS85]) CR depends on the choice of the first-order compu- 
tational rules. Useful optimizations such as (z - x) --i 0 and (succ(x) - x) - 1 (see the 
counterexample above) or (if b then x else z) - x (see [I<lo80]) are ruled out. Our result shows 
that, in contrast, strongly typed functional languages (such as ML [GMWig] and Miranda [Tur85]) 
are completely flexible from this point of view. Beware: even typed functional languages feature 
recursion which causes the failure of CR just like the untyped fixed points do. The difference is that 
in languages in which the use of recursion can be decidably isolated one ca,n identify the chunks of 
program for which CR holds a.nd pa.ralle1-execute them. This is not the ca.se in untyped languages 
where non-typable "hacks" may hide the failure of CR. 

Combining our result with the one on strong normalization in a companion paper [BTGgl], we 
obtain the following: if R is ca,nonical (confluent and strongly normalizing) on algebraic terms, 
then R + p + type-P + type-r) is ca.nonica1 on mixed terms. Again, we should point out that even 

41n the presence of types, the surjective pairing rules must be  postulated for every pair of types, which takes us 
out of the  framework of algebraic rewrit,e syst,ems. Nonetheless, it is still true tha t  t,he simply typed lambda calculus 
with product types and surject.ive pairing has the CR property [Potf81]. T h e  weak C R  property is easy t o  check, 
hence, by Newman's Lemma [New42], t,he C R  result also follows from the  fact tha t  t,he typed lambda calculus with 
surjective pairing is strongly normalizing (SN) [LS86]. (We also know of t,hree unpublished proofs of this SN result, 
all obtained independently [dV82, Ber84, Dou861.) 



direct sums of canonical systems are not necessarily canonical, as was shown by Barendregt and 
Klop [Klo87]. 

The reader may wonder what happens with 7-reduction. An example is given in section 4 which 
shows that q-reduction does not commute even with the simplest kind of algebraic reduction. We 
do not regard this as a significant fact since the computational interpretation of 7-reduction is 
quite unclear. However, q, regarded as an equational axiom, may be useful when reasoning about 
programs. In view of this, we examine the problem of deciding equational reasoning from R + P 
+ 7 + type-P + type-q. We show in section 5 that if R is canonical then such reasoning is still 
decidable. 

2 Mixing algebra and polymorphic lambda calculus 

This section is devoted to  developing the notation used in the paper. Our notation will depart from 
that of recent presentations of the polymorphic lambda calculus [BMMSO, BTCSS]. These papers 
exhibit a notation using typing judgements or typing relationships, based on the ideas of [Rey74]. 
Such a notation allows elegant presentations of some of the equational proof systems and of the 
set-theoretic and categorical models. We feel however that it does not best support the intuition 
needed in proofs depending heavily on the combi~zatorics of terms. For example, the analysis of the 
reduction mechanisms is made more culnbersome by the presence of type assignments (contexts). 
Ideally, we would like a notation as simple as that developed for the untyped lambda calculus 
in [Bar84]. As demonstrated very well by Statman's work, the traditional llotation for the simply 
typed lambda calculus (e.g., [Fri7.5]) also helps the combinatorial intuition [Sta82]. This notation 
uses variables which come from an a priori type-indexed collection: therefore a variable has the 
same type everywhere it is used. Can the same be done in the polymorphic lambda calculus? 

In fact, this is the notation used by Sirard [Gir72] and later adopted in [StaSl, FL0831. It poses 
the following conceptual problem: if z is a variable of type a which occurs bound in a term M 
how do we define the result of a type substitution on M which might modify a? We would rather 
avoid this problem, but, of course, we also want to  avoid the use of judgements. The idea is to 
fix the types of the free variables, but only within each term in which they occur. Some checks 
will be needed in the definition of terms in order for this to be done consistently. Based on this 
idea and starting with an arbitrary many-sorted algebraic signature, we will define mixed terms 
i.e., polymorphic lambda terms constructed with the synlbols of the signature seen as higher-order 
constants, as follows. 

Let S be a set of sorts and let C an S-sorted algebraic signature. Each function symbol f E C has 
an arity, which is a string sl . . s ,  E S*, n > 0, and a sort s E S intending to symbolize a possibly 
heterogenous operation which takes arguments of sorts (in order) 51,. . . , s, and returns a result of 
sort s. 

Definition 2.1 (Types) 
Let V be a countably infinite set of type variables. The set 7 of tgpe ~~pre.s.sions (types) is defined 
by the following gra.mmar: 



where s ranges over S, and t over V. 

Therefore, the "base" types are exactly the sorts of the signature. Free and bound variables are 
defined in the usual way. We denote by FTV(o) the set of type variables which are free in a. 
We will identify the type expressions which differ only in the name of the bound variables, and 
then adopt Barendregt's variable convention [Bar84]: in a given mathematical context, such as a 
definition or a proof, all bound variables are chosen to  be different from all free variables. 

A type substitution is a partial map 8 : V - 7 with finite domain. In agreement with the variable 
convention, it is always assumed that the variables belonging to the domains of the substitutions 
differ from the bound variables used in the same mathematical context. The result of applying 8 to  
a (its straightforward definition is omitted) is denoted by a[8] and, if 8 is the identity everywhere 
except 8(t) = T, also by a [ ~ / t ] .  

We give now a simultaneous inductive definition of the terms M ,  their types, their set of free 
variables FV(M) ,  a,nd the types t,llose free mriables have i n  M .  

Definition 2.2 (Ternas) 
Let X be a countably infinite set of ( ' term) variables. 

Variables. For any x E X,  and any a E I ,  the pair (x , a )  is a. term of type a with exactly one 

free variable, x, ( F V ( ( r ,  a)) "e' { r ) )  whose type in ( r ,  a) is a .  

Constants. For any f E C, f is a term of type s l +  + s, + s (where sl - . s ,  and s  are the 

arity and the sort of f )  without free variables (FV( f )  %f 0). 

Application. If M is a term of type a + r and AT is a term of type a ,  and each common free 
variable of M and N  has the same type in M and N ,  then (MN) is a term of type T with 

F V ( M N )  gf FV(A4) U P V ( N )  and such that the type of each free r in A4N is the same as 
the type of x in M or else in M. 

Abstraction. For any x E X,  and a,ny a E I, if A4 is a term of type r such that if x E FV(M)  

then x has type a in 44, then (Ax: a.  M) is a term of type a - r. with Flf(Ax: a .  Ad) def 
FV(M)\{x) and whose free variables have the sa,me types as in Ad. 

Type application. For any r E 7, if is a term of type Vt.a then (Adr) is a term of type a[r/ t] ,  
whose free variables are the sa.me as those of A4 and have the same t,ypes as in &I. 

Type abstraction. For any t E V ,  if 11d is a. term of type a such tha.t for any r E FV(M),  t is 
not free in the type of x in A4, t.hen (At. hf) is a tern1 of type Vt. a whose free variables are 
the same as those of A,d and have t,he sa.me types as in i1,f. 

We denote by A the set of all terms. This kind of definition produces only "well-typed" terms 
(compare with the approa.ch using "ra\vn terms and type-checking judgements [BTC88]). We will 
sometimes abbreviate "the type of 151 is a" as A4 : a . 
Once past the stage of formal definitions, we will never need to use the cumbersome notation 
(x,a)  for terms which consist of just a variable. The type will always be understood from the 



mathematical context in which the term is used so we can omit it and write simply x. Moreover, 
we will make the convention that when we write (MN) ,  it is understood that M and N satisfy 
the conditions in the (Application) clause above, and thus ( M N )  is a term. Similarly for the other 
term constructions. Of course, we adopt the usual notational conventions that facilitate using less 
parantheses, such as "application associates to the left", etc., [Ba.r84]. 

Bound type variables and bound term variables in terms are defined as usual. We identify terms 
which differ only in the name of bound type variables or bound term varia.bles, and we adopt again 
Barendregt's variable convention (see above). 

Definition 2.3 (Free type varia.bles of a. term) 
The set of free type variables of a term, notation FTV(M),  is defined as follows: 

dzf 
FTV((x,  a ) )  - F T V ( a )  

FTV( f )  V 0 

F T V ( M N )  !Ef FTlf ( d l )  U F T l r ( N )  

FTV(Ax: a. M )  F T l r ( a )  U FTlT(M) 
d ~ f  F T V ( M r )  - F T \ ' ( M ) u F T l ' ( r )  

FTV(At. A l )  FTltr(A41)\{t} 

Definition 2.4 (Type substitution in  a ter~il) 
The result of applying a, type substitution 6 to a term M ,  notation A6[8], is defined a.s follows: 

dzf 
(x,.)[OI - (2, a[Bl) 

f [O] !Ef f 

(MN)[O] de' M[B](N[O]) 
dzf (Ax: a. M)[O] - Ax: a[O]. A l [ B ]  

(Mr)[O] 9 M[$](r[B]) 

(At. M)[O] '%! At. AJ[B] 

One can check that M[O] is always defined, that it is a term, that its type is a[B], where a is the 
type of M, that FT/(M[O]) = Fl r ( J1 ) ,  and that the type of each free variable z in M[O] is r [O]  
where T is the type of 2 in M .  

Definition 2.5 (Term substitution in n terln) 
A term substitution is a partial map p : X - A whose domain, denoted donzy, is finite. As 
for type substitutions, it is always assumed that the variables belonging to the domains of the 
substitutions differ from the bound variables used in the same mathematical context. The result of 
applying a term substitution 9 to a term ill, notation Af [p], is defined. lvllen possible, as follows: 

d ~ f  
(x, a)[y]  - if p (x)  : a then p(x )  else undefined 

f[wl Sf f 



(MN)[p] !Zf M[y](N[y])(if  defined) 
dzf (Ax: a. M)[p] - Ax: a. M[y] (if defined) 
dzf 

( M T ) [ ~ ]  - M[q]r  (if defined) 

(At. M)[y] der At. M[y] (if defined) 

Thus, M[p] is not always defined, but when it is, its type is the same as that of M ,  and one can 
also give a characterization of the set of free variables of M[p] and their types in M[p] (this is a 
bit tedious to state but straightforward). Again, we will make the convention that whenever we 
write M[q], it is understood that A,f a.nd 9 satisfy sufficient conditions for M[q] to be defined. 

We also denote by [Ml/xl, .  . . ,Afn/xn] the substitution p such that domp = (21,. . . ,x,) and 
p(xi) = Mi, (hence we denote A/r[p] by M[M1/xl,. . . , Mn/x,]). 

We have followed Barendregt [Bar841 in our definitions of substitutions. As pointed out in [Bar84], 
appendix C, the strictly rigorous approach is to define substitution before identifying expressions 
which differ only in the name of bound variables (a-congruent expressions) and then show that 
substitution is compa.tible with a-congruence, hence is well-defined on a-congruence classes. How- 
ever, when this is done, the resulting substitution operation will coiilcide with the one given above 
in a manner that exploits the variable coi~vei~tion. 

In defining term rewriting, it is convenient to  use contexts [Bar84]. We will only need contexts 
with exactly one hole. Let 0 be a new symbol, distinct froill both the synlbols in C and from the 
variables. 

Definition 2.6 (Contexts) 
Let w E I. Contexts with a hole of type w, t.heir types, their set of free variables, and the types 
those free variables ha,ve, are given by a simultaneous inductive definition using the same clauses 
we gave for terms (definition 2.2)? plus exctctly one use of the following clause 

Hole. The pair (0, W) is a. c ~ n t ~ e s t  of type w a,nd with no free va.riables. 

Instead of "C is a. contest" we will often write just C[ ] .  

Definition 2.7 (Placing a tern2 in (1 context) 
The result of pla.cing a. term A4 in C [  1. nota,tion C[Ad], is defined a.s follows: 

d* (0, w)[hl] - if A 1  : w t h e n  A l  else undefined 

(CN)[A4] d" C[M] 1V (if defined) 

(NC)[M] Ef N C[Al] (if defined) 
def (Ax: a. C)[M] - As: a. C[AI] (if defined) 
dlf 

(Cr)[Af] - C[ l l I ]~ ( i f  defined) 
def (At. C)[A4] = At. C[ilI] (if defined) 



Thus, C[M] is not always defined, but when it is, one can see that it is a term, that its type is the 
same as that of C ,  and that one can also give a characterization of the set of free variables of C[M] 
and their types in C[M] (this is again a bit tedious to  state but straightforward). Yet again, we 
will make the convention that whenever we write C[M], it is understood that C[ ] and M satisfy 
sufficient conditions for C[M] to be defined. 

It is important to  note that contexts are not considered modulo a-congruence. An essential feature 
of contexts is that a free variable of M may become bound in C[M]. However, C[M] is a term 
and thus it is again considered modulo a-congruence. Note also that for C[h4] to  be defined, it is 
not sufficient that M have the same type as the hole in C[ 1. For example, if x is free in M with 
type al and we want to place M in a context of the form Ax: a*. C ,  and, moreover, x is still free in 
C[M], then we must have a* r 02. 

We are now ready to define the usual rrduction relations. 

Definition 2.8 (Redrrction) 

P (P-reduction) M - AT iff 
there exist C[ 1, x,  a ,  X,Y such that fif = C[(Xx: o. X)Y] and iY 5 C[X[fT/x]]. 

(7-reduction) M 5 N iff 
there exist C [ ] , s , u ,  2, where x $! F V ( Z ) ,  such that A4 = C[Xx:a. Zx] a,nd 
N r C[Z]. 

7 0  (type-P reduction) M + AT iff 
there exist C [ ] , t ,  r, X such tl1a.t Ad = C[(At. X ) r ]  and N = C[X[r/t]] .  

7-v (type-7 reduction) M --- N iff 
there exist C [ ] , t ,  2, where f $ F T V ( Z ) ,  such that hf = C[At. Zt] and N = C[Z] 

Clearly, if M N ,  where p is any one of P ,  7 ,  T,L? or 'Ty, then A4 a.nd N have the same type. 
Moreover, FV(A4) > FV(N)  a,nd a.ny col~lil~oll free variable has the same type in both terms. Let 

and 
,\- *f /3 Tp Ta, -- _ - U -  U--  

It is well-known that both Xv-reduction and A--reduction are cano~lical (i .e. ,  strongly normalizing 
and confluent) on all terms. We denote by Xvrlf (X) and X- nf (X) the corresponding normal forms 
of an arbitrary term X. 

Next, we will introduce our nota.tion for algebraic terms and algebraic rewrite rules. There is a well- 
known transformation, known as currying, that maps algebraic C-terms into applica,tive (mixed) 
terms. This transformation is an injection. In view of tha.t, we will use directly the curried notation. 



Definition 2.9 (Algebruic terms) 
Algebraic terms A, their sorts, their set of occurring variables, V(A), and the sorts those variables 

have in A are defined by simultaneous induction, as follows. 

Variables. For any x E X, and any s E S, the pair (x, s )  is an algebraic term of sort s with exactly 
def one variable, x, (V((x,s)) = {x)) whose sort in (x,s) is s. 

Application. If f E C has arity sl . - . s, and sort s, and if A 1 , .  . . ,A, are algebraic terms of sorts 
sl, . . . , s, respectively, and such that any variable in V(A1) U . . . U V(A,) has the same sort 
in all the terms in which it occurs, then ( - .  . (f A1) A,) is an algebraic term, of sort s, with 

V (  f Al . . - A,) V(Al) U U \/(A,) and such that the sort of each x in f A1 . A, is the 
same as the sort of x in the Ai7s in which it occurs. 

Clearly, any algebraic term A is a. term, its type is its sort, FTi(A) = T7(A), and the types its free 
variables have in A a.re the sorts they have in -4. 

Definition 2.10 (Algebraic rewrite rules) 
An algebraic rewrite rule is a.n ordered pa.ir of algebraic terms, written A - B,  such that 

A and B have the same sort, 

F V ( A )  > FV(B)  and any colnmon variable has the same sort in both terms, and 

A is not a varia.ble. 

Each algebraic rewrite rule deterillilies a redliction relation on allinised terms, not only the algebraic 
ones. 

Definition 2.11 (Algebraic reclzrction) 
Given an algebraic rewrite rule r = A - B, we define a reduction relatioil on terms as follows 

A4 '. M iff 

there exists a context C a.nd a. tern1 substitution q such t11a.t 

Note that the range of 9 is not restricted to algebraic terms. Clearly, if hl N then M and 
N have the same type. Moreover, FT7(AI) > F V ( N )  and any common free variable has the same 
type in both terms. One can easily check the followillg fact. 

Lemma 2.12 If A is algebmic. r is cr,n algebraic retorite r~rle, nnrl A -: A i l .  then A l  is algebraic. 



Thus, we can talk about algebraic rewriting on algebraic terms. It is easy to see that currying 
establishes the expected relation between many-sorted algebraic rewriting of C-terms [MG85] and 
our definition of algebraic rewriting. Indeed, for any many-sorted C-rewrite rule m = p+p' and 
any many-sorted C-terms q, q' 

q -ZII, q' iff 

where c(m) - curry(p) -+ curry(pt). 

Definition 2.13 
Let R be a set of algebraic rewrite rules. Define the following reduction relations on terms: 

P P 
For any reduction relation -, we will denote by i, its reflexive a,nd transitive closure, by 

P P P 
its converse, and by - the converse of -+. Moreover, the equivalence relation generated by - 

def P is called the p-convertibility rela.tion while A - -+ U +!- is called the one-step p-convertibility 
relation. Clearly, the p-convertibility relation is the same as the reflexive a,nd transitive closure of 

P P P - and also the same as the reflexive and transitive closure of - U -. 

Finally, we state precisely our main result: 

R ,\- R (Conservation of  Confluence.) If -- is confluent on algebraic terms t,hen -+ is confluent on 
all terms. 

3 Algebraic rewriting of higher-order terms 

In this section, we show that if a.lgebraic reduction has the Church-R.osser property on algebraic 
terms then it also has this property on arbitrary mixed terms. The ma.in result of this section is 
the following claim, proved 1a.ter as theorem 3.19. 

R R Claim. If - is confluent on a1gebra.i~ terms then - is confluent on all tei.ms. 

The proof is surprisingly involved. a.nd requires a number of ausiliary lemmas. To understand 
where the difficulty lies, we begin sketching the proof. 

We show by induction on the size of 114 that R-confluence holds from 41. The only case in which 
the induction hypothesis does not immediately apply is the case of an application term. For an 
application term A4 E H TI - . .Tk such that H is an abstraction, a type abstraction, a variable, or 
a constant which takes > k arguments. each R-reduction out of A4 is conlpletely inside H or inside 
one of the Ti7s. By the induction hypothesis, confluel~ce holds from each of these, and it is easy to  
see that this implies that confluence holds fro111 A4. 

This only leaves us with the case when H is a constant which takes exa.ctly k argunzents, in which 
case the type of A4 is a, sort. We need t,o analyze algebraic reduct.ions on such t,erms, in particular 



to  separate "trunk" (close to the "root" of terms) algebraic reductions from other reductions. 
However, this analysis is quite subtle because non-linear rewrite rules (i.e., the left-hand side of the 
rule contains multiple occurrences of some variable) can cause problems, as example 3.4 will show. 
But first, we develop the necessary technical tool, the notion of trunk decomposition (Toyama 
defines a similar concept in [Toygi]). 

Definition 3.1 (Algebraic trunk decomposition) 
An algebraic trunk decomposition of a term M consists of an algebraic term A (the "trunk") and 
a term substitution p such that h4 A[v], d o m v  = FV(A), each variable in A occurs only once, 
and for all x E FV(A) the term ~ ( x )  has the form H TI - .  Tk where H can only be an abstraction, 
a type abstraction, or a variable, a.nd TI,. . . , Tk are terms or types. 

The following terminology will be useful. A term whose type is a sort and which has the form 
H TI - . Tk where H can only be an abstraction, a type abstraction, or a variable, and TI, . . . , Tk 
are terms or types, is called a. nontrzrnk ternz. -4 term f Tl . . . Tk whose t,ype is a. sort a.nd where f 
is a constant taking I; argumeats, is cadled a trunk ternz. 

Clearly the type of any term that has a.n algebraic trunk decomposition must be a sort, but in fact 
that's all it takes: 

Lemma 3.2 
Any term M whose type is a sort has an algebraic trunk decompositiorz M r A[p]. Moreover, this 

decomposition is unique up to renn11zing the free variables of A, am1 ullzerz 44 is a trunk term, A is 
not a variable. 

Equipped with this, we attempt to finish the proof of the claim. For an algebraic trunk decompo- 
sition M A[p], an algebraic redes must occur either entirely within one of the subterms ~ ( x ) ,  or 
"essentially" within the trunk part. It will be useful to distinguish between such reduction steps. 

Definition 3.3 
R We say that A[q] - A1[q'] is an nlgebmic trzrrzk reduction step if the R-redes is not a subterm of 

t R  one of the p(x)'s. We shall denote a1gebra.i~ trunk redu,ctions by --+, a,nd algebraac reductions in the 
ntR tR non-trunk part by - (non-trunk reductions). A rewrite step A[v] - ~ ( x )  for some x E FV(A) 

e R  is called an erasing step, a,nd is denoted a.s A[y] - ~ ( x ) .  
Separating the trunk reductions is somewhat subtle because algebraic rewrite rules may be non- 
linear, or may erase some of their a.rgurnents. Part of the proof of lemma 2.2 (page 85) of [BT88] 
is invalidated by this problem. However, the argument can be repa.ired, a.s shown in the rest of 

R 
this section. The following esa.mple shows esa,ctly wha,t the problem is: .4[9] -n A1[y'] does not 

R 
necessarily imply t11a.t A - A'. 

Example 3.4 
Consider the signature {f, y. a ,  6. c )  with one sort s ,  where f is binary, g is ternary, and a, b, c 



are nullary, and the term rewrite system R = {fxx --+ gxxz, a - b, b ---+ c )  . Let z be a 
higher-order variable of type s --+ s. While we have the rewrite sequence 

R 
we do not have that f xlxz - gyl yz y3 even if we rename the y's. 

Example 3.4 also shows that nontrunk rewrite steps and trunk rewrite steps cannot always be 
permuted. The problem is caused by non-linear rewrite rules. 

On the positive side, it is important to note that if a nontrunk term M R-reduces to another term 
ntR 

N ,  then N cannot be a. trunk term. This implies that for a non-trunk reduction A4 - N ,  if 
M r A[cp] is a trunk decomposition of Ail ,  then N = A[p f ]  for the same trunk A ,  i.e., the trunk 
does not grow in a non-trunk R-reduction. 

We will proceed now with the formal development of the proof. 

Lemma 3.5 
R If M = A[v]  --+ N ,  then the follouiing holds: 

tR (1) i fM - N,  then ule can z~irite N E A'[pl], where for eziery y E donzp', there is some x E domcp 
such that yl(y) E p(x ' ) ,  and A' is some c~lgebrcric terna; 

ntR R 
(2) if M -+ N ,  then ure can write N r tohere p(xi) - p f ( x ; )  for ~0172e x; E domcp and 

pl(xj) r y ( x j )  for all j # i .  

Note that case (2) holds because a nontrunk term cannot rewrite to a trunk term. Thus, the trunk 
cannot grow. 

Definition 3.6 
Given two substitutions and 9 2 ,  we write p1 9 2  iff for every y E donap2 there is some 

R 
x E domyl such that yl(:c) - p2(g) .  

Lemma 3.7 
R 

If M r A[cp] - MI = Af[p ' ] ,  then p  [Z 9'.  

Proof. An easy induction 011 the nulnber of rewrite steps using lemma. :3..5. IJ 

Another key observation leading to the proof of the ma.in theorenl of this section is the following: 
R 

M - N i f f  



R 
for some MI , .  . . , MnV1, where o is relation composition. Stated more concisely, - is the reflexive 

ntR tR R ntR tR 
transitive closure of - o -, notation --w = (- o -)*. 

Then, observe that if we can show the confluence of each square ("tile") in the diagram below, then 
by an induction on the number of such tiles, it is possible to prove our result. 

However, there are some techilical difficulties. In particular, the bottom leftmost and top right- 
most squares only commute if certain conditions are met. In order to sta,t,e these conditions, it is 
convenient to  define the relation a (this rela.tion was introduced by Toxa.ma [Toysi]). The relation 
o: is needed to deal with rewrite rl~les that a.re not left-linear. 

Definition 3.8 
Given two term substitutions with the same domain, 91 and 9 2 ,  we write pl K p2 iff p2(x) = vZ(y) 

for any x ,  y such that y l (x)  G pl(y) .  Given two trunk terms M1 = Al[pl] and M2 G Az[vz], we 
write MI oc Mz iff A1 = A:! and p1 K 92. 

Given any trunk term M s A[vl]. if M 3 MI, we know by lemma 3.5 that M' = A'[yi] and 
that for every y E domy(, there is sonle x E donzqq such that q i (y)  - p l (x ) .  Thus, we can define 
a function h:domy: + domvl such that p:(y) = yl(h(y)) for every y E clonzpi. The following 
lemmas show the significa.nce of the rela,tion cx. 

Lemma 3.9 
tR Let M and N be trunk ternzs su.ch that 124 a N.  If M --+ hfl ,  then there i.s some N' such 

tR 
that N ---+ N' and hri' a N'. F~l,rthern~ore, if M r A[yl], M' = A1[pi], and N r A[v2] (with 
domy1 = domy2), letting h,: donipi - clonayl be any frrnction srrch fhrit p i (y)  E pl(h(y)) for 
every y E domq',, we have N' = A1[y;] where dorn,p; = donzvi and p;(y) = p2(h(y)) for every 
y E domqk. 

Proof. Since M a N, we have pl cx p2. The left-hand side of the rule used in dl -% M' occurs 
completely within A,  and since 91 x 92. this same rule also applies to AT. It is easily seen by lemma 
3.5 that defining p', such that  don?^; = do177yi and p',(y) = y2(h(y) )  for every y E domp',, letting 

N' r A1[q!J, we have M' -% N' and M' CK IT'. 

Definition 3.10 
We introduce a notation that will be convenient to use in what follows: if FT/(A) = {xl,. . . , x,) 
then we will sometimes write AIB1,. . . , B,] instea.d of AIBl/xl,. . . , Bn,/.un,]. 



We now prove lemmas that  show that each kind of tile involved in the dia.gram showed earlier 
commutes, provided that appropriate conditions hold. 

Lemma 3.11 
tR ntR 

Let M be a trunk term. If M - P, M - N, and M cc N ,  then there is some Q such that 
ntR t R  

P - Q, Pcx Q,  and N - Q. 

t R 
Proof. First, note that if M - P contains some erasing step, because all the steps are trunk 

ntR 
rewrites, i t  must be the last step. We first prove that if M 5 P ,  A4 - N ,  and M m N, then 

ntR 
there is some Q such that  P - Q, P C< Q, and N 5 Q. 

tR  tR If M - P is not a.n erasing step, t,he claim follows from lemma. 3.9. If A4 - P is an erasing 
e R step, then M r AIB1,. . . ,B,] --+ B; = P. Since &I cc iV, we have N - A[Bi,. . . , B k ]  where 

ntR 
(B1,.  . . , B,) cx (B ; ,  . . . , B k )  and ( B I , .  . . , B,) - ( B i , .  . . , Bh) .  Beca.use A4 oc N ,  the rule 1 -. x; 
applied t o  M also a.pplies to  N ,  a.nd the clainl holds: 

tR 
We conclude by induction on the length of t,he reduction sequence 1VI + P, a.s indicated by the 
diagram below: 

The details are straightforward. 

We add a few more convenient notations. 

Definition 3.12 
R R 

Given 9 and 9' with donzy = donzp', the nota.tion y -+ 9' means tha,t p(2) ii ~ ' ( x )  for every 
x E domp. 



Definition 3.13 
R 

For any term M ,  we write CR(M)  iff confluence holds from M ,  that is, whenever M - MI and 
R R R 

M --k M2, there is some N such that Al l  - N and M2 - N. For any two terms M, N ,  we 
R R 

write M J. N iff there is some Q such that hrl - Q and N - Q. 

Let S = {MI,.  . . , M,) be a finite set of terms, and assume that CR(AIi) holds for every Mi E S. 
If M; 1 Mj  and M j  1 Mk, then using the confluence from Mj7 we also have hl; 1 Mk. Thus, 1 is an 
equivalence relation on S. Then, for every equivalence class C of L, using the confluence from each 

R 
M in C ,  it is easily seen that there is some term Mc E C such that A4 - MC for every M E C. 
Consequently, we have the following lemma. 

Lemma 3.14 
Let y = [Ml/xl , . .  . ,A&/x,] and asswnze thnt CR(M;) holds for every A f i .  Then there is some 

R 
(p' = [Mi/xl, .  . . , MA/zn] such that (i i. p'! and 1 A l j  implies thnt !If: r Mj.  

Using lemma 3.14, as in Toyama [Toysli], we have the following. 

Lemma 3.15 
R R 

Let 9 = [Ml/xl , .  . . , A/r,/xn] and a.ssrrnze thctt CR(M,) for every M,. If p - y1 and y ++ p2,  
R R 

then there is some y' such that 91 -- 132 - p', and p1 o: 9', p2 o: 

Using lemma 3.15, we can show the following result analogous to a, result of Toyama [Toy87]. 

Lemma 3.16 
ntR 

Let M - A[y] be a term such that CR(v(x;))  holds for every z ,  E rlonzy. If ,A4 i, N and 
ntR ntR ntR 

M - P, then there is some Q such thot - Q .  M o: Q,  P --. Q,  rrnd P o: Q .  

R R 
Proof. If M is a trunk term, we have N = A[pl] and P z .4[q2] where (i - p1 and y - p2. 

R R 
Using lemma 3.15, we obtain some 9' such that y1 -+ p', q ~ z  - y', and 91 o: y', 9 2  o: #. Thus 
we can take Q z A[#]. If 44 is a nontrunk term, the lemma holds trivially because 44 3 y(z;) for 
some x, and CR(q(z,))  holds by hypothesis. 

Lemma 3.17 
tR 

Let M be a trunk term, and assume that R is confluent on algebraic terms. If M M N and 
tR  t R t R 

M - P ,  then there is some Q such that il' - Q and P - Q .  

Proof. Since all the steps are trunk rewrites, every redes occurs within the trunk, and confluence 
follows from the confluence of R on algebraic terms. 

We can now prove confluence on terms 1I.I r A[p], provided tl1a.t confluence holds for its nontrunk 
R ntR tR 

subterms. We use the fa.ct noted earlier t,llat -+ = (- o -)*. 



Lemma 3.18 
Let M = A[y]. If CR(y(xi))  holds for every xi E donzp ~ n d  R is confluent on algebraic terms 

then C R ( M )  also holds. 

ntR tR  ntR tR 
Proof. We first prove that if M - o - N and M  - o - P, there is some Q such that 

ntR tR ntR tR 
N - o - Q and P - o -+ Q. The result follows from lemma 3.16, lemma 3.11, and lemma 
3.17, which allow us t o  obtain the following diagram where M' cc Q', AJ" m Q', P cc PI, and 
N cc N': 

R 
From lemma 3.7, if A4 5 A [ p ]  -+ A4' E 4 / [ p 1 ] ,  then y p'. Since C R ( p ( x ; ) )  holds for every 

R 
x; E d o m y  and for every y E don?pl there is some a E don19 such that ~ ( x )  i ~ ' ( y ) ,  we conclude 
that CR(yl(y)) holds for every y E ~10n29'. Thus, we can use induction on the number of blocks of 
ntR tR  - o - steps to obtain the followillg confluence diagram: 

We can finally prove the ma.in theorem of t.his section. 

Theorem 3.19 
R R If - is confluent on rtlgebrnic t c r ~ , ? s ,  then --- is confEue12t 01% crll terms. 

Proof. We proceed by induction on the size of terms. The ca.se of a varia.ble of non-base type is 
trivial, and so is the case of a variable of base type or an algebraic constant of base type since R  is 



confluent on algebraic terms. In the case of a term of the form Ax: a. M or At. M, since algebraic 
rewrite rules only apply within M ,  we apply the induction hypothesis. In case of an application, 
the only case in which the induction hypothesis does not immediately apply is the case of a trunk 
term M E fMl  . . . M,. However, if we decompose M as M = A[p], since A is not a variable, each 
v ( x ; )  has size strictly smaller that the size of M, and by the induction hypothesis, CR(q(x;)) holds 
for every x, E domq. We conclude by applying lemma 3.18. (7 

4 Conservation of the C hurch-Rosser property 

The key to  the conservation result is the following lemma which shows tlmt algebraic reduction 
"commutes" with A--reduction to normal form. 

Lemma 4.1 
r 

Let r be an algebraic rewrite rtrle (1nd Ad, M teoo terms. If 11f -'-- AT theiz X - ~ z f ( ~ l l )  - A-nf (N). 

Proof. Let r r A - B , let {z l , .  . . , z,) z F V ( A )  ,let xi: s l , .  . . , z,: s, be the sorts that these 
variables have in A (and B),  and let s be the sort of A (and B). Since AI -L N, there exist C[ ] 

de f and a substitution 67 such that 41 r C'[A[p]] and A' E C[B[q]] . Let P, = p(x,) ( i  = 1,. . . , n )  
so we can write 

def 
Introducing the notation AZ ,?. D = Ax1: 81. . . . . Ax,: Y,. D . let 

I def 
M = C[(AZ.T.A)Pl...P,,] 

def 
1Y1 = C [( XZ: z. B ) Pl . . PI,] 

P P 
Clearly, MI - A4 and MI -+ N . Let z be a. fresh va,riable of type .sl -- . . . -+ s, -+ s . Then 

MI iz C[z  PI . . . Pn][A2 Z. -4 / z] fi' r C[z PI - . . P,,] [ A 2  5'. B / z] 

Let Q !Zf A-nf (C[ i  P1 . P,]) . We claim tlra,t Q has the following property: 

(t) Any occurrence of z is at the head of a subtern1 of the form 2 P { .  . .PA where P;' has type 
s; (i = 1, .  . . , n )  and 2 Pi - . . PA has type s (and thus caililot be f~irther applied to  terms or 

types). 

Indeed, property (*) holds for C,'[z PI . - 0  P,] aad it is easy to  check that it is preserved under 
P-reduction, 7p-reduction and 771-reduction (but not under I;)-reduction; see esainple 4.4). 

Let 

We will show tha.t h,f" is in A--normal form a.nd since clea,rly hl A--convert,s to MI', we must have 

M" A-nf(M) . Similarly, Nfl = A-r2f(hr) . It rema,ins then to prove that Ad'' A N" . Both 



the fact that M" and N u  are in A--normal form and the fact that M" -(-i N'' are consequences 
of the following claim. 

Claim. If Z is a term in A--normal form having property (*) then 

x d" p n f ( ~ [ X i : ~ .  A / r ] )  Y d" Pnf (z[AF $. B / i]) 
r 

are in A--normal form and X - Y . 
The proof of the claim is by induction on the size of Z. Since Z is in A--normal form, Z = 
Xul. - .  . .Xuk. h Tl . . . Tm where the vi's are either type variables or of the forill y: T, h is a variable or 
a constant, the Tj's are either types or terms in A--normal form, and, we do not have vr, = Tm z t 
for some type variable t (to avoid having a 7~- redex) .  As before, we introduce the simpler notation 

d ~ f  Aii. h TI . . . Tm - Xvl. - - . . Avk. h TI . Tm . We distinguish two cases. 

dzf (h f a )  Let D be A or B. Then, pnf(Z[AS:.??. D / z ] )  = Xi?. h T i . - - T A  where T,! - Tj if Tj is a 

type and T,! %f /3nf (Tj[AP: g. D / r ] )  if Tj is a term. In the la,tter case, Tj is a A--normal 
form of strictly smaller size than Z. Since property (t) is inherited by subterms, we can apply 
the induction hypothesis and the sta.tement of the claim for Z ea.sily follows. 

( h  G a )  In this case, by property (t). m = 72 and Z = Av'. z Zl . - .  Z, where Z, is a term of type 
s; (i = 1,. . . , n) . Each of the 2,'s is a A--normal form having property (t) and of strictly 
smaller size than Z so the induction hypothesis applies. Let 

def de f Xi = Pnf(Z;[XZ:s'. .A/:]) 1: = /3nf(Z;[AFL?. B I Z ] )  ( i =  1 , . . . , n  ) 

d ~ f  
Consider X' - Av'. A[Xl/xl, .  . . , S,/.L',] . By the induction hypothesis, the X,'s are in 
A--normal form and since their type is a sort, they cannot create A--redeses by substitution. 
Thus X' is in A--normal form. Since Z[XZ: ,5. A / z] /3-reduces to -Y' and since X' is, in 
particular, also in /3-normal form. we have S = S' . Similarly, I' = Xv'. B [ l i  /z l  , . . . , Yn/xn] 

r 
and Y is in A--normal form. Blloreover. by induction hypothesis - l', ( i  = 1 , .  . . , n )  , 

r 
hence X - Y . 

This ends the proof of the cladm and t,hat of the lemma. 

Remark. At first glance, the previous proof may seem unnecessary complex . Note, however, that, 
in general, the simple minded 

fails. Our solution protects the T-redex through j3-expansion in order to t,race it,s behavior during 
A--normalization. Note also that the normalization process can make copies of the r-redex, modify 
the arguments Pi, and even substitute copies of the modified redex inside the arguments of another 
copy of the redex. This "nesting'? is resolved by noting the inva,ria,nce of the property (*) and by 
the slightly more general sta.tement tl1a.t we prove in the claim. 



Lemma 4.2 (Rerluction mci,l~pirzy) 
A- R R 

Let h? be a set of algebraic rewrite rules, ancl A[, AT tzuo tcrnzs. If Ad - N then A-tz f (M) -B 

A-nf ( N )  . 

Proof. By induction on the length of the reduction cllain from Ad to N .  Immediate from lemma 4.1. 

Finally, the main result of the paper: 

Theorem 4.3 
If R-reductioit is  coltfluent on a,lgebrrric ternas tltciz A- R-rccluctio~~ is coizflucizt 012 (1.11 terms. 

A-R A-R 
Proof. Suppose that  N - A{ - P . By mapping evcrytliing to  A--normal form, we obtain 

m n 
from l c ~ n m a  4.2 tha t  A -  izj(Ar) - X- rzJ(f\/) -- A -  ixJ(P) . Tllcn, 1)y 1 Ilcorem 3.19, there exists 

R I< X - R R X - 
a Q such that  A - I ~ ~ ( I V )  -P Q -- A-i?j (P)  . Tllus 11' -- A-iij(11') - Q -- X-nf(P) cc P . 
The proof is summarizctl hy tllr rollowing tliagram. 

The theorem fails if we replace A- \vii 11 AV,  as wc can sce fro111 the follo\ving simple example. 

Example 4.4 
Let s be a sort, and j : s 2 . s .  c1 : s be constanls. Co~lsidcr the algcl~raic rule r r j z  --+ a 

where x has type cs ancl the tcrm A f  r Ag:s. .fy. T~IFII, 111 2 Xy: s. CI and Ad & f .  Since f 
and Xy: s. a are AVr-normal for~us ,  confluence fails. 



It is instructive to  see how the proof of lemma 4.1 breaks down if we try to extend it to  Xv- 
reduction. Take r and M as before and N r Xy:s. a . Then Xy: s. zy has property (*), but after 
one 7-reduction we obtain just z for which property (*) fails. 

Remark. In short, the proof of theorem 4.3 consists of the observation that the reduction mapping 
lemma (lemma 4.2) and the confluence of algebraic reduction on algebraic terms imply the conflu- 
ence of mixed reduction on mixed terms. Thhrkse Hardin uses similar reduction mapping lemmas to  
prove confluence results in the strong categorical combinatory logic (see the interpretation method 
in [ ~ a r 8 9 ] ) ~ .  Moreover, Hardin makes the nice observation that reduction mapping lemmas also 
work "in reverse". In our case, using also lemma 2.12, this comes down to the fact that the reduc- 
tion mapping lemma (lemma 4.2) and the confluence of mixed reduction on mixed terms imply the 
confluence of algebraic reduction on algebraic terms. However, there is no need in our case for the 
reduction mapping lemma in order to  show that the confluence of mixed reduction on mixed terms 

R R 
implies the confluence of algebraic reduction on algebraic terms. Indeed, let B1 - A --t, B2 
be algebraic reductions on algebraic terms. By confluence of mixed reduction there exists M such 

A-R A-R 
that B1 + M +- B2 . But the Bi's cannot colltain ally A--redex a.nd using lemma 2.12 we 

R A-R 
conclude that all the terms and reduction steps in the reduction cha,ins B1 - il/l i- B2 are 
actually algebraic. 

5 Deciding equational reasoning (even with I ) )  

If we set aside the operational semantics issues, the interest in rewrite systems stems from their 
use in automated equational reasoning. How are the results that we have established applicable 
to  deciding equational provability? The answer depends on what kind of equational reasoning we 
have in mind as differences arise depending on whether we insist or not on models with empty 
sorts or types. Some care is needed to formulate equational reasoning that is sound in models with 
empty types [GM82, LSsG, MMhlIS871. In particular, one tags equations with finite sets of variables 
(which include, but may not be limited to, the variables that are actually free in the equation) and 
one defines truth by universally quantifying over all the variables in the tag set. Since we need to  
know over which parts of the semantic universe to quantify, we assign types to the variables in the 
tag sets. 

Definition 5.1 (Equations) 
A declaration (sometimes called a type assignment) is a. partial function 4 : A' -i 7 with finite 

domain. At the same time, we will also regard declara.tions as finite sets of pa.irs m :  a such that no 
x occurs twice. This allows us to write A C A' instead of " ~Loii~A 5 do~izA' and A 1 ( x )  = A ( x )  
for every x E domA". We agree to write 4; x: CJ for 4 U {x: a)  a,nd. by convention, the use of this 
notation implies that m $ donxA. 

A term M is contpatible with a declnrution A if FTf(A4) C_ domA and each x E F T f ( M )  has type 
A(x) in M. 

A An equation is a triple M = N such that both ill aad AT are compa.tible with A. 

5We note that the observations were made independently, cf. [BT88]. 



We will consider equational proofs in the form of chains of one-step conversions. Just using the 
convertibility relation won't do, because we want to distinguish reasoning that  is sound in models 
with empty types. This will be done using the declaration part of the equations. 

Definition 5.2 (Compatible convertibility) 
Let -% be a reduction relation. M and N are p-convertible under A whenever there exist 
Po,. . . , Pk (k 2 0) such that  each Pi is compatible with A and such that 

Note that  if M and N are pconvertible under A then, in particular, they are aJso p-convertible in 
the usual sense, and, moreover, M and N are compatible with A. We are now rea.dy to  define two 
kinds of equational provability, one that is sound in models which may have empty types and one 
that  is sound in models which have all types lion-empty. 

Definition 5.3 (Equational provability) 
Let -% be a reduction relation. 

The equation A4 !? N is (hjf14kkBE EMPTY)-prova,ble from p whenever A4 and N are p- 
convertible under A. 

The equation M 2 N is (NOT EMPTY)-provable from p whenever there exists A' > A such 
that M and N are p-convertible under A'. 

Remark. These notions of prova.bility ca.n be shown t o  be equivalent to  ot,hers given by proof rules 
and axioms, as in [BTC88]. In b11a.t case, the correspondent of the a1gebra.i~ rewrite rule A - B 
would be the axiom A 2 B where d o m A  de' F Y ( A )  and A(%) is the t,ype that r has in A. The 
difference between the correspondents of (MAYBE EMPTY) and (NOT EMPTY) would be that 
the latter would have the additional "discharge" rule 

(See [GM82, LS86, MMMS87, BTCSS] for more on these and related proof systems and their 
(in)completeness properties.) 

As a corollary of the main result of this paper (theorem 3.3) and the main result of a companion 
paper (theorem 5.7 of [BTGSl]). we obtain tha,t if R is canonical (confluent and strongly normaliz- 
ing) on algebraic terms then both (MAYBE EMPTY)- and (NOT EMPTY)-provability from A-R - R + p + type-/3 + type-17 a.re decidable. This follows from the following simple fact. 

Proposition 5.4 
Let R be confluent on  algebraic te~-172s. Then ,  M and N are A-R-conz1crtible under A i# M and 

A-R A-R 
N are compatible with A and there exists P such that Ad it P - LIT 



A-R Proof. By theorem 4.3 - is confluent, therefore in one direction we can show by induction 
on the length of chain of conversions that we can obtain two chains of reductions to  the same P 
(well-known argument). In the other direction, we need only observe that if A/l is compatible with 

A-R 
A and M - X then X is also compatible with A. 

This proposition, together with theorem 5.7 of [BTGSl], yields immediately the following. 

Corollary 5.5 
If R is confient on algebraic terms then M 2 N is (MAYBE EMPTY)-provable from A-R ifl it is 
(NOT EMPTY)-provable from the same. Moreover, if R is also strongly nornznlizing on algebraic 
terms, the prowabilities are further equivalent to A-nf ( M )  r A- nf (N) .  

Therefore, when R is canonical on algebraic terms, the decision procedure for the provability (both 
kinds) of an equation from A-R is to take both sides of the equation to X-R-normal form and to 
test if the results coincide. 

Now, what happens if we insist that 11 be ava.ilable too? In view of the cou~lteresample presented 
in section 4 (example 4.4), there are algebraic rewrite systems R which are canonical but such that 
X'R-reduction is not confluent, so we cannot repea.t the previous a,rguments. Nonetheless, we will 
show that we can still decide provability from X'R. This will require some formal development. 

The decision procedure will use conversion to long nornzul fornzs, a straightforwa.rd generalization 
of the 77-expanded normal forrixs in [Hue7.5] called long /3?-normal forms in [Sta82]. 

Definition 5.6 (Long normal form) 
A term M is in long normal form if A 4  = . . . . Xuk. h TI - - - Tm where the vi's are either type 

variables or of the form 3: T, h is a. variable or a const,a,nt, the Tjls a.re eit,her type expressions or 
(inductively) terms in long norma.1 form, we do not have vl; G T, 5 t for some type variable t (to 
avoid having a 777-redex), and the type of h TI . -T,, is either a sort, or a type va.riable, or of the 

def form Qt.  a. (We will often use the shorter notation Av'. h TI - - . T,,, = Xul. . . . Xuk. h TI . . T,  ). 

While long normal forms a,re in general not in 7-normal form, the nallle is justified by the following 
result. 

Lemma 5.7 
Any term is A"-convertible to N. ~iniqtre long normal form. 

Proof. Since every long normal form is also a A--normal form, it is sufficient to show how to 
q-convert any A--normal form to a unique long normal form. If A4 is in A--normal form then 
already M G Xul. a * . .  Avk. h Tl T,, where the vi7s are either type variables or of the form 
y: T ,  h is a variable or a constant, the TJ7s are either type expressions or terms in X--normal form, 
and, we do not have vk E T, s t for some type variable t .  Suppose that in Av'. h TI 0 .  - T, 
we have already (recursively and, for the uniqueness, inductively) 17-converted those TJ which are 
terms (and therefore A--normal forins of strictly smaller size) to their linique long normal form. 



Let the type of hTl .. .T, be a1 + .  . . -i a, --+ T where n > 0 and r is either a sort, or a type 
variable, or of the form Vt. a (any type is of this form). From this, the unique long normal form 
is reached by performing the 7-expansions that give Xv'. Axl : al. . - . . Ax,: a,. h TI . . Tm Ul . U, 
where Ui is the long normal form of xi. 

We denote by lnf (M) the long normal form of M. It  turns out that while in general we do not have 
a reduction mapping result for mapping to  7-normal form, we will have such a result for mapping 
to  long normal form. 

Lemma 5.8 
Let r E R, and let M,  N be two terms. If M N then lnf ( M )  lnf ( N  ). 

Proof. The proof is almost the same as that of lemma 4.1. The only notable addition is that one 
must check that property ( t )  is preserved under the kind of 7-expansion used to reach long normal 
form (see the proof of lemma 5.7). To see this, let Q' be a term of the form Xi?. h Tl . . . Tm and 
such that the type of h TI . . . T,,, is r - r' , and a.ssume that Q' has property (a). Since the type 
of hTl . Tm is of the form r - T' , we can't have h = z , hence 2 can only 0ccu.r within the 
Tj's. Clearly then, XG. Xy: r. h TI . . . T,,, y also has the property (*). 

Lemma 5.9 
If M  converts to N then llzf (Jf ) R-co~iverts to lnf ( N )  . 

Proof. By induction on the length of the conversion cha.in from 124 to N.  Immediate from 
lemma 5.8. 

When R is canonical on algebraic terms, it is also canonical on all terms, by theorem 3.19 of this 
paper and theorem 3.10 of the cornpallion paper [BTGSl]. In tl1a.t ca,se, we denote with Rnf(M) 
the R-normal form of a t e r ~ n  J4 .  

Proposition 5.10 
Let R be canonical on algebraic ternzs. Then, M and AT are X'R-cone,crtible ~rnder A ifl A4 and 

N are compatible with A and Rnf (lnf ( M ) )  = Rnf (lnf(N)) . 

Proof. Suppose that A 1  and N  are XVR-convertible under A. Then, they are also X'R-convertible 
in the usual sense, hence by lemma 5.9 lnf (114) and lizf ( N )  are R-convertible, hence their R-normal 
forms coincide. For the converse. me need only observe that if At' is compatible with A then for 
any X appearing in the coilversion chain from A4 to  lrzf(M) (see the proof of lemma 5.7) X is also 
compatible with A. Indeed, 11-espansions (as opposed to other kinds of expansion) do not introduce 
new variables. 

Corollary 5.1 1 

If R is canonical on algebraic ternzs then M N is (MAYBE EMPTY:)-prouable from X'R ifl it 
is (NOT EMPTY)-provable from the scl,me ifl Rizf (lnf (M)) z Rnf (lizf (A')) . 

Therefore, when R is canonical on algebraic terms, the decision procedure for the provability (both 
kinds) of an equation from X'R is to take both sides of the equation to long normal form, then to  
take these to R-normal form, aad finally to test if the results coincide. 



6 Directions for Further Research 

Of course, one would also like to  know what to do in the absence of an equivalent canonical rewrite 
system. We conjecture that the proof-theoretic reduction from simply typed theories with algebraic 
axioms to  algebraic theories, given in [BT88], can be generalized to  polymorphic theories. 

Our results show that some important properties of algebraic systems are preserved when algebraic 
rewriting and polymorphic lambda-term rewriting are mixed. As applications to the results of this 
paper, we intend to  investigate higher-order unification modulo an algebraic theory. For the simply- 
typed lambda calculus, we conjectured earlier that adding the lazy paramodulation rule investigated 
in [GS89a] to the set of higher-order transformations investigated in [GS89b] yields a complete set 
of transformations for higher-order E-unification. This has been confirmed by Snyder, using the 
reduction mapping result in lemma 5.8 [SnySO]. We also intend to investigate the possibility of 
extending Knut h-Bendix completion procedures to polymorphic theories with algebraic axioms. 

Another direction of investigation is to consider more complicated type disciplines, such as that of 
the Calculus of Construc,tions [CH88]. 

More generally, we feel that the results of this paper are only a first step towards extending the 
important field of term rewriting systems to include higher-order rewriting. One of our main goals 
is to provide rigorous methods for understanding higher-order functional and logic programming. 
In particular, one is interested in rules which describe the behaviour of higher-order operations 
(such as maplist, for example). In any case, a lot of care will be needed with higher-order rules 
because, for example, fixed points are also described this way: T'F = F ( Y F ) .  Rules in which 
higher-order variables are applied to one or more arguments in the left hand side term also cause 
problems. Consider a signature with one sort s ,  a unary operation f and a nullary operation a ,  
and the higher-order rewrite rule f ( za )  -2- a where a is a variable of type s s. Then 

Since f a  and a are distinct pr-normal forms, collfluence fails. 

References 

[AS851 H. Abelson and G. J. suss ma,^^. Structure and interpretation of computer programs. 
The MIT Press, 198.5. 

[Bar841 13. P. Barendregt. The LanzMa Calculus: Its Syntax and Senzantics, volume 103 of 
Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 
second edition. 1984. 

[Ber84] I. Bercovici. Strong normalization for typed lambda calculus wit.11 surjective pairing- 
Tait7s method. Unpublished  manuscript^, La,bora.tory for Computer Science, MIT, July 
1984. 

[BMMSO] K. Bruce, A. Meyer, and J. Mitchell. The semantics of second-order lambda calculus. 
In G. Huet, editor, Logical Foundations of Functional Progranzming, pages 213-272 
(Ch. 10). Addison-Wesley, 1990. Also to  a.ppear in Informa.t,ion a.nd Computation. 



[Gir72] 

[GM82] 

[GM W 791 

[GS89a] 

[GS89b] 

[Has891 

V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of the 
Symposium on Logic in Computer Science, pages 82-90. IEEE, July 1988. 

V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. Theoretical 
Computer Science, 59:85-114, 1988. 

V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong 
normalization. Theoretical Computer Science, 83:3-28, 1991. 

V. Breazu-Tannen and A. R. Meyer. Computable values can be classical. In Proceedings 
of the 14th Symposium on Principles of Progmmming Langua,ges, pages 238-245. ACM, 
January 1987. 

T. Coquand and G. Huet. The calculus of constructions. Information and Control, 
76:95-120, 1988. 

D. Dougherty. Personal communication, September 1986. 

D. Dougherty. Adding algebraic rewriting to  the untyped lambda. calculus. Information 
and Computation, ??:??-??, 1991. To a.ppear. 

R. C. de Vrier. Strong normalization in N - H A w .  Manuscript, 1982. 

H. Ehrig and B. Mahr. Fundanzeiztab of algebraic specifica,tioiz 1: equations and initial 
semantics. Springer-Verlag, 1985. 

S. Fortune, D. Leivant, and M. 07Donnell. The expressiveness of simple and second- 
order type structures. Jou.rna1 of the ACM, 30(1):151-185, January 1983. 

H. Friedman. Equality between functionals. In R. Parikh, editor, Proceedings of the 
Logic Colloqium '73, pages 22-37. Lecture h'otes in Mathematics, Vol. 453, Springer- 
Verlag, 1975. 

J.-Y. Girard. Interprktntion fonctionelle et e'limination cle.c coupures dans l'arithmk- 
tique d'ordre supe'rieure. PkD thesis, Universitk Paris VII. 1972. 

J .  Goguen a,nd J .  Meseguer. Completeness of many-sorted equa.t,ional logic. SIGPLAN 
Notes, 17:9-17, 1982. 

M. J.  Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of Lecture 
Notes in Computer Science. Springer-Verlag, Berlin, 1979. 

J. Gallier and W. Snyder. Complete sets of transformations for general E-Unification. 
Theoretical Computer Science, 67:203-260, 1989. 

J .  Gallier and W. Snyder. Higher-order unification revisited: Complete sets of trans- 
formations. J o u r ~ ~ a l  of ,S'yrilbolic Computation, S:101-140, 1989. 

T. Hardin. Confluence results for the pure strong categorical logic CCL. A-calculi as 
subsytems of CCL. Throreticul Coiiapzr.ter Science, 65:291-34.2, 1989. 



[HM90] B. T.  Howard and J .  C. Mitchell. Operational and axiomatic semantics of PCF. In 
Proceedings of the LISP and Functional Programming Conference, !Vice, pages 298-306, 
New York, June 1990. ACM. 

[Hud86] P. Hudak. Para-functional programming. Computer, 18:60-70, August 1986. 

[Hue751 G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science, 
1:27-57, 1975. 

[Klo80] J .  W. Klop. Combinatory reduction systems. Tract 129, Ma.thematica1 Center, Ams- 
terdam, 1980. 

[Klo87] J. W. Klop. Term rewriting systems: a tutorial. Bull. EATCS, 32:143-182, June 1987. 

[LS86] J. Lambek and P. J. Scott. Introduction to higher-order categorical logic, volume 7 of 
Cambridge studies in aclvancecl mathematics. Cambridge University Press, 1986. 

[MG85] J .  Meseguer and J .  Goguen. Deduction with many-sorted rewrite. Technical Report 42, 
CSLI, Stanford, 198.5. 

[MMMS87] A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty types in polymorphic 
A-calculus. In Proceedings of the 14th ,Synaposiu.nz on Principles of Programming Lan- 
guages, pages 253-262. ACM, January 1987. Reprinted with corrections in "Logical 
foundat,ions of functiona.1 progra.mming", G. Huet ed., Addison-Wesley 1990. 

[MR86] A. R. Meyer and M. B. Reinhold. 'Type' is not a type: Preliminary report. In Conf. 
Record Thirteenth Ann. ,S'ymp. Principles of Programming Languages, pa.ges 287-295. 
ACM, January 1986. 

[New421 M. H. A. Newman. On theories with a colnbinatorial definition of "equivalence". Ann. 
Math, 43:223-243, 1942. 

[Pot81] G. Pottinger. The Church-Rosser theorem for the typed A-calculus with surjective 
pairing. Notre Dame J .  of Formal Logic, 22:264-268, 1981. 

[Rey74] J .  C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Progrum- 
ming Symposium, pages 408-42.5. Sljringer Lecture Notes in Cbrrhputer ,Tcience, Vol. 19, 
Springer-Verlag, 1971. 

[Sny9O] W. Snyder. Higher-order E-unification. In Proceedings of the International Conference 
on Automated Decluction. I<aiser.slautern, pages 576-587, July 1990. 

[ S t d l ]  R. Sta,tman. Number theoretic functions computable hy polymorphic programs. In 
22nd Sympo.sitrnz on Fo7rndcttioia.s of Conaputer .Science, pa.ges 279-282. IEEE,  1981. 

[Sta82] R. Statman. Completeness, invariance and A-definability. Journal of Symbolic Logic, 
47:17-26, 1982. 

[Toy871 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting 
systems. Journal of the ACA!. 34(1):128-143. January 1987. 



[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In 
J.-P. Jouannaud, editor, Proceedings of the Conference on Functional Programming 
Languages and Computer Architecture, pages 1-16. Springer Lecture Notes in  Corn- 
puter Science, Vol. 201, Springer-Verlag, 1985. 


	Polymorphic Rewriting Conserves Algebraic Confluence
	Recommended Citation

	Polymorphic Rewriting Conserves Algebraic Confluence
	Abstract
	Comments

	tmp.1187889480.pdf._Ntry

