159 research outputs found

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Contribution to the verification of timed automata (determinization, quantitative verification and reachability in networks of automata)

    Get PDF
    Cette thĂšse porte sur la vĂ©rification des automates temporisĂ©s, un modĂšle bien Ă©tabli pour les systĂšmes temps-rĂ©els. La thĂšse est constituĂ©e de trois parties. La premiĂšre est dĂ©diĂ©e Ă  la dĂ©terminisation des automates temporisĂ©s, problĂšme qui n'a pas de solution en gĂ©nĂ©ral. Nous proposons une mĂ©thode approchĂ©e (sur-approximation, sous-approximation, mĂ©lange des deux) fondĂ©e sur la construction d'un jeu de sĂ»retĂ©. Cette mĂ©thode amĂ©liore les approches existantes en combinant leurs avantages respectifs. Nous appliquons ensuite cette mĂ©thode de dĂ©terminisation Ă  la gĂ©nĂ©ration automatique de tests de conformitĂ©. Dans la seconde partie, nous prenons en compte des aspects quantitatifs des systĂšmes temps-rĂ©el grĂące Ă  une notion de frĂ©quence des Ă©tats acceptants dans une exĂ©cution d'un automate temporisĂ©. Plus prĂ©cisĂ©ment, la frĂ©quence d'une exĂ©cution est la proportion de temps passĂ©e dans les Ă©tats acceptants. Nous intĂ©ressons alors Ă  l'ensemble des frĂ©quences des exĂ©cutions d'un automate temporisĂ© pour Ă©tudier, par exemple, le vide de langages seuils. Nous montrons ainsi que les bornes de l'ensemble des frĂ©quences sont calculables pour deux classes d'automates temporisĂ©s. D'une part, les bornes peuvent ĂȘtre calculĂ©es en espace logarithmique par une procĂ©dure non-dĂ©terministe dans les automates temporisĂ©s Ă  une horloge. D'autre part, elles peuvent ĂȘtre calculĂ©es en espace polynomial dans les automates temporisĂ©s Ă  plusieurs horloges ne contenant pas de cycles forçant la convergence d'horloges. Finalement, nous Ă©tudions le problĂšme de l'accessibilitĂ© des Ă©tats acceptants dans des rĂ©seaux d'automates temporisĂ©s qui communiquent via des files FIFO. Nous considĂ©rons tout d'abord des automates temporisĂ©s Ă  temps discret, et caractĂ©risons les topologies de rĂ©seaux pour lesquelles l'accessibilitĂ© est dĂ©cidable. Cette caractĂ©risation est ensuite Ă©tendue aux automates temporisĂ©s Ă  temps continu.This thesis is about verification of timed automata, a well-established model for real time systems. The document is structured in three parts. The first part is dedicated to the determinization of timed automata, a problem which has no solution in general. We propose an approximate (over-approximation/under-approximation/mix) method based on the construction of a safety game. This method improves both existing approaches by combining their respective advantages. Then, we apply this determinization approach to the generation of conformance tests. In the second part, we take into account quantitative aspects of real time systems thanks to a notion of frequency of accepting states along executions of timed automata. More precisely, the frequency of a run is the proportion of time elapsed in accepting states. Then, we study the set of frequencies of runs of a timed automaton in order to decide, for example, the emptiness of threshold languages. We thus prove that the bounds of the set of frequencies are computable for two classes of timed automata. On the one hand, we prove that bounds are computable in logarithmic space by a non-deterministic procedure in one-clock timed automata. On the other hand, they can be computed in polynomial space in timed automata with several clocks, but having no cycle that forces the convergence between clocks. Finally, we study the reachability problem in networks of timed automata communicating through FIFO channels. We first consider dicrete timed automata, and characterize topologies of networks for which reachability is decidable. Then, this characterization is extended to dense-time automata.RENNES1-Bibl. Ă©lectronique (352382106) / SudocSudocFranceF

    Robust decentralized supervisory control of discrete-event systems

    Get PDF
    In this thesis we study robust supervisory control of discrete event systems in two different settings. First, we consider the problem of synthesizing a set of decentralized supervisors when the precise model of the plant is not known, but it is known that it is among a finite set of plant models. To tackle this problem, we form the union of all possible behaviors and construct an appropriate specification, from the given set of specifications, and solve the conventional decentralized supervisory control associated with it. We also prove that the given robust problem has a solution if and only if this conventional decentralized supervisory control problem has a solution. In another setting, we investigate the problem of synthesizing a set of communicating supervisors in the presence of delay in communication channels, and call it Unbounded Communication Delay Robust Supervisory Control problem (UCDR-SC problem). In this problem, We assume that delay is unbounded but it is finite, meaning that any message sent from a local supervisor will be received by any other local supervisors after a finite but unknown delay. To solve this problem, we redefine the supervisory decision making rules, introduce a new language property called unbounded-communication-delay-robust (UCDR), and present a set of conditions on the specification of the problem. We also show that the new class of languages that is the solution to this problem has some interesting relations with other observational languages

    Control and diagnosis of real-time systems under finite-precision measurement of time

    Get PDF
    A discrete event system (DES) is an event-driven system that evolves according to abrupt occurrences of discrete changes (events). The domain of such systems encompasses aspects of many man-made systems such as manufacturing systems, telephone networks, communication protocols, traffic systems, embedded software, asynchronous hardware, robotics, etc. Supervisory control theory for DESs studies the existence and synthesis of the supervisory controllers, namely, supervisors that restrict the system behaviors by dynamically disabling certain controllable events so that the controlled close-loop system could behave as desired. Extensive work on supervisory control of untimed DESs exists and the extension to the timed setting has been reported in the literature. In this dissertation, we study the supervisory control of dense-time DESs in which the digital-clocks of finite-precision are employed to observe the event occurrence times, thereby relaxing the assumption of the prior works that time can be measured precisely. In our setting, the passing of time is measured using the number of ticks generated by a digital-clock and we allow the plant events and digital-clock ticks to occur concurrently. We formalize the notion of a control policy that issues the control actions based on the observations of events and their occurrence times as measured using a digital-clock, and show that such a control policy can be equivalently represented as a digitalized -automaton, namely, an untimed-automaton that evolves over the events (of the plant) and ticks (of the digital-clock). We introduce the notion of observability with respect to the partial observations of time resulting from the use of a digital-clock, and show that this property together with controllability serves as a necessary and sufficient condition for the existence of a supervisor to enforce a real-time specification on a dense-time discrete event plant. The observability condition presented in the dissertation is very different from the one arising due to a partial observation of events since a partial observation of time is in general nondeterministic (the number of ticks generated in any time interval can vary from execution to execution of a digital-clock). We also present a method to verify the proposed observability and controllability conditions, and an algorithm to compute a supervisor when such conditions are satisfied. Furthermore we examine the lattice structure of a class of timing-mask observable languages, and show that the proposed observability is not preserved under intersection but preserved under union. Fault diagnosis for DESs is to detect the occurrence of a fault so as to enable any corrective actions. It is crucial in automatic control of large complex man-made systems and has attracted considerable attention in the literature of reliability engineering, control and computer science. For the event-driven systems with timing-requirements such as manufacturing systems, communication networks, real-time scheduling and traffic systems, fault diagnosis involves detecting the timing-faults, besides the sequence-faults. This requires monitoring timing and sequence of events, both of which may only be partially observed in practice. In this dissertation, we extend the prior works on fault diagnosis of timed DESs by allowing time to be partially observed using a digital-clock which measures the advancement of time with finite precision by the number of ticks. For the diagnosis purposes, the set of nonfaulty timed-traces is specified as another timed-automaton that is deterministic. We show that the set of timed-traces observed using a digital-clock with finite precision is regular, i.e., can be represented using a finite (untimed) automaton. We also show that the verification of diagnosability (the ability to detect the execution of a faulty timed-trace within a bounded time delay) as well as the off-line synthesis of a diagnoser are decidable by reducing these problems to the untimed setting. The reduction to the untimed setting also suggests an effective method for the off-line computation of a diagnoser as well as its on-line implementation for diagnosis. The aforementioned results are further extended to the nondeterministic setting, i.e., diagnosis of dense-time DESs using digital-clocks under nondeterministic event observation mask. We introduce the notion of lifting (associating each event with each of its nondeterministic observations), and show that diagnosis of dense-time DESs employing digital-clocks to observe event occurrence times under nondeterministic event observation mask can be reduced to that of the deterministic setting, i.e., diagnosis of the lifted dense-time DESs under the deterministic lifted event observation mask, and hence can be further reduced to diagnosis of the untimed setting

    Time At Your Service: Schedulability Analysis of Real-Time and Distributed Services

    Get PDF
    The software today is distributed over several processing units. At a large scale this may span over the globe via the internet, or at the micro scale, a software may be distributed on several small processing units embedded in one device. Real-time distributed software and services need to be timely and respond to the requests in time. The Quality of Service of real time software depends on how it schedules its tasks to be executed. The state of the art in programming distributed software, like in Java, the scheduling is left to the underlying infrastructure and in particular the operating system, which is not anymore in the control of the applications. In this thesis, we introduce a software paradigm based on object orientation in which real-time concurrent objects are enabled to specify their own scheduling strategy. We developed high-level formal models for specifying distributed software based on this paradigm in which the quality of service requirements are specified as deadlines on performing and finishing tasks. At this level we developed techniques to verify that these requirements are satisfied. This research has opened the way to a new approach to modeling and analysis of a range of applications such as continuous planning in the context of logistics software in a dynamic environment as well as developing software for multi-core systems. Industrial companies (DEAL services) and research centers (the Uppsala Programming for Multicore Architectures Resrearch Center UPMARC) have already shown interest in the results of this thesis.LEI Universiteit LeidenFoundations of Software Technolog

    Numbers and Languages

    Get PDF
    The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.Siirretty Doriast

    Twin‐engined diagnosis of discrete‐event systems

    Get PDF
    Diagnosis of discrete-event systems (DESs) is computationally complex. This is why a variety of knowledge compilation techniques have been proposed, the most notable of them rely on a diagnoser. However, the construction of a diagnoser requires the generation of the whole system space, thereby making the approach impractical even for DESs of moderate size. To avoid total knowledge compilation while preserving efficiency, a twin-engined diagnosis technique is proposed in this paper, which is inspired by the two operational modes of the human mind. If the symptom of the DES is part of the knowledge or experience of the diagnosis engine, then Engine 1 allows for efficient diagnosis. If, instead, the symptom is unknown, then Engine 2 comes into play, which is far less efficient than Engine 1. Still, the experience acquired by Engine 2 is then integrated into the symptom dictionary of the DES. This way, if the same diagnosis problem arises anew, then it will be solved by Engine 1 in linear time. The symptom dic- tionary can also be extended by specialized knowledge coming from scenarios, which are the most critical/probable behavioral patterns of the DES, which need to be diagnosed quickly

    Towards Optimal Application Mapping for Energy-Efficient Many-Core Platforms

    Get PDF
    Siirretty Doriast

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    • 

    corecore