17 research outputs found

    Methodology for malleable applications on distributed memory systems

    Get PDF
    A la portada logo BSC(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work.(Espa帽ol) El modelo de programaci贸n dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar m煤ltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensi贸n del modelo de programaci贸n basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a peque帽a y mediana escala, un modelo basado en tareas es m谩s simple y productivo que MPI y elimina la necesidad de distribuir los datos expl铆citamente y convertir todas las dependencias en mensajes. Adem谩s, evita la complejidad de la programacion h铆brida MPI+X. En segundo lugar; la capacidad de enviar partes del c谩lculo entre los nodos permite a la librer铆a balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librer铆a quien maneja todos los aspectos relacionados con distribuci贸n y transferencia de datos, es posible la modificaci贸n din谩mica y transparente de los recursos que utiliza la aplicaci贸n. Esta tesis describe el dise帽o, desarrollo y evaluaci贸n de OmpSs-2@Cluster; un modelo de programaci贸n y librer铆a que extiende OmpSs-2 permitiendo la ejecuci贸n de programas OmpSs-2 existentes en m煤ltiples nodos sin pr谩cticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorizaci贸n de Cholesky. Este trabajo incluye la extensi贸n de OmpSs-2@Cluster para interactuar con MPI y la librer铆a de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecuci贸n de una aplicaci贸n de mec谩nica de s贸lidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implement贸 otra extensi贸n de la librer铆a para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El 煤nico cambio requerido en la aplicaci贸n es la llamada explicita a una funci贸n de la interfaz que controla la adici贸n o eliminaci贸n de nodos. Adem谩s, se agreg贸 la funcionalidad de guardar y recuperar parte del estado de la aplicaci贸n de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribuci贸n de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster ampl铆a el modelo de programaci贸n de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecuci贸n de programas OmpSs-2 en m煤ltiples nodos pr谩cticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite adem谩s el balanceo din谩mico de carga en aplicaciones h铆bridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librer铆a tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.Arquitectura de computador

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Toward Message Passing Failure Management

    Get PDF
    As machine sizes have increased and application runtimes have lengthened, research into fault tolerance has evolved alongside. Moving from result checking, to rollback recovery, and to algorithm based fault tolerance, the type of recovery being performed has changed, but the programming model in which it executes has remained virtually static since the publication of the original Message Passing Interface (MPI) Standard in 1992. Since that time, applications have used a message passing paradigm to communicate between processes, but they could not perform process recovery within an MPI implementation due to limitations of the MPI Standard. This dissertation describes a new protocol using the exiting MPI Standard called Checkpoint-on-Failure to perform limited fault tolerance within the current framework of MPI, and proposes a new platform titled User Level Failure Mitigation (ULFM) to build more complete and complex fault tolerance solutions with a true fault tolerant MPI implementation. We will demonstrate the overhead involved in using these fault tolerant solutions and give examples of applications and libraries which construct other fault tolerance mechanisms based on the constructs provided in ULFM

    Fault-tolerance and malleability in parallel message-passing applications

    Get PDF
    [Resumo] Esta tese explora soluci贸ns para tolerancia a fallos e maleabilidade baseadas en t茅cnicas de checkpoint e reinicio para aplicaci贸ns de pase de mensaxes. No campo da tolerancia a fallos, esta tese contrib煤e melloraudo o factor que m谩is incrementa a sobrecarga, o custo de E/S no envorcado dos ficheiros de estado, propo帽endo diferentes t茅cnicas para reducir o tama帽o dos ficheiros de checkpoint. Ademais, tam茅n se prop贸n un mecanismo de migraci贸n de procesos baseado en checkpointing. Esto permite a migraci贸n proactiva de procesos desde nodos que est谩n a piques de fallar, evitando un reinicio completo da execuci贸n e melloraudo a resistencia a fallos da aplicaci贸n. Finalmente, esta tese presenta unha proposta para transformar de forma transparente aplicaci贸ns MPI en traballos maleables. Esto 茅, programas paralelos que en tempo de execuci贸n son capaces de adaptarse so n煤mero de procesadores dispo帽ibles no sistema, conseguindo beneficios, como maior productividade, mellor tempo de resposta ou maior resistencia a fallos nos nodos. Todas as soluci贸ru; propostas nesta tese foron implementadas a nivel de aplicaci贸n, e son independentes da arquitectura hardware, o sistema operativo, a implementaci贸n MPI usada, e de calquera framework de alto nivel, como os utilizados para o env铆o de traballos.[Resumen] Esta tesis explora soluciones de tolerancia a fallos y maleabilidad basadas en t茅cnicas de checkpoint y reinicio para aplicaciones de pase de mensajes. En el campo de la tolerancia a fallos, contribuye mejorando el factor que m谩s incrementa la sobrecarga, el coste de E/S en el volcado de los ficheros de estado, proponiendo diferentes t茅cnicas para reducir el tama帽o de los ficheros de checkpoint. Adem贸s, tambi茅n se propone nn mecanismo de migraci贸n de procesos basado en checkpointing. Esto permite la migraci贸n proactiva de procesos desde nodos que est谩n a punto de fallar, evitando un reinicio completo de la ejecuci贸n y mejorando la resistencia a fallos de la aplicaci贸n. Finalmente, se presenta una propuesta para transformar de forma transparente aplicaciones MPI en trabajos maleables. Esto es, programas paralelos que en tiempo de ejecuci贸n son capaces de adaptarse al n煤mero de procesadores disponibles en el sistema, consiguiendo beneficios, como mayor productividad, mejor tiempo de respuesta y mayor resistencia a fallos en los nodos. Todas las soluciones propuestas han sido implementadas a nivel de aplicaci贸n, siendo independientes de la arquitectura hardware, el sistema operativo, la implementaci贸n MPI usada y de cualquier framework de alto nivel, como los utilizados para el env铆o de trabajos.[Abstract] This Thesis focuses on exploring fault-tolerant and malleability solutions, based on checkpoint and restart techniques, for parallel message-passing applications. In the fault-tolerant field, tbis Thesis contributes to improving the most important overhead factor in checkpointing perfonnance, that is, the I/O cost of the state file dumping, through the proposal of different techniques to reduce the checkpoint file size. In addition, a process migration based on checkpointing is also proposed, that allows for proactively migrating processes fram nades that are about to fail, avoiding the complete restart of the execution and, thus, improving the application resilience. Finally, this Thesis also includes a proposal to transparently transform MPI applications into malleable jobs, that is, parallel programs that are able to adapt their execution to the number of available processors at runtime, which provides important benefits for the end users and the whole system, such as higher productivity and a better response time, or a greater resilience to node failures. All the solutions proposed in this Thesis have been implemented at the application-level, and they are independent of the hardware architecture, the operating system, or the MPI implementation used, and of any higher-level frameworks, such as job submission frameworks

    Jmas: A Java-based Mobile Actor System for Heterogeneous Distributed Parallel Computing

    Get PDF
    Computer Scienc

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems

    Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of System Performance.

    Get PDF
    The use of a network of shared, heterogeneous workstations each harboring a Reconfigurable Computing (RC) system offers high performance users an inexpensive platform for a wide range of computationally demanding problems. However, effectively using the full potential of these systems can be challenging without the knowledge of the system鈥檚 performance characteristics. While some performance models exist for shared, heterogeneous workstations, none thus far account for the addition of Reconfigurable Computing systems. This dissertation develops and validates an analytic performance modeling methodology for a class of fork-join algorithms executing on a High Performance Reconfigurable Computing (HPRC) platform. The model includes the effects of the reconfigurable device, application load imbalance, background user load, basic message passing communication, and processor heterogeneity. Three fork-join class of applications, a Boolean Satisfiability Solver, a Matrix-Vector Multiplication algorithm, and an Advanced Encryption Standard algorithm are used to validate the model with homogeneous and simulated heterogeneous workstations. A synthetic load is used to validate the model under various loading conditions including simulating heterogeneity by making some workstations appear slower than others by the use of background loading. The performance modeling methodology proves to be accurate in characterizing the effects of reconfigurable devices, application load imbalance, background user load and heterogeneity for applications running on shared, homogeneous and heterogeneous HPRC resources. The model error in all cases was found to be less than five percent for application runtimes greater than thirty seconds and less than fifteen percent for runtimes less than thirty seconds. The performance modeling methodology enables us to characterize applications running on shared HPRC resources. Cost functions are used to impose system usage policies and the results of vii the modeling methodology are utilized to find the optimal (or near-optimal) set of workstations to use for a given application. The usage policies investigated include determining the computational costs for the workstations and balancing the priority of the background user load with the parallel application. The applications studied fall within the Master-Worker paradigm and are well suited for a grid computing approach. A method for using NetSolve, a grid middleware, with the model and cost functions is introduced whereby users can produce optimal workstation sets and schedules for Master-Worker applications running on shared HPRC resources

    Fault-tolerant parallel applications using a network of workstations

    Get PDF
    PhD thesisIt is becoming common to employ a Network Of Workstations, often referred to as a NOW, for general purpose computing since the allocation of an individual workstation offers good interactive response. However, there may still be a need to perform very large scale computations which exceed the resources of a single workstation. It may be that the amount of processing implies an inconveniently long duration or that the data manipulated exceeds available storage. One possibility is to employ a more powerful single machine for such computations. However, there is growing interest in seeking a cheaper alternative by harnessing the significant idle time often observed in a NOW and also possibly employing a number of workstations in parallel on a single problem. Parallelisation permits use of the combined memories of all participating workstations, but also introduces a need for communication. and success in any hardware environment depends on the amount of communication relative to the amount of computation required. In the context of a NOW, much success is reported with applications which have low communication requirements relative to computation requirements. Here it is claimed that there is reason for investigation into the use of a NOW for parallel execution of computations which are demanding in storage, potentially even exceeding the sum of memory in all available workstations. Another consideration is that where a computation is of sufficient scale, some provision for tolerating partial failures may be desirable. However, generic support for storage management and fault-tolerance in computations of this scale for a NOW is not currently available and the suitability of a NOW for solving such computations has not been investigated to any large extent. The work described here is concerned with these issues. The approach employed is to make use of an existing distributed system which supports nested atomic actions (atomic transactions) to structure fault-tolerant computations with persistent objects. This system is used to develop a fault-tolerant "bag of tasks" computation model, where the bag and shared objects are located on secondary storage. In order to understand the factors that affect the performance of large parallel computations on a NOW, a number of specific applications are developed. The performance of these applications is ana- lysed using a semi-empirical model. The same measurements underlying these performance predictions may be employed in estimation of the performance of alternative application structures. Using services provided by the distributed system referred to above, each application is implemented. The implement- ation allows verification of predicted performance and also permits identification of issues regarding construction of components required to support the chosen application structuring technique. The work demonstrates that a NOW certainly offers some potential for gain through parallelisation and that for large grain computations, the cost of implementing fault tolerance is low.Engineering and Physical Sciences Research Counci
    corecore