
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2003

Analytical Modeling of High Performance Reconfigurable Analytical Modeling of High Performance Reconfigurable

Computers: Prediction and Analysis of System Performance. Computers: Prediction and Analysis of System Performance.

Melissa C. Smith
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Smith, Melissa C., "Analytical Modeling of High Performance Reconfigurable Computers: Prediction and
Analysis of System Performance.. " PhD diss., University of Tennessee, 2003.
https://trace.tennessee.edu/utk_graddiss/2370

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268768202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Melissa C. Smith entitled "Analytical Modeling

of High Performance Reconfigurable Computers: Prediction and Analysis of System

Performance.." I have examined the final electronic copy of this dissertation for form and

content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Don W. Bouldin, Hairong Qi, Michael Langston, Lynne Parker

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Melissa C. Smith entitled “Analytical Modeling
of High Performance Reconfigurable Computers: Prediction and Analysis of System
Performance.” I have examined the final electronic copy of this dissertation for form and content
and recommend that it be accepted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, with a major in Electrical Engineering.

 Gregory D. Peterson

 Major Professor

We have read this dissertation
and recommend its acceptance:

 Don W. Bouldin

 Hairong Qi

 Michael Langston

 Lynne Parker

Acceptance for the Council:

 Anne Mayhew

Vice Provost and Dean of Graduate Studies

(Original signatures are on file with official student records.)

Analytical Modeling of High Performance
Reconfigurable Computers:

Prediction and Analysis of System Performance

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Melissa C. Smith

December 2003

ii

Copyright © 2003 by Melissa C. Smith

All rights reserved.

iii

DEDICATION

This dissertation is dedicated to my husband, Harrison, for always
believing in me, my girls, Allison and Courtney, for being the joy of my
life, and to the rest of my family, for their love and support, inspiring me

and encouraging me to reach higher and strive harder.

iv

ACKNOWLEDGEMENTS

I would like to send a big thank you to everyone who stood by me and helped me complete

this long journey. I have been very fortunate to have had the support of numerous people over the

years as I struggled through this degree. First, I would like to thank my family who sacrificed

plenty and suffered the brunt of my frustrations and stress much of the time. My parents and my

brother who have always been there to provide support and encouragement when I had second

thoughts and doubted myself. I am truly blessed to have them in my life. A very special thanks

goes out to my husband, Harrison, who has always been there for me no matter what the circum-

stances. Without his love and patience, none of this would have been possible. He kept me cen-

tered, grounded, and always focused on the end goal. I love him dearly. And most importantly, my

girls, Allison and Courtney. Although you will not remember all the hours mommy spent working

so diligently on her research (because you were only six months old when she finished), you

helped her everyday and provided inspiration and motivation. I always knew, no matter how diffi-

cult the day had been, I could always count on both of you for your unconditional love. Your

smiles and hugs carried me through many tough days. You are my inspiration, my joy, my life, and

I love both of you more than words can say.

My advisor, Greg Peterson was the force that kept me going. His guidance and advice

were key in molding this dissertation. Somehow he managed to keep me focused, extracting my

best, even when I doubted myself. In addition, I would like to thank the other members of my com-

mittee who also played key roles in my success, Don Bouldin, Michael Langston, Hairong Qi, and

Lynne Parker. Their comments and encouragement greatly improved my dissertation and I am

indebted to them for their service. Thanks to all of you.

v

Many others have played seemingly small roles but without them, I could not have fin-

ished. Gary Alley, for standing by me and fighting for my best interest. I hope to make you proud.

Bill Holmes for his telecommuting advice and expertise. I would also like to extend my apprecia-

tion to all my colleagues at the Oak Ridge National Laboratory for being so supportive during my

trials and tribulations. Also, thanks to everyone involved in our HPRC research group (Mahesh,

Chandra, Adam, Kirk, Joe, Bahnu, Ashwin, Venky, Jason) you each played an integral part in my

success. My friends in Hong Kong who helped with the Pilchard machines especially Hok, I could

not have done it without you.

Many gracious thanks to those who supported my research with funding and equipment.

The HPRC computers and other equipment provided through the SInRG project at UT and funded

by the National Science Foundation (contracts NSF 0075792 and NSF 9972889). For their finan-

cial support, I would also like to thank the Engineering Science and Technology Division at the

Oak Ridge National Laboratory and the Air Force Research Laboratory (AFRL contract F30602-

00-D-0221). The work contained in this dissertation was developed in part based upon technology

licensed and developed by SRC Computers, Inc.

Last but not least, many thanks to all my friends who helped me “reset” on occasions and

many other good deeds. These include Renee, Joely, Gail, Gayle, Janice, Missy, TJ, Trudi, Judy,

Kelly, and many others who I have no doubtedly forgot, I hope they can forgive me! There have

been so many people that have helped me enjoy (and survive) this time. Thanks to all of you.

Finally, thanks to God for giving me the knowledge, patience, perseverance, and placing these

individuals in my life to make it all happen.

vi

ABSTRACT

The use of a network of shared, heterogeneous workstations each harboring a Reconfigurable

Computing (RC) system offers high performance users an inexpensive platform for a wide range

of computationally demanding problems. However, effectively using the full potential of these

systems can be challenging without the knowledge of the system’s performance characteristics.

While some performance models exist for shared, heterogeneous workstations, none thus far

account for the addition of Reconfigurable Computing systems. This dissertation develops and

validates an analytic performance modeling methodology for a class of fork-join algorithms exe-

cuting on a High Performance Reconfigurable Computing (HPRC) platform. The model includes

the effects of the reconfigurable device, application load imbalance, background user load, basic

message passing communication, and processor heterogeneity. Three fork-join class of applica-

tions, a Boolean Satisfiability Solver, a Matrix-Vector Multiplication algorithm, and an Advanced

Encryption Standard algorithm are used to validate the model with homogeneous and simulated

heterogeneous workstations. A synthetic load is used to validate the model under various loading

conditions including simulating heterogeneity by making some workstations appear slower than

others by the use of background loading. The performance modeling methodology proves to be

accurate in characterizing the effects of reconfigurable devices, application load imbalance, back-

ground user load and heterogeneity for applications running on shared, homogeneous and hetero-

geneous HPRC resources. The model error in all cases was found to be less than five percent for

application runtimes greater than thirty seconds and less than fifteen percent for runtimes less than

thirty seconds.

The performance modeling methodology enables us to characterize applications running on

shared HPRC resources. Cost functions are used to impose system usage policies and the results of

vii

the modeling methodology are utilized to find the optimal (or near-optimal) set of workstations to

use for a given application. The usage policies investigated include determining the computational

costs for the workstations and balancing the priority of the background user load with the parallel

application. The applications studied fall within the Master-Worker paradigm and are well suited

for a grid computing approach. A method for using NetSolve, a grid middleware, with the model

and cost functions is introduced whereby users can produce optimal workstation sets and sched-

ules for Master-Worker applications running on shared HPRC resources.

viii

CONTENTS

1. Introduction - 1

1.1 Motivation..1
1.1.1 What is HPC? ... 1
1.1.2 What is RC?.. 2

1.1.3 What is HPRC? .. 3

1.2 General Problem Statement ...5
1.2.1 Fork-Join and Synchronous Iterative Algorithms .. 6

2. Background and Related Work - - - - - - - - - - - - - - - - - - - 9

2.1 Introduction..9

2.2 Building the HPRC Architecture ...9
2.2.1 High Performance Computing and Networks of Workstations.............................. 9
2.2.2 Reconfigurable Computing .. 11

2.2.3 High Performance Reconfigurable Computing (HPRC)...................................... 17

2.3 Performance Evaluation, Analysis and Modeling ...18
2.3.1 Overview .. 18

2.3.2 Performance Evaluation Techniques .. 19
2.3.3 Performance Modeling ... 23

2.4 Performance Metrics..26

2.5 Resource Allocation, Scheduling, and Load Balancing ..29

2.6 Development Environment ..33
2.6.1 HPC Development Environment and Available Software Tools 33
2.6.2 RC Development Environment and Available Software Tools 35

2.6.3 HPRC Development Environment and Available Software Tools....................... 37

3. Parallel Applications - 40

3.1 Introduction..40

3.2 Boolean Satisfiability...41
3.2.1 Boolean Satisfiability Implementation... 43

3.3 Matrix-Vector Multiplication ...44
3.3.1 Matrix-Vector Multiplication Implementation ... 45

3.4 Encryption Using AES...46
3.4.1 AES Implementation .. 46

3.5 CHAMPION Demo Algorithms ..47

ix

4. Model Development - 50

4.1 Introduction..50

4.2 General Model Description..50

4.3 HPC Analysis...53
4.3.1 Workstation Relative Speed ... 53
4.3.2 Communication Between Processors ... 54

4.3.3 Speedup and Efficiency as Performance Metrics in HPC 55

4.4 RC Node Analysis ...56

4.5 HPRC Multi-Node Analysis ..61

4.6 Load Imbalance Model ..68
4.6.1 Introduction .. 68

4.6.2 General Load Imbalance Model ... 69
4.6.3 Application Load Imbalance Model... 71

4.6.4 Background Load Imbalance Model .. 74
4.6.5 Complete Load Imbalance Model .. 76

5. Model Validation - 78

5.1 Validation Methodology ..78

5.2 Accuracy of Modeling Communication Times..82

5.3 Accuracy of Single Node RC Model ...83
5.3.1 Wildforce Measurements.. 83

5.3.2 Firebird Measurements... 88
5.3.3 Pilchard Measurements .. 89

5.3.4 Single Node Boolean SAT Solver Comparisons .. 89

5.4 HPRC Model Validation ..93
5.4.1 No-Load Imbalance Results ... 93
5.4.2 Application Load Imbalance Results ... 99

5.4.3 Background Load Imbalance Results... 104
5.4.4 Application and Background Load Imbalance Results 115

5.4.5 Heterogeneity Results... 119

6. Application of Model -124

6.1 Application Scheduling..124
6.1.1 Minimizing Runtime .. 126

6.1.2 Minimizing Impact to Other Users... 132
6.1.3 Analyzing Optimization Space... 142

6.1.4 Other Optimization Problems... 147

x

6.2 Scheduling in a NetSolve Environment...151

7. Conclusions and Future Work - - - - - - - - - - - - - - - - - -153

7.1 Conclusions..153

7.2 Future Work ...156

Bibliography - 158

Appendix - 169

Vita - 192

xi

LIST OF TABLES

TABLE 2.1 HPC Architecture Examples [75, 17]... 10
TABLE 2.2 HPRC Development Platforms .. 18
TABLE 4.1 Symbols and Definitions .. 52
TABLE 5.1 Validation Experiments and Goals ... 80
TABLE 5.2 Model Parameters for Wildforce from Benchmark Application 85
TABLE 5.3 Runtime Predictions and Measurements (time in seconds).................................. 86
TABLE 5.4 Model Parameters for Firebird from Benchmark Application 88
TABLE 5.5 Model Parameters for Pilchard from Benchmark Applications 89
TABLE 5.6 SAT Software-Only Runtime Comparisons (time in seconds)............................. 90
TABLE 5.7 SAT RC Node Runtime Comparisons (time in seconds) 92
TABLE 5.8 Overhead for RC systems (time in minutes) .. 92
TABLE 5.9 Worst Case Values (time in seconds).. 93
TABLE 5.10 MPI SAT Solver No-Load Imbalance Results ... 94
TABLE 5.11 MPI AES Algorithm No-load Imbalance Results .. 95
TABLE 5.12 MPI Matrix Vector Multiplication Algorithm No-load Imbalance Results 97
TABLE 5.13 MPI SAT Solver Application Load Imbalance Results...................................... 102
TABLE 5.14 MPI Matrix Vector Algorithm Application Load Imbalance Results 104
TABLE 5.15 Typical factors for moderately Loaded Homogeneous Nodes Using PS Model 106
TABLE 5.16 MPI SAT Solver Background Load Imbalance Results (Problem Size 32F)..... 108
TABLE 5.17 MPI SAT Solver Background Load Imbalance Results (Problem Size 36F)..... 109
TABLE 5.18 MPI Matrix Vector Algorithm Background Load Imbalance Results................ 111
TABLE 5.19 MPI AES Encryption Algorithm Background Load Imbalance Results............ 113
TABLE 5.20 MPI SAT Solver Application and Background Load Imbalance Results 115
TABLE 5.21 MPI SAT Solver Application and Background Load Imbalance Results 116
TABLE 5.22 MPI Matrix Vector Algorithm Application and Background Load Imbalance

Results .. 118
TABLE 5.23 MPI SAT Solver Heterogeneous Resources Results .. 119
TABLE 5.24 MPI Matrix Vector Algorithm Heterogeneous Resources Results..................... 120
TABLE 5.25 MPI AES Encryption Algorithm Heterogeneous Resources Results................. 121
TABLE 6.1 Modeled Costs of Surrounding States of Near-Optimal Solution for AES on 5

Heterogeneous Workstations (x=5, c=1) .. 138
TABLE 6.2 Constrained Runtime.. 140
TABLE 6.3 Constrained Cost .. 141
TABLE a.1 Communication Measurements: Message Round Trip Time 170
TABLE a.2 Communication Measurements: Network Bandwidth (vlsi4)............................ 171
TABLE a.3 SAT Solver No-load Data (sec) .. 172
TABLE a.4 SAT Solver Application Load Imbalance Data (sec) ... 173
TABLE a.5 SAT Solver Background Load Imbalance Data (sec)... 174
TABLE a.6 SAT Solver Application and Background Load Imbalance Data (sec) 175
TABLE a.7 Matrix Vector Multiplication Algorithm No-load and Application Load Data

(msec) ... 177

xii

TABLE a.8 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part I ... 178

TABLE a.9 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part II .. 179

TABLE a.10 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part III... 180

TABLE a.11 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part IV .. 181

TABLE a.12 AES Algorithm No-load Data (msec) .. 182
TABLE a.13 AES Algorithm Background Load Imbalance Data (msec) (2 Nodes) 183
TABLE a.14 AES Algorithm Background Load Imbalance Data (msec) (3 Nodes) 184
TABLE a.15 AES Algorithm Background Load Imbalance Data (msec) (4 Nodes) 185
TABLE a.16 AES Algorithm Background Load Imbalance Data (msec) (5 Nodes) 186
TABLE a.17 Runtime AES Application Homogeneous Resources Data................................ 187
TABLE a.18 AES Application Optimum Set Cost Function Homogeneous Resources Data 188
TABLE a.19 AES Application Cost Function Based on Load Homogeneous Resources

Data .. 189
TABLE a.20 Runtime AES Application Heterogeneous Resources Data............................... 190
TABLE a.21 AES Application Optimum Set Cost Function Heterogeneous Resources Data 190
TABLE a.22 SAT Solver Application Optimization Space Homogeneous Resources Data... 191

xiii

LIST OF FIGURES

FIGURE 1.1 Flynn's Taxonomy .. 2
FIGURE 1.2 High Performance Reconfigurable Computer (HPRC) Architecture..................... 3
FIGURE 1.3 Fork-Join Class of Algorithms ... 6
FIGURE 2.1 Block Diagram of the Pilchard Board .. 14
FIGURE 2.2 Wildforce Architecture [5] ... 15
FIGURE 2.3 Firebird Architecture [5] .. 16
FIGURE 2.4 Area Density for Conventional Reconfigurable Devices [47] 28
FIGURE 2.5 RP-Space (a) Interconnect vs. Configuration and (b) Logic vs. Configuration ... 28
FIGURE 3.1 Synchronous Iterative Algorithm running on 4 processors.................................. 40
FIGURE 3.2 SAT Solver Core... 44
FIGURE 4.1 Synchronous Iterative Algorithm ... 57
FIGURE 4.2 Flow of Synchronous Iterative Algorithm for RC Node...................................... 58
FIGURE 4.3 HPRC Architecture... 61
FIGURE 4.4 Flow of Synchronous Iterative Algorithm for Multi Node 63
FIGURE 4.5 Speedup Curves.. 67
FIGURE 4.6 Application Load Distribution for SAT Solver Application 72
FIGURE 5.1 Phases of Model Development... 79
FIGURE 5.2 Communication Measurement Results .. 84
FIGURE 5.3 Comparison of RC Model Prediction with Measurement Results on Wildforce . 87
FIGURE 5.4 Boolean SAT Measured and Model Results on Firebird...................................... 90
FIGURE 5.5 Boolean SAT Measured and Model Results on Pilchard 91
FIGURE 5.6 SAT Solver No-Load Imbalance Results.. 95
FIGURE 5.7 AES Algorithm No-Load Imbalance Results ... 96
FIGURE 5.8 Matrix Vector Algorithm No-Load Imbalance Results .. 98
FIGURE 5.9 Application Load Distribution for SAT Solver Application 100
FIGURE 5.10 SAT Solver Application Load Imbalance Results .. 102
FIGURE 5.11 Matrix Vector Algorithm Application Load Imbalance Results 105
FIGURE 5.12 SAT Solver Background Load Imbalance Results ... 110
FIGURE 5.13 Matrix Vector Algorithm Background Load Imbalance Results........................ 112
FIGURE 5.14 AES Algorithm Background Load Imbalance Results....................................... 114
FIGURE 5.15 SAT Solver Application and Background Load Imbalance Results................... 117
FIGURE 5.16 Matrix Vector Algorithm Application and Background Load Imbalance

Results .. 118
FIGURE 5.17 SAT Solver Heterogeneous Resources Results .. 120
FIGURE 5.18 Matrix Vector Algorithm Heterogeneous Resources Results............................. 121
FIGURE 5.19 AES Encryption Algorithm Heterogeneous Resources Results......................... 122
FIGURE 6.1 Algorithm for Minimum Runtime on Homogeneous Resources [102].............. 126
FIGURE 6.2 Optimum Set of Homogeneous Resources for AES Algorithm......................... 127
FIGURE 6.3 Optimum Set of 5 Homogeneous Resources, Mixed Background Arrival

Rates ... 128
FIGURE 6.4 Optimum Set of Homogeneous Resources for SAT Solver: Compare number of

Hardware Copies .. 129

xiv

FIGURE 6.5 Optimum Set of Homogeneous Resources for SAT Solver: Compare Hardware
Speed .. 130

FIGURE 6.6 Greedy Heuristic for Minimum Runtime on Heterogeneous Resources [102] .. 131
FIGURE 6.7 Near-Optimum Set of Heterogeneous Resources for AES Algorithm: (a) 8 nodes

and (b) 16 nodes ... 133
FIGURE 6.8 Optimal Set of Homogeneous Processors for AES Algorithm 135
FIGURE 6.9 Cost for AES Algorithm on Homogeneous Processors (x=1, c=1).................... 136
FIGURE 6.10 Optimal Set of Heterogeneous Processors for AES Algorithm 137
FIGURE 6.11 Cost based on load for AES Algorithm on Homogeneous Processors............... 139
FIGURE 6.12 Optimal Set of Homogeneous Resources for SAT Solver, Varying the Number of

Hardware Copies .. 143
FIGURE 6.13 Cost Function Analysis for SAT Solver, Varying the Number of Hardware Copies

(x/c = 0.0001) ... 144
FIGURE 6.14 Optimal Set of Homogeneous Resources for SAT Solver, Varying the Hardware

Speed .. 145
FIGURE 6.15 Cost Function Analysis for SAT Solver, Varying the Hardware Speed (x/c =

0.0001).. 146
FIGURE 6.16 Optimal Set of Homogeneous Resources for SAT Solver, Varying the Application

Load Imbalance .. 148
FIGURE 6.17 Cost Function Analysis for SAT Solver, Varying the Application Load Imbalance

(x/c = 0.0001) ... 149
FIGURE 6.18 The NetSolve System [35] ... 151

1

CHAPTER 1

INTRODUCTION

1.1 Motivat ion

Integrating the architecture and techniques from parallel processing or High Performance

Computing (HPC) with those of Reconfigurable Computing (RC) systems offers high performance

users with the potential of increased performance and flexibility for a wide range of computation-

aly demanding problems. HPC architectures and RC systems have independently demonstrated

performance advantages for many applications such as digital signal processing, circuit simula-

tion, and pattern recognition among others. By exploiting the near “hardware specific” speed of

RC systems in a distributed network of workstations there is promise for additional performance

advantages over other software-only or uniprocessor solutions.

1.1.1 What is HPC?

High Performance Computing is the use of multiple processors or processing nodes col-

lectively on a common problem. The primary motivation for HPC is to overcome the speed bottle-

neck that exists with a single processor. The classic taxonomy for classifying computer

architectures as defined by Flynn in 1972 [59] is shown in Figure 1.1. Flynn’s taxonomy is based

on the two types of information flow into a processor: instructions and data. Machines are classi-

fied according to the number of streams for each type of information. The four combinations are

SISD (single instruction stream, single data stream), SIMD (single instruction stream, multiple data

streams), MISD (multiple instruction streams, single data stream), and MIMD (multiple instruction

streams, multiple data streams). HPC systems can also be classified based on their memory struc-

2

ture. The common programming models are shared memory, distributed memory (message pass-

ing) and globally addressable. We will discuss these more in a later section and focus our

modeling on distributed memory MIMD architectures.

1.1.2 What is RC?

Reconfigurable Computing is the combination of reconfigurable logic (most commonly in

the form of Field Programmable Gate Arrays or FPGAs) with a general-purpose microprocessor.

The architectural intention is to achieve higher performance than normally available from soft-

ware-only solutions while at the same time providing flexibility not available with Application

Specific Integrated Circuits (ASICs). In RC architectures, the microprocessor performs those oper-

ations that cannot be done efficiently in the reconfigurable logic such as loops, branches, and pos-

sible memory accesses, while computational cores are mapped to the reconfigurable hardware [43]

to achieve the greatest performance advantage. We will discuss more details regarding RC systems

in a later section including some representative architectures.

FIGURE 1.1 Flynn's Taxonomy

SISD MISD

MIMDSIMD

Single
Instruction

Multiple
Instruction

S
in

g
le

 D
a

ta
M

u
lti

p
le

 D
a

ta

3

1.1.3 What is HPRC?

High Performance Reconfigurable Computing or HPRC is the proposed combination of

High Performance Computing and Reconfigurable Computing. The proposed HPRC platform

shown in Figure 1.2 consists of a number of distributed computing nodes connected by some inter-

connection network (ICN) (switch, hypercube, systolic array, etc.), with some or all of the comput-

ing nodes having RC element(s) associated with them. The HPRC platform will potentially allow

users to exploit the performance speedups achievable in parallel systems in addition to the copro-

cessing performance of the RC element. Many computationally intensive applications stand to

benefit from this architecture: image and signal processing, simulations, among others. The focus

of our modeling will be on algorithms and applications that fit into the fork-join class and more

specifically synchronous iterative algorithms. More discussion on this class of algorithms and lim-

itations follows in a later section.

An additional configurable network between RC elements may offer some applications

such as discrete event simulation even more performance advantages by providing a less inhibited

FIGURE 1.2 High Performance Reconfigurable Computer (HPRC) Architecture

Configurable

ICN

ICN
Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

4

route for synchronization, data exchange, and other communications necessary between process-

ing nodes. Research by Chamberlain indicates the potential performance improvement from a ded-

icated synchronization network for synchronous, discrete-event simulations [38, 97, 98]. The

parallel reduction network (PRN) proposed by Reynolds, et al., demonstrated the performance

advantages from dedicated hardware to support synchronization in parallel simulations [111, 112,

113]. The PRN separates the synchronization computation from the application computation, off-

loading the synchronization overhead from host processors and the host communication network.

This additional network could vastly improve performance for not only applications with barrier

synchronization events but any application requiring the exchange of large amounts of data

between nodes. Other research by Underwood, et al. [123, 124, 125], confirms the performance

benefits of a specialized configurable network interface card in a Beowulf cluster. A Beowulf clus-

ter is an approach to building a supercompter as a cluster of commodity off-the-shelf personal

computers, interconnected with an ICN. The idea is to build a cost effective, high performance

computer. The Intelligent Network Interface Card (INIC) developed by Underwood, et al., uses

reconfigurable computing to assist with both network communications and computational opera-

tions enhancing both the network and processor capabilities of the cluster. The results presented

for a 2-D Fast Fourier Transform (FFT) and an integer sorting algorithm show significant perfor-

mance benefit for both applications as the cluster size increases. The resulting performance for the

two test applications is significantly better than on a Beowulf cluster with commodity network

interface cards.

HPC and RC individually are challenging to program and utilize effectively. Combining

these powerful domains will require new analysis tools to aid us in understanding and exploiting

the design space to its full potential. A performance modeling framework with models describing

this new architecture will not only help in understanding and exploiting the design space but will

5

be a building block for many of these tools. The system performance is affected by architecture

variables such as number of nodes, number of FPGAs, FPGA type and size, processing power,

memory distribution, network performance and configuration, just to name a few, and the avail-

able permutations make the design space extremely large. Without a modeling framework to assist

with the analysis of these issues, tradeoffs cannot be effectively analyzed potentially resulting in

grossly inefficient use of the resources.

1.2 General Problem Statement

Networks or clusters of workstations can provide significant computational capabilities if

effectively utilized. Adding to this powerful architecture the capabilities of RC systems introduces

challenging problems in efficient utilization of resources. Performance analysis and architecture

design for HPC and RC systems are challenging enough in their individual environments. For the

proposed HPRC architecture, these issues and their interaction are potentially even more complex.

Although substantial performance analysis research exists in the literature with regard to High Per-

formance Computing (HPC) architectures [22, 23, 41, 67, 74, 92, 97, 98, 102, 106, 108, 122] and

even some with respect to Reconfigurable Computing (RC) [47, 48, 72, 73], the analysis of these

architectures working together has received little attention to date and currently there is a gap in

the performance analysis research with regard to an HPRC type of architecture. To evaluate the

tradoffs associated with this architecture, we need an accurate understanding of the computational

system, including the workstations, the RC units, the distributed applications, and the effect of

competing users of the resources. As part of this dissertation, we develop an accurate performance

modeling methodology for synchronous iterative algorithms, a sub-class of fork-join algorithms,

running on shared, heterogeneous resources.

6

1.2.1 Fork-Join and Synchronous Iterative Algorithms

As the name implies, Synchronous Iterative Algorithms (SIAs), also known as multi-phase

algorithms in the literature, are iterative in nature with each processor performing some portion of

the required computation each iteration. Many computationaly intensive parallel applications fall

into this large class of algorithms. SIAs are a sub-class of a much broader set of algorithms known

as fork-join algorithms (see Figure 1.3). Also within the class of SIAs we find those with identical

and independent iterations where the iterations of the algorithm are independent from one another

and identical. In fork-join algorithms, a main process or thread forks off some number of other

processes or threads that then continue in parallel to accomplish some portion of the overall work

before rejoining the main process or thread. Numeric computations such as discrete-event simula-

tion (excluding Time Warp), numeric optimizations, Gaussian elimination, FFTs, Encryption (Data

Encryption Standard - DES and Advanced Encryption Standard - AES), sorting algorithms, solu-

All Fork-Join
Algorithms

SIAs
SIAs w/ identical

iterations

SIAs w/ identical &
i.i.d. iterations

FIGURE 1.3 Fork-Join Class of Algorithms

7

tions of partial differential equations, and others are all members of this class of algorithms. The

modeling methodology developed here is applicable to members of the fork-join class.

We develop a performance model for fork-join type algorithms that takes into account

division of computation between the workstation processor and the reconfigurable unit, variance

in the computational requirements of the application across the set of workstations, background

loading (due to shared resources), and workstation heterogeneity. The development of an analytic

performance model is a significant contribution that facilitates resource management optimization.

By helping users understand the performance tradoffs in the computer architecture, one can

quickly determine the optimium application mapping for given constraints or identify the best set

of workstations for optimium runtime.

As an application of the performance model, we consider the scheduling algorithms

employed in distributed systems. Many of the scheduling algorithms do not account for the perfor-

mance implications of design choices [102]. We use the modeling results of this dissertation to

improve the scheduling of applications and achieve better performance. We explore the impact of

load conditions, workstation make-up, and other constraints using our modeling results as input to

a scheduler.

We assume for our HPRC platform shown in Figure 1.2 that we have a network of shared

heterogeneous workstations to which we will map our distributed applications. According to

Flynn’s taxonomy, we have a loosely-coupled distributed memory, MIMD processing environ-

ment. To facilitate distributed processing with these workstations, the Message Passing Interface

(MPI) [118] system is used. MPI supports message-passing and the control of processes on hetero-

geneous distributed computers.

8

In the next chapter, a brief survey is given which discusses important related literature.

Following this survey, we consider three fork-join type of applications which are used throughout

the dissertation to compare our analytic modeling results to the empirical measurements. We then

develop a performance modeling methodology for describing the performance of these algorithms

executing on a cluster of shared heterogeneous workstations. Next, using the empirical results

from the test applications, we validate the performance model. With the performance model vali-

dated, we then apply the model to optimizing the resource management of the cluster. Finally, we

present conclusions of this dissertation and discuss future work to extend the applicability of the

model and optimization results.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduct ion

In this chapter we will review some of the architectures found in High Performance Com-

puting (HPC) and Reconfigurable Computing (RC) and introduce the High Performance Reconfig-

urable Computing (HPRC) platform. We will also look at some performance metrics common in

these architectures and how they relate to HPRC. Next we will look at the issues of performance

evaluation and the methods we can employ to develop a modeling methodology or framework for

HPRC. Finally, we will look at the development tools and environments that are available today

for HPC and RC and how we can use them in the new HPRC platform.

2.2 Building the HPRC Architecture

The architecture of a computer system affects the performance, whether good or bad, of a

given application. Issues such as dedicated and non-dedicated resources, memory size and distri-

bution, communication structure, and instruction set all affect the performance capability of the

system. In this section, we will review some of the common architectures in High Performance and

Reconfigurable Computing and look at how they can be used in HPRC.

2.2.1 High Performance Computing and Networks of Workstations

The results found in High Performance Computing research confirm performance advan-

tages over single processor machines for many computationally intensive applications. However,

many HPC platforms have been limited to the relatively small research oriented market due to the

10

high costs normally incurred in acquiring, developing and programming them. Although trends

indicate a changing market [17, 50, 52] as venders migrate toward clusters and networks of work-

stations the cost of ownership still often precludes mass market use. These specialized machines

dedicated to parallel processing often consist of an array of tightly coupled homogeneous proces-

sors connected by an optimized network. Furthermore, their architecture is often specialized for a

specific genre of applications thus perpetuating the high costs associated with ownership and lim-

iting the efficiency for applications other than the target application.

As discussed in Chap. 1, computer architectures can be divided into four main categories

as described in Flynn’s taxonomy [59]: SISD, SIMD, MISD, and MIMD. While examples of the

MISD class are almost non-existent, examples of the SISD or von Neuman architecture include

mainframes, early generation PCs and MACs. Examples of SIMD and MIMD architectures are

given in Table 2.1.

TABLE 2.1 HPC Architecture Examples [75, 17]

SIMD MIMD

Shared Memory Hitachi S3600 series

Vector Machines

XMP

KSR1

Cray C90, J-90,
SV1ex

YMP

DASH

HP/Convex C4 series

Tera MTA

Hitachi S3800 series

Distributed
Memory

CPP

CM-1, CM-2

DEC MPP

MasPar MP1, MP2

AMT DAP

BBN

nCube

CM-5

Intel iPSC

Cray T3E

Hitachi SR8000 Series

Sun Fire 3800-15K

Paragon

SP2

NOWs

Clusters

11

By taking advantage of cheaper microprocessor technology and ever improving intercon-

nection networks, today massively parallel systems can achieve higher performance for less cost.

The task of harnessing the full potential of these systems is difficult at best but the results can be

quite dramatic, with speedups many times that of a serial processor [67].

From a hardware standpoint, the recent HPC research in the area of Beowolf clusters is

confirming high performance at reduced cost. Beowolf clusters consist of relatively inexpensive

commodity workstations connected by a general-purpose network [82]. These systems, although

they may not be recognized as Beowolf clusters, currently exist throughout industry, academia,

and government. It has been shown that many of these workstations are often idle up to ninety-five

percent of the time [33, 84] leaving most of their computing power unused. A means of harnessing

the unused computing cycles of these workstations can provide a cost-effective and powerful HPC

platform.

Another architectural alternative, grid computing, enables geographically distributed

resources to be shared, allowing them to be used as a single, unified resource for solving large-

scale computing problems. Like Beowolf clusters, grid computers offer inexpensive access to

resources but irrespective of their physical location or access point. The Scalable Intra-campus

Research Grid (SInRG) at the University of Tennessee [16] is a grid computer with special system

software that integrates high performance networks, computers and storage systems into a unified

system that can provide advanced computing and information services (data staging, remote

instrument control, and resource aggregation).

2.2.2 Reconfigurable Computing

Reconfigurable computing (RC) is the coupling of reconfigurable units (often in the form

of FPGAs) to general-purpose processors. The performance advantage of reconfigurable hardware

12

devices such as Field Programmable Gate Arrays (FPGAs) now rivals that of custom ASICs but

with the added run-time design flexibility not available in custom hardware. The role of FPGAs

and reconfigurable computing in the present and near future include improving the performance of

many scientific and signal processing applications [70, 71]. Many of today’s computationally

intensive applications can benefit from the speed offered by application specific hardware co-pro-

cessors, but for applications with multiple specialized needs, it is not feasible to have a different

co-processor for every specialized function. Such diverse applications stand to benefit the most

from the flexibility of RC architectures since one RC unit can potentially provide the functionality

of several ASIC co-processors. Several research groups have demonstrated successful RC archi-

tectures [30, 47, 63, 64, 72, 73, 11, 80, 87, 93, 94, 126, 131].

There are several RC options available from companies such as Annapolis Microsystems

[5], Nallatech [13], Virtual Computer Corporation (VCC) [20], and research organizations such as

University of Southern California’s Information Sciences Institute (ISI) [11], The Chinese Univer-

sity of Hong Kong [87], and Carnegie Mellon University [64, 94]. The Wildforce [5] and Firebird

[5] units from Annapolis Microsystems are both PCI-bus cards with onboard memory. The Ben-

NUEY RC system from Nallatech [13], the H.O.T. I and H.O.T. II systems from VCC [20], and the

SLAAC units from ISI [11] are all PCI-bus cards. The Pilchard architecture developed by The Chi-

nese University of Hong Kong [87] interfaces through the memory bus and is more closely cou-

pled to the processor. The PipeRench reconfigurable fabric from Carnegie Mellon [64] is an

interconnected network of configurable logic and storage elements which uses pipeline reconfigu-

ration to reduce overhead.

Another research area in which the use of reconfigurable devices is becoming popular is

Systems on a Chip (SoC). Known as SoPC (Systems on a Programmable Chip), Xilinx [128],

13

Altera [4], Atmel [6] and others have developed programmable devices which give the user the

flexibility to include user reconfigurable area in addition to sophisticated intellectual property

cores, embedded processors, memory, and other complex logic all on the same chip.

RC Hardware. For testing and validation of the HPRC model, we will use three RC coproces-

sors: Pilchard [87], Annapolis Microsystems’ Wildforce and Firebird [5].

The Pilchard architecture (Figure 2.1) consists of a Xilinx Virtex 1000E FPGA interfaced

to the processor via the SDRAM DIMM slot [87]. The logic for the DIMM memory interface and

clock generation is implemented in the FPGA. The board also provides an expansion header for

interfacing to external logic, memory or analyzer. The FPGA is configured using the download

and debug interface which is separate from the DIMM interface and as such requires a separate

host program to configure the FPGA. The Pilchard architecture addresses the bandwidth bottle-

neck of the PCI bus between the RC unit and the processor by placing the RC unit on the memory

bus. However, this interface may be limited since it is less flexible than a PCI bus.

The Wildforce board from Annapolis Micro Systems [5] is a PCI-bus card, which contains

four Xilinx XC4013XL chips for computational purposes and a Xilinx XC4036XL chip for com-

municating with the host computer. Each FPGA on the board has a small daughterboard, which

allows external interfaces with the programmable elements (PEs). Each of the PEs on our Wild-

force board has 32 KByte of 32-bit SRAM on its daughterboard. A dual-port memory controller is

included on the daughterboards to allow both the PEs and the host computer access to the SRAM.

A simplified block diagram of the Wildforce board is shown in Figure 2.2.

The Firebird board shown in Figure 2.3 consists of a single Xilinx Virtex 1000E FPGA.

The board is PCI based and includes an onboard PCI controller so that valuable FPGA resources

14

FIGURE 2.1 Block Diagram of the Pilchard Board

VIRTEX FPGA

User Design

SDRAM controller Clock generator

Config PROM

Download/Debug
Interface

Output Header

SDRAM DIMM Slot

15

FIGURE 2.2 Wildforce Architecture [5]

Crossbar

PCI
Interface

FIFO0 FIFO1 FIFO4

Local RAM

Xilinx
4036XL
FPGA

PE0

Local RAM

Xilinx
4013XL
FPGA

PE1
Local RAM

Xilinx
4013XL
FPGA

PE2
Local RAM

Xilinx
4013XL
FPGA

PE3
Local RAM

Xilinx
4013XL
FPGA

PE4

36-bit Data Path

Local Bus 32

16

FIGURE 2.3 Firebird Architecture [5]

Virtex E
XCVE1000/2000

PCI
Controller

SRAM SRAM SRAM

SRAM SRAM

Flash

I/O
Connector

PCI
Connector

33 or 66 MHz
PCI Bus 66 MHz

64-bit bus

17

are not used for PCI functions. The device is runtime reconfigurable through the host interface but

not partially reconfigurable. The PCI bus interface supports 66MHz and the five 64 bit wide

SRAM banks offer up to 5.4GBytes/sec memory bandwidth. The board also features an I/O con-

nector for external interfaces.

2.2.3 High Performance Reconfigurable Computing (HPRC)

The proposed HPRC platform is a combination of the HPC and RC architectures. HPRC

consists of a system of RC nodes connected by some interconnection network (switch, hypercube,

array, etc.). Each of the RC nodes may have one or more reconfigurable units associated with

them. This architecture as stated before provides the user with the potential for more computa-

tional performance than traditional parallel computers or reconfigurable coprocessor systems

alone.

The HPRC architecture has almost limitless possibilities. Starting with the roots of HPC,

there are many network topologies (hypercube, switch, etc.), memory distributions (shared, dis-

tributed), and processor issues (instruction set, processing power, etc.) to consider. These options

alone make performance analysis complicated and interesting. Adding in the options available in

RC such as coupling of FPGA to processor (attached unit, coprocessor, etc.), number of FPGA

units, size of FPGA(s), separate or shared memory for FPGA(s), dedicated interconnection net-

work, among others, and the analysis problem becomes enormous. Getting a handle on these

issues and their affect on the system’s performance with the use of a modeling framework will be

integral in exploiting this potentially powerful architecture.

HPRC Hardware. Two HPRC clusters were available for developing and validating the model.

The Air Force Research Laboratory in Rome, NY has assembled a two chassis, 48 node Heteroge-

neous HPC from HPTi, which marries the benefits of Beowolf cluster computing with the recon-

18

figurability of FPGAs. Each node harbors an Annapolis Micro Systems [5] Wildstar II which is

populated with two Xilinx XC2V6000 FPGAs. The system is designed for a throughput of 845

GFLOPS (SP) or 422 GFLOPS (DP), from the Beowolf cluster, and 34 FIR TeraOPS from the

FPGAs [3]. The HPRC cluster at UT consists of eight Pentium nodes populated with Pilchard

boards. Listed in Table 2.2 are the HPRC platforms used to develop our modeling framework.

We will work with a MIMD, distributed memory, Beowolf cluster of eight Pentium nodes

populated with one Pilchard reconfigurable card per node. Each of the Pilchard cards has on-board

FPGA memory and no dedicated network between RC units.

2.3 Performance Evaluat ion, Analysis and Model ing

2.3.1 Overview

Development of a model for studying system performance requires selection of a model-

ing tool or technique and definition of metrics for evaluation. The metrics selected will depend on

the architecture features and the issues of interest. Other issues of interest include effective

TABLE 2.2 HPRC Development Platforms

Platform Number
of Nodes

Number
of
FPGAs/
Node

FPGA Type Gates per
Node

I/O
Technology

Type of RC
Card

Wildforce 1 5 XC4013 (4)

XC4036 (1)

88K PCI Bus Wildforce

Firebird 1 1 XCVE1000 1M PCI Bus Firebird

Heteroge-
neous
HPC

48 2 XC2V6000 12M PCI Bus Firebird

Pilchard
Cluster

8 1 XCVE1000 1M Memory Bus Pilchard

19

resource management and usage cost determination. We will now look at some performance eval-

uation techniques followed by some of the performance modeling research on fork-join and SIAs

found in the literature.

2.3.2 Performance Evaluation Techniques

Significant research has been conducted in performance analysis and performance model-

ing for HPC. Performance models will be necessary tools for understanding HPRC issues and

potentially determining the best mapping of applications to HPRC resources. There are three broad

classes of performance evaluation techniques: measurement, simulation, and analytical models

[74]. Each technique has variations and selection of the most suitable alternative is often difficult.

Issues to consider are the desired result or application of the model, the accuracy needed, the

development stage of the computer system, and the model development cost. With these issues in

mind we now look at the three techniques and determine the best approach for our needs.

Measurement. The technique of measurement when used for performance evaluation is based

on the direct measurements of the system under study using software and/or hardware monitors.

This technique provides the most accurate representation but requires that the system be available.

Measurement techniques are very often used in performance tuning whereby the information gath-

ered can be used later to improve performance [74]. For example, frequently used segments of the

software can be optimized with performance tuning thereby improving the performance of the

whole program. Similarly, the resource utilizations of the system can also be obtained and perfor-

mance bottlenecks identified. Other common uses of measurements is gathering data for other

models (parameterization and calibration), characterizing workloads, or validating a system model

[74]. Since there are unavoidable disturbances to the system during measurements such as loading

and other overhead caused by the probes or monitors, the data collected must be analyzed and

20

scrutinized with statistical techniques in order to draw meaningful conclusions. Care must also be

taken in selecting the output parameters to be measured, how they will be measured, and how and

what inputs will be controlled to avoid corrupting results with invalid stimuli [81]. Other issues

that must be considered are the costs involved to instrument the system and gather data, the practi-

cality of measuring for the desired parameters, and performance perturbations from probes and

monitoring devices.

The use of measurement as a performance evaluation tool has a number of drawbacks.

First, measurements must be meaningful, accurate, and within the capabilities of available moni-

tors. Second, monitors and probes are characteristically intrusive and can perturb system perfor-

mance resulting in corrupted data. Finally, the real system must be implemented and available

which does not allow for prediction of system performance and/or analysis of different system

configurations.

Simulation Models. Simulation involves constructing a model for the system’s behavior and

driving it with an abstracted workload or trace data. It is often used to predict the performance of a

system or to validate other analytical models and it is not necessary that the system exist enabling

the examination of a larger set of options than with measurement techniques alone. The major

advantages of simulation are generality, visibility, controllability, and flexibility [81] and the col-

lection of data does not modify the system behavior as in measurement. However, like measure-

ment, simulation modeling has some disadvantages. Simulation modeling also requires careful

attention to the experiment design, data gathering process, and subsequent data analysis since the

end results will only be as accurate as the model. The level of detail of the model should be care-

fully considered since it is often not necessary to duplicate the complete detailed behavior of the

system. As the detail and complexity of the model increases, typically so do the model runtime and

21

development costs. Again like measurement, the amount of data can be enormous and statistical

methods must be used to analyze the results.

One of the major drawbacks of simulation is the performance; on sequential machines,

large simulations can take enormous amounts of time and the simulation runs must be long enough

that startup transient effects do not impact results. Other problems with simulations are difficulty

in model validation and balancing the model’s fidelity. Completely validating simulation models is

impractical since all possibilities cannot conceivably be tested. Additionally, highly detailed mod-

els may reflect microscopic behavior while at the expense of the ability to examine the macro-

scopic behavior. High fidelity models also require more coding and debugging time. Another

drawback of simulation is the inability to draw general conclusions about the system’s perfor-

mance from a single simulation since multiple simulations are required to understand sensitivity to

parameters. Despite the limitations, simulation provides valuable information in cases where mea-

surement is restricted by physical constraints or analytical modeling is limited by mathematical

intractability.

Analytic Models. Analytic models are widely used in performance evaluation due to their power

and flexibility [81]. Analytic modeling involves constructing a mathematical model at the desired

level of detail of the system and solving it [81]. The main advantage of analytic models is that they

allow for exploration of system performance when it is impractical to build a system prior to con-

struction. The main difficulty with analytic models is obtaining a model with sufficient detail that

is tractable. However analytical models have some major advantages over the previous two tech-

niques: (a) valuable insight into the workings of the system even if the model is too difficult to

solve; (b) remarkably accurate results even for simple analytic models, (c) better predictive value

from results than those obtained from measurement and simulation and (d) insight into perfor-

22

mance variations with individual parameters. Hence, analytic models can often be used to optimize

a system with respect to a set of parameters such as the number of processors or work load distri-

bution.

Analytic models also have their disadvantages. Models must be evaluated for correctness

against the real system and any simplifying assumptions made during analysis to maintain tracta-

bility must be carefully validated. Even when an accurate model cannot be developed due to trac-

tability or other limitations, analytic models are often useful for determining performance trends or

for comparing the performance of different algorithms.

One of the classic analytical modeling techniques is queueing models [29, 85]. Queueing

models are attractive because they often provide the simplest mathematical representations that

either have closed form solutions or very good approximation techniques such as Mean Value

Analysis (MVA) [81]. However, for many systems (such as those with internal concurrency), the

model is too complex and closed form solutions are not obtainable requiring the use of simulation.

In these cases, queueing models fit better in the category of simulation models rather than analyti-

cal models. In either event, the initial analysis begins from an analytical approach therefore we

include them here with analytical models.

Queueing network models can be viewed as a small subset of the techniques of queueing

theory and they can be solved analytically, numerically, or by simulation. Queueing systems are

used to model processes in which customers arrive, wait for service, are serviced, and then depart.

Characterization of systems thus requires specification of [74]: inter-arrival time probability den-

sity function (A), service time probability density function (S), number of servers (m), system

capacity (buffers, queues) (B), population size (K), and queueing discipline (SD).

23

A common notation used in the queueing literature to specify these six parameters is – A/

S/m/B/K/SD. In general, if there are no buffer space or population size limitations and the queue-

ing discipline is FCFS (First Come First Serve), the notation is shortened to A/S/m. The most

widely used distributions for A and S are: (1) M – Markov, exponential distribution, (2) D – Deter-

ministic, all customers have the same value, and (3) G – General, arbitrary distribution [74].

Several researchers have explored the use of queuing networks [29], petri net models

[108], and markov models [29] in the performance evaluation and analysis of HPC systems.

Mohapatra et.al. [91, 92] use queuing models to study the performance of cluster-based multipro-

cessors with multistage interconnection networks. The performance model developed is for a

shared-memory cluster of multiprocessors. A queueing network model is developed for the com-

plete system using hierarchical decomposition resulting in a two-level model. Significant changes

to the model would be required to represent our distributed memory system.

We will use analytic modeling in our model development and employ queueing theory in

the analysis and development of the background load portion of the model.

2.3.3 Performance Modeling

The performance of algorithms are often described by their asymptotic behavior as the

problem size varies. With this approach, one must be careful to provide an accurate representation

of the runtime performance. Often, scale factors and lower-order polynomial terms can have a dra-

matic performance impact, but are not reflected in asymptotic models [102]. We will focus our

attention on fork-join types of algorithms and more specifically synchronous iterative (or mul-

tiphase) algorithms. In the remainder of this section we review some performance results for this

class of problems which include optimization techniques, simulation, and many numerical meth-

ods.

24

The performance of synchronous iterative algorithms is dramatically impacted by the ran-

dom effects in the per iteration runtime of each processor. Differences in processor runtime caused

by load imbalances affect the completion time of the algorithm and degrade the overall perfor-

mance. Modeling these affects analytically is difficult due to the mathematical complexity [102].

Dubois and Briggs describe the performance of these algorithms on shared-memory multiproces-

sors [54]. To model load imbalance, they represent the amount of work that each processor com-

pletes by a sampled random variable and apply order statistics [44] to describe the expected

runtime of the last processor to complete and thus the overall runtime of the algorithm. Govindan

and Franklin address the dynamic load imbalance across iterations of a synchronous iterative algo-

rithm [60, 65]. Their work differs from other models in that they do not assume that the task distri-

bution at any iteration is independent of the distribution at previous iterations.

For synchronous discrete-event simulation, Chamberlain and Franklin develop a perfor-

mance model that predicts the execution time assuming a known load imbalance scale factor [37].

Peterson and Chamberlain validate this model for simulation of queueing networks and investigate

the impact of load imbalance [103, 104, 105, 102]. Agrawal and Chakradhar use Bernoulli trials to

determine the number of events at each processor allowing for an analytic solution of the applica-

tion load imbalance of the performance model [21]. Accurate performance models exist for these

algorithms running on dedicated processors where the load imbalance results entirely from the

uneven distribution of the application workload. Modeling load imbalance on shared machines

requires the use of order statistics and other techniques to model the randomness of the load imbal-

ance due to other users.

For shared resources, the randomness of the load imbalance complicates performance

evaluation. Two factors contribute to the load imbalance: application load imbalance and back-

25

ground load imbalance. Application load imbalance is the result of an unequal distribution of the

workload among processors while background load imbalance is the result of computing resources

being shared with other tasks. Much of the work regarding load imbalance modeling for dedicated

resources can be applied to the application load imbalance modeling for shared resources.

Several groups have studied the performance of distributed and parallel systems of various

architectures and focused on the performance impact of background load imbalance. Atallah et.al.

developed a performance model for compute-intensive tasks running simultaneously on a shared

network of workstations [23]. They include the performance impact of other users of the shared

resources by the “duty cycle” ηi. The duty cycle is defined as the ratio of clock cycles that a work-

station i commits to local or other user tasks to the number of clock cycles available to the distrib-

uted application. They do not consider application load imbalance or discuss how to find the duty

cycle values for each workstation. They also use this model to develop algorithms to optimize the

scheduling problem for shared resources. Efe and Schaar extended this work to find the optimal

mean response time for executing multiple batch jobs on the networked workstations [55]. In [56],

Efe optimizes the scheduling algorithms to reduce their runtime for SPMD (Single Program Multi-

ple Data) applications.

Peterson and Chamberlain [102, 103, 104, 105, 106] study application performance in a

shared, heterogeneous environment. Their analytic performance model focuses on synchronous

iterative algorithms and includes the effects of application and background load imbalance. Issues

unaccounted for include network communication and contention models. Their work however pro-

vides a thorough investigation of performance evaluation and specifically the background and

application load models used in this dissertation.

26

Clement and Quinn [41] developed an analytical performance model for multicomputers

however the assumptions and restrictions limit this model to specific architectures and applica-

tions. Another paper by Clement [42] focuses on the network performance of PVM (Parallel Vir-

tual Machine, a discussion of PVM is included later in this chapter) clusters. A communication

model for ATM and Ethernet networks is developed including a factor to account for contention in

the network. Other work related to the performance of PVM clusters include that by Dongarra and

Casanova [34, 51, 53]. Nupairoj and Ni have studied the performance of MPI on some workstation

clusters [99]. Zhang and Yan [130, 132] have developed a performance model for non-dedicated

heterogeneous Networks of Workstations (NOWs) where heterogeneity is quantified by a “com-

puting power weight”, owner workload requests are included as binomial distributions, and the

network is limited to Ethernet.

We shall combine the results of the research on background load imbalance modeling on

shared resources, application load imbalance modeling on dedicated resources, and communica-

tion modeling for shared resources to model distributed applications running on shared resources.

Our contribution will be to modify these models for use in HPRC and more specifically, account

for the new contributions of the RC elements.

2.4 Performance Metrics

HPC performance is commonly measured in terms of speedup and efficiency. Amdahl’s

Law [22] for “fixed-size” speedup and Gustafson’s Law [67] for “fixed time” speedup are common

representations for the limitations to parallel efficiency.

27

Metrics for reconfigurable computing are limited in the literature. In Dehon’s thesis on

reconfigurable architectures, he presents a high-level characterization of reconfigurable systems

using size metrics [47, 48] to project the performance of a reconfigurable system.

Dehon’s characterization model uses size estimates to compare the efficiency of different

architectures [47]. From an empirical survey, he concludes that reconfigurable devices have lower

performance than dedicated hardware but higher than general purpose processors. He also con-

cludes that the performance density variation from dedicated hardware to reconfigurable devices

to processors, results from the increasing amount of instruction memory and distribution resources

(area overhead) per active computing element. Dedicated hardware typically has very little over-

head while reconfigurable devices and general purpose processors have significantly more over-

head. Dehon points out that eighty to ninety percent of the area of conventional reconfigurable

devices is dedicated to interconnect and associated overhead such as configuration memory. The

actual area used for logic function only accounts for a few percent (Figure 2.4).

The conventional FPGA represents an interconnection overhead extreme. Another

extreme occurs where the configuration memory dominates the physical area as with general pur-

pose processors. Figure 2.5 shows the area trade-offs for Dehon’s Reconfigurable Processing or

RP-space. For conventional FPGAs, multi-context FPGAs and general purpose processors,

Figure 2.5 graphically shows where processors and FPGAs are in the characterization space for (a)

interconnect overhead versus configuration memory and (b) user logic versus configuration mem-

ory.

Dehon’s RP-space provides a method for characterizing reconfigurable devices or FPGAs

and even includes some abstraction of processors onto the RP-space. RC architectures however

28

FIGURE 2.4 Area Density for Conventional Reconfigurable Devices [47]

Interconnect

Configuration
MemoryUser Logic

Areainterconnect = 10xAreaconfig = 100xArealogic

FIGURE 2.5 RP-Space (a) Interconnect vs. Configuration and (b) Logic vs.
Configuration

Interconnect Overhead

C
o

n
fi

g
u

ra
ti

o
n

 M
e

m
o

ry

Convential FPGA

Processors

Multi-Context FPGA

User Logic

C
o

n
fi

g
u

ra
ti

o
n

 M
e

m
o

ry

Convential FPGA

Processors

Multi-Context FPGA

(a) (b)

29

consist of FPGA(s) and a processor working together making their projection into the RP-space

somewhat difficult because we must consider how the RC system is constructed. We have to

account for the FPGA(s) (or reconfigurable unit(s)), the workstation (or microprocessor), the com-

munication interface between them, and any external memories connected to the reconfigurable

unit(s). With the plethora of RC architectures available, each architecture would effectively map

differently into the RP-space. To effectively compare trade-offs in the RC and ultimately the

HPRC environment, other metrics often used in RC systems, such as cost and power, may be more

practical and useful.

Developing a cost metric should be straightforward based on the processors, FPGAs,

memory, and interconnect under consideration. A cost function can be developed relating execu-

tion time or speedup as determined from the model proposed in this dissertation to the cost of the

system. Similarly a power metric cost function can be developed relating execution time deter-

mined from the proposed model to the total power used by the system. The metrics of interest will

depend on the issue to be optimized (runtime, system utilization, system cost, etc.). We will touch

on this analysis more in Chap. 6.

2.5 Resource Al locat ion, Scheduling, and Load
Balancing

To effectively exploit computational resources, access to these resources must be some-

how managed. Operating systems are normally tasked with the management and allocation of

resources among competing service requests. The allocation policy must also preserve fairness

among users allowing resource access to all, prevent deadlock to ensure work can be performed

and maintain security [120]. Handling these service requests for distributed applications on net-

works of workstations can be significantly more complicated than managing a single workstation.

30

For parallel or distributed applications, it is necessary to partition the work into subprob-

lems and map them onto a set of processors. Data parallelism is often exploited to create subprob-

lems that perform computations with minimum interaction between subproblems. These

subproblems are then mapped onto a set of processors where the goal is to minimize the amount of

communication between processes and maximize processor utilization [110]. Mapping subprob-

lems onto a distributed system can be viewed as a restricted case of the general scheduling prob-

lem. The parallel scheduling problem is NP-Hard [61], so finding optimal scheduling solutions for

general problems is not feasible. Research has as a result focused on techniques for restricted cases

or near-optimal solutions. These techniques are referred to as static if the scheduling decisions are

predetermined, or dynamic if the scheduling decisions are made at execution time [36].

Although parallel scheduling is known to be difficult, load balancing techniques have been

used to improved the performance of parallel applications [33]. Many researchers have investi-

gated both static and dynamic load balancing approaches. Wang and Morris propose a simple load

distribution classification method based on whether the load distribution is source or receiver initi-

ated and the level of information dependency [127]. Information dependency refers to the level at

which a resource has information about the current state or workload of other resources. Since

most current distribution techniques are sender initiated, the coarseness of this classification

method provides little distinction between members of this class and it is not extensive enough.

Casavant and Kuhl provide a pivotal taxonomy that includes both local and global scheduling of

load balancing algorithms [36]. Their classification, designed for distributed computing systems,

is based on strategic design choices such as static or non-static and distributed versus non-distrib-

uted. The complete taxonomy consists of a hierarchical and flat classification. The hierarchical

classification is used to show where some characteristics are exclusive and the flat classification

gives definitions of attributes that are not exclusive. Again this classification method does not pro-

31

vide a detailed comparison of algorithms within each class. Baumgartner and Wah attempt to

address both deterministic and stochastic problems with a classification scheme based on three cat-

egories of input components to the scheduling problem: Events, Environment (or surroundings),

and Requirements [26]. The ESR classification is high level, meaning that attributes can be speci-

fied with varying degrees of completeness. This is helpful in the case of stochastic scheduling

problems since unlike deterministic cases, they are not enumerable; it is impossible to list every

problem. The scheme is limited in scope for describing the granularity of the load distribution

algorithm under R (requirements) [31]. Jacqmot and Milgrom took a different approach and used

the order in which load distribution decisions were made to classify the load distribution [76]. It

fails however to distinguish between initial placement and process migration and also cannot clas-

sify symmetrically initiated policies. Bubendorfer and Hine improve on Casavant and Kuhl’s work

by providing clear separation of policy and mechanism and providing a basis for the comparison of

the major components of a load distribution system [31]. Their approach to classification is based

on three policy decisions (participation, location, and candidate selection) and three mechanism

choices (transfer, load metric, and load communication). With so many approaches available, Kre-

mien and Kramer developed a useful framework for comparing methods quantitatively based on

simulation or empirical measurements [83]. Feitelson and Rudolph also developed metrics and

benchmarks for comparing parallel job schedulers using a standard workload [58].

For our studies we will focus primarily on static load balancing. Static approaches typi-

cally use graphic theoretic techniques, queueing theoretic techniques, state-space searching, or

heuristics [102]. The graph theoretic techniques exploit the regularity of some applications to form

optimal schedules. Bokhari considers problems with regular topologies such as trees, chains, and

pipelines and has found an efficient algorithm for finding the optimal assignment for these

32

restricted cases [28]. Chou and Abraham consider task graphs that fork and join probabilistically

[40].

Others have studied the use of queueing networks and similar models for finding the best

static assignment. De Souza e Silva and Gerla consider scheduling for distributed systems that can

be described by queueing models with product form solutions [49]. Tantawi and Towsley statically

schedule tasks on heterogeneous machines to minimize the mean response time and formulate the

optimal schedule as a nonlinear optimization derived from a queueing model [121].

Other static scheduling techniques include state searching and heuristics. Shen and Tsai

find weak homomorphisms which map from the problem topology to the processor topology by

searching using branch and bound techniques [114]. Ma et al. develop a cost function for assigning

tasks to processors and the resultant communications costs. They use 0 - 1 integer programming to

minimize the cost function although it lacks computational efficiency [90].

Leland and Ott suggest some simple heuristics for two load balancing schemes based on

the behavior of Unix processes: initial placement and process migration [86]. They note errors in

the exponential load distribution model for the CPU requirements of individual processes. They

observed that there are many short jobs and a few long jobs, and the variance of the distribution is

greater than that of an exponential distribution. They conclude that with a sufficiently intelligent

local scheduling policy, dynamic assignment will significantly improve response times for the

most demanding processes without adversely affecting the other processes. Harchol-Balter and

Downey extend the work of Leland and Ott using the distribution model to derive a policy for pre-

emptive migration where running processes may be suspended, moved to a remote host, and

restarted [69]. The motivation is to reduce the average completion time of processes and improve

33

the utilization of all the processors. Included are empirical observations about the workload on a

network of UNIX workstations including distribution of process lifetimes and arrival rates.

In Chap. 6 we will use the results of our modeling methodology to improve the effective-

ness of a static scheduler.

2.6 Deve lopment Environment

2.6.1 HPC Development Environment and Available Software Tools

The task of programming distributed architectures is complicated and time-consuming. A

popular approach to using networked resources is to use a message passing environment to provide

the software infrastructure across the resources. A number of environments and libraries such as

MPI [118], PVM [62], BLAS [7], and VSIPL [19], allow the user to program distributed or net-

worked resources easier. Users can write programs that are not restricted to one architecture but

are rather portable to other architectures supported by the tool used. Portability has made program-

ming for HPC environments more practical and cost effective and thus amenable to more users.

Message passing is a programming paradigm commonly used on MIMD parallel comput-

ers. Several public-domain systems have demonstrated that a message-passing system can be effi-

cient and portable. Both Parallel Virtual Machine (PVM) and Message Passing Interface (MPI)

provide a portable software API that supports message passing and are two of the more common

public-domain standards.

From a historical view, PVM parallel virtual machine [62], was developed by a research

group to work on networks of workstations. In contrast, MPI was developed by a forum of users,

developers, and manufacturers as a standard message passing specification [118]. Just the process

by which they came about implies some of the differences between the two Application Program-

34

ming Interfaces (APIs). The roots of PVM being in the research committee influenced incremental

development, backward compatibility, and fault tolerance. The goals of the PVM developers also

leaned more toward portability and interoperability by sacrificing some performance. The MPI

developer’s forum, having members from the parallel computer vendors and manufacturers, obvi-

ously had an eye for performance, scalability, and adaptability.

MPI is expected to be faster within a large multiprocessor. It has a large set of point to

point and collective process communication functions and the ability to specify communication

topologies which is unavailable in PVM. This enables the user to exploit architectural advantages

that map to the communication needs of the application. Additionally the communication set for

MPI uses native communication functions to provide the best possible performance. PVM’s devel-

opers chose a more flexible approach allowing communication between portable applications

compiled and executed on different architectures.

Both MPI and PVM are portable but only PVM is truly interoperable between different

hosts and is traditionally better for applications running on heterogeneous networks. Both PVM

and MPI applications can be compiled and executed on different architectures without modifica-

tion, however, only in PVM can the resulting executables also communicate with each other across

these architectural boundaries. For local or identical hosts, MPI and PVM both use native commu-

nication functions. For heterogeneous architectures on the other hand, PVM uses standard network

communication functions. PVM is also language interoperable meaning programs written in C and

FORTRAN can communicate and interoperate. This interoperability costs a small amount of over-

head resulting in slightly lower performance for PVM.

PVM is also capable of fault tolerant applications that can survive host or task failures.

This capability is somewhat a result of PVM’s dynamic process nature. The MPI standard requires

35

no “race conditions” resulting in a more static configuration and less capability of recovering from

such faults. For our applications, we will use MPI.

2.6.2 RC Development Environment and Available Software Tools

Research in the architecture, configuration, and use of RC systems is ongoing. To date,

most RC research has focused on single computing nodes with one or more RC elements with a

few exceptions the Adaptable Computing Cluster at Clemson [2], the System Level Applications

of Adaptive Computing (SLAAC) [11] project at USC, the Configurable Computing Lab at Vir-

ginia Tech [10], the Heterogeneous HPC at AFRL/IF [3], High-performance Computing and Sim-

ulations Research Lab RC Group at the University of Florida [18], and the High Performance

Reconfigurable Computing research at University of Tennessee [116, 117]. Some of the major

challenges involve FPGA configuration latencies, hardware/software codesign, and the lack of

suitable mapping tools. Often, the design time needed to map an application onto the RC system,

or the time consumed during reconfigurations, or both outweigh any performance advantages that

can be achieved by executing on the RC system. Improvements to both of these areas will open the

market on RC systems.

The development tools available for RC systems can be divided into two main categories:

Language-based and Visual-based. Some of the language-based tools include compiler environ-

ments for C-based applications, Handel-C for hardware design, VHDL and Verilog tools, JHDL

and JBits, and MATLAB and MATCH. Design capture is achieved through a textual description of

the algorithm using a high level language or hardware description language. This type of design

description enables the use of libraries containing macros or function calls encouraging design

reuse and hierarchical implementation. When using these tools, the designer must be cognizant of

36

potential hardware conflicts, partitioning, and scheduling since the tools do not provide that level

of support.

Several groups have developed compiler environments for RC systems. The Nimble com-

piler at Berkeley [89] is a C-based environment. Handel-C by Celoxica is a C-based language for

describing functionality with symbolic debugging and libraries of predefined functions [9]. Han-

del-C is a subset of ANSI-C with the necessary constructs added for hardware design. The level of

design abstraction is above RTL but below behavioral (VHDL). DEFACTO [30] uses the Stanford

SUIF compiler system [68, 119] and similar work at Virginia Tech [79, 80] uses the BYU JHDL

design environment [8, 27]. Many of these compiler environments allow the designer to map high

level programs into VHDL for implementation on various RC boards. JHDL (Just another HDL)

allows designers to express dynamic circuit designs with an object-oriented language such as Java.

JHDL supports dual hardware/software execution and runtime configuration. The circuit descrip-

tion serves both circuit simulation and runtime support without any redefinition of the circuit

description. JBits is another Java based tool for RC runtime full and partial configuration [66,

129]. JBits Java classes provide an Application Programming Interface (API) for Xilinx FPGA bit-

streams. JBits is essentially a manual design tool and requires knowledge of the architecture by the

designer. Modification or reconfiguration of the circuit at the JBits level eliminates any possibility

of using any analysis tools available to the circuit designer further up the tool chain, specifically

the availability of timing analysis is absent in JBits.

The visual-based tools use a visual based design environment such as block diagrams and

flow graphs for design capture. Many tools support development of libraries containing macros

and hardware functions for easy reuse. Depending on the support provided by the infrastructure,

the designer must also be aware of partitioning, scheduling, and hardware conflicts. The CHAM-

37

PION research at the University of Tennessee uses the visual programming language Khoros to

assist the designer in RC hardware programming [88, 95, 96, 101, 115]. Currently CHAMPION

does not support any automated migration of functionality between the CPU and RC element(s)

limiting the ability to perform load balancing between nodes in a distributed system like the pro-

posed HPRC platform. The Ptolemy project [15] uses data flow graphs to synthesize configura-

tions for RC hardware. Other RC efforts have focused on low-level partitioning for RC systems.

Researchers at Northwestern have developed libraries of MATLAB matrix and signal processing

functions for parallel implementation in FPGAs [77, 78]. They extended this work into MATCH:

A MATLAB Compilation Environment for Distributed Heterogeneous Adaptive Computing Sys-

tems [1, 12]. MATCH is a mechanism for parsing MATLAB programs into intermediate represen-

tations, building a data and control dependence graph. It automatically identifies areas for

parallelism and maps operations to multiple FPGAs, embedded processors and DSP processors.

Developing applications for the proposed HPRC platform will require learning from these

research efforts and extending their work to support the needs of a parallel, heterogeneous RC plat-

form.

2.6.3 HPRC Development Environment and Available Software Tools

Currently there are no tools available which are completely suitable for the HPRC envi-

ronment. The work by Banerjee and others at Northwestern [24] on a MATLAB compiler for dis-

tributed, heterogeneous, reconfigurable computing systems begins to address the issues of HPRC

development tools. The MATLAB compiler, also known as MATCH (MATlab Compiler for dis-

tributed Heterogeneous computing systems), takes MATLAB descriptions of embedded systems

applications and automatically maps them onto a heterogeneous computing environment. The

computing environment they have addressed consists of FPGAs, embedded processors, and DSPs

38

connected via a VME backplane. The elements of the computing environment are commercial off-

the-shelf (COTS) components, each plugged directly into the VME backplane which serves as the

interconnection network. This differs from our HPRC platform where the reconfigurable elements

are part of workstations which are then connected in a cluster by some arbitrary network. With the

HPRC platform, each element of the computing environment poses a software/hardware design

problem that must be addressed by the development tool.

To address the lack of a toolset for HPRC, one approach is to take existing tools from both

HPC and RC (such as MATCH) and grow them to form a viable toolset for HPRC. A modeling

framework as proposed in this research would be an integral part of this toolset not only allowing

the designer to analyze and address performance issues but also provide feedback for partitioning

and scheduling tools. During the development of the demonstration applications described in a

later section, we apply the modeling results in our manual partitioning, scheduling, and mapping

onto the HPRC hardware. These are simple examples in order to allow manual manipulation (par-

titioning and scheduling) but will nonetheless demonstrate the use of the modeling results and how

it could be applied in an automated CAD tool.

We have discussed the makeup of the HPRC platform and reviewed the literature for per-

formance evaluation techniques. The HPC research has proven that by using performance evalua-

tion techniques, parallel applications can be optimized and system bottlenecks identified. We

reviewed performance modeling results for both shared and dedicated systems and reviewed some

performance metrics and how they might be applied to HPRC. We also investigated the issue of

scheduling and resource management noting that by applying performance evaluation techniques

to these problems we can achieve better optimization and exploitation of the idle workstations.

39

Finally we review the development environment including software tools for RC systems. The

next chapter discusses the parallel applications that will be used to verify the model.

40

CHAPTER 3

PARALLEL APPLICATIONS

3.1 Introduct ion

To validate the modeling methodology developed later, representative test applications

will be needed. The fork-join class encompasses many important scientific and computing algo-

rithms that are potentially well suited for the HPRC platform. Included within this class is a sub-

set of algorithms known as Synchronous Iterative Algorithms (SIAs) as discussed earlier in Chap.

1. SIAs include many interesting scientific and computationally intensive algorithms such as opti-

mization, discrete-event simulation, solutions to partial differential equations, gaussian elimination

and matrix operations, FFTs, boolean satisfiability, and many others. As discussed earlier, SIAs

repeatedly execute a computation and exchange data at the end of each computation or iteration

via synchronization of the tasks. Each processor reaches a barrier synchronization after every iter-

ation and awaits the arrival of the other processors before continuing. The timing of an SIA run-

ning on four processors is shown in Figure 3.1. As shown, each processor performs computations

FIGURE 3.1 Synchronous Iterative Algorithm running on 4 processors

P0

P1

P2

P3

Time

41

for the amount of time represented by the horizontal bars. The time required for the last processor

to reach the synchronization point determines the time for that iteration. After the barrier synchro-

nization, the processors repeat the cycle.

In this chapter, we investigate the characteristics of three applications we will use to vali-

date the modeling methodology.

3.2 Boolean Sati sf iabi l i ty

The Boolean satisfiability problem (SAT) is a fundamental problem in mathematical logic

and computing theory with many practical applications in areas such as computer-aided design of

digital systems, automated reasoning, and machine vision. In computer-aided design, tools for syn-

thesis, optimization, verification, timing analysis, and test pattern generation use variants of SAT

solvers as core algorithms. Given a boolean formula, the goal is either to find an assignment of 0

and 1 values to the variables such that the formula evaluates to 1, or to establish that no such

assignment exists. The SAT problem is commonly defined as follows [109]: Given

• a set of n Boolean variables x1, x2, , xn,

• a set of literals, where a literal is a variable xi or the complement of a variable xi, and

• a set of m distinctive clauses C1, C2, , Cm, where each clause consists of literals combined
by the logical or connective,

determine, whether there exists an assignment of truth values to the variables that makes the Con-

junctive Normal Form (CNF)

C1 ^ C2 ^ ^ Cm (EQ 3.1)

true, where ^ denotes the logical and connective.

42

The boolean formula is typically expressed in Conjunctive Normal Form (CNF), also

called the product-of-sums form. Each sum term, or clause, in the CNF is a sum of single literals,

where a literal is a variable or its negations. In order for the entire formula to evaluate to 1, each

clause must be satisfied (i.e., at least one of its literals should be 1).

Since the general SAT problem is NP-complete, exact methods to solve SAT problems

show an exponential worst-case runtime complexity. This limits the applicability of exact SAT

solvers in many areas. Heuristics can be used to find solutions faster, but they may fail to prove

satisfiability.

A straight-forward approach to solving the SAT problem exactly is to enumerate all possi-

ble truth value assignments and check if one satisfies the CNF. The solution time of such an

approach grows exponentially with the size of the problem. Improved techniques based on heuris-

tics have been developed to shorten the solution time and some have been implemented in RC

hardware [133, 134]. The two basic methods are splitting and resolution. Resolution was imple-

mented in the original Davis-Putnam (DP) algorithm [45]. Splitting was used first in Loveland's

modification to DP, the DPL algorithm [46].

The goal in using the SAT problem in the validation of the HPRC model is not to develop

the most efficient SAT solver, but to validate and demonstrate the use of the HPRC performance

modeling methodology. Hence, the straight-forward approach will be employed for the HPRC

implementation. Utilizing this approach offers the advantage of predictable problem complexity

during the model validations as well as an easily parallelized solution method.

The object of solving SAT problems on the HPRC platform will be to speed up the exact

SAT solver by exploiting parallelism. Since a new hardware implementation is needed for each

43

new problem instance to reflect the particular structure of the CNF, the architecture is considered

instance-specific. The advantage of instance-specific SAT solvers in hardware is that the deduction

step can be implemented very fast by exploiting fine-grained parallelism. The disadvantage of

instance-specific hardware is that reconfigurable computing machines still require relatively long

compilation times resulting in advantages for only the hard SAT problems where software algo-

rithms show a long runtime.

3.2.1 Boolean Satisfiability Implementation

The HPRC SAT solver methodology will be a straight forward evaluation of all possible

variable combinations. The basic SAT solver core as shown in Figure 3.2, will consist of the hard-

ware implementation of the CNF boolean formula and an (v-2m-2n)-bit counter where v is the

number of variables, m is the number of copies in the FPGA, and n is the number of nodes in the

HPRC platform. Parallelism will be exploited at the hardware level by tiling multiple copies of the

SAT solver core in the FPGA. The number of copies m, and thus the degree of hardware parallel-

ism will depend on the complexity of the CNF problem and the size of the FPGA. The counter can

be loaded with a seed value so that SAT solvers running on multiple workstations in the HPRC

platform can start solving in different areas of the search space. A broadcast message is sent by the

master host to all workstations to start the search algorithm. When a solution is found, a signal

indicates success to the host and interrupts processing. The solver engine is stopped on that work-

station and the correct solution is passed to the host who broadcasts a message to all workstations

stopping the search algorithm. The counter at each workstation has a terminal count (TC) and

when that value is reached, it is determined that a solution is not possible. In this case, a flag is set

for the host indicating that no solution has been found. If all nodes reach terminal count, then no

solution is possible.

44

The maximum search time for a problem on the HPRC platform will be:

(EQ 3.2)

The SAT solver will be used to verify all aspects of the model independently. Search space

modifications will be used to generate an application imbalance, synthetic background load will be

added to simulate other users while the SAT solver is running, and various problem sizes will be

implemented to test the robustness of the model over a span of runtimes. All of these variations of

the SAT solver application will be discussed further in Chap. 5.

3.3 Matrix-Vector Mult ip l icat ion

A simple algorithm for floating-point matrix-vector multiplication will be used to further

test the model and also focus on the communication aspects of the model. The algorithm will take

FIGURE 3.2 SAT Solver Core

Counter

truntime 2
v 2m– 2n–

=

45

an arbitrary size matrix A and multiply it by the vector X whose size equals the number of columns

in A. The result as shown in Eqn. 3.3 below is the vector Y.

(EQ 3.3)

The matrix-vector multiplication involves both floating-point multiplication and addition

which is implemented in the hardware of the RC unit. Eqn. 3.4 shows the process of calculating

Y0.

(EQ 3.4)

3.3.1 Matrix-Vector Multiplication Implementation

The 32-bit data elements are passed in pairs to the hardware memory using the 64-bit data

bus which allows a row and corresponding column element to be sent to the hardware concur-

rently. The hardware consists of an eight stage pipeline floating-point multiplier and a six stage

pipeline floating-point adder. Details of these core designs can be found in [39]. Upon receiving

the start signal, the hardware retrieves data from the memory and every six clock cycles, sends the

data to the multiplier and starts the multiply. When the multiplication is complete, the result is sent

to the adder for accumulation. Once the entire row-column is completed, the accumulated result is

sent back to the hardware memory for retrieval by the software. The matrix-vector multiplication

is performed by iteratively applying the inner-product operations on the data. For each iteration,

one row of the matrix and the column vector is sent to the hardware.

A00 A01 A02

A10 A11 A12

A20 A21 A22

X0

X1

X2

×
Y0

Y1

Y2

=

A00 X0 A01 X1 A02 X2×+×+× Y0=

46

The matrix vector multiplication algorithm will be used to further verify all the load

imbalance conditions of the model (no-load imbalance, application imbalance, background load

imbalance, and combined background and applications load imbalance). The multiplying algo-

rithm will also be used to verify some of the basic file access and communication aspects of the

model. Application imbalance will come from a matrix size which is not divisible by the number

of processors available, synthetic background load will be added to simulate other users while the

application is running, and various matrix sizes will be used to investigate the communication and

file access portions. All of these variations of the application will be discussed further in Chap. 5.

3.4 Encrypt ion Using AES

The Advanced Encryption Standard (AES) is a block cipher with a block size of 128 bits

and key sizes of 128, 192, and 256 bits. The two inputs to the block cipher are the “plaintext

block” and the “key”. The output is called the “ciphertext block”. The purpose of a block cipher is

to make it as difficult as possible (even with a large number of computers) to find the key from the

plaintext block and the ciphertext block. However, if one has the key, it should be easy (for a com-

puter) to calculate the ciphertext block from the plaintext block and vice versa.

3.4.1 AES Implementation

The AES RC code accepts data in the form of test vectors which include the key, plaintext

and ciphertext. The plaintext and key are written to the RC hardware and the signal is given to start

the calculations. The AES algorithm is allowed to run for 10,000 iterations using the same key and

taking the output from one iteration as the input for the next iteration. After 10k iterations, the

ciphertext is output and compared to the expected ciphertext value. The result of the comparison is

returned to the host computer and the RC hardware is ready for the next set of vectors.

47

Implementation in a multi-node environment consists of a central processor which orches-

trates the participation of the other processors. The job of the central processor is to read in the test

vectors and disseminate them to the other processors, keeping them busy by using non-blocking

sends and receives. Message latency is avoided by allowing two test vectors at any given time to

be queued at each processor. Once a processor receives a test vector, the plaintext and key are writ-

ten to the RC hardware as described above. The result of the RC hardware computations is sent

back to the central processor for tabulation and the host issues the next set of vectors to the RC

hardware.

For validation of the HPRC modeling methodology, the AES algorithm will be used to

further verify the no-load and background load conditions as well as the communication and file

access aspects. Again a synthetic background load will be added to simulate other users while the

application is running and different numbers of processors will be employed to test the communi-

cation and file access portions. All of these variations of the application will be discussed further

in Chap. 5.

3.5 CHAMPION Demo Algorithms

The demo algorithms selected from the CHAMPION research [100, 101, 88] include a

simple high pass filter application and an automatic target recognition application (START). The

simplicity of the filter algorithm will allow the isolation and study of the processor to FPGA inter-

face in addition to characterization of some of the RC elements such as configuration time and

memory access and the START application will serve to further confirm these studies. Beginning

with these relatively simple algorithms has several advantages: (1) they have been implemented

and studied during the CHAMPION research and (2) the focus can be on the system, model, and

measurements instead of debugging the algorithms.

48

The filter application for study is a high pass filter used to emphasize the fine details in an

image corresponding to edges and other sharp details. The high pass filter attenuates or eliminates

low frequency components responsible for the slowly varying characteristics in an image netting a

sharper image.

The CHAMPION research [100] implemented a 3x3 high pass filter where the value of a

pixel in the output image depends on the value of the pixel in the same position in the input image

and the eight pixels surrounding it. For each pixel in the input image, the pixel and its neighbors

are multiplied by a mask and the output pixel value is obtained from the absolute value of the sum

of all the products:

 (EQ 3.5)

where mask(m,n) is the coefficient mask.

A typical high pass filter uses a mask of –1/9 for neighbor pixels but to simplify the hard-

ware implementation a mask of –1/8 will be used (division by eight is simply a 3-bit binary right

shift). The resulting mask is shown below:

(EQ 3.6)

The START (Simple, Two-criterion, Automatic Recognition of Targets) algorithm [88]

from CHAMPION will also be used to validate the model. This algorithm was chosen due to its

availability as an existing application in addition to being more complex than the simple filter

y i j,() x m n,() mask m n,()⋅
n j 1–=

j 1+

∑
m j 1–=

j 1+

∑=

1
8
---–

1
8
---–

1
8
---–

1
8
---– 1

1
8
---–

1
8
---–

1
8
---–

1
8
---–

49

described above. The algorithm is large enough to require reconfigurations of the Wildforce board

as well as use of all the available processing elements. Two versions of the algorithm were avail-

able: START and START20. START20 is an auto-mapped/partitioned version and requires recon-

figurations of each processing element at each of the four stages of the algorithm. START is a

manually mapped/partitioned version and reuses some of the processing element configurations

across multiple stages resulting in an overall reduced overhead.

The START algorithm applies a statistical algorithm to find regions in Forward-looking

InfraRed (FLIR) images where a target may exist and marks the region. Interested readers are

referred to Levine’s Thesis [88] for the details of the algorithm. The C/C++ and VHDL code gen-

erated for both algorithms during CHAMPION [100] were recycled and used for validation of the

single node RC model.

In the next chapter we develop a performance modeling methodology for fork-join and

SIAs running on a shared, heterogeneous HPRC platform. The applications described in this chap-

ter are then used to validate and evaluate the performance modeling methodology for both a single

node RC system and the HPRC platform.

50

CHAPTER 4

MODEL DEVELOPMENT

4.1 Introduct ion

In the last chapter we looked at some example fork-join and SIA applications. To effec-

tively use the proposed HPRC architecture, we must be able to analyze design trade-offs and eval-

uate the performance of applications as they are mapped onto the architecture. In this chapter we

will develop an analytic performance model for fork-join and SIA algorithms running on an HPRC

platform with distributed memory. The model describes the execution time of an application in

terms of its parameters (e.g., required computation within an iteration, number of iterations), archi-

tectural parameters (e.g., number of processors, processor speed, number of RC units, RC configu-

ration time, message communication time, file access time), and background load parameters (e.g.,

arrival processes, service distribution).

The literature discussed in Chap. 2 describes several performance models for SIAs run-

ning on dedicated, homogeneous resources and the model developed by Peterson for SIAs on

shared, heterogeneous resources [102]. We are interested in expanding these results to include RC

units and better account for processor communications.

4.2 General Model Descript ion

In fork-join algorithms and SIAs, the time required to complete an iteration is equal to the

time required for the last processor to complete its tasks as discussed in Chap. 3. The join pro-

cesses in fork-join algorithms or barrier synchronizations in SIAs ensure that all processors start an

51

iteration together and that processors who complete their tasks early sit idle until the end of the

iteration.

Within an iteration, a parallel algorithm includes some serial calculations (operations that

cannot be parallelized), the parallelized operations, and some additional overhead. For the applica-

tions used in this dissertation, each iteration requires roughly the same amount of computation

making iterations similar enough that we consider the computations required for a “typical” itera-

tion. This is not a necessary limitation but is used here to make the mathematics of the model less

complex. References to individual iterations could be maintained at the expense of a more com-

plex model in the end.

In the following sections we will develop a representative analytical model for the HPRC

platform. We will begin by investigating and characterizing the RC architecture and expanding this

model to multiple nodes representative of an HPRC platform. We will also conduct studies of the

HPC environment and isolate node to node performance issues such as processor communications,

network setup, and synchronization. In the RC environment, the focus will be on FPGA configura-

tion, processor to FPGA communication, data distribution between FPGA and processor, memory

access time, computation time in hardware and software, and other RC application setup costs.

Next, we apply this knowledge to the multi node environment building on the earlier load balance

work by Peterson [102]. We will develop an analytic modeling methodology for determining the

execution time of a synchronous iterative algorithm and the potential speedup. The symbols used

in this chapter and their definitions are listed below in Table 4.1.

52

TABLE 4.1 Symbols and Definitions

Symbol Definition Symbol Definition

Mk
Workstation

n
Number of hardware tasks

A
Application

tRC

Time for a parallel hardware/soft-
ware task to complete

Wk(A)
Workstation relative speed for
application A tRC_work

Total work performed in hardware
and software

Vk(A)

Speed of workstation Mk in solv-

ing application A on a dedicated
system tavg_task

Average completion time of hard-
ware or software task on RC sys-
tem in a given iteration

ω
Time per computational element
on baseline workstation twork

Total work performed on all nodes
of a multi-node system

ρk

Time per computational element
on workstation Mk σ

Hardware acceleration factor for
RC system

te
Time per event processed R1

Runtime on a single processor

m
Number of workstations

r
Number of hardware tasks not
requiring new configuration

R(A,Mk)
Execution time for computing
application A on Mk d

Number of hardware tasks not
requiring new data set

Tcomm(c) Communication time tconfig
Time for FPGA configuration

NC

Total number of messages per
processor tdata

Time for data access

τ Message latency tmserial
Host serial operations

Bi
Size of message i tnserial

RC node serial operations

π
Network bandwidth

tmovhd

Iteration overhead operations for
hosts

υ
Network contention factor

tnovhd

Iteration overhead operations for
RC nodes

SP

Speedup
tP

Time to complete parallel host soft-
ware tasks

RP
Runtime on parallel system γ Background load imbalance

RRC
Runtime on RC system β Application Load imbalance

I Number of iterations η Load imbalance factor

toverhead

Iteration overhead operations
σk

Hardware acceleration factor for
node k in multi-node system

tSW
Time to complete software tasks µ Service rate

tHW
Time to complete hardware tasks λ Arrival rate

53

4.3 HPC Analys is

Our analysis will begin with the HPC environment and the communication and worksta-

tions issues related to HPC performance. By starting with the HPC environment, we can isolate the

node-to-node communication and workstation performance to better understand the performance

related issues. The remainder of this section is a discussion of some of these HPC performance

issues.

4.3.1 Workstation Relative Speed

In a network of heterogeneous resources, each processing node may have different capa-

bilities in terms of CPU speed, memory and I/O. The relative computing power among the set of

nodes will vary depending on the application and the problem size of the application. In order to

quantify the idea of a relative computing power for a given workstation Mk, a relative speed Wk(A)

with respect to application A is defined as [130]:

(EQ 4.1)

Where Vk(A) is the speed of workstation Mk in solving application A on a dedicated sys-

tem. As shown in Eqn. 4.1, the relative speed of a workstation refers to its computing speed rela-

tive to the fastest workstation in the system and its value is less than or equal to 1.

Since the relative speed as defined is a ratio, it is often easier to represent it using mea-

sured execution times. If R(A, Mk) represents the execution time for computing application A on

Mk, the relative speed can be calculated as follows [130]:

Wk A()
Vk A()

max

1 j m≤ ≤
Vj A(){ }

-- 1 k m≤ ≤,=

54

(EQ 4.2)

Finally, we can also represent the ratio in terms of the execution time per computation ele-

ment on workstation j, te,j. A computation element is defined on a per application basis and repre-

sents a single iterative task to be computed. The execution time per computation element on the

baseline workstation is ω and ρk represents the time per computation element on the workstation

of interest.

(EQ 4.3)

Wk implicitly accounts for (to the first order) all factors affecting a workstation’s relative

speed or performance such as processor speed, I/O, and memory. When conducting experiments

and measurements for determining Wk, they should be constructed in a way such as to minimize

non-architectural affects like background load.

4.3.2 Communication Between Processors

Communication delay between processors in a network is affected by the network topol-

ogy, communication volume, and communication patterns. Other research on network perfor-

mance models report that a simple communication model that accounts for message startup time

and network bandwidth is adequate [42]. For the total number of messages per processor, NC, the

message latency τ, network bandwidth π, and size of the message Bi, the communication time can

be modeled as [42]:

Wk A()

min
1 j m≤ ≤

R A Mj,(){ }

R A Mk,()
-- 1 k m≤ ≤,=

Wk

min
1 j m≤ ≤

te j,

te k,
----------------------------- ω

ρk

----- 1 k m≤ ≤,= =

55

(EQ 4.4)

Both τ and π can be approximated from measured values. It should be noted that in prac-

tice, π may not be a constant. The model represented in Eqn. 4.4 is non-preemptive (messages are

serviced one-by-one) and useful for modeling clusters connected with contention free networks.

With shared-medium networks such as Ethernet, contention can significantly affect throughput. To

model communications over these types of networks, a contention factor, υ, is added to Eqn. 4.4

[42]:

(EQ 4.5)

According to [42], a contention factor of υ = m, where m is the number of nodes, is a good

approximation of an Ethernet connection assuming all nodes are communicating simultaneously.

However, this assumption only holds for a limited number of nodes. At some point, as the number

of nodes is increased, the throughput of the network begins to drop off and there will no longer be

a linear relationship between m and υ.

4.3.3 Speedup and Efficiency as Performance Metrics in HPC

Amdahl’s Law [22] for “fixed-size” speedup and Gustafson’s Law [67] for “fixed time”

speedup are useful metrics for evaluating parallel computing performance in a heterogeneous sys-

tem [132]. The basic definition of speedup is the ratio of the execution time of the best possible

serial algorithm on a single processor to the parallel execution time of the parallel algorithm on an

m-processor system. For a heterogeneous system, we define speedup as the ratio of sequential

Tcomm c() τ
Bi

π
-----+ 

 

i 1=

Nc

∑=

Tcomm c() τ
υ B⋅ i

π
-------------+ 

 

i 1=

Nc

∑=

56

computing time of the application A on the fastest workstation in the system to the parallel com-

puting time:

(EQ 4.6)

Where R(A,Mk) is the sequential execution time for application A on workstation Mk (k =

1, 2, …, m) and RP is the parallel algorithm execution time.

Another common metric for representing the limitations in parallel computing perfor-

mance is efficiency. Efficiency is defined as the ratio of speedup to the number of processors, m:

(EQ 4.7)

These performance metrics will be used in the following sections as we develop our mod-

eling methodology.

4.4 RC Node Analys is

Our performance model analysis will begin with a single RC node executing a fork-join or

SIA. Restricting the analysis to a single node will allow us to investigate the interaction between

the processor and RC unit before expanding our analysis to multiple nodes.

First, we will assume we have a segment of an application that has I iterations and all iter-

ations are roughly the same as shown in Figure 4.1. The RC unit has at least one FPGA (there may

be other reconfigurable devices which provide control functions) and tasks can potentially execute

in parallel in the RC hardware and in software on the host processor. Additionally, hardware can be

SP

min
1 k m≤ ≤

R A Mk,(){ }

RP

--=

EffP

SP

m

min
1 k m≤ ≤

R A Mk,(){ }

m R⋅ P

--= =

57

reused within a given iteration if the number of tasks or size of the task exceeds the number of

available FPGAs.

For an SIA (Figure 4.2), the time to complete a given iteration is equal to the time for the

last task to complete whether it be in hardware or software. For each iteration of the algorithm,

there are some operations which are not part of the accelerated kernel and are denoted tserial,i.

Other overhead processes that must occur such as configurations and exchange of data are denoted

toverhead,i. The time to complete the kernel tasks executing in software and hardware are tSW,i and

tHW,i. respectively. For I iterations of the algorithm where n is the number of parallel hardware

tasks, the runtime, RRC, can be represented as:

(EQ 4.8)

FIGURE 4.1 Synchronous Iterative Algorithm

Setup

Config
FPGA(s)

Xfer
Data

SW
task

Xfer
Data

Shutdown

HW
task

HW
task

Iterations

or

Configuration may not be
required on every iteration;
Depends on the algorithm

Kernel to be
accelerated

Serial

Serial

Iterations

RRC tserial i, max tSW i,
max

1 j n≤ ≤
tHW i j, ,[], 

  toverhead i,+ +

i 1=

I

∑=

58

To simplify the math analysis, we will make a couple of reasonable assumptions. First, we

will assume that each iteration requires roughly the same amount of computation. Focusing on a

“typical” iteration allows us to remove the reference to individual iterations in Eqn. 4.8 making the

mathematical analysis easier. Second, we will model each term as a random variable and use their

expected values. Thus we define tserial as the expected value of tserial,i and toverhead as the expected

value of toverhead,i. The mean time required for the completion of the parallel hardware/software

tasks is represented by the expected value of the maximum (tSW, tHW). Finally, we will assume that

each of the random variables are independent and identically distributed (iid). Again, this assump-

tion is not necessary but does make the math analysis easier without limiting our scope of repre-

sentative algorithms too severely. For the applications addressed in this dissertation, this is a

reasonable and valid assumption (see Sec. 1.2.1). If the iterations are not iid, we must retain the

first form of Eqn. 4.9 which includes the summation over all iterations I and the math analysis is

more difficult. We can then write the run time as:

FIGURE 4.2 Flow of Synchronous Iterative Algorithm for RC Node

S e tu p

C o n fig
F P G A (s)

X fe r
D a ta

S W
ta s k

X fe r
D a ta

S h u td o w n

H W
ta s k

H W
ta s k

Ite ra tio n s

o r

t se r ia l

t se r ia l

to ve rh e ad

to ve rh e ad

to ve rh e ad

tH WtS W tH W

59

(EQ 4.9)

The execution time for hardware tasks should be deterministic (i.e. there are no decision

loops such as if or while loops) and related to the clock frequency of the hardware. In the applica-

tions we are considering, only code suitable for acceleration in hardware are implemented in hard-

ware, meaning decision loops will likely remain in software where they are more efficiently

implemented. Thus, the execution time of the hardware can be estimated based on clock frequency

and/or simulations. We will assume that all concurrent or parallel hardware tasks are the same.

Also, we will initially assume that the hardware and software tasks do not overlap. This assump-

tion is valid for the applications addressed in this dissertation but is not a limiting factor of the

model. Although the math again would be more complex, the term could be carried throughout the

analysis as the maximum value of concurrently running software and hardware. Since our tasks do

not overlap however, we can represent the expected hardware execution time with the mean value,

tHW, and simplify the equation. The execution time of the software tasks will depend not only on

the speed of the processor but also on the background load of the system. We will represent this

background load as γ and represent the expected completion time of the software on a dedicated

processor as tSW. The expected execution or runtime on the RC system becomes:

(EQ 4.10)

If there is no background load on the processor, γ = 1, and the equation reduces to a dedi-

cated system. If there are multiple sequential hardware tasks, g, the expected value becomes:

RRC E tserial i,[] E max tSW i,
max

1 j n≤ ≤
tHW i j, ,[], 

  E toverhead i,[]+ + 
 

i 1=

I

∑=

I tserial E max tSW
max

1 j n≤ ≤
tHW j,[], 

  toverhead+ + 
 =

RRC I tserial γ tSW⋅() tHW() toverhead+ + +()=

60

(EQ 4.11)

The time spent on serial operations is also affected by the background load and thus must

be multiplied by the background load factor γ. The runtime for an application running on a single

RC node is then

 (EQ 4.12)

where n is the number of hardware tasks, d is the number of hardware tasks not requiring a new

data set, and r is the number of hardware tasks not requiring a new configuration of the RC unit.

Noting that the total work measured in time for a software-only solution is not equivalent

to the total work measured in time on an RC system solution, we introduce an acceleration factor σ

to account for the difference. Since the goal of RC systems is to speed up an application, only tasks

that would be faster in hardware are implemented in hardware. For example, an FFT in software

may take longer to execute than an equivalent implementation in the hardware. Given the total

work that will be completed in hardware and software on an RC system, we can represent the soft-

ware only run time on a single processor as:

(EQ 4.13)

The overhead for an RC system consists of the FPGA configuration time and data transfer

time. The configuration time for the FPGA(s) is (n-r) x tconfig, where r is the number of hardware

tasks not requiring a new configuration. The time to transfer data to and from the RC unit is (n-d)

x tdata, where d is the number of hardware tasks not requiring a new data set.

RRC I tserial γ tSW⋅() tHW j,

j 1=

g

∑ toverhead+ + +
 
 
 
 

=

RRC γ t⋅ serial γ tSW⋅() tHW() n d–() tdata⋅ n r–() tconfig⋅+[]+ + +=

R1 I tserial tSW σ tHW

n
∑⋅+ +

 
 
 

=

61

The speedup, SRC, then is defined as the ratio of the run time on a single processor to the

run time on the RC node:

(EQ 4.14)

In the next section we will take our single node analysis and apply it in a multi-node envi-

ronment of shared, heterogeneous resources.

4.5 HPRC Multi -Node Analys is

Now that we have a model for a single RC node and an understanding of the basic HPC

issues involved in a set of distributed nodes, we will turn our focus to expanding the model for

multi-node analysis. An example of the HPRC architecture is shown in Figure 4.3. For now, we

will not consider the optional configurable interconnection network between the RC units in our

modeling analysis.

SRC

R1

RRC

tserial tSW σ tHW

n
∑⋅+ +

γ t⋅ serial γ tSW⋅() tHW() n d–() tdata⋅ n r–() tconfig⋅+[]+ + +
--= =

FIGURE 4.3 HPRC Architecture

Configurable

ICN

ICN
Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

62

Again, we will assume we have a segment of an application having I iterations that will

execute on parallel nodes with RC hardware acceleration and as before in the single node analysis

we will assume that all iterations are roughly the same as is shown in Figure 4.4. Software tasks

can be distributed across computing nodes in parallel and hardware tasks are distributed to the RC

unit(s) at each individual node.

For an SIA, we know the time to complete an iteration is equal to the time for the last task,

which could be hardware or software, to complete on the slowest node. For each iteration of the

algorithm, there are some calculations which cannot be executed in parallel or accelerated in hard-

ware and are denoted tmserial,i. There are other serial operations required by the RC hardware and

they are denoted tnserial,i. Other overhead processes that must occur such as synchronization and

exchange of data are denoted t movhd,i and tnovhd,i for the host and RC systems respectively. The

time to complete the tasks executing in parallel on the processor and RC unit are tSW,i,k and

tHW,i,j,k. respectively. For I iterations of the algorithm where n is the number of hardware tasks at

node k and m is the number of processing nodes, the parallel runtime, RP, can be represented as:

(EQ 4.15)

Again, to simplify the math analysis, we will make a couple of reasonable assumptions.

First, we will assume that each iteration requires roughly the same amount of computation thus we

can remove the reference to individual iterations in Eqn. 4.15 and focus on the computations for a

RP tmserial i, tnserial i, max
1 k m≤ ≤

tSW i k, , max
1 j n≤ ≤

tHW i k j, , ,[], 
  tmovhd i, tnovhd i,+ + + +

i 1=

I

∑=

tmserial i, tnserial i,
max

1 k m≤ ≤
tRC i k, ,() tmovhd i, tnovhd i,+ + + +

i 1=

I

∑=

63

FIGURE 4.4 Flow of Synchronous Iterative Algorithm for Multi Node

Master

Setup

Config

FPGA(s)

P-P

Data

SW

task

Xfer

Data

HW

task

HW

task

Iterations

Config

FPGA(s)

Config

FPGA(s)

P-P

Data

P-P

Data

SW

task

HW

task

HW

task

Xfer

Data

Master

Shutdown

Synchronization

SW

task

Xfer

Data

HW

task

HW

task

P-RC

Data

P-RC

Data

P-RC

Data

Synchronization

RC-RC & P-P

Communication
Parallel Kernel

Master

Serial

Master

Serial

Iterations

Node

Serial

Node

Serial

Node

Setup

Node

Setup

Node

Setup

Node

Shutdown

Node

Shutdown

Node

Shutdown

64

“typical” iteration. Second, we will also assume that each node has the same hardware tasks and

configuration making the configuration overhead for each node the same. This assumption is not

necessary but removes a level of complication from the analysis not needed for the type of applica-

tions considered in this dissertation since all nodes are processing the same type of data. Third, we

will model each term as a random variable and use their expected values. Thus we define t mserial

and tnserial as the expected value of t mserial,i and tnserial,i. Similarly, we define t movhd and tnovhd as

the expected value of t movhd,i and tnovhd,i. The mean time required for the completion of the RC

hardware/software tasks is represented by the expected value of the maximum tRC,k (1<k<m).

Finally, as before in the single node analysis, we assume that the random variables are each inde-

pendent and identically distributed (iid), thus the run time can then be expressed as:

(EQ 4.16)

As discussed earlier in the section on the single node model, the execution time for hard-

ware tasks will be deterministic and available from calculations or simulations and are the same

tasks at each node. Also, for the applications we are currently working with, the hardware and soft-

ware tasks do not overlap. Therefore we can represent the expected hardware execution time with

the mean value, tHW, and simplify the equation. The execution time of the software tasks, tSW, will

depend not only on the speed of the processor but also will be affected by the background load of

the system and the hardware execution time will be affected by the application load imbalance.

Rewriting Eqn. 4.16:

RP E tmserial i,[] E max
1 k m≤ ≤

tRC i k, , tnserial i, tnovhd i,+ +{ } E tmovhd i,[]+ +

i 1=

I

∑=

I tmserial E max
1 k m≤ ≤

tRC k, tnserial tnovhd+ +{ } tmovhd+ + 
 =

65

(EQ 4.17)

We can rewrite the total processor work at node k in terms of the average task completion

time rather than the maximum and later multiply by an imbalance factor to account for application

and background load imbalances. Again assuming the random variables are iid, we can express the

total work across all m nodes in the HPRC platform as:

(EQ 4.18)

When tasks are divided across the nodes, a load imbalance due to application workload

distribution, background users, or network heterogeneity exists. We will represent this load imbal-

ance as η. We will assume that the RC system load imbalance at any node is independent of the

others. The completion time can then be expressed as the average task completion time within an

iteration multiplied by the load imbalance factor:

(EQ 4.19)

Combining Eqn. 4.18 and Eqn. 4.19 we can rewrite the maximum task completion time as,

(EQ 4.20)

Note that if the load is perfectly balanced, η is the ideal value of 1. As the load imbalance

becomes worse, η increases. If the algorithm runs entirely on a single node, m=1, η is the ideal

value of 1 and the model reduces to that for a single processor.

RP I tmserial β t⋅ HW E max
1 k m≤ ≤

tSW k, tnserial tnovhd+ +{ } tmovhd+ + + 
 =

I tmserial β t⋅ HW E max
1 k m≤ ≤

tnode k,{ } tmovhd+ + + 
 =

twork m E tnode k,[]⋅=

E max
1 k m≤ ≤

tnode k,() η E tnode k,[]⋅=

E max
1 k m≤ ≤

tnode k,()
η twork⋅

m
-------------------=

66

The time spent on serial operations is also affected by the background load and thus must

be multiplied by the background load factor γ. The runtime for an application running on a shared,

heterogeneous HPRC platform is then

 (EQ 4.21)

Noting that the total work measured in time for a software-only solution is not equivalent

to the total work measured in time on an HPRC platform solution, we introduce an acceleration

factor σk to account for the difference at each node k. Given the total work that will be completed

in hardware and software on an HPRC platform, we can represent the software only run time on a

single processor as:

(EQ 4.22)

The overhead for the HPRC platform consists of the communication and synchronization

between the nodes. We will initially model the time required for synchronization as a logarithmic

growth with the number of nodes [102]. The communication between nodes can be modeled using

Eqn. 4.4 or Eqn. 4.5 from Sec. 4.3.2.

The speedup, SP, for the HPRC platform is defined as the ratio of the run time on a single

processor to the run time on m RC nodes:

 (EQ 4.23)

RP γ t⋅ mserial β t⋅ HW

η twork⋅
m

------------------- tsynch mlog⋅[] Tcomm c()+ + + +=

R1 I tmserial tSW σk tHW

n
∑⋅+

 
 
 

k 1=

m

∑+⋅=

SP

R1

RP

tmserial tSW σk tHW

n
∑⋅+

 
 
 

k 1=

m

∑+

γ t⋅ mserial β t⋅ HW

η twork⋅
m

------------------- tsynch mlog⋅[] Tcomm c()+ + + +

--= =

67

Using Eqn. 4.23, we can investigate the impact of load imbalance, synchronization, and

communications on algorithms performance by varying η, tsynch, and the Tcomm(c) parameters.

Consider the cases illustrated in Figure 4.5. The first case is the ideal situation where the load is

perfectly balanced and there is no background load (η is 1), tsynch is zero for negligible synchroni-

zation costs, tmserial is zero for no serial computations, and so the speedup is equal to m, the num-

ber of nodes. The second case includes the impact of load imbalance by increasing η and retaining

serial and synchronization costs at zero. Here the speedup still increases linearly with m but the

slope is less than unity (1/η). Therefore, as m gets larger, the performance continues to degrade. In

the third curve, synchronization costs are added while serial computation costs are held at zero. As

expected, the speedup drops off logarithmically as m increases according to Eqn. 4.23. In the

FIGURE 4.5 Speedup Curves

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28

S
p

ee
d

u
p

ideal load balance

imbalanced load

imbalanced load and
synchronization costs
added

imbalanced load and
synchronization and serial
costs added

68

fourth curve, the serial computation costs are added further reducing the speedup as suggested by

Amdahl’s Law [22].

This model is widely applicable to a number of fork-join and SIA applications. In this dis-

sertation we will use this model to describe the performance of the applications discussed in Chap.

3. In the next section we will develop the model for load imbalance.

4.6 Load Imbalance Model

4.6.1 Introduction

Having developed a model framework for predicting performance, we will now look at the

model details for predicting the computational load on the processing nodes. The load induced by

the distributed application is referred to as the application load and the load from shared resources

(other users and operating system tasks) is referred to as the background load. Both types of com-

putation load can cause load imbalance and degrade the performance of a distributed application.

As stated earlier, we will assume the work performed by the reconfigurable unit is deterministic,

i.e. there are no decision loops such as if or while loops, and therefore the execution time for the

hardware will be known a priori from simulations or calculations. Since the execution time is

deterministic, the hardware execution will not contribute to the load imbalance issues and is not

affected by background user load. Thus we can use the load imbalance results from Peterson’s

work [102] by modifying where necessary to fit our applications and system architecture.

The specific characteristics of the load imbalance will depend on both the application and

the architecture under study. Thus as we develop these models, we will need to tune them to fit the

characteristics of the applications (for application load imbalance) and the system architecture for

the background load.

69

4.6.2 General Load Imbalance Model

In [102], Peterson develops a model for the load imbalance on shared, heterogeneous

workstations. He noted that the total load imbalance on each processor j can be modeled with a

scale factor ηj = γjβj, where the factors γj and βj represent background and application load imbal-

ance respectively. This scale factor has a multiplicative effect on the execution time. The total load

imbalance for the system will be the maximum ηj for 1<j<m where m is the total number of pro-

cessing nodes.

Assuming each task gets an equal fraction of the CPU time (processor sharing model) and

the background load on a processor j is l tasks, then the application will take l + 1 times as long to

complete as on an idle processor. Therefore, the background load imbalance scale factor is γj = l +

1 in this case [102]. Defining γj to be a discrete, positive integer-valued random variable and βj to

be a positive integer-valued random variable representing the amount of work done on processor j,

the probability distribution for ηj can be expressed as follows [102]:

(EQ 4.24)

where Prob{βj = k/α} = 0 if k/α is not a positive integer.

 To model heterogeneous processors, the scaling factors δj representing the processing

time per unit work of processor j, and ω the time per unit work of the baseline processor are intro-

duced. (For homogeneous resources, δj = ω = 1.) Finally, B represents the average work for a pro-

cessing node and βj/B is the application load imbalance scale factor for processor j. Therefore, for

heterogeneous processors, η is defined as:

Prob η j βjγj k= ={ } Prob βj α={ } Prob γj
k
α
---=

 
 
 

α 1=

k

∑=

70

 (EQ 4.25)

Also from Peterson [102], assuming the application and background load imbalances are

independent of each other and that the application and background load imbalances of any proces-

sor are independent of the other processors, the distribution, cumulative distribution, probability

distribution, and expectation are as follows:

Distribution Function:

(EQ 4.26)

Cumulative Distribution Function:

(EQ 4.27)

Probability Distribution:

(EQ 4.28)

Expected Value:

η 1
B
---E

max

1 j m≤ ≤
η j

Wj

------ 
  1

ωB
--------E

max

1 j m≤ ≤
βjγjδj()= =

Prob η j k={ } Prob βj α={ } Prob γj
k

bδj

-------=
 
 
 

Prob η j k≤{ } Prob βj α={ } Prob γj
k

αδj

--------≤
 
 
 

α 1=

k

∑=

α 1=

k

∑=

Prob max
1 j m≤ ≤

η j() k≤
 
 
 

Prob βj α={ } Prob γj
k

αδj

--------≤
 
 
 

α 1=

k

∑
j 1=

m

∏=

Prob max
1 j m≤ ≤

η j() k=
 
 
 

Prob max
1 j m≤ ≤

η j() k≤
 
 
 

Prob max
1 j m≤ ≤

η j() k 1–≤
 
 
 

–

=

71

(EQ 4.29)

The application and background load imbalances are modeled with discrete-valued scale

factors since the loads consist of some number of processes or tasks (a non-negative integer).

Now we will investigate application and background load imbalance independently and

develop models for each. First we will look at the impact of application load imbalance and then

consider the effects of background load imbalance and heterogeneity. Finally, we consider the

interaction of application and background load imbalance for shared, heterogeneous resources.

4.6.3 Application Load Imbalance Model

First, we will isolate the application load imbalance by considering the applications run-

ning on a dedicated set of homogeneous workstations (γj = 1 and δj = ω = 1). The application load

imbalance can be a result of unbalanced problem partitioning or can appear over time as the work-

load distribution changes from iteration to iteration. This change can result from the migration of

processes in some applications or as in the case of simulations, not every node has an event to pro-

cess for every iteration. So to determine the application load imbalance, we must first assess the

cause and then characterize what happens during each iteration of the application and determine if

the workload distribution changes and how it changes over time.

SAT Solver Application Imbalance . For the SAT Solver application, if the problem is ini-

tially balanced, the amount of computation remains constant across iterations and nodes thus there

η 1
Bω
-------- k Prob βj α={ } Prob γj

k
αδj

--------≤
 
 
 

Prob βj α={ } Prob γj
k 1–
αδj

-----------≤
 
 
 

α 1=

k 1–

∑
j 1=

m

∏–

α 1=

k

∑
j 1=

m

∏















k 1=

∞

∑⋅=

72

is no application load imbalance. Therefore, if the application is divided equally across nodes at

the start of the execution, then it will remain balanced as far as computation load at each subse-

quent iteration and we can set βj = B = 1. However, if we induce an application load imbalance a

priori by modifying the search space assigned to each workstation as shown in Figure 4.6, we can

study the effects of an application load imbalance on the SAT Solver application.

The application load imbalance can be modeled as the ratio of the amount of work done on

the heaviest loaded processor βmax to the average amount of work for a processor B. With no back-

ground load (γj = 1) the load imbalance from Eqn. 4.25 becomes

(EQ 4.30)

FIGURE 4.6 Application Load Distribution for SAT Solver Application

Balanced
Load

Un-Balanced
Load

Node3Node0

Node1 Node2

Node0

Node2Node1

Node3

Node0

Node1

Node2

Node3

0000...0000

FFFF...FFFF

Node1

Node2

Node0

Node3

0000...0000

FFFF...FFFF

η
βmax

B
-----------=

73

To determine the load imbalance for the case where the application load or search space is

unevenly distributed, we must determine the average load for each processor, B, and the amount of

work for the most heavily loaded processor, βmax. Since we will prescribe the distribution of the

search space by issuing the seed values, we can easily find the values for βmax and B.

Matrix Vector Multiplication Algorithm Application Imbalance. For the matrix vector

multiplication algorithm, an application load imbalance exists when the size of the matrix is not

integer divisible by the number of nodes. In this situation, some of the processing nodes will

receive more rows of the matrix than others. By monitoring these cases, we can study the effects of

application load imbalance on the matrix vector algorithm.

Again, the application load imbalance can be modeled as the ratio of the amount of work

done on the heaviest loaded processor βmax to the average amount of work for a processor B. To

determine the load imbalance for the case where a processing node receives more rows of the

matrix than other nodes, we must determine the average load for each processor, B, and the amount

of work for the most heavily loaded processor, βmax. The average load for each processor will sim-

ply be:

(EQ 4.31)

and the work for the most heavily loaded processor is:

(EQ 4.32)

Other Applications. For other applications such as simulations, this is not the case. The work

by Peterson [102] presents a study of the application load imbalance model for such a class of

applications. In his work he isolates the application load imbalance for a detailed study by assum-

B
rows
nodes
---------------=

βmax
rows
nodes
---------------=

74

ing a dedicated, homogeneous set of nodes and uses analytical modeling with known probability

distributions and order statistics to develop models for the application load imbalance.

Now we will look at the effects of background load imbalance and heterogeneity.

4.6.4 Background Load Imbalance Model

We will now focus on the imbalance due to background load on shared resources. First a

few assumptions: 1) the application and background load imbalances are independent, 2) the back-

ground load on each processor is independent and identically distributed (i.i.d.), 3) all tasks on a

processor have the same priority, and 4) processors are homogeneous. To isolate the background

imbalance, we will assume no application load imbalance. Substituting βj = B = 1 and δj = ω = 1

into Eqn. 4.29 yields:

(EQ 4.33)

As Peterson noted, if the background load on the processor is k tasks and each task

(including the application) gets an equal fraction of the CPU time, the application will take k+1

times longer than if it were run on a dedicated processor. The probability of k background tasks on

processor j can be represented as:

(EQ 4.34)

In [102], Peterson derives the background load distribution Qj,k using two background

load queueing models: processor sharing or M/M/1 and FCFS M/G/1 model and concluded that

η k Prob γj k≤{ } Prob γj k 1–≤{ }
j 1=

m

∏–

j 1=

m

∏
 
 
 
 

k 1=

∞

∑=

Prob γj k 1+={ } Qj k,=

75

the former is an adequate representation of the UNIX environment. It will be determined through

our experiments if this is also an adequate model for the Linux environments.

In a Processor Sharing (PS) model, the server is equally shared among tasks and can be

viewed as the limiting case of the round-robin discipline where the time slice approaches zero

[81]. We will assume the background jobs arrive following a Poison process with a given rate λj

and that the service distribution is Coxian [81, 102]. The queue length distribution can be derived

from queueing theory as Qj,k= (1 - ρj)ρj
k, where ρj is the ratio of the arrival rate to the service rate

(ρj = λj / µj). Finding the queue length distribution for general service distributions of a PS model

is impractical however, the results for a PS model with Coxian distributions are the same as those

from M/M/1 queueing theory (queues with exponential arrival and service distributions) [102].

Assuming PS on shared, homogeneous resources with no application load imbalance, the

load imbalance is given by [102]:

(EQ 4.35)

where k is the number of tasks.

To extend the model to heterogeneous resources modeled with processor sharing, we sub-

stitute βj = B = 1 into Eqn. 4.29.

(EQ 4.36)

Heterogeneity also impacts service rate µ for background tasks. By defining the service rate µj =

µω/δj, where µj is simply the baseline service rate µ scaled to reflect the relative processing power

η k 1 ρj
k

–()
j 1=

P

∏ 1 ρj
k 1–

–()
j 1=

P

∏–

k 1=

∞

∑=

η 1
ω
---- k Prob γj

k
δj

----≤
 
 
 

Prob γj
k 1–

δj

-----------≤
 
 
 

j 1=

m

∏–

j 1=

m

∏
 
 
 
 

k 1=

∞

∑⋅=

76

of node j, we can apply the impact of heterogeneity [102]. The load imbalance then becomes (with

no application load imbalance):

(EQ 4.37)

We have developed an analytic model to describe the background load on heterogeneous

resources with Coxian service distributions and processor sharing. Next we integrate our model

results for application and background load imbalance.

4.6.5 Complete Load Imbalance Model

Now that we have developed models for the application and background load imbalances

independently, we will now combine these models to form a complete model and examine them

for applications running on shared resources.

First, we consider homogeneous resources. From Eqn. 4.29 we model the load imbalance

as

(EQ 4.38)

For the SAT Solver application and matrix vector algorithm, we use the results found in

Sec. 4.6.3 and Sec. 4.6.4 to find the load imbalance is

η 1
ω
---- k 1

δjλ j

µω
--------- 
 

k δj⁄
– 

  1
δjλ j

µω
--------- 
 

k 1–() δj⁄
– 

 

j 1=

m

∏–

j 1=

m

∏
k 1=

∞

∑⋅=

η 1
B
--- k Prob βj α={ } Prob γj

k
α
---≤

 
 
 

Prob βj α={ } Prob γj
k 1–

α
-----------≤

 
 
 

α 1=

k 1–

∑
j 1=

m

∏–

α 1=

k

∑
j 1=

m

∏















k 1=

∞

∑⋅=

77

(EQ 4.39)

Now considering the case of heterogeneous resources, the load imbalance is

(EQ 4.40)

Using this equation and the performance model given in Eqn. 4.21, we can describe the

performance of our applications running on shared, heterogeneous HPRC resources.

In this chapter we have developed an analytic modeling methodology for predicting the

performance of fork-join and SIAs running on shared, heterogeneous HPRC resources. The mod-

eling methodology characterizes the performance effects of application load imbalance, back-

ground load imbalance, heterogeneity of processors, and the interaction of these combined effects.

In the next chapter, we will validate this modeling methodology with the applications discussed in

Chap. 3.

η
βmax

B
----------- k 1

λ j

µ
---- 
 

k

– 
  1

λ j

µ
---- 
 

k 1–

– 
 

j 1=

m

∏–

j 1=

m

∏
k 1=

∞

∑⋅=

η
βmax

B
----------- 1

ω
---- k 1

δjλ j

µω
--------- 
 

k δj⁄
– 

  1
δjλ j

µω
--------- 
 

k 1–() δj⁄
– 

 

j 1=

m

∏–

j 1=

m

∏
k 1=

∞

∑⋅ ⋅=

78

CHAPTER 5

MODEL VALIDATION

In the last chapter we developed a modeling methodology for algorithms running on

shared, heterogeneous HPRC resources and now we will focus on validating that methodology

with the use on sample applications. We will look at the accuracy of the performance model and

how well it predicts the system behavior as well as identifying the causes of modeling errors. The

method of model validation will be to isolate main components of the model (single node, applica-

tion load imbalance, background load imbalance, communication, etc.) for independent study in

order to quantify how well the model represents each of them before finally looking at the com-

plete model for accuracy. In this chapter, we first discuss the method used to verify the model

(including the HPRC configurations, the applications used, and the experiments performed). We

then investigate the model step by step covering each of the main components to determine the

accuracy before finally considering the combined effects and overall model. Figure 5.1 shows the

phases of our model development and depicts the iterative process involved.

5.1 Validat ion Methodology

To verify the performance model presented in Chap. 4, we now focus on the main compo-

nents of the model to evaluate how accurately their performance implications are characterized.

By focusing on each component of the model individually, we can quantify how well the model

describes the system and identify errors. Such an approach will provide a better and more com-

plete understanding of the model and its limitations.

79

To evaluate the accuracy of the model, we compare model predictions with empirical

results from several test applications. Potential “good fit” HPRC applications include various DSP

and image processing algorithms, simulation applications, and any master/slave applications

where part of the algorithm can be accelerated by hardware. The desire is to have two or three can-

didate applications possessing different processing, data, and/or communication characteristics

that will verify and fully test the limits/capabilities of the model. We will use a simple boolean sat-

isfiability algorithm (SAT Solver), a matrix vector multiplication algorithm, and an encryption

algorithm to evaluate the performance model. These algorithms were discussed in detail in Chap. 3

and represent the types of computationally intensive scientific algorithms that can be accelerated

by implementation on the HPRC platform. The experiments we will use to validate the model are

given in Table 5.1.

FIGURE 5.1 Phases of Model Development

Phase 1 Phase 2

Phase 3

HPC

HPRC

RC

80

TABLE 5.1 Validation Experiments and Goals

Experiment Focus Resource(s) Application
Section
Discussed

tcomm

UNIX
LINUX

PVM/MPI Measurement
Code Sec. 5.2

RC model Wildforce

Firebird

Pilchard

Champion Demos

SAT Solver

SAT Solver

Sec. 5.3.1

Sec. 5.3.4

Sec. 5.3.4

no-load HPRC Pilchard Cluster SAT Solver Sec. 5.4.1

Application Load Pilchard Cluster SAT Solver Sec. 5.4.2

Background Load Pilchard Cluster SAT Solver Sec. 5.4.3

Application and Back-
ground Load

Pilchard Cluster SAT Solver Sec. 5.4.4

no-load HPRC and com-
munication

Pilchard Cluster Matrix Vector Multiplica-
tion

Sec. 5.4.1

Application and Back-
ground Load, communi-
cations and file access

Pilchard Cluster Matrix Vector Multiplica-
tion

Sec. 5.4.4

no-load HPRC and com-
munication

Pilchard Cluster Advanced Encryption
Standard Implementation

Sec. 5.4.1

Background Load,
communications and file
access

Pilchard Cluster Advanced Encryption
Standard Implementation

Sec. 5.4.3

Heterogeneity Pilchard Cluster SAT Solver, Matrix Vector
Multiplication, and
Advanced Encryption
Standard Implementation

Sec. 5.4.5

81

Before exercising the multinode HPRC model, we look at the communication model using

PVM and MPI running on a cluster of SPARC workstations running UNIX and a cluster of Pen-

tium workstations running LINUX. We also use these clusters to obtain parameter measurements

for the synthetic background load experiments. Background loading on shared resources degrades

application performance due to competition for processor cycles. Since we cannot control the

background loading on shared workstation networks where the load is the result of other users, we

generate a synthetic load on the workstations such that it dominates the background load. The syn-

thetic load is used in experiments to measure the accuracy of the model in the presence of back-

ground loads.

Next we look at the single-node RC model and evaluate its accuracy on several platforms.

Using some simple algorithms we compare the model predictions with empirical results from three

different RC platforms: Wildforce, Firebird, and Pilchard. These platforms were discussed in

detail in Chap. 2.

The modeling methodology developed in Chap. 4 is capable of characterizing the perfor-

mance on dedicated or shared as well as homogeneous or heterogeneous HPRC resources. The

only resources we have available at this time are shared, homogeneous resources but with careful

experiment planning, we can simulate the other conditions. To simulate a dedicated HPRC plat-

form, experiments were planned and conducted during off hours. Studies were conducted to deter-

mine when the resources were not in use so that experiments could be planned. To simulate a

heterogeneous HPRC platform, we varied the synthetic background load across the nodes.

Using our performance model we can characterize the effects of various application load,

background load, and heterogeneous conditions. A different instantiation of the model is required

for each combination of an application and computational resources condition. The experiments

82

conducted are given in Table 5.1 and each row reflects a different instantiation of the model. We

find the parameters for each of the models by using empirical measurements of application

runtime parameters such as tmserial, tSW, etc.

To determine the arrival rate of background tasks, we use UNIX scripts and the ps com-

mand to monitor process arrivals. The number of new processes within a fixed time period is

recorded, with samples being collected to create histograms for the arrival distribution. These

scripts were run for several weeks on a number of machines to determine arrival statistics. The

arrival rates are higher during the week and during the day, however, for multiple hour time

frames, the mean number of arrivals is nearly constant. These conditions allow us to model the

arrival rates with a stationary Poisson process.

Likewise, statistics for the service distribution were collected using UNIX scripts and the

lastcomm command. Data was again collected for several weeks on a number of machines to

determine the computational requirements of the processes. These results were used to determine

the service distribution parameters for the performance model.

Next, we begin the process of validating the modeling methodology by first looking at

how to model the communication time between processors.

5.2 Accuracy of Model ing Communicat ion Times

PVM and MPI code was developed to measure the setup and communication times for

message round trip times between workstations for the multiprocessor network. In these experi-

ments the focus is on the communication between nodes of the system, specifically the message

travel time for different message sizes.

83

The SInRG SUN GSC (grid service cluster), a network of workstations available for

development tests, was measured for processor to processor communication delay. Using PVM, a

simple message round trip time was measured for various message sizes. Measurements were

taken overnight when the network load was light between seven of the workstations. The measure-

ment results are shown in Figure 5.2. Similar measurements were conducted using MPI on the Pil-

chard cluster to verify the model parameters on those machines.

5.3 Accuracy of S ingle Node RC Model

In this section, our focus is on the elements specific to RC systems. Due to the architec-

tural differences between RC systems, there are some slight variations in parameter definitions

necessary. For example, the Wildforce requires the loading of multiple devices while the Firebird

and Pilchard have only one FPGA device. Additionally, the Pilchard currently must be loaded by a

separate executable. Additionally, different RC systems have different communication interfaces,

programming interfaces, etc. all of which require consideration with developing the model for that

particular system. The overall structure or framework of the RC model remains the same and only

those differences need to be customized for the particular RC system. As discussed earlier in Sec.

4.4, a performance model was developed for a stand-alone RC unit.

In this section we will present the validation results for the RC model using the Wildforce,

Firebird, and Pilchard RC systems. Each of these systems were discussed in detail in Chap. 2.

5.3.1 Wildforce Measurements

Basic model parameter measurements were conducted using a benchmark program for the

Wildforce board as shown in Table 5.2. To validate the execution time prediction of the model, the

84

FIGURE 5.2 Communication Measurement Results
(a) Message Round Trip Time and (b) Network Bandwidth

(a)

(b)

0

100000

200000

300000

400000

500000

600000

0 8 80 800 8000 80000 800000

Data Size

T
im

e
(u

s) vlsi1-4

Model

vlsi4-6

Bandwidth

0

2

4

6

8

10

12

14

10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

1E
+08

M e s s age Size (byte s)

M
B

/s
ec

Sample1

Sample2

Sample3

Sample4

Sample5

85

benchmark measurements are used with the developed model to predict the runtime for three of the

CHAMPION demos. The details of the demo applications were discussed in Chap. 3. The config-

uration values for CPE0 and PE1 are significantly different because they are two different Xilinx

devices and we therefore account for them separately in the model calculations. For this applica-

tion the only part of the algorithm considered as serial is the board configuration and setup and

there is only one iteration (I =1). The remaining unknowns are the values for the total hardware

and software work which is dependent on the application.

From Eqn. 4.12 we can find the runtime as:

(EQ 5.1)

Where Ne is the total number of events and tSW and tHW are the software and hardware

execution times per event respectively. We can use the model to predict the runtime of the CHAM-

PION demo algorithms [107]. The average runtime of fifty trials on the Wildforce RC system is

shown in Table 5.3 and Figure 5.3 along with the model predictions. The number following the

algorithm name indicates the input data size. The value 128 indicates an input data set of 128x128

and similarly the value 256 indicates a 256x256 input data set. Other tests were conducted on an

application which passes a matrix of data between the processing elements of the Wildforce board

to determine the communication delays between elements and a computation is performed on the

TABLE 5.2 Model Parameters for Wildforce from Benchmark Application

CPE0 PE1 HW Data
Setup
(tsw) Serial

Mean Value (usec) 535275 257232.8 1250.52 33282.08 68892.34 40750.46

RRC tserial γ tSW⋅() tHW Ne⋅() n d–() tdata⋅ n r–() tconfig⋅+[]+ + +=

86

TABLE 5.3 Runtime Predictions and Measurements (time in seconds)

Model
Prediction

Measured
Mean Value

Model Error
(%)

hipass_128 0.911342 1.313353 30.61

hipass_256 1.773769 1.907098 6.997

START_128 5.166674 4.597426 12.38

START_256 6.175542 6.121883 0.869

START20_128 6.702268 8.134971 10.838

START20_256 7.741632 8.855299 6.357

MatrixA 3.188342 4.1 22.24

MatrixB 3.188345 4.1 22.24

MatrixAHW 0.002627 0.002644 0.633

MatrixBHW 0.002630 0.002641 0.3998

87

FIGURE 5.3 Comparison of RC Model Prediction with Measurement Results on
Wildforce

0.000000

2.000000

4.000000

6.000000

8.000000

10.000000

12.000000

hi
pa

ss
_1

28

hi
pa

ss
_2

56

START_1
28

START_2
56

START20
_1

28

START20
_2

56

model prediction

measurement
(average of 50
trials)

-2.000000

-1.000000

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

MatrixA MatrixB MatrixAHW MatrixBHW

model prediction

measurement
(average of 50
trials)

88

data. Those tests are listed below as MatrixA and MatrixB where the computation is done in soft-

ware and MatrixAHW and MatrixBHW where the computation is done in the RC unit.

5.3.2 Firebird Measurements

Again, using a sample benchmark application available from Annapolis Microsystems for

the Firebird board some initial measurements for the model parameters were obtained. The appli-

cation configures the FPGA, resets the board, and the software polls and waits for an interrupt

from the hardware. This application is suitable for a benchmark because the Boolean SAT applica-

tion will depend on interrupts to determine when the RC hardware has finished processing.

Another benchmark application which reads and writes to the memory was used to determine

memory access times on the Firebird board. From measurements on the Firebird board, we have

determined the model parameters as shown in Table 5.4.

TABLE 5.4 Model Parameters for Firebird from Benchmark Application

Setup
Clocks

&
Program

PE0

Open/
Shutdown

Board
(Each)

Read
Data File

Setup
(tsw)

Interrupt
Processing Serial

Mean
Value
(msec)
for 30
MHz clk

94 15 499.7 0.02618 0.0366 0.0192

Mean
Value
(msec)
for 70
MHz clk

47 15 499.7 0.02618 0.0266 0.0192

89

5.3.3 Pilchard Measurements

Again, using a sample benchmark application for the Pilchard board some initial measure-

ments for the model parameters were obtained. The application writes a table of values to the Pil-

chard, signals the hardware to perform an FFT, and reads back the result. From measurements on

the Pilchard board, we have determined the model parameters as shown in Table 5.5.

5.3.4 Single Node Boolean SAT Solver Comparisons

A Boolean SAT solver was developed for both the Firebird and Pilchard RC systems and

in this section we will compare the results from both implementations and with a software-only

version. The software-only version was executed on the VLSI UNIX machines and on the PIL-

CHARD LINUX machines and results are given in Table 5.6. The RC solver engine on the Fire-

bird machine runs at 35 MHz and there are 8 copies of the SAT core running on the FPGA. The

Pilchard version runs at 33.25 MHz for problem sizes up to 38-bits and 26.6 MHz for problem

sizes of 41, 43, and 44-bits. Again there are 8 copies of the SAT core running on the FPGA. The

Pilchard version again uses a separate program to configure the FPGA and results do not include

the configuration time. Figure 5.5 and Figure 5.4 show the measured versus model results for the

Firebird and Pilchard systems respectively. Table 5.7, Table 5.8, and Table 5.9 show the numerical

results of these tests including synthesis and implementation costs and modeling error.

TABLE 5.5 Model Parameters for Pilchard from Benchmark Applications

Open
Pilchard

Close
Pilchard

Write
Value to
Pilchard

Read
Value
from

Pilchard

Mean
Value
(msec)

0.5 0.5 0.1 0.1

90

TABLE 5.6 SAT Software-Only Runtime Comparisons (time in seconds)

Bits SW VLSI2a

a. Sun 220R: dual 450 MHz, UltraSPARC II, 1 GB RAM

SW Pilchardb

b. 800 MHz Pentium III, Linux, 133 MHz SDRAM

Result

32 11471.990 4515.744 B0000060

36 11518.712 4521.625 D90000060

38 11511.338 4530.306 2D90000060

41 11521.457 4529.441 12D90000060

43 11547.886 4549.187 72D90000060

44 11566.326 4552.614 F2D90000060

FIGURE 5.4 Boolean SAT Measured and Model Results on Firebird
Running at 35MHz

S AT o n F ir e b ir d : M e a s u r e d a n d M o d e l R e s u lt s (3 5 M H z)

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

3 2 3 4 3 6 3 8 4 0 4 2 4 4

P r o b le m S iz e (B its)

T
im

e
(s

ec
o

n
d

s)

8 Co p ies
Me as u re d (s e c)

8 Co p ies Mo d e l
(s e c)

91

SAT on Pilchard: M easured and M ode l Results

0

10000

20000

30000

40000

50000

60000

32 34 36 38 40 42 44

Problem Size (Bits)

Ti
m

e
 (s

e
co

nd
s)

8 Copies
Measured (sec)

8 Copies Model
(sec)

FIGURE 5.5 Boolean SAT Measured and Model Results on Pilchard
Running at 33.25 MHz for 32, 36, and 38-bits and 26.6 MHz for 41, 43, and
44-bits

SAT on Pilchard: M ode l Pre dictions for Worst Case s
(35M Hz)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

32 37 42

Proble m Size (Bits)

T
im

e
(s

ec
o

n
d

s)

8 Copies Worst
Case (sec)
measured

8 Copies Worst
Case (sec) model

92

TABLE 5.7 SAT RC Node Runtime Comparisons (time in seconds)

Bits

Firebird

Measureda

a. 866 MHz Pentium III, 1 GB RAM, WinNT, 66 MHz PCI card

Firebird
Model

Error
(%)

Pilchard

Measuredb

b. 800 MHz Pentium III, Linux, 133 MHz SDRAM

Pilchard
Model

Error
(%) Result

32 7.953 7.795 1.987 8.035004 8.07525 0.5 B0000060

36 191.859 191.865 0.003 200.867360 201.8332 0.48 D90000060

38 682.828 682.718 0.016 715.086893 718.521 0.48 2D90000060

41 5592.453 5591.252 0.021 7322 7356.748 0.47 12D90000060

43 5592.438 5591.252 0.021 7321 7356.748 0.49 72D90000060

44 37014.062 37005.87 0.022 48459 48691.77 0.48 F2D90000060

TABLE 5.8 Overhead for RC systems (time in minutes)

Bits

Firebirda

a. 1.4 GHz Pentium 4, 256 MB RAM, Windows 2000

Pilchardb

b. Sun 220R: dual 450 MHz, UltraSPARC II, 1 GB RAM

Synthesis Place & Route Synthesis Place & Route

32 1 50 2 29

36 1 50 2 29

38 1 52 2 35

41 1 52 2 30

43 1 54 2 27

44 1 54 2 31

93

5.4 HPRC Model Validat ion

Having validated the communication model and the single-node mode, we will now look

at the applications running on the HPRC platform and validate the complete model. We will bring

together the issues studied during the previous validation steps and focus on how well the model

represents the entire system. The testing applications discussed in Chap. 3 will be used to study

and validate the HPRC model and identify modeling errors and limitations.

5.4.1 No-Load Imbalance Results

First, we will look at the model under ideal conditions (no application load imbalance and

no background load) on homogeneous HPRC resources. We will look at all three applications

under these conditions starting with the SAT Solver.

SAT Solver. At the start of the SAT Solver program, each node is passed a starting seed by the

master node which equally divides the problem space between the workstation nodes, m (in this

case m=4). Next, the command to start the search is given with a broadcast command from the

master node. The master node also searches part of the problem space while awaiting results from

the other nodes. Once a node finds a solution, a message is sent back to the master node containing

TABLE 5.9 Worst Case Values (time in seconds)

Bits
Model
Firebird

Measured
Pilchard

Model
Pilchard Error (%)

32 15.464 16.0697 16.14849 0.49

36 245.552 257.11011 258.3459 0.48

38 981.832 1028.4394 1033.378 0.48

41 7853.780 10285 10333.76 0.47

43 31414.74 41137 41335.03 0.48

44 62829.36 82275 82670.05 0.48

94

the solution vector and indicating the solution was found. The master node then broadcasts the

stop signal to the other nodes. Table 5.10 and Figure 5.6 show the results of these tests. The model

error is very low with small estimation error indicating the model predicts the measured results

very accurately.

AES Algorithm. The AES algorithm is also equally divided across the available nodes since the

test vectors to be encrypted are sent to available workstations, keeping all workstations busy. The

master in this scenario does not participate in the computations, rather operates as an orchestrator

of the algorithm. Up to two test vectors are sent to each node at any given time to reduce the

impact of message latency. Once a node receives a test vector, work begins immediately and the

result, when found, is sent back to the master node to be recorded. Table 5.11 and Figure 5.7 show

the results of these tests. The model error is very low with small estimation error indicating the

model predicts the measured results very accurately.

TABLE 5.10 MPI SAT Solver No-Load Imbalance Results

Problem
Size

(bits)

Measured
Mean
(sec)

Model
Prediction

(sec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

32 4.9073 4.852047 1.126 0.1943 0.0452

36 65.213 65.4014 0.289 0.1851 0.0431

38 322.33 323.7453 0.439 0.1906 0.0572

41 2572 2584.254 0.476 0.2161 0.0795

43 10286 10334.57 0.472 0.3145 0.1636

44 20571 20668.33 0.473 0.10096 0.0959

95

FIGURE 5.6 SAT Solver No-Load Imbalance Results

Model Error (%)

0

0.2

0.4

0.6

0.8

1

1.2

32F 36F 38F 41F 43F 44F

TABLE 5.11 MPI AES Algorithm No-load Imbalance Results

Processors

Measured
Mean
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

1 4932.578 4933.236 0.0132 8.9809 1.9071

2 5144.15 5075.157 1.3412 11.44897 2.4312

3 2629.1864 2620.52 0.3296 14.9268 3.1697

4 1849.672 1802.314 2.5603 28.6469 6.0832

5 1486.638 1393.217 6.284 26.5573 5.6394

96

FIGURE 5.7 AES Algorithm No-Load Imbalance Results

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

1 2 3 4 5
Processors

R
u

n
ti

m
e

(m
se

c) Measured

Model

Model Error (%)

0

1

2

3

4

5

6

7

1 2 3 4 5

Processors

E
rr

o
r

P
er

ce
n

t

97

Matrix Vector Multiplication. The Matrix Vector Multiplication algorithm has inherent appli-

cation load imbalance when the number of rows is not integer divisible by the number of available

machines. With this in mind, we must carefully consider our test cases to include only those with

truly no application load imbalance. Again the master node does not participate in the algorithm

calculation but acts as the orchestrator, deciding how many and which rows to send to each node.

The rows of the matrix are divided and sent to the node and the command to start is given. The

master node then waits the return of the resultant vector and if any rows are left, sends them back

to the node. Once all the resultant vectors are collected the application ends unless more iterations

are requested. Table 5.12 and Figure 5.8 show the results of these tests. Again, the model error is

very low with small estimation error indicating the model predicts the measured results very accu-

rately.

Now that we have confidence the model predicts the ideal case accurately, less than one

percent for all cases over ten seconds and less than two percent for the cases less than ten seconds,

we will focus on the addition of application load imbalance and test the model accuracy under

these conditions.

TABLE 5.12 MPI Matrix Vector Multiplication Algorithm No-load Imbalance Results

Matrix Size
(2 work nodes)

Measured
Mean
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

10 653.983 704.13 7.6679 169.5792 36.01

50 1261.883 1352.34 7.1684 37.3427 7.9297

100 3211.867 3299.18 2.7184 152.9048 32.4693

Matrix Size
(4 work nodes)

100 3058.283 3273.59 7.0401 129.4665 27.4922

98

FIGURE 5.8 Matrix Vector Algorithm No-Load Imbalance Results

0.000

500.000

1000.000

1500.000

2000.000

2500.000

3000.000

3500.000

10 50 100
Matrix Size

R
u

n
ti

m
e

(m
se

c)
Measured w / 2
w ork nodes

Model w / 2 w ork
nodes

Measured w / 4
w ork nodes

Model w / 4 w ork
nodes

Model Error (%)

0

1

2

3

4

5

6

7

8

9

10 w / 2 w orkers 50 w / 2 w orkers 100 w / 2 w orkers 100 w / 4 w orkers

Matrix Size

E
rr

o
r

P
er

ce
n

t

99

5.4.2 Application Load Imbalance Results

To validate the modeling methodology for application load imbalance, we look at the

results from the SAT Solver application and the Matrix Vector Multiplication algorithm under

application imbalance conditions.

SAT Solver. To demonstrate the model’s validity and measure its accuracy for application load

imbalance we have designed an experiment with the SAT solver where the seeds or starting points

for the counters are not equally distributed in the design space causing an uneven distribution of

the problem across the workstations, m. For this experiment we are looking for the worst case solu-

tion (i.e. the solution is all F’s) and we purposely assign the node in the upper portion of the search

space a larger portion of the problem as shown in Figure 5.9. This prescribing of the load makes

the load distribution deterministic and thus easy to model while allowing use to test the model’s

accuracy.

For this case, the application load imbalance can be modeled as the ratio of the amount of

work done on the heaviest loaded processor βmax to the average amount of work for a processor B.

With no background load (γj = 1) the load imbalance from Eqn. 4.25 becomes

(EQ 5.2)

To determine the load imbalance for the case where the application load or search space is

unevenly distributed, we must determine the average load for each processor, B, and the amount of

work for the most heavily loaded processor, βmax. Since for this experiment, we have prescribed

η
βmax

B
-----------=

100

Balanced
Load

Un-Balanced
Load

Node3Node0

Node1 Node2

Node0

Node2Node1

Node3

Node0

Node1

Node2

Node3

0000...0000

FFFF...FFFF

Node1

Node2

Node0

Node3

0000...0000

FFFF...FFFF

FIGURE 5.9 Application Load Distribution for SAT Solver Application

101

the distribution of the search space by issuing the seed values, we can easily find the values for

βmax and B.

To find the average load for a processor B, we need to know the number of processors and

the number of hardware engines per processor. In this case we have four processors (2-bits) and

eight hardware engines per processor (3-bits). Thus we have a 5-bit seed. So the average work on a

processor, B, would be the worst case value or 0xFFF...F minus the maximum seed value which for

a 5-bit seed is 0xF80...0.

(EQ 5.3)

To find the amount of work for the most heavily loaded processor, we also need the seed

value for that processor. In this case, the seed is 0xBC0...0. Similar to finding the average load, we

can now find βmax:

(EQ 5.4)

Finally, the application load imbalance is simply the ratio of these values. Since there is no

background load in this experiment, the load imbalance factor becomes:

(EQ 5.5)

The results of the application load imbalance only experiments are given in Table 5.13 and

Figure 5.10. The model error is very low with small estimation error indicating the model predicts

the measured results very accurately.

B 0xFFF···…F 0xF80…0– 0x07F…F= =

βmax 0xFFF…F 0xBC0…0– 0x43F…F= =

η
βmax

B
----------- 0x43F…F

0x07F…F
-------------------------- 8.5= = =

102

TABLE 5.13 MPI SAT Solver Application Load Imbalance Results

Problem
Size (bits)

Measured
Mean (sec)

Model
Prediction

(sec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

32 34.367 35.12672 2.21 0.0259 0.0062

36 546.58 549.7962 0.588 0.0156 0.0036

38 2732.023 2745.719 0.501 0.0294 0.0117

41 21855.31 21960.05 0.479 0.8952 0.6585

43 87417.6384 87837.74 0.4806 0.0602 0.0443

FIGURE 5.10 SAT Solver Application Load Imbalance Results

Model Error (%)

0

0.5

1

1.5

2

2.5

32F 36F 38F 41F 43F

103

Matrix Vector Multiplication. The Matrix Vector Multiplication algorithm has inherent appli-

cation load imbalance when the number of rows in not integer divisible by the number of process-

ing nodes. To validate the application load imbalance modeling methodology, we now look at

these cases.

Again, the application load imbalance can be modeled as the ratio of the amount of work

done on the heaviest loaded processor βmax to the average amount of work for a processor B. With

no background load (γj = 1) the load imbalance from Eqn. 4.25 becomes

(EQ 5.6)

To determine the load imbalance for the case where the application load or number of

rows is unevenly distributed, we must determine the average load for each processor, B, and the

amount of work for the most heavily loaded processor, βmax.

To find the average load for a processor B, we need to know the number of processors and

the total number of rows in the matrix. The average work on a processor, B, is simply:

(EQ 5.7)

To find the amount of work for the most heavily loaded processor, we need the number of

rows that will be sent to the most heavily loaded processor. This is simply:

(EQ 5.8)

η
βmax

B
-----------=

B
rows
nodes
---------------=

βmax
rows
nodes
---------------=

104

Finally, the application load imbalance is simply the ratio of these values. The results of

the application load imbalance only experiments are given in Table 5.14 and Figure 5.11. The

model error is very low with small estimation error indicating the model predicts the measured

results very accurately.

We therefore conclude that the performance modeling methodology accurately describes

the performance of fork-join and more specifically, SIAs that suffer from application load imbal-

ance with less than one percent error for all cases whose runtime is longer than thirty seconds and

less than five percent for the cases less than thirty seconds. We now turn our focus to the back-

ground load imbalance effects that arise from shared use of our resources.

5.4.3 Background Load Imbalance Results

To demonstrate the model’s accuracy for predicting the performance in the presence of

background load, we compare the predicted performance with the empirical results of the applica-

tion running with a synthetic background load on the homogeneous set of pilchard workstations.

By adding synthetic background load to the workstations, we can investigate the model accuracy

under various loading conditions and types of background loading. The workstations are generally

idle (γ = 1) enabling us to predictably control the background loading with a synthetic load and

investigate the effects of various background loading conditions under controlled circumstances.

TABLE 5.14 MPI Matrix Vector Algorithm Application Load Imbalance Results

Matrix Size
(4 work nodes)

Measured
Average
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

10 871.4 862.465 1.0254 32.9736 7.0019

50 1459.183 1503.617 3.0451 765.2082 162.4917

105

FIGURE 5.11 Matrix Vector Algorithm Application Load Imbalance Results

Model Error (%)

0

0.5

1

1.5

2

2.5

3

3.5

10 50

Matrix Size

E
rr

o
r

P
er

ce
n

t

106

In Sec. 5.4.1 we considered the model for the case of no background loading and are now

confident the model is accurate for the no-load case (no background or application load). Now we

will consider the impact of background loading using a simple case. As discussed in Chap. 4 and in

detail in [102], the background load imbalance can be modeled using Processor Sharing (PS) serv-

ers or a FCFS M/G/1 queuing model to allow general service distributions (we will concentrate on

the PS server model). When computing the η terms with Eqn. 4.29, the summation includes an

infinite number of terms. To compute η, we assume the expression converges to a solution which

is true for the PS case.

To find the arrival rate of background tasks, we measure the arrivals when the applications

are run (with a synthetic load we know a priori the arrival rate). For various arrival rates, the per-

formance model predictions for γ are summarized in Table 5.15.

TABLE 5.15 Typical factors for moderately Loaded Homogeneous Nodes Using PS Model

Arrival
Rate

Number of
Processors

Background Load Imbalance
Factor

λ P γ
0.1 2 1.16

3 1.23

4 1.30

5 1.36

0.2 2 1.34

3 1.47

4 1.59

5 1.70

0.4 2 1.78

3 2.04

4 2.25

5 2.42

107

SAT Solver. With synthetic background load running on the shared, homogeneous HPRC

resources, experiments were conducted with the SAT Solver application. Table 5.16, Table 5.17,

and Figure 5.12 show the results of those experiments. The model error is very low for the cases

where the runtime is long. For the shorter runtime cases, the variance in overhead is a large per-

centage of the error. Still, we have a small estimation error, indicating the model remains a suitable

predictor of the system behavior.

Matrix Vector Multiplication. Again with a synthetic background load running on the shared,

homogeneous HPRC resources, we look at experiments running the matrix vector multiplication

algorithm. Table 5.18 and Figure 5.13 show the results of those experiments. In these results we

see the model error still low in most cases but the standard deviation is significantly higher. The

two sources for these errors are overhead variation dominating the runtime since these runtimes

are very short and variations in the transfer of the matrix data from the file into memory. The latter

is evident where for a given gamma, we see that the error tends to increase as the matrix size (or

data size) gets larger. These theories will be discussed further in the conclusions chapter.

AES Algorithm. Finally, with a synthetic background load running on the shared, homogeneous

HPRC resources, we look at experiments running the AES encryption algorithm. Table 5.19 and

Figure 5.14 show the results of those experiments. In these results we see the model error low in

with a reasonable standard deviation. The AES algorithm has short runtimes and is affected by the

overhead variation dominating the runtime. The other cause for error pointed out in the previous

discussions is not as significant a factor for this algorithm since the amount of data transfer is

much smaller. Again, we will discuss these theories further in the conclusions chapter.

108

TABLE 5.16 MPI SAT Solver Background Load Imbalance Results (Problem Size 32F)

γ
Measured
Mean (sec)

Model
Prediction (sec)

Model
Error (%)

Standard
Deviation σ

Error of
Estimation (90%

Confidence)

1.476 4.36 4.34 0.3058 0.1821 0.0424

1.975 5.158 4.453 13.671 0.6122 0.1869

2.34 4.623 4.5286 2.0454 0.0972 0.0302

3.436 5.555 4.7597 14.3181 0.6476 0.1945

5.254 5.9129 5.141 13.050 0.3457 0.1075

109

TABLE 5.17 MPI SAT Solver Background Load Imbalance Results (Problem Size 36F)

γ
Measured
Mean (sec)

Model
Prediction (sec)

Model
Error (%)

Standard
Deviation σ

Error of
Estimation (90%

Confidence)

1.476 64.541 64.897 0.5514 0.240 0.0475

1.975 65.484 65.022 0.7358 0.5804 0.1773

2.34 64.877 65.077 0.3095 0.143 0.0444

3.436 65.960 65.309 0.9871 0.6863 0.2060

5.254 66.1586 65.6906 0.7073 0.272 0.0846

110

FIGURE 5.12 SAT Solver Background Load Imbalance Results

Problem Size 32F

Problem Size 36F

Model Error (%)

0

2

4

6

8

10

12

14

16

1.476 1.975 2.34 3.436

Gamma

Model Error (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.476 1.975 2.34 3.436 5.254

Gamma

111

TABLE 5.18 MPI Matrix Vector Algorithm Background Load Imbalance Results

γ
Matrix

Size

Measured
Mean
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation

(90%
Confidence)

1.265 10 911.867 953.897 4.609 615.72 130.748

50 1520 1649.178 8.499 385.1265 81.781

100 3741.35 3741.677 0.00874 37.859 8.0394

1.588 10 1247.883 1235.229 1.014 1149.542 244.105

50 2159.3 1983.53 8.1401 1523.801 323.5785

100 4472.483 4240.096 5.1959 2405.007 510.7025

1.836 10 1338.817 1443.656 7.8307 824.6266 175.1092

50 2267.85 2231.237 1.6144 1241.049 263.5363

100 4561.117 4609.353 1.0576 1990.197 422.6177

2.618 10 2126.717 2085.594 1.9336 1958.295 415.843

50 3128.7 2994.154 4.3 2528.062 536.833

100 6077.8 5746.635 5.4488 3831.283 813.572

3.923 10 3227.65 3146.918 2.5012 1018.402 216.2573

50 4776.533 4255.493 10.9083 1630.588 346.2547

100 8612.25 7626.916 11.44108 2702.773 573.9329

112

FIGURE 5.13 Matrix Vector Algorithm Background Load Imbalance Results

Model Error (%)

0

2

4

6

8

10

12

14

10 50 100

Matrix Size

E
rr

o
r

P
er

ce
n

t

Model gamma=1.265

Model gamma=1.836

Model gamma=1.588

Model gamma=3.923

Model gamma=2.618

113

TABLE 5.19 MPI AES Encryption Algorithm Background Load Imbalance Results

λ γ Nodes

Measured
Mean
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation (90%

Confidence)

0.1 1.16 2 5136.763 5171.825 0.6826 73.0905 15.5207

1.23 3 2637.051 2709.629 2.7522 32.653 6.934

1.3 4 1868.220 1895.23 1.4457 94.676 20.104

1.36 5 1487.593 1492.262 0.3138 21.09 4.4785

0.1 1.06 2 5128.6167 5110.994 0.3436 64.1132 13.6144

1.09 3 2639.6 2654.268 0.5557 36.584 7.7687

1.12 4 1859.983 1838.246 1.1687 41.085 8.7243

1.14 5 1490.367 1432.308 3.8956 24.818 5.27

0.2 1.34 2 5176.607 5279.189 1.982 100.308 21.3

1.47 3 2647 2802.957 5.8918 46.53 9.881

1.59 4 1862.633 1987.194 6.687 36.441 7.738

1.70 5 1503.047 1585.11 5.4598 24.738 5.253

0.2 1.12 2 5138.833 5148.045 0.1783 113.12 21.021

1.18 3 2651.983 2688.246 1.367 68.958 14.643

1.23 4 1858.35 1873.48 0.8142 46.03 9.774

1.28 5 1502.55 1469.646 2.1899 65.2 13.845

114

FIGURE 5.14 AES Algorithm Background Load Imbalance Results

Model Error (%)

0

1

2

3

4

5

6

7

8

2 3 4 5

Processors

E
rr

o
r

P
er

ce
n

t arrival 0.1 service fib36

arrival 0.1 service fib38

arrival 0.2 service fib36

arrival 0.2 service fib38

115

 By using our three applications running on homogeneous HPRC resources, we conclude

the performance modeling methodology adequately represents the impact of background load on

the runtime performance with less than one percent error for all tested cases over thirty seconds

and less than fifteen percent for the cases less than thirty seconds. Experiments with these applica-

tions in conjunction with synthetic background load validate the modeling methodology and indi-

cate the processor sharing model is adequate for predicting background load under various loading

conditions.

5.4.4 Application and Background Load Imbalance Results

Having validated the accuracy of the application and background load imbalance models

independently, we now investigate their interaction. We use the SAT Solver application and the

Matrix Vector Multiplication Algorithm to run validation experiments on a homogeneous set of

HPRC resources.

SAT Solver. We conducted experiments on the homogeneous HPRC cluster running the SAT

Solver application with application load imbalance and synthetic background load. Table 5.20,

TABLE 5.20 MPI SAT Solver Application and Background Load Imbalance Results

Problem Size 32 Bits

γ
Measured
Mean (sec)

Model
Prediction (sec)

Model
Error (%)

Standard
Deviation σ

Error of Estimation
(90% Confidence)

1.476 34.4703 34.6227 0.442 0.2 0.0466

1.975 35.545 34.7275 2.3 0.269 0.868

2.336 34.6727 34.803 0.3764 0.1436 0.0542

3.436 35.274 35.034 0.68 0.4088 0.1249

5.254 35.6406 35.416 0.6301 0.3438 0.0709

116

Table 5.21, and Figure 5.15 show the results of those experiments. The model error is very low

with small estimation error indicating the model predicts the measured results very accurately.

Matrix Vector Multiplication. The results of experiments conducted on the homogeneous

HPRC cluster running the Matrix Vector Multiplication Algorithm with application load imbal-

ance and synthetic background load are shown in Table 5.22 and Figure 5.16. As with previous

results with this application, we see the model error low in most cases but the standard deviation is

high. The two sources for these errors are overhead variation dominating the runtime since these

runtimes are very short and variations in the transfer of the matrix data from the file into memory.

These theories will be discussed further in the conclusions chapter.

By using our three applications running on homogeneous HPRC resources, we conclude

the performance modeling methodology adequately represents the impact of the combination of

application and background load imbalances on the runtime performance with less than five per-

cent error for all cases over thirty seconds and less than fifteen percent for the case less than thirty

seconds.

TABLE 5.21 MPI SAT Solver Application and Background Load Imbalance Results

Problem Size 36 Bits

γ
Measured
Mean (sec)

Model
Prediction (sec)

Model
Error (%)

Standard
Deviation σ

Error of Estimation
(90% Confidence)

1.476 546.671 549.2922 0.4794 0.1781 0.0414

1.975 547.495 549.397 0.3473 0.572 0.718

2.336 546.8605 549.4727 0.4777 0.143 0.054

3.436 547.95 549.704 0.32 0.51 0.156

5.254 548.192 550.0855 0.3454 0.4107 0.135

117

FIGURE 5.15 SAT Solver Application and Background Load Imbalance Results

Problem Size 32F

Problem Size 36F

Model Error (%)

0

0.5

1

1.5

2

2.5

1.476 1.975 2.336 3.436 5.254

Gamma

Model Error (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

1.476 1.975 2.336 3.436 5.254

Gamma

118

TABLE 5.22 MPI Matrix Vector Algorithm Application and Background Load Imbalance Results

γ
Matrix

Size

Measured
Mean
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation (90%

Confidence)

1.476 10 1250.917 1320.065 5.528 816.565 173.397

50 1751.167 1998.039 14.0976 804.3814 170.810

1.975 10 1889.367 1769.945 6.321 1608.169 341.494

50 2530.383 2484.12 1.828 1831.339 388.884

2.336 10 1894.783 2089.602 10.2818 1191.69 253.055

50 2510.733 2829.499 12.696 1274.953 270.736

3.436 10 3097.783 3064.163 1.085 2641.673 560.958

50 3829.967 3882.481 1.371 2752.885 584.574

5.254 10 5070.3 4676.042 7.776 964.4059 204.791

50 6003.9 5624.064 6.326 1022.148 217.053

FIGURE 5.16 Matrix Vector Algorithm Application and Background Load Imbalance
Results

Model Error (%)

0

2

4

6

8

10

12

14

16

10 50

Matrix Size

E
rr

o
r

P
er

ce
n

t

Model gamma=1.476

Model gamma=2.336

Model gamma=1.975

Model gamma=5.254

Model gamma=3.436

119

5.4.5 Heterogeneity Results

Having validated the model for various application and background loading conditions we

now look at the effect of heterogeneous resources on the model. Since a cluster of heterogeneous

HPRC nodes is not available at this time, we will simulate the effect of different processor speeds

by varying the synthetic background load across the available nodes by varying the arrival rate of

background processes. These experiments were conducted for each of our three applications.

SAT Solver. For the SAT Solver application, we varied the arrival rate of background tasks

across the four nodes and there was no application load imbalance. The results of these test are

show in Table 5.23 and Figure 5.17.

Matrix Vector Multiplication. For the Matrix Vector Multiplication algorithm, we again var-

ied the arrival rate of background tasks across the nodes in both cases (2 workers and 4 workers).

There was application load imbalance for matrix sizes 10x10 and 50x50 for 4 worker nodes. The

results of these test are show in Table 5.24 and Figure 5.18.

AES Algorithm. For the SAT Solver application, we varied the arrival rate of background tasks

across the four nodes and there was no application load imbalance. The results of these test are

show in Table 5.25 and Figure 5.19.

TABLE 5.23 MPI SAT Solver Heterogeneous Resources Results

Problem
Size

Measured
Mean (sec)

Model
Prediction

(sec)

Model
Error
(%)

Standard
Deviation

σ
Error of Estimation
(90% Confidence)

32F 4.674 4.5335 3.006 1.387 0.41

36F 65.4674 65.0829 0.5874 0.416 0.093

120

FIGURE 5.17 SAT Solver Heterogeneous Resources Results

Model Error (%)

0

0.5

1

1.5

2

2.5

3

3.5

32F 36F

Problem Size

E
rr

or
 P

er
ce

nt

Series4

TABLE 5.24 MPI Matrix Vector Algorithm Heterogeneous Resources Results

Matrix Size

Measured
Average
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation

σ

Error of
Estimation (90%

Confidence)

10x10 on 2 nodes 1565.333 1511.286 3.453 1104.1 234.455

50x50 on 2 nodes 2091.16 2311.612 10.542 1077.049 250.540

100x100 on 2
nodes

4653.05 4729.168 1.6359 1849.306 392.699

10x10 on 4 nodes 1561.4 1637.545 4.8767 824.251 214.366

50x50 on 4 nodes 2426.55 2370.063 2.3279 1118.85 290.984

100x100 on 4
nodes

4314.325 4407.567 2.1612 1256.559 326.799

121

FIGURE 5.18 Matrix Vector Algorithm Heterogeneous Resources Results

Model Error (%)

0

2

4

6

8

10

12

10 50 100

Matrix Size

E
rr

o
r

P
er

ce
n

t

2 work nodes

4 work nodes

TABLE 5.25 MPI AES Encryption Algorithm Heterogeneous Resources Results

Processors

Measured
Average
(msec)

Model
Prediction

(msec)

Model
Error
(%)

Standard
Deviation σ

Error of Estimation
(90% Confidence)

2 5249.8 5339.106 1.701 120.016 31.213

3 3180.58 3090.333 2.8374 1024.054 238.213

4 2521.275 2227.373 11.657 666.88 173.438

5 1889.875 1780.229 5.802 431.658 112.263

122

The results from the heterogeneous resources experiments are consistent with our other

validation results. The errors are low (less than one percent for runtimes greater than thirty seconds

and less than fifteen percent for runtimes less than thirty seconds) with some high standard devia-

tion values on the Matrix Vector Multiplication and AES Encryption algorithms. These errors are

consistent with those found earlier and can be attributed to the setup overhead variations and file

access.

In this chapter we have investigated the accuracy of the modeling methodology in charac-

terizing the performance of applications running on shared, homogeneous and heterogeneous

HPRC resources and found the model error in all cases to be less than five percent for application

runtimes greater than thirty seconds and less than fifteen percent for runtimes less than thirty sec-

onds. To better understand and completely validate the model, each component of the modeling

FIGURE 5.19 AES Encryption Algorithm Heterogeneous Resources Results

Model Error (%)

0

2

4

6

8

10

12

14

2 3 4 5

Processors

E
rr

o
r

P
er

ce
n

t

123

methodology has been investigated separately, followed by the validation of the interaction of the

modeling components. Beginning with all three applications, we validated the model under no

load imbalance conditions on homogeneous HPRC resources. Next, we used the SAT Solver appli-

cation and the Matrix Vector Multiplication algorithm to show the accuracy of the methodology in

modeling application load imbalance. We then showed the accuracy of the modeling methodology

for shared HPRC resources with synthetic background loads using all three applications. Finally,

we validated the modeling methodology for the interaction of application and background load

imbalance on both homogeneous and heterogeneous HPRC resources. Therefore, we conclude the

performance modeling methodology is accurate for SIAs running on shared, heterogeneous HPRC

resources.

124

CHAPTER 6

APPLICATION OF MODEL

Having developed and validated a performance modeling methodology for algorithms

running on shared HPRC resources we now look at potential applications of the model. By apply-

ing the modeling methodology to problems such as optimizing resource usage, maximizing effi-

ciency, minimizing runtime, and characterizing trade-offs we can make resource decisions based

on quantitative analysis of the different approaches. In this chapter we consider some of the opti-

mization problems that can be addressed with our modeling methodology.

6.1 Applicat ion Scheduling

The performance of a parallel algorithm depends not only on the performance characteris-

tics of the resources but also on the scheduling of tasks and the load balance between nodes. The

scheduling problem has been well studied in the literature [36, 57]. Scheduling techniques can be

classified based on the availability of program task information as deterministic (all task informa-

tion and relationships are known a priori) and non-deterministic (the task graph topology repre-

senting the program, its execution and communication are unknown) [57]. Scheduling decisions

can be made at compile time (static scheduling) or at run time (dynamic scheduling). In static

scheduling, information regarding the task graph of a program must be estimated prior to execu-

tion and each set of tasks runs to completion on the set of processors to which it was initially allo-

cated. Dynamic scheduling algorithms adjust the spatial and temporal allocation of processing

tasks to meet the needs of the application, other users, and at the same time attempt to optimize the

125

overall use of system resources. Dynamic scheduling is difficult because the behavior of interact-

ing processes is hard to characterize analytically.

In this work, we focus on static scheduling of applications that follow a generalized Mas-

ter-Worker paradigm (also called task farming). The generalized Master-Worker paradigm is very

easy to program and is especially attractive for grid platforms. In grid platforms, the availability of

resources is typically in a state of flux and worker tasks in a Master-Worker paradigm can be easily

re-assigned as needed when resource availability changes. Furthermore, many scientific and com-

putationally intensive problems can be mapped naturally to this paradigm: N-body simulations

[65], genetic algorithms [32], Monte Carlo simulations [25], parameter-space searches, as well as

the three applications used in the validation of our model. In scheduling Master-Worker applica-

tions, there are two main challenges: 1) How may workers should be allocated to the application?

and 2) How to assign tasks to the workers? We would like to make the most efficient use of our

resources while at the same time minimizing our runtime.

In order to effectively utilize our shared resources, we will employ a usage policy with a

measurable goal or goals. Specifically, our objective is to choose an appropriate set of worksta-

tions on which to execute the given parallel application that best meets our usage policy goals. The

scheduling decisions must account for the individual processor performance characteristics as well

as the existing background load. The desired usage policy is based on the relative importance of

parallel applications to the existing background load (priority) and individual workstation charac-

teristics such as processing power, type of or lack of reconfigurable hardware, current workload, or

other factors.

To implement the desired usage policy into a schedule for the parallel application, we

build a cost function that represents the policy goals. Using optimization techniques to minimize

126

that cost function, we find a schedule for the parallel application that will most effectively utilize

the available resources. It is well known that the optimization of a general cost function is an NP-

hard problem [61], therefore true optimization is limited to restricted classes of problems which

have efficient solutions or the use of heuristics to fine near-optimal solutions.

6.1.1 Minimizing Runtime

To determine the schedule with the minimum runtime for homogeneous HPRC resources,

we use the algorithms shown in Figure 6.1 [102]. First the workstations are sorted based on the

arrival rate of background jobs. Then the set of processors for the schedule is selected to contain

only the workstation with the smallest background task arrival rate. The runtime for the applica-

tion is calculated for this processor set and the next workstation is added in sorted order, repeating

the runtime calculation until the added workstation does not improve the runtime. This algorithm

[102], similar to the one described in [23], gives the optimal solution for minimum runtime only

when there is a minimum runtime. This is always true for SIAs because such algorithms require a

barrier synchronization after each iteration. Proof of the optimal solution is given in [23].

FIGURE 6.1 Algorithm for Minimum Runtime on Homogeneous Resources [102]

Sort available processors S by background job arrival rate λ
P ! {j}, where j is processor in S with lowest arrival rate

while not done do

P’ ! P U {k}, where k is next processor in S

if RP’ < RP

P ! P’

else

done ! TRUE

endwhile

return optimal set P

127

Homogeneous Resources. For the AES algorithm, we see in Figure 6.2 that the runtime contin-

ues to improve from adding homogeneous workstations until we are using 25 processors (in this

case, we assume the same background loading model at each workstation, with λ = 0.2). As more

nodes are added, the additional overheads and background loads increase the total execution time

and we get diminishing returns as we continue to add nodes to the workstation set. Our measured

results are limited by the size of our development platform which was 6 nodes.

Again using the AES algorithm, we study the results of a non-sorted set of workstations

versus three cases where the workstations were sorted based on arrival rate λ . In the non-sorted set

of workstations, the arrival rates for the five homogeneous workstations range from 0.2 to 0.8. In

Figure 6.3, we see that if the five workstations are sorted based on background arrival rates, and

we choose a set with the lowest arrival rates, the runtime is significantly better than the case that

FIGURE 6.2 Optimum Set of Homogeneous Resources for AES Algorithm

0

1000

2000

3000

4000

5000

6000

P=2 P=10 P=18 P=26 P=34

Number of Workstations

R
u

n
ti

m
e

(m
se

c)

Modeled

Measured

128

includes the higher arrival rates. As shown in the figure, the runtime steadily increases with the

corresponding increase in background arrival rate from 0.1 to 0.4 (all workstations in the set hav-

ing the same arrival rate) confirming that the optimum set of workstations consists of those with

the lightest background load. For the case where our background loads are mixed (0.1, 0.2, and

0.4), we see that the runtime for the application is affected and dominated by the workstation with

the heaviest load.

Next we look at the SAT Solver Application and investigate how changing the number of

hardware engines per workstation and speed of the hardware will affect the application runtime.

As shown in Figure 6.4, as one would expect, increasing the number of hardware engines copies

per workstation reduces the application runtime. However, as the total number of workstations

increases, the three cases (4, 8, and 16 copies) approach one another and the performance advan-

FIGURE 6.3 Optimum Set of 5 Homogeneous Resources, Mixed Background Arrival Rates

Optimization of 5 Processors

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.1 0.2 0.4 mixed/high

Arrival Rate

R
un

tim
e

(m
se

c)

Modeled

Measured

129

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04
5.00E+04

6.00E+04

7.00E+04

8.00E+04

9.00E+04

2 5 8 11 14 17 20 23 26 29 32 35 38

Workstations

R
un

tim
e

(s
ec

)

4 Copies 8 Copies 16 Copies

FIGURE 6.4 Optimum Set of Homogeneous Resources for SAT Solver: Compare number
of Hardware Copies

130

tage of extra hardware copies is not as significant. In Figure 6.5, we again see that increasing the

speed of the hardware engines reduces the application runtime. However, as the total number of

workstations increases, the three cases approach one another and the performance advantage of

faster hardware is not as significant.

Heterogeneous Resources. For applications running on heterogeneous resources, the perfor-

mance model and algorithm are more complex and we must resort to a greedy heuristic to find a

near optimal solution since an efficient optimal solution does not exist [102]. Greedy heuristics

make the best choice for the current state even though it may not be the best global choice. While

greedy heuristics can get stuck in local extrema, they are widely used for their speed and ease of

implementation.

FIGURE 6.5 Optimum Set of Homogeneous Resources for SAT Solver: Compare
Hardware Speed

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Workstations

R
un

tim
e

(s
ec

)

26.6 MHz 33.25 MHz 44.33 MHz

131

If we assume that the parallel application is divided equally among the processors, then we

only need to consider the background load and heterogeneity when determining the optimum set of

processors. From the model development in Chap. 4, the background load is modeled as a proces-

sor sharing queueing model, so the expected number of background tasks at processor j is ρj/(1 -

ρj), assuming that the service distribution of background tasks is Coxian [81, 102]. Adding the par-

allel application to the workstation load, the expected number of background tasks at processor j

becomes 1/(1 - ρj). Since the processors are heterogeneous, from the model in Chap. 4 and Eqn.

4.25, we scale the runtime by δj/ω, where δj represents the processing time per unit work of pro-

cessor j, and ω the time per unit work of the baseline processor. Multiplying by the background

load and heterogeneity scale factors, we find that processor j is expected to take δj/[ω(1 - ρj)] times

as long as if the application was run on a dedicated baseline workstation. Using the heuristic algo-

rithm, we sort the workstations based on the values of this scale factor rather than simply the back-

ground arrival rate as shown in Figure 6.6. We start with at least two workstations in the set and

test the addition of more workstations to find a near-optimal set of workstations P.

FIGURE 6.6 Greedy Heuristic for Minimum Runtime on Heterogeneous Resources [102]

Sort available processors S by δj/[ω(1 - ρj)], the scale factor for processor j

P ! {j}, where j is first processor in S

P ! {j+1}, where j is first processor in S

while not done do

P’ ! P U {k}, where k is next processor in S

if RP’ < RP

P ! P’

else

done ! TRUE

endwhile

132

In our first example, we model the AES algorithm running on eight heterogeneous nodes

with four different speeds as denoted by the value δj for workstation j. Two of the workstations

have δj = 1, two have δj = 2, two have δj = 4, and two have δj = 6. In Figure 6.7 (a), we see that for

eight heterogeneous nodes, the runtime is at a minimum at six nodes. In the second example we

have a set of sixteen heterogeneous nodes with four different speeds. Two of the workstations have

δj = 1, four have δj = 2, four have δj = 3, four have δj = 4, and two have δj = 6. In Figure 6.7 (b) we

see that for sixteen heterogeneous nodes, the runtime begins is at a minimum at ten nodes.

The algorithms we have discussed thus far ignore the impact of the parallel application on

other users. By minimizing the runtime of the parallel application, without considering the impact

on other users, the cost function essentially gives the parallel application priority over other users.

In the next section, we will look at some cost functions to balance the runtime of the parallel appli-

cation with the impact on other workstation users.

6.1.2 Minimizing Impact to Other Users

A more general scheduling and optimization problem is to minimize the runtime while

simultaneously minimizing the impact on other users. We first develop a cost function which rep-

resents the relation of runtime to the cost of running the application on the shared resources. First,

we assume there is some cost per unit time, x, which reflects the goal of minimizing the runtime of

the parallel application. Second, we assume that each workstation, j, has some cost per unit time

for use by the parallel application cj. Finally, we derive a cost function which represents the trade-

off between maximizing the application performance and the impact to other users [102]:

133

FIGURE 6.7 Near-Optimum Set of Heterogeneous Resources for AES Algorithm: (a) 8
nodes and (b) 16 nodes

(a)

(b)

0

1000

2000

3000

4000

5000

6000

P=1 P=3 P=5 P=7

Number of Workstations

R
u

n
ti

m
e

(m
se

c)

0

1000

2000

3000

4000

5000

6000

P=1 P=5 P=9 P=13

Number of Workstations

R
u

n
ti

m
e

(m
se

c)

134

(EQ 6.1)

The cost function reflects usage policies and which workstations are encourage for use

with parallel application based on the assignment of the cj values. As the cj values increase, the

cost of using additional workstations increases, making their use less desirable. The use of the x

term reflects the importance of minimizing the execution time of the parallel application regardless

of the number of processors. By changing the relative values of x and cj terms, we can study a

spectrum of policies describing the application performance relative to its impact on background

users.

Identical Usage Costs: Homogeneous Resources. First, we will consider a case with homo-

geneous resources and identical costs for the use of each workstation (the cost function for this

case will be CP = RP(x + cP)). If we assume that the parallel application efficiency SP/P is less

than one and decreases as P increases (which is true due to the overheads), the cost of using the

workstations, cPRP, exceeds the cost of using a single workstation cR1 and is monotonically

increasing. As discussed earlier, the runtime RP has some minimum or approaches a minimum as

the number of processors increases and thus the cost function CP will also have a minimum for a

finite P. Again, we use the algorithm in Figure 6.1 replacing RP with CP. Since the algorithm

orders the processors and adds them in sorted order, knowing the number of processors in P is suf-

ficient to describe the set P. In Figure 6.8 we show the optimum number of processors to use for

the AES algorithm running on a homogeneous set of resources. In this figure, we vary the ratio of

CP xRP cjRP

j 1=

∑+=

RP x cj

P

∑+
 
 
 
 

=

135

x/c to reflect a variation in the relative priority between the background user load and the parallel

application. With higher priority given to the background user load (low x/c), the parallel applica-

tion is assigned to only one processor as would be expected. If higher priority is given to the paral-

lel application (high x/c), the application runtime is minimized by using all available workstations

and we see that there is a maximum benefit achieved at forty-one workstations for this application.

Between these two extremes, the number of workstations assigned to the parallel application

reflects the relative priority between the background users and the parallel application. For exam-

ple, one may chose to make the cost of using workstations somewhat expensive for parallel appli-

cations by setting a low x/c value such that parallelism is only exploited when there is potential for

significant performance improvements. In Figure 6.9 we enact such a policy to show the optimal

set of workstations for the values x = 1 and c = 1. In this example, we see that using seven worksta-

FIGURE 6.8 Optimal Set of Homogeneous Processors for AES Algorithm

0

5

10

15

20

25

30

35

40

45

0.1 0.5 1 5 10 50 100 500 1000

x/c

O
p

ti
m

al
 P

136

tions results in the minimum cost. Our measured results for this usage policy is limited by the size

of our validation platform. Note the cost found from the model predicts the measured cost reason-

ably, thus validating the predicted optimal set.

Identical Usage Costs: Heterogeneous Resources. When running the application on hetero-

geneous resources, we must use a heuristic as before (Figure 6.6), again replacing RP with CP. In

this example, the heterogeneous network consists of eight workstations of four different speeds, as

denoted by the value δj for workstation j. Two of the workstations have δj = 1, two have δj = 2, two

have δj = 4, and two have δj = 6. The performance of the serial case is taken from the fastest pro-

cessor while unloaded and the arrival rate of the background jobs at each workstation is identically

distributed for each.

FIGURE 6.9 Cost for AES Algorithm on Homogeneous Processors (x=1, c=1)

8000

9000

10000

11000

12000

13000

14000

15000

16000

2 3 4 5 6 7 8 9

Workstations

C
o

st Measured

Modeled

137

The near-optimal number of processors to use for the AES application running on hetero-

geneous resources is shown in Figure 6.10. As in the homogeneous case, we vary the relative

importance of the parallel application and the background user load (x/c). Again when the parallel

application is given low priority (low x/c), it is assigned to only one workstation (in this case the

fastest available workstation with the lowest background load). When the parallel application is

give higher priority (high x/c), a larger set of workstations is used to minimize the cost. In

Figure 6.10 we see that the optimum set of workstations plateaus at six. In this case, adding the

slower processors does not lower the cost and we get the best relative performance from six work-

stations.

To ensure that the optimization algorithm yields a local minima of the runtime, we com-

pare the near-optimal solution to the costs of surrounding states. Since the near-optimal solution

FIGURE 6.10 Optimal Set of Heterogeneous Processors for AES Algorithm

0

1

2

3

4

5

6

7

8

0.1 0.5 1 2 5 10 50 100

x/c

O
p

ti
m

al
 P

138

includes a subset of the available workstations, the surrounding states are comprised of all the sub-

sets formed by adding or removing workstations from the near-optimal set. As shown in Table 6.1

for a typical AES example, this optimization algorithm does find a local minima of the runtime (all

surrounding states have a higher cost). In this example, the optimum runtime is achieved with five

workstations. When an available workstation is added to the set or one is removed from the near-

optimal set, the runtime increases.

Varying Usage Costs. If we assign different values of cj, or usage costs, to different worksta-

tions, many different policies can be studied. One simple use of this policy would be to assign

higher cj values to some workstations and lower cj values to others to encourage the use of work-

stations with the lower values. This could be used for several reasons, one for example is to dis-

courage the use of a particular workstation or set of workstations whose load is highly varying and

thus whose background load arrival rate is not a good predictor of the processing power actually

available to the parallel application. Another example is by using a low cj value on one or a small

set of workstations to encourage the parallel application to only branch out to other workstations if

TABLE 6.1 Modeled Costs of Surrounding States of Near-Optimal Solution for AES on 5
Heterogeneous Workstations (x=5, c=1)

Workstations Added/Subtracted Cost

near-optimal set 17802.29

1 Subtracted 20046.36

2 Subtracted 20046.36

3 Subtracted 19796.51

4 Subtracted 19796.51

5 Subtracted 18331.43

6 Added 17878.4

7 Added 18019.26

8 Added 18019.26

139

there is a potential for significant performance improvements. We can also make the cj values

more sophisticated by making them functions of the time of day, the current load, the reconfig-

urable unit capabilities, etc. All of these enhancements to the cost function can be used to steer the

parallel application toward a desired policy, whether it be toward a specific group of workstations

or to avoid heavily loaded ones during peak user hours.

If we want to adopt a policy to avoid workstations with current heavy background load,

we can base the cj values on the background load by setting cj = ρj and x = 1. Figure 6.11 shows

the cost of the AES algorithm on a homogeneous set of resources with uniformly distributed val-

ues of ρj. From the figure, we see that the best cost is achieved when six workstations are used.

Again, we used the algorithm from Figure 6.1 to find the best set of processors.

FIGURE 6.11 Cost based on load for AES Algorithm on Homogeneous Processors

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12

Workstations

C
o

st

140

Thus far our policy restrictions have been based solely on varying the priorities of the par-

allel application relative to the background load. We can also consider a policy that restricts the

execution time of the parallel application. For example, we could stipulate that the parallel applica-

tion be assigned to a set of processors so that it is expected to complete in a set amount of time

while minimizing the impact on other users. We can formulate this policy as an optimization prob-

lem with an execution time goal GR to minimize [102]:

minimize under the constraint, (EQ 6.2)

Such a policy can be used to restrict the time in which a parallel application runs and occu-

pies resources. Using our homogeneous set of resources and the cost function x = 0, cj = λ j, we find

the best set of workstations to optimize our cost function and complete execution within the speci-

fied runtime as shown in Table 6.2. Also shown in Table 6.2, as the time constraint is relaxed, we

can use fewer workstations, reducing the cost.

Similarly, we can choose to specify a policy bounding the resource utilization by the paral-

lel application while minimizing the execution time. The cost function is formulated with a

resource utilization bound GC, while minimizing the runtime [102]:

cjRP

j 1=

P

∑ RP GR≤

TABLE 6.2 Constrained Runtime

Runtime
Constraint

(sec)
Runtime

(sec)
Number of

Workstations Cost

2.0 1.9 5 1134

3.0 2.5 4 1009

4.0 3.2 3 636

5.5 5.3 2 525

141

minimize under the constraint, (EQ 6.3)

An example of this policy usage would be a case where we assume a workstation usage

cost per unit time, and we impose a maximum cost limit while still trying to minimize the runtime

of the parallel application. Again we turn to our AES algorithm running on our homogeneous set

of resources with a cost function x = 0 and cj = λj. As shown in Table 6.3, we have different solu-

tions depending on the maximum cost imposed.

In the two examples above we are constraining either the resources or the runtime while

trying to optimize the other. As the cost functions become more complex (by varying the cj values

or imposing more constraints), the optimization problem becomes increasingly difficult to solve

and as a result, we must resort to more general optimization techniques as the simple algorithms

given in Figure 6.1 and Figure 6.6 are no longer sufficient. Two commonly used general optimiza-

tion techniques are simulated annealing and genetic algorithms. These techniques are generally

effective for finding near-optimal solutions to the more general cost function but can require a sig-

nificant amount of computing power.

RP cjRP

j 1=

P

∑ GC≤

TABLE 6.3 Constrained Cost

Cost
Constraint

Runtime
(sec)

Number of
Workstations Cost

550 5.3 2 525

650 3.2 3 636

1200 1.9 5 1134

142

6.1.3 Analyzing Optimization Space

To illustrate the power of the modeling methodology when used with cost function analy-

sis, we will now analyze the optimization space using a fixed cost function and vary other parame-

ters in the model. In our example, we will look at the SAT Solver Application running on

homogeneous resources with identical costs and the same cost function used in Sec. 6.1.2. First,

we will vary the number of hardware copies of the SAT Solver engine present at each node and

determine how that affects both the runtime and the cost. Figure 6.12 shows the optimal set of

homogeneous resources for the SAT Solver application when we vary the number of hardware

copies at each workstation from 4, 8, and 16 copies. In Figure 6.13 we select the values of x and c

such that x/c = 0.0001 to enact a usage policy that gives more priority to the background users rel-

ative to the parallel application. From the three plots we see that by changing the number of hard-

ware copies at each workstation we reduce the overall runtime as expected but the change also

affects the cost analysis results. As the number of hardware copies increases, the number of work-

stations in the optimum set decreases; although our runtime would be shorted with a larger set of

workstations, the optimum set for the enforced user policy consists of fewer workstations as the

number of hardware copies increases.

As another example, we will vary the speed of the hardware units and use the modeling

methodology and cost function analysis to determine the optimum set of workstations. Again, we

will look at the SAT Solver Application running on homogeneous resources with identical costs

and the same cost function used in Sec. 6.1.2. As we vary the speed of the hardware units from

26.6 MHz to 44.33 MHz, Figure 6.14 shows the optimal set of homogeneous resources for the

SAT Solver application. In Figure 6.15 we again select the values of x and c such that x/c = 0.0001

143

FIGURE 6.12 Optimal Set of Homogeneous Resources for SAT Solver, Varying the Number
of Hardware Copies

0

5

10

15

20

25

30

35

40

45

1E
-0

6

0.
00

001

0.
00

01
0.

00
1

0.0
1

0.
1

x/c

O
p

ti
m

al
 P 8 Copies

16 Copies

4 Copies

144

FIGURE 6.13 Cost Function Analysis for SAT Solver, Varying the Number of Hardware
Copies (x/c = 0.0001)

8 Hardware Copies

8.27E+04

8.27E+04

8.27E+04

8.27E+04

8.27E+04

8.27E+04

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+03
1.00E+04

1.50E+04

2.00E+04
2.50E+04

3.00E+04

3.50E+04
4.00E+04

4.50E+04

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

16 Hardware Copies

4.13E+04

4.13E+04

4.13E+04

4.13E+04

4.13E+04

4.13E+04

4.13E+04

4.13E+04

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

R
u

n
ti

m
e

(s
ec

)
Cost Function

Runtime

4 Hardware Copies

1.65E+05

1.65E+05

1.65E+05

1.65E+05

1.65E+05

1.65E+05

1.65E+05

1.65E+05

1.65E+05

2 3 4 5 6 7 8 9

Worksta tions

C
o

st

0.00E+00
1.00E+04

2.00E+04
3.00E+04
4.00E+04

5.00E+04
6.00E+04
7.00E+04

8.00E+04
9.00E+04

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

145

FIGURE 6.14 Optimal Set of Homogeneous Resources for SAT Solver, Varying the
Hardware Speed

0

5

10

15

20

25

30

35

40

1E-06 1E-05 1E-04 0.001 0.01 0.1

x/c

O
p

ti
m

al
 P 33.25 MHz

26.6 MHz

44.33 MHz

146

FIGURE 6.15 Cost Function Analysis for SAT Solver, Varying the Hardware Speed (x/c =
0.0001)

Hardware 26.6 MHz

8.27E+04

8.27E+04

8.27E+04

8.27E+04

8.27E+04

8.27E+04

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00
5.00E+03
1.00E+04
1.50E+04

2.00E+04
2.50E+04

3.00E+04
3.50E+04
4.00E+04

4.50E+04

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

Hardware 33.25 MHz

6.61E+04

6.61E+04

6.61E+04

6.61E+04

6.61E+04

6.61E+04

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

Hardware 44.33 MHz

4.96E+04

4.96E+04

4.96E+04

4.96E+04

4.96E+04

4.96E+04

4.96E+04

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

R
u

n
ti

m
e

(s
ec

)
Cost Function

Runtime

147

to enact a usage policy that gives more priority to the background users relative to the parallel

application. From the three plots we see that by changing the speed of the hardware at each work-

station we reduce the overall runtime as expected but the speed change does not affect the cost

analysis results in the same way as the previous example. As the speed of the hardware increases,

the number of workstations in the optimum set stays the same.

Finally we will vary the application load imbalance β and use the modeling methodology

and cost function analysis to determine the optimum set of workstations. Again, we will look at the

SAT Solver Application running on homogeneous resources with identical costs and the same cost

function used in Sec. 6.1.2. As we vary the application load imbalance from β = 6, β = 8.5 to β =

12, Figure 6.16 shows the optimal set of homogeneous resources for the SAT Solver application.

In Figure 6.17 we again select the values of x and c such that x/c = 0.0001 to enact a usage policy

that gives more priority to the background users relative to the parallel application. From the three

plots we see that by changing the application load imbalance at each workstation we affect the

overall runtime (an increase in β produces an increase in the runtime) as expected. The load imbal-

ance change also affects the cost analysis results in an unanticipated way. As the load imbalance

factor increases, the size of the optimum set for a given cost function does not always increase.

This condition would be difficult to predict without the use of our model and cost function analy-

sis.

6.1.4 Other Optimization Problems

In the policies discussed above, we have shown that many interesting scheduling optimi-

zation problems can be studied quantitatively with our performance modeling methodology for

148

FIGURE 6.16 Optimal Set of Homogeneous Resources for SAT Solver, Varying the
Application Load Imbalance

0

5

10

15

20

25

30

35

40

1E-06 1E-05 0.0001 0.001 0.01 0.1

x/c

O
p

ti
m

al
 P Beta=8.5

Beta=6

Beta=12

149

FIGURE 6.17 Cost Function Analysis for SAT Solver, Varying the Application Load
Imbalance (x/c = 0.0001)

ββββ =8.5

7.03E+05

7.03E+05

7.03E+05

7.03E+05

7.03E+05

7.03E+05

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

ββββ =6.0

4.96E+05

4.96E+05

4.96E+05

4.96E+05

4.96E+05

4.96E+05

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

R
u

n
ti

m
e

(s
ec

)

Cost Function

Runtime

ββββ =12.0

9.92E+05

9.92E+05

9.92E+05

9.92E+05

9.92E+05

9.92E+05

9.92E+05

9.92E+05

9.92E+05

2 3 4 5 6 7 8 9

W orkstations

C
o

st

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

R
u

n
ti

m
e

(s
ec

)
Cost Function

Runtime

150

shared HPRC resources. We will now consider other usage policies and parallel application sched-

uling questions and how our modeling methodology can be used to investigate them.

Optimization of Other Applications. An obvious use of the modeling methodology in opti-

mization and scheduling is to predict the viability of applications executing on our shared HPRC

resources. We have investigated the characteristics of a particular application under various work-

load conditions and policies, but we could also use the model to evaluate the performance impact

of varying the problem size, network size, and other effects. The modeling methodology provides

for easy investigation of these issues by simply changing the values for such things as the problem

size, overhead, communication time, etc. We can easily consider the addition of more worksta-

tions, faster workstations, more RC units, etc. and using cost functions, determine their cost-effec-

tiveness. Hence the modeling methodology is a powerful tool for investigating the performance of

different application and the impact of the hardware, background loading, and policy choices.

Static Load Balancing. Thus far in our performance and cost case studies, we have assumed a

fixed partitioning of the application. While this is an interesting problem and finding the optimal

or near-optimal set of workstations for a given partitioning is beneficial, significant performance

gains are possible by partitioning the workload based on some cost function, workstation perfor-

mance, and/or background load. Given the complexity of such a problem, finding a near-optimal

set of workstations and partitioning will require the use of general optimization techniques such as

simulated annealing or genetic algorithms as mentioned before. Even considering the computa-

tional requirements of such algorithms, the potential performance gains often outweigh these com-

puting costs.

151

6.2 Scheduling in a NetSolve Environment

The NetSolve project underway at the University of Tennessee and Oak Ridge National

Laboratory provides the user easy access to software and hardware resources across multiple plat-

forms without concern for the location or type of resources [14]. NetSolve also provides fault-tol-

erance and attempts to minimize overall response time with scheduling algorithms. As shown in

Figure 6.18, the NetSolve hierarchy has three components: a client, an agent, and a server. The

server exists on the hardware resource (single workstation, workstation cluster, MPP, etc.) and pro-

vides access to the software installed on that resource. The agent is instrumental in providing the

scheduling and mapping decisions since it maintains a database of the statuses and capabilities of

servers. The agent is also the primary participant in the fault-tolerant mechanisms. The client pro-

vides the user access to NetSolve. Here the user can submit requests to the system and retrieve

results.

FIGURE 6.18 The NetSolve System [35]

152

In the NetSolve system, independent requests or tasks that may be serviced simulta-

neously are submitted with a farming API [35]. The task farming jobs fall into the category of

“embarrassingly parallel” programs and are easily partitioned for parallel programming environ-

ments. For scheduling in the NetSolve system, the user manages a ready queue by submitting the

farming requests to the system. The agent then manages this queue based on resource availability.

Here, our modeling methodology could be used to assist in determining and predicting resource

availability and selecting the appropriate set of workstations for the submitted request. Cost func-

tions such as those presented earlier in this chapter could be used to enforce a usage policy. Opti-

mization of the cost function via simple algorithms where appropriate or heuristics when

necessary, provides the agent with the optimal set of workstations on which to schedule the worker

tasks to meet the prescribed usage policy goals.

In this chapter we used the performance modeling methodology to optimize the usage of

our shared HPRC resources. A sampling of different cost functions were considered to reflect dif-

ferent policy goals and priorities. We discussed how the model can be used to analyze different

applications and their viability on the shared HPRC resources. We also discussed how the model

may be used for load balancing. Finally, we looked at how the model would fit into the NET-

SOLVE environment and contribute to the optimization and scheduling of applications. We have

only scratched the surface of the wide applicability and use of the model for problems in optimiza-

tion, scheduling, and performance evaluation.

153

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

High Performance Reconfigurable Computing (HPRC) platforms offer the potential for

cost-effective performance improvements for many computationally intensive applications pro-

vided the resources are used efficiently. In this dissertation, we have developed a performance

modeling methodology for fork-join and more specifically Synchronous Iterative Algorithms

(SIAs) running on shared HPRC resources. We also considered how to exploit those resources by

optimizing scheduling of the parallel applications using the results of our modeling methodology.

We now draw conclusions from our results and look forward to extensions of this dissertation and

how they can be achieved in future work.

7.1 Conclus ions

In this dissertation, we have developed an analytic modeling methodology for characteriz-

ing the performance of applications running on HPRC resources. This methodology includes the

impact of RC hardware, communication, application load imbalance, background load, and heter-

ogeneous resources. These models were validated using three HPRC applications: Boolean SAT

Solver, Matrix Vector Multiplication Algorithm, and AES Encryption Algorithm. The validation

efforts indicate the model is accurate for longer runtimes but applications with short runtimes are

affected by two issues: variance in the setup overhead costs and variance in file access costs. For

applications with short runtimes, these variances can dominate the overall runtime and cause a

high standard deviation as seen in our results.

154

RC systems are becoming widely used to accelerate scientific applications. The use of

reconfigurable hardware provides the user performance improvements akin to dedicated co-pro-

cessors with the dynamic runtime flexibility of software. We analyze applications running on an

RC node and develop an analytic model to characterize their performance. Validation experiments

show we can accurately model the RC system and their performance. This model was then

extended to a multi-node model representative of the HPRC platform. Again, validation experi-

ments were conducted under ideal conditions which show the model accurately characterizes the

performance of applications running on dedicated, homogeneous HPRC resources.

In parallel applications, load imbalance across processors, the application load imbalance,

causes execution times to vary and degrades the overall performance. We model this load imbal-

ance analytically and illustrate its effect with the SAT Solver and Matrix Vector Multiplication

applications. Our results show that we can accurately model the effects of application load imbal-

ance of algorithms running on dedicated HPRC resources.

In networks or clusters of workstations, resources are often shared with other users, the

background load, impacting performance. We use a model based on processor sharing queues to

characterize this background load. Using all three HPRC applications with synthetic background

load, we show how the model accurately characterizes the impact of other users under various

loading conditions. Having validated both the application and background loading models, we use

the SAT Solver and Matrix Vector Multiplication applications to validate the methodology under

the interaction of application and background loading on homogeneous HPRC resources.

Networks and clusters often consist of workstations from various manufactures, models,

and performance capabilities so we include the effect heterogeneous resources in the modeling

methodology. This component of the model allows users to quantify the impact of adding or drop-

155

ping various workstations from a set of heterogeneous computational resources. Since our devel-

opment HPRC platform consists of homogeneous resources, we simulate the effect of

heterogeneous resources by varying the arrival rate of background processes across the worksta-

tion set. This effectively simulates a workstation to workstation performance variance and thus a

heterogeneous set of resources. Again, using the three HPRC applications, we validate the model’s

accuracy for predicting the performance of these applications and found the model error to be less

than five percent for application runtimes longer than thirty seconds and less than fifteen percent

for application runtimes less than thirty seconds. Therefore, we have the capability to characterize

the performance of applications running on an HPRC platform under these conditions: when sub-

ject to application load imbalance, the effects of other users, and/or a heterogeneous workstation

set.

After developing and validating our modeling methodology, we look to apply the model to

improve the scheduling of resources and their usage efficiency. We developed several cost func-

tions reflecting prescribed usage policies and employed our modeling results to optimize the use of

our shared HPRC resources. We presented examples of the implementation of these cost functions

for optimization of the AES algorithm on homogeneous, shared HPRC resources. The implemen-

tation results were limited by the number of workstation nodes available and heterogeneity. We

also discussed how the modeling methodology is useful in determining the viability of an applica-

tion for the HPRC platform and how varying the characteristics of the platform can affect the per-

formance. Finally we discussed how the model fits within the NetSolve system and can provide

performance data for improving scheduling and performance.

The performance modeling methodology developed in this dissertation and its application

to scheduling and other problems are important contributions that will help us to effectively and

156

efficiently exploit the full potential of processing power available in a HPRC platform. A few pos-

sible extensions to this work are explored in the next section.

7.2 Future Work

The performance modeling methodology has been developed and validated using parallel

applications which fall under the master/slave paradigm. To better understand the applicability of

the model, it would be interesting to consider other parallel applications that include more commu-

nication between nodes. Additional applications such as simulations and various DSP algorithms,

which have made use of RC systems thus far [70, 71], would further test the robustness of the

modeling methodology. Also to be considered are applications with concurrent software and hard-

ware tasks and extensive node to node communication.

We need to further validate the model on a true set of heterogeneous resources and even a

larger cluster of resources would allow for bigger and more interesting problems. Increasing both

the size of the cluster and the heterogeneity would permit us to determine the model accuracy over

a more diverse processor population. Another factor not yet considered is the possibility of hetero-

geneous RC boards either within a single node or across the cluster. This would require only minor

if any changes to the model but could yield some interesting performance results in cases where

there is significant application load imbalance.

While we scratched the surface on scheduling, there are many interesting issues left to

explore. The current development system consist of homogeneous nodes and it would be interest-

ing to investigate the model’s effectiveness in optimization of schedules for heterogeneous

resources. Also, we would like to explore the co-scheduling of multiple parallel applications on

HPRC resource. This introduces the issue of multiple tasks programming the RC units and the

157

associated overhead involved. Can we schedule multiple parallel applications simultaneously, all

vying for the RC resources, and context switch between applications while still providing reason-

able throughput for the user?

While we have made no mention of reliability and fault tolerance thus far, in large net-

works of workstations and/or for long runtime applications, these issues take on significant impor-

tance. These modeling results could be incorporated within a methodology for maintaining a fault

tolerant network to assist in selecting the optimum set of available workstations.

Another important extension of this work would be to relax some of our assumptions

regarding the class of algorithms modeled. It would be interesting to consider more general fork-

join algorithms as well as other classes.

While we have primarily focused on the processor runtime of applications, we could

change our focus to include other issues or resources for potential optimization such as cost,

power, size, minimizing communications, memory usage, FPGA size, etc.

Achieving these goals of future work would extend the applicability and contributions of

this work. However, this dissertation is an important step towards a better understanding of the

analytical performance modeling of parallel applications running on shared HPRC resources. Use

of the model will provide users with a means to better exploit available HPRC resources and

understand the implications of various loading conditions on such resources.

158

BIBLIOGRAPHY

159

[1] AccelChip, http://www.accelchip.com/, 2003.

[2] Adaptable Computing Cluster, http://www.parl.clemson.edu/acc/, 2003.

[3] AFRL/IF, http://www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html, 2003.

[4] Altera: Systems on a Programmable Chip, http://www.altera.com, 2001.

[5] Annapolis Microsystems, http://www.annapmicro.com, 2001.

[6] Atmel, http://www.atmel.com, 2001.

[7] BLAS: Basic Library of Algebraic Subroutines, http://www.netlib.org/blas/index.html,
2001.

[8] BYU Configurable Computing Laboratory, http://www.jhdl.org, 2002.

[9] Celoxica, http://www.celoxica.com, 2003.

[10] Configurable Computing Lab, http://www.ccm.ece.vt.edu/, 2003

[11] I.S.I.East, SLAAC: System-Level Applications of Adaptive Computing, http://
slaac.east.isi.edu/, 2003.

[12] MATCH, http://www.ece.northwestern.edu/cpdc/Match/

[13] Nallatech FPGA-Centric Systems & Design Services, http://www.nallatech.com/, 2002.

[14] NetSolve, http://icl.cs.utk.edu/netsolve/, 2001.

[15] Ptolemy for Adaptive Computing Systems, http://ptolemy.eecs.berkeley.edu/, 2002.

[16] SInRG: Scalable Intracampus Research Grid, http://www.cs.utk.edu/sinrg/index.html, 2001.

[17] Top 500 Supercomputer Sites: Overview of Recent Supercomputers, Aad J. van der Steen
and Jack J. Dongarra, http://www.top500.org/ORSC/, 2002.

[18] University of Florida High-performance Computing and Simulation Research Lab, http://
www.hcs.ufl.edu/prj/rcgroup/teamHome.php, 2003

[19] Vector Signal Image Processing Library (VSIPL), http://www.vsipl.org, 2001.

[20] Virtual Computer Corporation, http://www.vcc.com/index.html, 2002.

[21] Agrawal, Vishwani, and Chakradhar, Srimat T., “Performance Analysis of Synchronized
Iterative Algorithms on Multiprocessor Systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 3, no. 6, pp. 739-746, November 1992.

160

[22] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large Scale Com-
puting Capabilities”, In AFIPS Conference Proceedings, pp. 483-485, 1967, Reston, VA.

[23] Atallah, M. J., Black, C. L., Marinescu, D. C., Segel, H. J., and Casavant, T. L., "Models and
Algorithms for Coscheduling Compute-Intensive Tasks on a Network of Workstations,"
Journal of Parallel and Distributed Computing, vol. 16 pp. 319-327, 1992.

[24] Banerjee, P., N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha, A.
Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, D. Zaretsky, “A MATLAB Com-
piler for Distributed, Heterogeneous, Reconfigurable Computing Systems,” Proc. of the
2000 IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM-00),
2000, IEEE Computer Society.

[25] Basney, J., Raman, B., and Livny, M., “High Throughput Monte Carlo,” Proc. of the 9th
SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas,
1999.

[26] Baumgartner, K. and Wah, B.W., “Computer Scheduling Algorithms: Past, Present and
Future,” Information Sciences, vol. 57 & 58, pp. 319-345, ELSEVIER Science, New York,
NY, Sept. - Dec. 1991.

[27] Bellows, P. and Hutchings, B. L., “JHDL - An HDL for Reconfigurable Systems,” Pocek, K.
and Arnold, J., Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
pp. 175-184, 1998, Napa, CA, IEEE Computer Society.

[28] Bokjari, Shahid H., “Partitioning Problems in Parallel, Pipelined, and Distributed Comput-
ing,” IEEE Transactions on Computers, vol. 37, no. 1, pp. 48-57, January 1988.

[29] Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S., Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications New
York: John Wiley and Sons, Inc., 1998.

[30] Bondalapati, K., Dinz, P., Duncan, P., Granacki, J., Hall, M., Jain, R., and Ziegler, H.,
“DEFACTO: A Design Environment for Adaptive Computing Technology,” Proceedings of
the 6th Reconfigurable Architectures Workshop (RAW99), 1999, Springer-Verlag.

[31] Bubendorfer, K. and Hine, J.H., “A Compositional Classification for Load-Balancing Algo-
rithms,” Technical Report CS-TR-99-9, Victroia University of Wellington, July 1998.

[32] Cantu-Paz, E., “Designing Efficient Master-Slave Parallel Genetic Algorithms,” in Genetic
Programming: Proc. of the 3rd Annual Conference, San Francisco, Morgan Kaufmann,
1998.

[33] Cap, Clemens H., and Volker Strumpen, “Efficient Parallel Computing in Distributed Work-
station Environments,” Parallel Computing, vol. 19, pp. 1221-1234, 1993.

[34] Casanova, H., Dongarra, J., and Jiang, W., “The Performance of PVM on MPP Systems,”
CS-95-301, pp. 1-19, Knoxville, TN, University of Tennessee, 1995.

161

[35] Casanova, H., Kim, M., Plank, J.S., and Dongarra, J.J., “Adaptive Scheduling for Task
Farming with Grid Middleware,” Intl. Journal of Suptercomputer Applications and High
Performance Computing, vol. 13, no. 3, pp. 231-240, 1999.

[36] Casavant, T. L., "A Taxonomy of Scheduling in General-Purpose Distributed Computing
Systems," IEEE Transactions on Software Engineering, vol. SE-14, no. 2, pp. 141-154,
Feb.1988.

[37] Chamberlain, R. D., and Mark A. Franklin, “Hierarchical Discrete-Event Simulation on
Hypercube Architectures,” IEEE Micro, vol. 10, no. 4, pp. 10-20, August 1990.

[38] Chamberlain, R. D., “Parallel Logic Simulation of VLSI Systems,” Proc. of 32nd Design
Automation Conf., pp. 139-143, 1995.

[39] Choi, Tik-Hing, “Floating-Point Matrix-Vector Multiplication Using Reconfigurable Sys-
tem,” Master of Science Electrical Engineering, The University of Tennessee, 2003.

[40] Chou, Timothy C.K. and Abraham, Jacob A., “Load Balancing in Distributed System,”
IEEE Transactions on Software Engineering, vol. SE-8, no. 4, pp. 401-412, July 1982.

[41] Clement, M. J. and Quinn, M. J., “Analytical Performance Prediction on Multicomputers,”
Proceedings of Supercomputing '93, 1993.

[42] Clement, M. J., Steed, M. R., and Crandall, P. E., "Network Performance Modeling for PVM
Clusters," Proceedings of Supercomputing '96, 1996.

[43] Compton, K. and Hauck, S., “Configurable Computing: A Survey of Systems and Soft-
ware,” Northwestern University, Dept. of ECE Technical Report, 1999, Northwestern Uni-
versity.

[44] David, H.A., Order Statistics, Wiley, 1970.

[45] Davis, M. and Putnam, H., A Computing Procedure for Quantification Theory. Journal of
the ACM, vol. 7, pp. 201-215, 1960.

[46] Davis, M., Logemann, G., and Loveland, D., A Machine Program for Theorem Prov-
ing.Communications of the ACM, vol. 5, pp. 394-397, 1962.

[47] DeHon, Andre, "Reconfigurable Architectures for General-Purpose Computing," Ph.D.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1996.

[48] DeHon, A., "Comparing Computing Machines," Proceedings of SPIE, vol. 3526, no. Con-
figurable Computing: Technology and Applications, pp. 124, Nov.1998.

[49] de Souza e Silva, E. and Gerla, M., 'Queueing Network Models for Load Balancing in Dis-
tributed Systems,” Journal of Parallel and Distributed Computing, vol. 12, no. 1, pp. 24-38,
May 1991.

162

[50] Dongarra, J., H. Meuer, H. Simon, and E. Strohmaier, “High Performance Computing
Today,” http://icl.cs.utk.edu/publications/pub-papers/2000/hpc-today.pdf, 2000.

[51] Dongarra, J. and Dunigan, T., “Message-Passing Performance of Various Computers,” pp. -
16, 1-21-1997.

[52] Dongarra, J., and H. Simon, “High Performance Computing in the U.S. in 1995,” Technical
Report UT-CS-95-318, University of Tennessee Computer Science Department, 1995.

[53] Dongarra, J., Goel, P. S., Marinescu, D., and Jiang, W., “Using PVM 3.0 to Run Grand Chal-
lenge Applications on a Heterogeneous Network of Parallel Computers,” Sincovec, R. and et
al., Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Comput-
ing, pp. 873-877, 1993, Philadelphia, SIAM Publications.

[54] Dubois, Michel, and Faye A. Briggs, “Performance of Synchronized Iterative Processes in
Multiprocessor Systems,” IEEE Transactions on Software Engineering, vol. SE-8, no. 4, pp.
419-431, July 1982.

[55] Efe, Kemal, and Schaar, Margaret A., “Performance of Co-Scheduling on a Network of
Workstations,” In Proceedings of 13th International Conference on Distributed Computing
Systems, pp. 525-531, 1993.

[56] Efe, Kemal, and Krishnamoorthy, Venkatesh, “Optimal Scheduling of Compute-Intensive
Tasks on a Network of Workstations,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 6, no. 6, pp. 668-673, June 1995.

[57] El-Rewini, H. and Lewis, T. G., Task Scheduling in Parallel Distributed Systems Prentice
Hall, 1994.

[58] Feitelson, Dror G. and Rudolph, Larry, “Metrics and Benchmarking for Parallel Schedul-
ing,” In Job Scheduling Strategies for Parallel Processing: IPPS/SPDP98 Workshop Pro-
ceedings, LNCS 1459, pp. 1-24, Springer-Verlag, 1998.

[59] Flynn, M. J., "Some Computer Organizations and Their Effectiveness," IEEE Transactions
on Computers, vol. C-21, no. 9, pp. 948-960, Sept. 1972.

[60] Franklin, Mark A. and Govindan, Vasudha, “The N-Body Problem: Distributed System Load
Balancing and Performance Evaluation,” In Proceedings of the Sixth International Confer-
ence on Parallel and Distributed Computing Systems, October 1993.

[61] Garey, Michael R. and Johnson, David S., Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W.H. Freeman and Company, New York, 1979.

[62] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sundarem, V., PVM: A
User's Guide and Tutorial for Networked Parallel Computing MIT Press, 1994.

163

[63] Gokhale, M., Homes, W., Kopser, A., Lucas, S., Minnich, R., Sweely, D., and Lopresti, D.,
"Building and Using a Highly Parallel Programmable Logic Array," IEEE Computer, vol.
24, no. 1, pp. 81-89, Jan.1991.

[64] Goldstein, S. C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., and Taylor, R. R., "PipeR-
ench: A Reconfigurable Architecture and Compiler," IEEE Computer, pp. 70-77, Apr.2000.

[65] Govindan, Vasudha and Franklin, Mark A., “Application Load Imbalance on Parallel Pro-
cessors,” In Proceedings of 10th International Parallel Processing Symposium (IPPS96),
1996.

[66] Guccione, S. A., Levi, D., and Sundararajan, P., “JBits: A Java-Based Interface for Recon-
figurable Computing,” 2nd Annual Military and Aerospace Applications of Programmable
Devices and Technologies Conference (MAPLD), 1999, Laurel, MD.

[67] Gustafson, J. L., "Reevaluating Amdahl's Law," Communications of the ACM, vol. 31, no. 5,
pp. 532-533, May1988.

[68] Hall, M., Anderson, J. M., Amarasinghe, S. P., Murphy, B. R., Liao, S.-W., Bugnion, E., and
Lam Monica S., "Maximizing Multiprocessor Performance with the SUIF Compiler," IEEE
Computer, vol. 29, no. 12, pp. 84-89, Dec.1996.

[69] Harchol-Balter, Mor and Downey, Allen B., “Exploiting Process Lifetime Distributions for
Dynamic Load Balancing,” ACM Transactions on Computer Systems, vol. 15, no. 3, pp.
253-285, 1997.

[70] Hauck, S., "The Roles of FPGAs in Reprogrammable Systems," Proceedings of the IEEE,
vol. 86, no. 4, pp. 615-638, Apr.1998.

[71] Hauck, S., “The Future of Reconfigurable Systems, Keynote Address,” 5th Canadian Con-
ference on Field Programmable Devices, 1998, Montreal.

[72] Hauck, S., Fry, T. W., Hosler, M. M., and Kao, J. P., "The Chimaera Reconfigurable Func-
tional Unit," IEEE Symposium on Field-Programmable Custom Computing Machines, pp. -
10, 1997.

[73] Hauser, J. R. and Wawrzynek, J., "Garp: A MIPS Processor with a Reconfigurable Copro-
cessor," IEEE Symposium on Field-Programmable Custom Computing Machines, 1997.

[74] Hu, L. and Gorton, I., “Performance Evaluation for Parallel Systems: A Survey,” UNSW-
CSE-TR-9707, pp. -56, 1997, Sydney, Australia, University of NSW, School of Computer
Science and Engineering.

[75] Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, and Programmabil-
ity, First ed. New York: McGraw-Hill, Inc., 1993, pp. -771.

164

[76] Jacqmot, C. and Milgrom, E., “A Systematic Approach to Load Distribution Strategies for
Distributed Systems,” in IFIP Transactions: International Conference on Decentralized and
Distributed Systems, ELSEVIER Science, September 1993.

[77] Jones, A., "Matrix and Signal Processing Libraries Based on Intrinsic MATLAB Functions
for FPGAs," Master Computer Engineering, Northwestern, 2001.

[78] Jones, A., Nayak, A., and Banerjee, P., "Parallel Implementation of Matrix and Signal Pro-
cessing Libraries on FPGAs," PDCS, 2001.

[79] Jones, M., Scharf, L., Scott, J., Twaddle, C., Yaconis, M., Yao, K., Athanas, P., and Schott,
B., “Implementing an API for Distributed Adaptive Computing Systems,” FCCM Confer-
ence, 1999.

[80] Jones, M. T., Langston, M. A., and Raghavan, P., "Tools for mapping applications to
CCMs," In SPIE Photonics East ‘98, 1998.

[81] Kant, K., Introduction to Computer System Performance Evaluation New York: McGraw-
Hill, Inc., 1992.

[82] Katz, D. S., Cwik, T., Kwan, B. H., Lou, J. Z., Springer, P. L., Sterling, T. L., and Wang, P.,
"An assessment of a Beowulf system for a wide class of analysis and design software,"
Advances in Engineering Software, vol. 29, no. 3-6, pp. 451-461, 1998.

[83] Kremien, Orly and Kramer, Jeff, “Methodical Analysis of Adaptive Load Sharing Algo-
rithms,” IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 6, pp. 747-760,
November 1992.

[84] Krueger, P., and Chawla, R., “The stealth distributed scheduler,” in Proc. 11th Int. Conf. Dis-
trib. Comput. Syst., 1991, pp. 336-343.

[85] Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C., Quantitative System Per-
formance: Computer System Analysis Using Queueing Network Models Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1984, pp. -417.

[86] Leland, Will E. and Ott, Teunis J., “Load-balancing Heuristics and Process Behavior,” In
Proceedings of Performance’86 and ACM SIGMETRICS, pp. 54-69, May 1986.

[87] Leong, P. H. W., Leong, M. P., Cheung, O. Y. H., Tung, T., Kwok, C. M., Wong, M. Y., and
Lee, K. H., “Pilchard - A Reconfigurable Computing Platform With Memory Slot Interface,”
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2001, California USA, IEEE.

[88] Levine, Ben, "A Systematic Implementation of Image Processing Algorithms on Config-
urable Computing Hardware," Master of Science Electrical Engineering, The University of
Tennessee, 1999.

165

[89] Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and Stockwood, J., “Hardware-Soft-
ware Co-Design of Embedded Reconfigurable Architectures,” Design Automation Confer-
ence DAC 2000, pp. 507-512, 2000, Los Angeles, California.

[90] Ma, P.R., Lee, E.Y.S., and Tsuchiya, M., “A Task Allocation Model for Distributed Comput-
ing Systems,” IEEE Transactions on Computers, vol. C-31, no. 1, pp. 41-47, January 1982.

[91] Mohapatra, P. and Das, C. R., "Performance Analysis of Finite-Buffered Asynchronous Mul-
tistage Interconnection Networks," Transactions on Parallel and Distributed Systems, pp.
18-25, Jan.1996.

[92] Mohapatra, P., Das, C. R., and Feng, T., "Performance Analysis of Cluster-Based Multipro-
cessors," IEEE Transactions on Computers, pp. 109-115, 1994.

[93] Moll, L., Vuillemin, J., and Boucard, P., “High-Energy Physics on DECPeRLe-1 Program-
mable Active Memory,” ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 47-52, 1995.

[94] Myers, M., Jaget, K., Cadambi, S., Weener, J., Moe, M., Schmit, H., Goldstein, S. C., and
Bowersox, D., PipeRench Manual, pp. -41, 1998, Carnegie Mellon University.

[95] Natarajan, Senthil, "Development and Verification of Library Cells for Reconfigurable
Logic," Master of Science Electrical Engineering, The University of Tennessee, 1999.

[96] Natarajan, S., Levine, B., Tan, C., Newport, D., and Bouldin, D., “Automatic Mapping of
Khoros-Based Applications to Adaptive Computing Systems,” MAPLD-99, 1999, Laurel,
MD.

[97] Noble, B. L. and Chamberlain, R. D., “Performance Model for Speculative Simulation
Using Predictive Optimism,” Proceedings of the 32nd Hawaii International Conference on
System Sciences, pp. 1-8, 1999.

[98] Noble, B. L. and Chamberlain, R. D., “Analytic Performance Model for Speculative, Syn-
chronous, Discrete-Event Simulation,” Proc. of 14th Workshop on Parallel and Distributed
Simulation, 2000.

[99] Nupairoj, N. and Ni, L. M., “Performance Evaluation of Some MPI Implementations on
Workstation Clusters,” Proceedings of the 1994 Scalable Parallel Libraries Conference, pp.
98-105, 1994, IEEE Computer Society.

[100] Ong, Sze-Wei, "Automatic Mapping of Graphical Programming Applications to Microelec-
tronic Technologies," Doctor of Philosophy Electrical Engineering, University of Tennessee,
2001.

[101] Ong, S.-W., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D., and Bouldin, D.,
“Automatic Mapping of Multiple Applications to Multiple Adaptive Computing Systems,”
FCCM Conference 2001, 2001.

166

[102] Peterson, Gregory D., "Parallel Application Performance on Shared, Heterogeneous Work-
stations." Doctor of Science Washington University Sever Institute of Technology, Saint
Louis, Missouri, 1994.

[103] Peterson, G. D. and Chamberlain, R. D., “Exploiting Lookahead in Synchronous Parallel
Simulation,” In Winter Simulation Conference, pp. 706-712, 1993

[104] Peterson, G. D. and Chamberlain, R. D., “Performance of a Globally-Clocked Parallel Simu-
lator,” In International Conference on Parallel Processing, pp. 289-298, 1993.

[105] Peterson, G. D. and Chamberlain, R. D., “Beyond Execution Time: Expanding the Use of
Performance Models,” IEEE Parallel and Distributed Technology, vol. 2, no. 2, pp. 37-49,
1994.

[106] Peterson, G. D. and Chamberlain, R. D., "Parallel application performance in a shared
resource environment," Distributed Systems Engineering, vol. 3 pp. 9-19, 1996.

[107] Peterson, G. D. and Smith, M. C., “Programming High Performance Reconfigurable Com-
puters,” SSGRR 2001, 2001, Rome, Italy.

[108] Peterson, J. L., Petri Net Theory and the Modeling of Systems Englewood Cliffs, NJ: Pren-
tice-Hall, 1981.

[109] Platzner, Marco and De Micheli, Giovanni, “Acceleration of Satisfiability Algorithms by
Reconfigurable Hardware,” Proceedings of the 8th International Workshop on Field Pro-
grammable Logic and Applications (FPL98), pp. 69-78, Tallinn, Estonia, Springer-Verlag,
1998.

[110] Reed, Daniel A. and Fujimoto, Richard M., Multicomputer Networks: Message-Based Par-
allel Processing, MIT Press, 1987.

[111] Reynolds, P. F., Jr. and Pancerella, C. M., “Hardware Support for Parallel Discrete Event
Simulations,” TR-92-08, 1992, Computer Science Dept.

[112] Reynolds, P. F., Jr., Pancerella, C. M., and Srinivasan, S., “Making Parallel Simulations Go
Fast,” 1992 ACM Winter Simulation Conference, 1992.

[113] Reynolds, P. F., Jr., Pancerella, C. M., and Srinivasan, S., "Design and Performance Analysis
of Hardware Support for Parallel Simulations," Journal of Parallel and Distributed Comput-
ing, Aug.1993.

[114] Shen, Chien-Chung and Tsai, Wen-Hsiang, “A Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a Minimax Criterion,” IEEE Transac-
tions on Computers, vol. C-34, no. 3, pp. 197-203, March 1985.

[115] Shetters, Carl Wayne, "Scheduling Task Chains on an Array of Reconfigurable FPGAs",
Master of Science University of Tennessee, 1999.

167

[116] Smith, M. C., Drager, S. L., Pochet, Lt. L., and Peterson, G. D., “High Performance Recon-
figurable Computing Systems,” Proceedings of 2001 IEEE Midwest Symposium on Circuits
and Systems, 2001.

[117] Smith, M. C. and Peterson, G. D., “Programming High Performance Reconfigurable Com-
puters (HPRC),” SPIE International Symposium ITCom 2001, 8-19-2001, Denver, CO,
SPIE.

[118] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The Complete
Reference, 2nd ed. MIT Press, 1998.

[119] SUIF, The Stanford SUIF Compilation System: Public Domain Software and Documenta-
tion, http://suif.stanford.edu, 2001.

[120] Tananbaum, Andrew S., Modern Operating Systems, Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

[121] Tantawi, Asser N. and Towsley, Don, “Optimal Static Load Balancing in Distributed Com-
puter Systems,” Journal of the ACM, vol. 32, no. 2, pp. 445-465, April 1985.

[122] Thomasian, A. and Bay, P. F., "Analytic Queueing Network Models for Parallel Processing
of Task Systems," IEEE Transactions on Computers, vol. C-35, no. 12, pp. 1045-1054,
Dec.1986.

[123] Underwood, K. D., Sass, R. R., and Ligon, W. B., III, “A Reconfigurable Extension to the
Network Interface of Beowulf Clusters,” Proc. of the 2001 IEEE International Conference
on Cluster Computing, pp. -10, 2001, IEEE Computer Society,

[124] Underwood, K.D., W.B. Ligon, and R.R. Sass, “Analysis of a prototype intelligent network
interface,” Concurrency and Computation:Practice and Experience, Vol. 15, 2003.

[125] Underwood, K.D., An Evaluation of the Integration of Reconfigurable Hardware with the
Network Interface in Cluster Computer Systems, Ph.D. thesis, Clemson University, August
2002.

[126] Vuillemin, J., Bertin, P., Roncin, D., Shand, M., Touati, H., and Boucard, P., "Programmable
Active Memories: Reconfigurable Systems Come of Age," IEEE Transactions on VLSI Sys-
tems, vol. 4, no. 1, pp. 56-69, Mar.1996.

[127] Wang, Y.T., and Morris, R.J.T., “Load Sharing in Distributed Systems,” IEEE Transactions
on Computers, vol. C-34, March 1985, pp. 204-217.

[128] Xilinx, Virtex Series FPGAs, http://www.xilinx.com, 2001.

[129] Xilinx, JBits SDK, http://www.xilinx.com/products/jbits/index.htm, 2002.

168

[130] Yan, Y., Zhang, X., and Song, Y., "An Effective and Practical Performance Prediction Model
for Parallel Computing on Non-dedicated Heterogeneous NOW," Journal of Parallel and
Distributed Computing, vol. 38 pp. 63-80, 1996.

[131] Ye, Z. A., Moshovos, A., Hauck, S., and Banerjee, P., "CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable Functional Unit," In Proc. Of Interna-
tional Symposium on Computer Architecture, 1998.

[132] Zhang, X. and Yan, Y., “Modeling and Characterizing Parallel Computing Performance on
Heterogeneous Networks of Workstations,” Proceeding of the 7th IEEE Symposium on Par-
allel and Distributed Processing, pp. 25-34, 1995.

[133] Zhong, P., Martonosi, M., Ashar, P., and Malik, S., “Solving Boolean Satisfiability with
Dynamic Hardware Configurations,” Proceedings of the 8th International Workshop on
Field Programmable Logic and Applications (FPL98), pp. 326-335, Tallinn, Estonia,
Springer-Verlag, 1998.

[134] Zhong, P., Martonosi, M., Ashar, P., and Malik, S., “Using Reconfigurable Computing Tech-
niques to Accelerate Problems in the CAD Domain: A Case Study with Boolean Satisfiabil-
ity,” Design Automation Conference (DAC) 1998, pp. 194-199, 1998.

169

APPENDIX

170

Table a.1 and Table a.2 list the data used in Figure 5.2. The data collected is for the com-

munication measurements between workstations. Table a.1 lists the round trip time for messages

of various data sizes between workstations vlsi4 and vlsi6 and also between vlsi1 and vlsi4. The

bandwidth and latency values used in the model calculations are listed as well as the model results.

Table a.2 lists five bandwidth samples for each message size.

Table a.3 lists the runtime data from the SAT Solver application running in ideal condi-

tions as discussed in Sec. 5.4.1. The runtime data is listed for six problem sizes (32-bit, 36-bit, 38-

bit, 41-bit, 43-bit, and 44-bit). Table a.4 lists similar runtime data from the SAT Solver application

running with application load imbalance as discussed in Sec. 5.4.2. Table a.5 lists the runtime data

from the SAT Solver application running with five different background load imbalance conditions

as discussed in Sec. 5.4.3. Finally, Table a.6 lists the runtime data from the SAT Solver application

running with application and background load imbalance as discussed in Sec. 5.4.4.

TABLE a.1 Communication Measurements: Message Round Trip Time

vlsi4-6
Time (us)

vlsi1-4
Time (us) data size

BW -
eta

latency -
tau Model Time

767 766 0 1.7 766 766
740 741 8 770.705882
786 784 80 813.058824

1217 1241 800 1236.58824
4596 5184 8000 5471.88235

43853 54391 80000 47824.8235
425837 537110 800000 471354.235

171

TABLE a.2 Communication Measurements: Network Bandwidth (vlsi4)

Message
Size Sample1 Sample2 Sample3 Sample4 Sample5

100 0.2 0.252525 0.253165 0.257732 0.222717
1000 1.751313485 1.782531 1.792115 1.795332 1.795332

10000 6.93962526 7.102273 7.189073 7.209805 7.183908
100000 10.73191672 10.83072 10.82017 10.74345 10.83306

1000000 11.6051016 11.63224 11.62885 11.62345 11.62696
10000000 11.70816235 11.7114 11.70738 11.70997 11.6233

1E+08 11.50276095 11.52063 11.52788 11.4835 11.54895

172

TABLE a.3 SAT Solver No-load Data (sec)

32f 36f 38f 41f 43f 44f
5.1310 65.323 322.463 2571.83 10285.49 20570.592
5.0920 65.354 322.231 2572.188 10284.7 20570.392
4.8510 65.115 322.461 2572.181 10285.47 20570.516
5.0910 65.012 322.461 2571.836 10285.72
4.7440 65.351 322.463 2572.176 10285.45
4.6050 65.333 322.461 2572.177 10285.65
5.0710 65.34 322.461 2572.233 10285.77
5.0630 65.351 322.373 2571.833 10285.8
5.0960 65.349 322.466 2571.847 10285.55
5.0850 65.015 322.461 2572.179 10285.65
4.8700 65.328 322.134 2571.946
5.1520 65.361 322.106 2572.176
4.7410 65.361 322.125 2572.168
4.7270 65.352 322.461 2571.831
5.0990 65.329 322.463 2572.156
4.6150 65.342 322.467 2572.179
5.0890 65.352 322.462 2571.856
5.0910 65.352 322.124 2572.179
5.2060 65.352 322.12 2571.962
5.0920 65.352 322.455 2571.394
5.0760 65.352 322.461
5.0930 65.35 322.457
4.6150 65.368 322.121
5.0920 65.351 322.457
5.1010 65.351 322.134
4.7480 65.023 322.435
4.7540 65.104 322.461
4.8590 65.129 322.24
5.0920 65.36 321.679
5.0820 65.352 322.246
4.7510 65.348
4.8790 65.351
4.7570 65.346
5.0650 65.119
5.0920 65.351
5.0920 65.129
5.1000 65.362
4.8310 64.991
4.5850 65.398
4.5920 64.99
4.6110 65.09
4.8680 65.164
4.7200 64.831
4.8360 64.81
4.8320 64.899
4.8660 65.045
4.6440 64.949
4.8030 65.052
4.8520 64.808
4.5650 64.849

173

TABLE a.4 SAT Solver Application Load Imbalance Data (sec)

32f 36f 38f 41f 43f 44f
34.342 546.561 2732.002 21854.62 87417.6 339402.2
34.498 546.591 2732.003 21855.28 87417.55
34.367 546.59 2732.005 21854.61 87417.67
34.398 546.58 2732.04 21856.81 87417.7
34.352 546.591 2731.999 21855.22 87417.67
34.381 546.575 2732.028
34.373 546.597 2732.003
34.355 546.577 2732.01
34.366 546.584 2732.012
34.365 546.603 2732.012
34.379 546.598 2732.03
34.361 546.57 2732.022
34.364 546.571 2732.02
34.372 546.559 2732.036
34.361 546.586 2731.996
34.357 546.584 2732.115
34.334 546.556 2732.062
34.355 546.563
34.384 546.584
34.383 546.572
34.354 546.612
34.352 546.611
34.339 546.589

34.36 546.571
34.356 546.573
34.349 546.602
34.356 546.562
34.354 546.62
34.354 546.587
34.355 546.569
34.381 546.581
34.373 546.567
34.368 546.567
34.399 546.599
34.384 546.581
34.383 546.574
34.352 546.593
34.342 546.57
34.401 546.574
34.363 546.566
34.359 546.56
34.377 546.579

34.36 546.55
34.34 546.591

34.396 546.564
34.341 546.593

546.558
546.576
546.576
546.581

174

TABLE a.5 SAT Solver Background Load Imbalance Data (sec)

gamma gamma gamma gamma gamma
1.476 1.975 2.34 3.436 5.254

32f 36f 32f 36f 32f 36f 32f 36f 32f 36f
5.099 64.433 6.46 66.153 4.508 65.004 5.724 66.241 5.892 65.984
4.608 64.563 5.641 65.431 4.708 64.873 5.332 65.748 6.321 66.452
4.388 65.171 5.177 65.53 4.546 64.964 5.729 65.526 6.014 66.239
4.419 64.913 4.999 65.564 4.705 64.773 6.367 66.08 6.368 65.956
4.617 64.729 5.011 65.588 4.537 64.838 6.734 66.821 5.799 66.279
4.387 64.812 5.215 65.632 4.452 64.757 6.219 66.541 5.754 66.557
4.328 64.923 4.971 64.443 4.758 64.738 5.956 66.782 6.074 65.712
4.454 64.538 5.013 64.453 4.563 64.727 6.469 66.358 5.509 66.058
4.282 65.07 4.555 65.908 4.501 64.93 5.628 65.63 6.075 66.358
4.371 64.822 4.937 66.076 4.73 65.025 4.833 67.277 6.018 65.884
4.371 64.931 4.182 65.714 4.698 65.055 4.859 66.572 5.588 66.441
4.383 64.81 4.18 65.812 4.625 64.943 4.183 66.538 5.881 65.922
4.603 64.975 5.278 65.791 4.57 64.761 6.104 65.251 5.863 66.275
4.315 64.675 5.889 65.245 4.576 65.022 5.757 65.424 5.925 65.941
4.238 64.445 5.487 64.443 4.682 64.937 5.518 66.3 5.76 66.588
4.472 64.447 5.685 64.449 4.661 64.842 6.41 65.182 5.617 65.944
4.611 64.433 5.733 66.067 4.503 65.05 5.569 65.101 5.874 65.983
4.705 64.432 5.507 65.928 4.738 64.817 5.504 65.466 5.855 66.115
4.528 64.438 5.586 65.748 4.545 64.773 5.793 64.928 5.619 65.991
4.437 64.432 5.529 65.425 4.766 64.852 6.151 66.076 5.666 66.44
4.167 64.434 4.753 65.844 4.591 64.956 5.978 65.178 5.828 65.825
4.444 64.432 4.612 65.803 4.646 65.029 4.889 67.356 5.669 66.118
4.167 64.432 4.178 64.444 4.522 64.985 4.626 66.007 6.578 66
4.368 64.434 4.181 64.445 4.77 64.529 5.018 67.122 5.638 66.816
4.168 64.435 5.524 66.276 4.609 64.683 5.009 66.01 6.557 66.287
4.311 64.432 5.75 66.143 4.604 64.99 4.186 65.591 5.165 65.868
4.561 64.432 4.179 65.552 4.545 64.754 5.522 65.939 5.939 66.017
4.242 64.432 5.849 65.348 4.789 64.786 5.406 6.717 66.025
4.169 64.431 5.522 65.66 65.044 5.264 66.524
4.244 64.44 65.607 5.915
4.408 64.431
4.222 64.431
4.599 64.433
4.167 64.432
4.235 64.432
4.169 64.432
4.426 64.433
4.167 64.432
4.371 64.432
4.168 64.431
4.341 64.432
4.168 64.433
4.335 64.43
4.169 64.431
4.357 64.432
4.359 64.433
4.318 64.433
4.168 64.433
4.296 64.431
4.168

175

TABLE a.6 SAT Solver Application and Background Load Imbalance Data (sec)

gamma gamma gamma gamma gamma
1.476 1.975 2.34 3.436 5.254

32f 36f 32f 36f 32f 36f 32f 36f 32f 36f
34.434 546.615 34.897 547.6 34.709 546.638 35.721 547.866 35.647 0.547866
34.541 546.867 35.286 547.415 34.679 547.096 36.074 548.028 35.533 0.548028
34.744 546.714 35.884 548.486 34.69 546.779 35.123 548.017 35.751 0.548017
34.378 546.512 35.375 547.423 34.818 546.89 35.155 547.872 35.48 0.547872
34.302 546.513 35.74 546.526 34.502 546.705 35.107 547.571 35.873 0.547571
34.303 546.511 35.555 548.156 34.605 546.749 34.923 547.986 35.091 0.547986
34.542 546.616 35.376 548.173 34.478 547.079 36.122 547.087 35.716 0.547087
34.632 546.577 35.856 547.469 34.501 546.969 35.845 547.899 35.809 0.547899
34.301 546.851 35.851 547.966 34.63 547.135 35.466 547.97 35.65 0.54797
34.303 546.846 35.734 546.523 34.826 546.786 34.877 547.623 35.466 0.547623
34.314 546.825 35.391 547.707 34.443 546.767 35.179 549.518 35.788 0.549518

34.7 546.754 35.422 547.7 34.601 546.829 35.326 548.902 35.216 0.548902
34.644 546.511 35.757 547.78 34.522 546.987 35.236 547.422 35.528 0.547422
34.32 546.665 35.431 547.574 34.748 546.693 35.744 547.4 35.733 0.5474

34.301 547.087 35.493 546.521 34.934 546.667 35.857 548.457 35.709 0.548457
34.299 546.945 35.656 546.519 34.69 546.974 34.941 548.039 35.596 0.548039
34.712 546.528 35.318 547.882 34.865 546.938 35.414 548.03 35.336 0.54803
34.863 546.508 35.553 547.263 34.844 546.861 34.798 548.246 35.859 0.548246
34.382 546.512 35.937 547.469 34.697 546.801 35.087 547.302 35.79 0.547302
34.299 546.618 35.637 547.925 546.811 35.041 547.644 35.402 0.547644
34.298 546.546 35.35 547.336 546.916 34.771 547.671 35.777 0.547671
34.554 546.554 35.056 546.535 35.628 547.838 35.727 0.547838
34.642 547.055 35.437 548.118 34.993 548.056 35.927 0.548056
34.298 546.715 36.056 548.006 34.613 547.895 35.82 0.547895
34.299 546.821 35.496 547.733 34.931 548.318 35.16 0.548318
34.299 546.511 35.631 547.15 34.976 547.027 35.665 0.547027
34.972 546.511 546.519 35.427 548.327 35.853
34.673 546.918 547.778 35.656 548.169 36.056
34.301 547.006 547.904 34.924 548.364 35.618

34.3 546.631 547.705
34.301 546.511
34.679 546.511
34.674 546.511
34.37 546.52
34.3 546.55

34.299 546.526
34.768 546.92
34.719 546.772
34.374 546.981
34.301 546.512
34.299 546.513
34.506 546.915
34.67 546.868

34.383 546.755
34.3 546.663

34.299 546.519
34.796 546.512
34.841 546.511
34.386 546.598

34.3 546.55

176

Table a.7 lists the runtime data from the Matrix Vector Multiplication Algorithm running

in ideal conditions and with application load imbalance as discussed in Sec. 5.4.1 and Sec. 5.4.2.

The runtime data is listed for three matrix sizes (10x10, 50x50, and 100x100) and two HPRC con-

figurations (a master with two worker nodes and a master with four worker nodes). Table a.8,

Table a.9, Table a.10, and Table a.11 list similar runtime data from the Matrix Vector Multiplica-

tion Algorithm running with application and background load imbalance as discussed in Sec.

5.4.4. Each table depicts a different background loading condition.

Table a.12 lists the runtime data from the AES Algorithm running in ideal conditions as

discussed in Sec. 5.4.1. The runtime data is listed for four HPRC network sizes (2, 3, 4, and 5

nodes). Table a.13 lists similar runtime data from the AES Algorithm running with four different

background load imbalance conditions on two nodes as discussed in Sec. 5.4.3. Table a.14 lists the

runtime data from the AES Algorithm running with four different background load imbalance con-

ditions on three nodes as discussed in Sec. 5.4.3. Table a.15 lists the runtime data from the AES

Algorithm running with four different background load imbalance conditions on four nodes as dis-

cussed in Sec. 5.4.3. Finally, Table a.16 lists the runtime data from the AES Algorithm running

with four different background load imbalance conditions on five nodes as discussed in Sec. 5.4.3.

Table a.17 lists the runtime and background load data (gamma) calculated from the model

for the AES Algorithm running on homogeneous resources as discussed in Sec. 6.1.1.

Table a.18 lists the runtime (first column) and cost function data (columns 3-11) calculated

from the model for the AES Algorithm running on homogeneous resources as discussed in Sec.

6.1.2. The second column is the number of workstations in the set. The cost function data columns

differ by the value of x/c listed at the bottom of the table. Finally the Optimum P row denotes the

optimum set of workstations for the given x/c value.

177

TABLE a.7 Matrix Vector Multiplication Algorithm No-load and Application Load Data (msec)

M a tr ix 1 0 x 1 0 M a tr ix 5 0 x 5 0 M a tr ix 1 0 0 x 1 0 0
2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s

4 8 6 1 2 7 1 1 2 7 7 1 3 5 1 3 3 2 7 3 0 2 0
4 8 7 8 9 6 1 2 7 0 1 4 9 5 3 1 3 5 3 3 9 2
8 3 5 1 0 5 7 1 2 8 7 1 3 2 1 3 1 4 0 3 0 3 1
6 4 3 8 5 7 1 2 3 8 1 2 6 2 3 1 3 0 3 1 6 7
6 2 9 8 2 9 1 2 7 2 1 6 2 7 3 1 2 3 2 9 3 6
9 4 3 7 8 0 1 2 8 9 1 3 5 6 3 1 7 0 3 0 1 3
5 6 5 8 9 0 1 2 7 6 1 3 5 1 3 3 7 5 3 0 4 4

1 0 6 6 7 9 5 1 2 1 5 1 5 0 0 3 1 3 8 2 9 8 4
5 2 6 8 0 0 1 2 7 1 1 3 7 9 3 1 6 0 3 2 5 2
5 5 0 8 6 6 1 2 6 3 1 3 8 0 3 2 6 5 3 0 2 6
5 6 5 9 0 1 1 2 7 8 1 3 7 6 3 1 3 3 3 5 0 0
6 1 9 8 6 5 1 2 4 9 1 4 5 9 3 1 3 9 2 9 9 7
5 4 0 1 3 2 4 1 2 4 3 1 3 7 3 3 1 4 8 3 2 2 1
5 4 6 8 0 6 1 2 0 8 1 2 6 6 3 1 4 6 3 0 1 2
4 6 0 9 8 0 1 2 7 9 1 3 8 0 3 1 4 5 2 9 6 4
4 8 0 8 1 5 1 2 5 8 1 3 7 4 3 1 4 3 3 0 3 5
6 5 6 8 8 4 1 2 6 3 1 3 6 8 3 4 9 3 3 0 4 8
5 1 8 8 5 4 1 2 4 9 1 2 8 9 3 1 4 4 3 3 4 4
5 4 2 7 8 1 1 2 7 1 1 3 6 1 3 1 3 5 3 1 3 4
6 3 2 9 3 6 1 2 8 0 1 3 7 9 3 1 5 2 3 3 7 6
5 0 7 8 6 5 1 2 8 3 1 3 0 4 3 1 4 0 2 9 7 2
9 7 1 8 7 3 1 2 5 8 1 3 7 7 3 1 4 9 2 9 9 9
5 2 5 8 0 1 1 2 5 3 1 3 7 2 4 0 2 0 3 0 4 4
6 8 2 8 0 0 1 2 3 3 1 3 5 2 3 1 4 4 3 0 1 5
5 9 4 8 4 4 1 1 2 7 1 4 5 1 3 4 0 7 2 9 5 4
5 6 7 8 5 6 1 2 5 6 1 2 7 5 3 1 5 0 2 9 5 3
5 0 8 9 0 3 1 2 8 9 1 3 5 9 3 1 7 0 3 0 1 4
6 0 1 1 0 3 6 1 2 7 6 1 4 2 5 3 1 5 3 3 1 5 1
5 8 9 9 0 4 1 2 3 0 1 3 3 0 3 1 3 6 3 0 0 5
5 1 9 8 3 2 1 2 5 9 1 3 8 8 3 1 4 8 3 0 5 2
7 7 8 8 6 1 1 3 2 2 1 3 9 5 3 1 4 8 3 0 0 3
8 9 3 7 9 5 1 1 9 4 1 3 7 8 3 5 2 4 3 0 1 2
6 6 2 9 0 5 1 2 7 4 1 4 7 4 3 2 8 8 2 9 8 0
5 8 5 1 1 5 9 1 2 8 1 1 3 6 8 3 1 4 3 3 1 5 3

1 1 3 6 1 0 5 8 1 2 8 4 1 3 6 8 3 1 4 1 3 0 8 5
5 8 3 8 2 3 1 2 6 9 1 3 6 5 3 4 2 0 2 9 8 2
6 3 0 8 9 6 1 2 7 7 1 3 8 3 3 1 5 3 3 4 9 2
4 4 4 7 9 7 1 2 7 8 1 2 5 4 3 1 4 7 3 0 0 6
5 9 8 8 9 4 1 2 6 5 7 2 6 8 3 1 5 8 3 0 9 6
5 7 3 7 9 6 1 2 7 8 1 3 2 7 3 1 4 1 3 0 2 1
5 5 8 8 5 4 1 2 7 6 1 3 5 7 3 2 7 1 2 9 7 7
6 1 1 8 4 2 1 2 7 6 1 3 0 1 3 1 4 8 2 9 9 5
5 8 9 8 3 1 1 2 7 2 1 3 6 1 3 1 6 1 3 1 9 2
5 4 8 8 2 0 1 2 7 1 1 3 2 5 3 1 6 2 2 9 9 9
6 7 2 8 0 6 1 3 5 2 1 3 6 5 3 2 2 6 3 0 0 3
9 2 5 9 5 0 1 2 7 1 1 2 9 9 3 1 3 8 3 0 0 6
6 1 4 7 4 9 1 2 7 0 1 3 7 5 3 1 3 1 2 9 8 1

1 0 4 2 7 8 6 1 2 1 9 1 3 5 9 3 2 8 1 2 9 9 5
7 1 5 8 0 6 1 2 8 4 1 2 9 6 3 1 3 6 3 0 0 6
9 9 3 8 0 2 1 1 7 3 1 3 8 1 3 5 7 3 2 9 8 4
9 4 0 8 3 4 1 2 6 0 1 3 6 5 3 0 9 8 2 9 8 1
5 9 4 8 3 2 1 2 5 8 1 3 1 6 3 1 7 9 2 9 9 1
5 0 3 7 6 4 1 2 6 5 1 3 6 9 3 1 2 4 2 9 9 8
5 8 5 7 9 9 1 2 5 0 1 3 6 8 3 1 4 5 2 9 9 7
4 9 2 7 7 5 1 2 4 7 1 3 3 2 3 1 2 7 2 9 9 0
8 6 7 8 3 6 1 2 6 6 1 2 8 5 3 1 2 7 2 9 9 2
5 1 7 8 3 0 1 2 2 1 1 2 8 9 3 1 3 2 2 9 9 2
6 4 4 8 2 5 1 2 8 6 1 3 4 2 3 4 4 5 2 9 5 8
8 3 6 8 4 2 1 2 7 8 1 2 9 0 3 3 1 4 3 0 0 4
7 6 1 8 1 6 1 2 9 6 1 3 1 6 3 1 7 3 2 9 7 1

178

TABLE a.8 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part I

M a tr ix 1 0 x 1 0 M a trix 5 0 x 5 0 M a tr ix 1 0 0 x 1 0 0
g a m m a 1 .2 6 5 g a m m a 1 .4 7 6 g a m m a 1 .2 6 5 g a m m a 1 .4 7 6 g a m m a 1 .2 6 5 g a m m a 1 .4 7 6
2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s

5 3 0 3 1 5 0 1 2 7 9 1 3 4 2 3 1 2 8 2 9 9 9
6 0 7 8 2 6 1 2 6 7 1 3 3 4 3 2 8 4 5 0 8 0

1 5 3 2 7 6 7 1 2 3 3 1 2 7 4 3 1 2 3 3 5 4 0
5 9 5 7 6 4 1 2 1 6 1 3 0 0 6 3 8 8 4 3 9 0

2 3 9 0 8 5 0 1 2 7 5 1 3 3 7 3 1 2 5 2 9 9 9
5 7 9 2 3 6 4 1 8 1 4 4 0 4 2 3 1 2 2 2 9 5 0
5 4 6 8 2 9 1 2 7 9 1 2 9 9 3 1 2 0 3 0 2 0
5 8 4 2 5 1 9 1 2 2 8 3 2 0 5 3 1 2 7 2 9 9 9
4 6 8 8 2 5 1 7 8 7 1 3 4 1 3 1 1 8 4 0 6 7
5 9 6 8 1 1 1 2 4 9 1 3 4 4 3 3 6 3 3 0 9 0

1 6 2 1 8 0 2 1 2 5 9 1 3 1 9 3 1 3 3 5 3 3 6
6 1 3 7 9 3 1 3 4 4 1 3 6 2 6 7 7 3 2 9 9 4

2 1 6 2 8 2 8 1 2 8 2 1 3 0 7 3 1 0 6 3 0 0 2
5 2 1 2 3 8 5 1 2 6 3 1 3 4 6 3 1 2 8 2 9 9 8
6 0 1 8 4 1 1 5 4 5 2 7 6 8 3 1 0 2 2 9 9 9
4 4 3 1 0 8 1 1 2 7 3 1 3 0 5 3 1 2 8 3 2 5 4
6 2 9 8 1 4 2 5 7 5 1 3 2 5 3 1 2 7 2 9 8 3
4 2 8 7 8 6 1 2 2 3 1 3 1 2 3 4 4 3 6 1 1 6

1 7 9 2 8 1 9 1 2 6 2 1 3 6 9 3 1 0 5 2 9 9 5
5 3 0 8 2 5 1 2 7 6 1 3 3 1 7 6 0 7 2 9 8 3

2 0 5 3 3 1 3 4 1 2 2 6 3 9 5 9 3 1 2 4 2 9 8 3
5 4 6 7 8 7 1 2 8 8 1 3 6 0 3 1 1 4 2 9 8 5
5 1 7 2 6 6 4 1 4 8 4 2 7 8 1 3 1 1 9 3 2 1 0
6 3 3 7 9 9 1 7 5 2 1 2 7 5 3 1 1 6 2 9 9 7
6 1 4 7 4 3 1 2 7 4 1 3 2 4 3 1 1 8 6 6 8 6
5 7 7 7 9 1 1 1 7 0 1 3 5 6 3 5 4 4 2 9 9 3

2 2 0 6 8 2 7 1 2 7 5 1 3 6 0 3 1 2 1 2 9 7 7
6 1 2 8 2 3 1 2 8 2 2 3 9 0 7 1 9 6 3 0 0 0

2 0 4 8 8 0 5 1 2 4 6 1 3 5 0 3 1 2 8 2 9 9 4
6 3 1 1 8 4 1 1 6 5 6 3 2 4 5 3 1 2 8 3 6 6 1
5 3 3 7 9 1 1 2 5 8 1 3 6 3 3 1 3 0 3 2 8 8
5 6 1 8 0 3 1 2 1 2 1 2 6 8 3 1 2 9 6 3 8 2
6 1 8 7 8 2 2 1 6 8 1 3 3 0 3 1 1 8 3 0 0 0
5 0 8 7 9 3 1 1 9 3 1 3 5 3 3 9 0 4 3 0 0 6

2 0 5 2 7 7 3 1 2 6 4 1 3 4 8 3 1 3 1 2 9 7 7
6 1 0 2 7 6 7 1 2 7 7 2 8 7 7 7 3 5 7 2 9 9 9

2 3 1 1 8 1 4 1 2 6 2 1 9 4 2 3 1 2 5 3 0 4 4
5 8 4 2 1 8 7 1 6 5 4 2 5 4 5 3 1 2 0 3 5 1 4
5 8 6 7 3 9 1 2 2 2 1 2 8 8 3 1 1 7 5 7 3 5
6 0 3 7 4 8 1 2 4 4 1 3 2 4 3 1 2 2 2 9 8 6
5 8 2 8 3 8 2 9 2 5 1 3 4 1 3 1 2 3 3 0 0 8
5 5 8 8 2 3 1 2 5 3 1 3 4 3 4 2 7 3 2 9 7 8

1 1 8 1 2 1 1 5 1 2 8 2 3 7 2 7 3 1 2 6 3 0 0 6
5 4 2 8 3 8 1 2 5 2 1 3 6 0 7 4 3 0 2 9 9 4

1 8 5 3 2 2 7 9 1 2 6 4 3 1 1 4 3 1 2 2 4 7 9 2
6 2 6 8 0 7 1 2 2 9 1 3 2 2 3 1 2 3 4 4 0 6
5 6 0 7 7 6 1 3 2 4 1 3 5 6 3 1 2 0 3 0 7 6
5 8 2 8 2 6 1 2 3 7 1 2 5 7 3 1 2 4 2 9 9 8
5 7 0 7 8 9 2 4 8 1 1 2 8 1 3 1 2 8 3 0 0 3
5 8 9 8 1 3 1 2 3 8 1 2 8 1 3 6 3 0 2 9 9 4

2 2 7 3 3 6 0 5 1 2 6 4 1 4 1 0 3 1 2 5 3 0 0 1
6 0 6 7 4 5 1 2 6 8 1 5 7 2 8 0 6 4 3 5 5 3

1 8 2 1 2 0 4 9 1 2 4 7 1 7 0 1 3 1 2 0 2 9 9 7
5 7 3 8 2 9 1 2 8 1 1 3 5 1 3 1 2 0 5 1 6 6
6 2 0 7 8 8 1 3 9 1 1 3 6 4 3 1 2 2 2 9 9 6
5 5 0 8 3 0 1 2 3 4 1 2 7 7 3 1 2 6 3 0 0 0
5 9 4 7 6 8 2 7 0 0 1 3 1 8 3 1 2 3 2 9 8 7
6 2 1 3 3 1 5 1 2 4 2 3 3 9 3 3 7 2 3 3 0 0 6

1 6 3 6 7 4 5 1 2 8 0 1 2 7 5 3 1 2 4 3 2 6 6
6 0 5 2 3 8 7 1 2 6 2 3 4 2 7 7 1 2 4 3 1 7 1

179

TABLE a.9 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part II

M a trix 10 x 10 M a tr ix 5 0x 5 0 M a tr ix 10 0x 1 00
ga m m a 1 .83 6 ga m m a 2 .33 6 g am m a 1 .8 36 g a m m a 2 .3 3 6 ga m m a 1 .83 6 g a m m a 2 .3 3 6
2 w o rk no d es 4 w o rk no d es 2 w o rk n od es 4 w o rk n od e s 2 w o rk n o de s 4 w o rk n o de s

5 43 37 7 9 1 29 3 1 4 89 3 13 7 29 9 8
6 18 26 8 7 2 73 1 1 3 65 7 94 0 30 1 4
6 07 19 7 1 4 49 6 1 3 17 7 20 5 30 0 0
5 92 8 3 3 1 28 0 3 6 82 3 12 3 54 6 6
6 07 7 4 8 1 28 1 4 3 43 3 12 7 61 2 1
5 58 24 4 9 1 23 2 3 7 44 3 20 5 43 2 3

18 94 38 5 2 1 99 0 1 3 64 3 99 9 29 6 2
27 17 26 3 3 4 47 3 1 3 47 8 13 6 30 0 2
23 18 8 2 4 3 56 2 1 3 73 3 38 9 50 9 6

5 84 8 3 7 1 26 8 3 8 84 3 12 9 61 4 4
6 15 8 2 8 1 21 2 3 5 40 3 11 7 54 6 7
6 07 37 7 8 1 27 1 2 2 98 3 42 9 29 7 9

17 25 30 4 7 2 30 2 1 3 63 3 81 3 30 0 4
29 09 8 5 8 4 25 3 1 3 08 8 13 4 30 5 8
14 17 8 3 9 3 79 0 4 9 91 3 12 5 68 6 8

6 05 7 6 2 1 25 0 3 6 33 3 12 4 58 0 9
6 10 29 6 2 1 25 7 2 4 19 3 12 9 31 5 4

14 10 34 3 5 1 26 3 1 3 50 3 96 5 29 9 9
18 40 21 5 0 1 77 0 1 3 34 6 76 7 29 9 7
19 55 8 2 3 4 02 7 4 4 13 8 21 6 62 1 3

6 07 8 2 0 1 89 2 4 1 13 3 13 0 77 5 7
5 87 8 0 9 1 28 2 2 7 71 3 12 6 30 0 3
6 11 33 7 1 1 42 5 1 3 84 3 12 5 30 0 8

15 30 26 7 6 1 55 2 1 2 98 4 15 1 29 9 6
22 07 8 0 8 3 42 3 4 5 53 8 77 5 61 8 1
19 95 8 1 2 4 40 9 4 0 76 6 61 7 56 7 5

4 61 8 9 8 1 28 0 3 6 20 3 12 4 40 3 0
5 96 35 8 3 1 26 7 1 3 68 3 11 7 29 9 8
5 32 28 5 7 1 28 1 1 2 87 3 19 3 30 0 0

18 61 21 0 7 2 10 9 2 8 18 3 87 6 55 9 2
24 99 8 2 9 3 77 0 4 1 38 7 82 6 60 8 7
18 99 8 2 2 4 70 6 3 8 52 4 93 8 51 3 2

5 97 26 5 6 1 27 4 1 2 69 3 12 9 30 0 0
6 18 33 0 6 1 27 5 1 2 36 3 11 7 29 3 3

21 04 28 5 7 1 26 8 1 3 62 3 23 6 41 0 9
14 19 8 3 9 2 26 2 4 1 83 3 97 4 68 1 5
23 12 8 1 0 4 15 2 3 3 49 8 00 3 65 8 6

6 29 7 7 3 4 32 0 1 4 74 3 43 4 29 1 3
4 85 34 6 5 1 28 1 1 4 06 3 12 3 28 6 9
5 83 25 3 6 1 21 4 1 3 19 3 13 1 32 5 7

26 18 7 1 8 1 30 0 4 3 38 3 71 7 61 7 0
25 24 8 2 7 2 41 2 4 1 81 8 11 7 66 0 1
21 49 7 6 2 3 69 2 1 9 21 7 77 7 32 5 9

6 29 35 9 3 1 27 5 1 2 63 3 12 4 30 0 7
6 04 27 0 0 1 23 9 1 2 32 3 12 2 39 0 1

10 94 26 3 7 1 26 8 4 1 46 3 12 1 69 8 7
16 89 7 9 0 1 91 4 3 4 13 4 11 7 62 4 5
27 56 8 2 4 3 42 8 2 0 48 8 22 0 28 8 5

6 14 11 1 0 4 10 7 1 4 60 5 32 2 29 0 0
5 97 39 4 5 1 20 6 1 2 46 3 12 8 32 8 4
6 34 31 3 6 1 27 5 4 1 25 3 12 3 57 1 9

23 02 7 6 6 1 29 5 2 9 37 3 65 5 62 9 1
25 62 8 0 0 2 43 8 3 2 30 3 65 6 39 5 6
27 38 8 3 0 3 82 8 1 2 46 8 11 5 28 7 0

6 01 39 2 1 3 90 0 1 2 46 3 12 8 29 0 3
5 58 24 1 9 1 20 4 1 3 03 3 12 6 54 1 0
6 16 8 1 7 1 25 3 3 9 19 3 10 7 76 3 9

16 05 8 1 4 1 25 9 3 4 61 3 42 3 64 6 2
22 60 8 1 2 1 90 1 1 2 38 5 63 9 29 1 4
23 16 37 3 7 4 43 4 1 2 58 7 57 6 28 5 9

180

TABLE a.10 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part III

M a trix 1 0 x 1 0 M a tr ix 5 0 x 5 0 M a trix 1 0 0 x 1 0 0
g a m m a 1 .5 8 8 g a m m a 1 .9 7 5 g a m m a 1 .5 8 8 g a m m a 1 .9 7 5 g a m m a 1 .5 8 8 g a m m a 1 .9 7 5
2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s 2 w o rk n o d e s 4 w o rk n o d e s

6 1 8 3 8 5 9 1 2 8 9 1 3 6 1 9 5 5 9 5 3 1 7
2 3 2 0 8 2 7 1 2 5 0 1 2 0 9 3 5 9 6 3 4 7 6

5 3 1 8 4 2 3 4 9 6 1 3 4 8 3 1 2 9 3 0 1 4
6 0 4 8 0 4 7 0 3 7 1 3 6 1 3 1 2 3 3 8 9 4
5 9 7 8 2 6 1 2 7 6 5 4 1 1 3 1 1 9 7 8 9 0
5 9 8 3 5 0 6 1 1 9 0 1 4 8 6 5 0 7 6 2 9 7 8

1 1 3 3 7 1 8 1 2 4 7 1 3 6 0 9 6 8 0 2 9 7 6
4 0 0 0 8 4 2 1 2 6 0 1 3 7 6 3 1 1 7 3 0 0 0

5 4 2 7 8 3 4 2 7 3 1 3 0 0 3 1 2 4 5 9 3 2
5 9 3 8 0 8 3 8 0 5 5 1 5 8 3 1 2 4 4 3 3 1
5 2 3 4 4 9 9 1 2 5 9 2 6 2 6 3 1 2 3 3 0 1 4

2 2 8 1 4 4 9 2 1 2 7 7 1 2 9 8 5 6 2 4 2 9 4 8
2 9 9 0 8 0 1 1 2 2 7 1 3 2 7 4 7 3 7 3 0 4 4

6 2 6 7 7 9 2 6 0 0 1 2 9 3 3 1 2 4 6 4 3 4
5 6 2 8 2 6 3 6 6 2 5 7 3 2 3 1 3 1 4 0 6 3
5 9 6 3 3 8 1 1 2 7 2 5 2 7 9 3 1 2 8 3 0 6 6
5 9 6 4 8 1 9 1 2 5 6 1 3 4 7 4 3 0 8 2 8 0 6

2 2 3 6 8 1 5 1 2 5 3 1 3 7 8 8 0 8 6 2 7 9 1
4 4 7 7 7 8 0 1 3 4 0 1 3 7 2 3 1 3 1 9 4 3 4

5 7 8 8 1 0 2 5 0 1 1 2 8 8 3 1 0 9 2 8 4 4
5 2 9 8 0 9 6 5 1 7 5 9 6 6 3 1 3 5 2 8 1 5
6 0 6 3 3 1 7 1 2 4 4 1 3 7 8 3 1 2 0 3 1 4 5
6 3 1 8 3 5 1 2 5 8 1 3 2 5 4 5 2 4 7 3 2 5

2 9 3 6 7 9 8 1 2 7 4 1 3 7 4 9 6 6 1 7 4 7 3
5 5 1 7 8 1 1 2 7 2 1 3 5 0 3 1 2 2 3 0 0 9
5 9 2 8 1 4 2 2 2 2 5 0 5 7 3 1 3 9 3 0 1 8
5 1 2 5 3 7 7 2 8 5 7 4 2 8 5 3 1 2 7 3 0 1 8
5 6 2 3 6 5 0 1 2 7 8 1 3 5 5 3 4 1 5 6 0 7 3

3 7 6 0 8 2 8 1 2 8 1 1 3 5 7 1 0 7 9 2 4 0 9 9
3 3 5 2 8 2 8 1 2 6 9 1 3 5 8 3 1 2 7 3 0 0 4

5 4 5 8 3 0 2 9 6 4 4 9 1 1 3 1 2 6 5 7 6 0
5 7 5 5 0 7 0 5 6 1 6 6 6 1 7 3 1 2 6 7 9 1 6
4 7 8 3 6 8 5 1 2 0 5 1 3 6 9 3 1 2 3 2 9 9 4
5 6 4 8 2 0 1 1 8 7 1 3 5 5 5 8 3 8 3 0 2 4

1 5 2 7 8 1 7 1 2 6 8 1 3 2 0 9 3 2 1 3 0 3 1
5 7 1 8 2 5 1 2 8 0 3 0 0 9 3 1 2 5 7 5 4 3
6 1 8 7 8 5 3 6 9 2 5 4 2 8 3 1 3 0 3 0 2 4
5 1 1 1 4 3 6 5 1 5 9 1 3 2 7 3 1 2 1 3 0 3 2
6 0 1 3 0 4 7 1 2 5 0 1 3 3 3 3 1 6 1 3 0 0 7

3 2 8 0 8 3 1 1 2 6 8 1 3 1 9 8 8 7 3 7 3 9 8
3 3 7 6 8 1 0 1 2 8 3 1 3 5 7 3 1 2 9 7 0 3 9

6 0 1 7 7 1 1 2 7 3 5 4 8 7 3 1 2 3 2 9 9 8
6 1 7 5 4 5 2 3 4 6 6 1 9 2 8 3 1 2 8 2 9 9 1
5 5 5 3 3 6 9 1 2 7 8 1 2 9 4 3 1 2 8 3 2 2 8
5 8 7 7 4 0 1 2 6 8 1 3 1 5 5 6 0 1 6 2 0 9

1 8 3 1 8 1 5 1 2 4 8 1 3 1 0 1 0 1 3 4 3 8 2 8
2 1 7 7 8 2 2 1 2 7 8 5 2 5 0 3 1 2 0 3 0 2 5

6 2 1 7 9 9 1 6 2 2 5 6 7 1 3 1 3 1 3 0 0 6
4 9 3 2 3 6 1 4 9 7 8 1 3 0 5 3 1 2 7 3 3 6 4
6 1 6 2 6 2 4 1 2 5 5 1 3 4 7 5 0 0 8 8 3 0 7

2 4 3 4 8 0 8 1 2 4 6 1 3 6 8 9 3 2 6 3 1 8 7
4 6 9 8 1 8 1 1 8 8 5 8 5 8 3 1 3 2 3 1 0 8
5 8 5 8 0 0 1 2 6 7 5 8 6 5 3 1 2 8 8 4 0 3
5 6 9 4 9 3 0 3 9 9 6 1 2 7 8 3 1 2 5 7 4 9 1
6 1 8 3 8 2 2 5 5 0 9 1 3 4 4 3 2 5 1 3 0 4 9

3 2 0 1 8 1 6 1 2 6 5 1 3 3 1 1 0 0 0 6 3 0 5 6
3 6 1 6 7 4 4 1 2 7 6 4 0 3 5 3 1 3 1 5 6 0 7

5 1 8 8 1 1 1 2 0 7 4 7 3 0 3 1 1 2 6 3 4 5
5 1 8 4 8 2 6 1 2 6 8 1 3 3 4 3 1 2 7 3 2 5 2
5 6 9 4 4 2 4 3 2 5 6 1 3 1 3 3 1 2 8 3 0 5 2

181

TABLE a.11 Matrix Vector Multiplication Algorithm Background and Application Load Data
(msec) Part IV

M a tr ix 10x 10 M a tr ix 50x 50 M a trix 1 00x 10 0
gam m a 3 .923 gam m a 5 .2 54 gam m a 3 .923 ga m m a 5 .254 gam m a 3 .9 23 gam m a 5 .25 4
2 w o rk node s 4 w o rk no des 2 w o rk node s 4 w o rk nodes 2 w o rk no des 4 w o rk nod es

568 4 292 126 3 4739 3125 6784
692 4 818 126 5 6696 3953 9078
598 6 729 413 8 5318 1 0051 9192
761 3 969 680 3 5730 8083 7415
651 6 564 375 1 6626 4900 8680

1857 4 495 623 0 3550 8339 7696
3976 4 869 696 2 6618 8436 8470
2961 4 644 692 4 5501 1 4530 6333
4264 4 683 446 3 5680 1 1291 8592
3219 6 822 524 5 4908 8492 8133
3051 3 442 737 0 5614 1 2600 7699
3429 6 292 431 9 7026 1 2868 9101
3136 4 500 669 0 2922 1 1993 7367
2841 4 363 413 8 7682 1 0134 8883
2653 4 186 663 7 6098 1 3371 7328
4044 4 964 329 7 5626 4382 9441
3291 5 387 790 5 5365 1 1769 7639
3732 4 302 641 9 4839 5225 7538
2941 5 737 644 4 7555 1 0703 7686
4221 3 945 674 1 4637 8037 6956
3021 4 839 453 7 7540 1 1581 8720
3641 4 326 628 4 5363 9828 7156
2835 5 287 296 9 6528 5247 9909
4346 4 720 549 6 4812 9934 7304
2568 4 386 548 9 6342 5844 8041
2788 6 291 462 5 6152 1 0395 7267
3502 3 762 508 5 4965 9180 6494
3363 5 463 299 9 7161 4421 9218
2505 4 135 680 9 5375 9972 7202
3959 5 047 594 2 6785 7626 10470
3005 5 260 385 6 6424 1 1151 7099
4294 5 463 576 1 5846 9760 9809
3043 6 248 421 8 6139 8234 8051
4112 3 742 670 9 6734 9821 7967
3058 6 853 500 7 6423 4862 8364
4899 3 994 807 9 5552 1 0542 7043
3664 6 903 644 1 7275 6093 8449
4951 4 128 400 1 5878 1 1554 7501
3038 5 429 661 8 7052 1 0305 8984
4248 4 567 304 3 4462 6848 7205
2853 5 009 738 0 6406 9199 9711
3815 6 010 548 2 5838 3881 8026
2376 3 735 856 6 5337 9482 6656
5035 6 646 493 4 7245 9741 9557
3825 4 752 426 5 5595 9109 8166
3819 6 022 627 2 7152 1 0169 9386
2986 4 934 333 5 5780 5126 6707
3569 5 945 677 3 7260 1 0949 9792
3999 4 444 504 8 5764 4403 7116
3239 5 575 655 7 6817 8608 10270
4457 3 968 586 5 5609 9044 8580
3738 4 100 432 7 6624 8660 7810
3482 7 528 700 4 5953 1 0117 8060
2741 4 808 401 8 6316 4936 7008
3519 6 271 513 8 7367 8765 8942
2780 4 225 629 7 3832 8879 7029
4091 4 857 325 6 7423 8851 9882
3714 4 980 706 9 5577 8830 7674
2969 5 542 358 9 7098 3686 10758
2926 5 021 766 2 5703 8820 8078

182

TABLE a.12 AES Algorithm No-load Data (msec)

2 N ode 3 N ode 4 N ode 5 N ode
5141 2624 1843 1480
5172 2623 1844 1480
5149 2628 1841 1478
5146 2631 1842 1476
5133 2621 1844 1479
5138 2630 1845 1482
5160 2625 1842 1476
5150 2629 1845 1480
5158 2627 1843 1474
5147 2628 1843 1495
5139 2629 1844 1479
5149 2630 1844 1480
5155 2629 1847 1479
5144 2630 1840 1476
5149 2619 1843 1479
5141 2629 1845 1481
5154 2738 1844 1475
5126 2621 1846 1481
5143 2626 1845 1481
5147 2628 1860 1551
5152 2631 1845 1595
5141 2625 1847 1477
5144 2629 1975 1481
5131 2621 1845 1476
5146 2630 1845 1477
5139 2624 1843 1531
5133 2625 1843 1479
5133 2622 1847 1480
5141 2628 1843 1476
5138 2623 1846 1486
5128 2630 1842 1481
5133 2639 1844 1480
5144 2628 1842 1480
5142 2617 1844 1477
5199 2629 1853 1475
5131 2626 1842 1476
5134 2627 1846 1481
5141 2627 1842 1592
5139 2628 1843 1476
5137 2628 2020 1477
5131 2629 1843 1476
5136 2629 1839 1477
5147 2630 1844 1573
5130 2630 1845 1476
5145 2625 1845 1473
5143 2631 1846 1475
5146 2623 1843 1478
5153 2631 1845 1480
5156 2623 1846 1477
5147 2631 1842 1483
5153 2635 1845 1482
5148 2630 1848 1481
5154 2630 1845 1482
5152 2630 1844 1484
5136 2627 1845 1476
5140 2631 1843 1479
5151 2620 1842 1478
5130 2629 1844 1480
5146 2626 1847 1474
5138 2623 1842 1478

183

TABLE a.13 AES Algorithm Background Load Imbalance Data (msec) (2 Nodes)

G a m m a 1 .1 6 1 .0 6 1 .3 4 1 .1 2
5 4 0 5 5 11 1 5 1 3 9 5 1 0 9
5 1 1 0 5 15 9 5 1 4 0 5 1 0 1
5 1 0 2 5 10 8 5 1 4 4 5 1 1 2
5 1 0 6 5 11 7 5 1 4 6 5 1 1 2
5 1 0 2 5 10 6 5 1 3 8 5 1 0 7
5 3 2 1 5 09 9 5 1 3 2 5 1 0 9
5 1 1 3 5 33 5 5 1 3 6 5 1 1 0
5 1 0 2 5 15 2 5 1 4 3 5 1 0 0
5 1 0 7 5 10 3 5 1 4 4 5 1 0 9
5 1 1 2 5 09 6 5 1 4 5 5 1 2 1
5 1 1 6 5 10 9 5 1 4 6 5 1 0 4
5 1 0 1 5 11 3 5 1 3 8 5 1 0 2
5 1 1 1 5 12 1 5 1 3 8 5 0 9 9
5 1 9 6 5 12 0 5 1 4 2 5 1 0 1
5 1 7 5 5 10 6 5 1 4 3 5 5 7 2
5 1 0 5 5 12 7 5 1 4 4 5 1 1 1
5 1 2 0 5 11 9 5 1 4 5 5 1 1 2
5 1 1 4 5 11 3 5 1 4 6 5 1 0 4
5 1 0 9 5 11 0 5 1 4 6 5 1 1 4
5 3 3 4 5 10 5 5 1 4 9 5 1 0 7
5 1 0 9 5 32 4 5 1 5 1 5 1 0 0
5 1 1 0 5 10 2 5 1 5 6 5 1 0 9
5 1 1 1 5 11 1 5 1 8 5 5 1 0 6
5 1 0 5 5 10 8 5 6 1 7 5 1 5 2
5 1 1 1 5 10 5 5 1 3 7 5 1 0 2
5 1 1 1 5 11 5 5 1 3 8 5 1 0 6
5 1 1 1 5 09 9 5 1 3 8 5 1 0 3
5 1 1 8 5 10 2 5 1 3 9 5 1 0 5
5 1 7 1 5 11 1 5 1 3 9 5 5 3 6
5 1 0 5 5 12 8 5 1 3 9 5 1 0 6
5 1 1 6 5 11 2 5 1 3 9 5 1 0 7
5 1 0 4 5 10 5 5 1 3 9 5 1 1 6
5 1 1 0 5 11 1 5 1 3 9 5 1 0 2
5 3 4 3 5 11 0 5 1 4 0 5 1 0 1
5 1 1 5 5 35 9 5 1 4 1 5 1 0 8
5 1 0 3 5 10 3 5 1 4 1 5 1 1 1
5 1 1 1 5 10 1 5 1 4 1 5 1 0 3
5 1 1 5 5 10 7 5 1 4 1 5 1 3 8
5 1 0 8 5 10 5 5 1 4 1 5 0 9 8
5 1 0 1 5 33 5 5 1 4 1 5 1 1 0
5 1 1 4 5 09 9 5 1 4 1 5 0 9 7
5 1 0 4 5 10 9 5 1 4 2 5 1 0 4
5 1 0 3 5 09 6 5 1 4 2 5 5 4 2
5 1 1 2 5 11 1 5 1 4 3 5 1 0 8
5 1 1 7 5 10 7 5 1 4 3 5 1 0 9
5 1 1 0 5 09 8 5 1 4 4 5 0 9 6
5 1 0 7 5 10 3 5 1 4 4 5 0 9 8
5 3 4 0 5 09 5 5 1 4 4 5 1 0 9
5 1 0 3 5 10 1 5 1 4 5 5 1 1 1
5 1 0 1 5 10 3 5 1 4 5 5 1 0 4
5 1 0 6 5 10 9 5 1 4 5 5 1 0 0
5 1 0 2 5 11 2 5 1 4 8 5 1 5 0
5 3 2 5 5 10 8 5 1 5 0 5 1 0 5
5 1 2 6 5 32 7 5 1 5 4 5 1 0 0
5 1 1 2 5 11 1 5 1 5 4 5 1 0 7
5 1 1 8 5 11 6 5 1 5 5 5 1 6 2
5 1 1 1 5 10 1 5 1 6 1 5 5 7 3
5 1 0 3 5 11 1 5 1 8 8 5 1 0 7
5 1 0 6 5 10 2 5 5 8 1 5 1 0 3
5 1 2 5 5 11 6 5 5 9 9 5 1 1 3

184

TABLE a.14 AES Algorithm Background Load Imbalance Data (msec) (3 Nodes)
G am m a 1 .23 1 .09 1 .47 1 .18

2629 2623 2631 2628
2621 2628 2628 2624
2626 2624 2625 2626
2622 2625 2622 2625
2626 2619 2632 2682
2630 2621 2632 2627
2621 2624 2638 2624
2625 2632 2774 2624
2746 2627 2624 2623
2621 2745 2624 2688
2628 2643 2624 2630
2624 2622 2625 2620
2624 2624 2626 2625
2624 2624 2626 2623
2738 2627 2627 2627
2634 2734 2629 2625
2630 2626 2623 2625
2623 2631 2624 2624
2624 2625 2624 2636
2627 2619 2624 2618
2633 2623 2624 2628
2619 2623 2624 2621
2731 2629 2624 2631
2622 2740 2624 2851
2631 2624 2625 2620
2632 2631 2625 2625
2622 2626 2625 2627
2629 2625 2625 2624
2738 2625 2625 2623
2625 2704 2625 2627
2624 2633 2625 2625
2651 2714 2626 2855
2624 2626 2626 2692
2622 2632 2626 2621
2632 2642 2626 2629
2626 2634 2626 2622
2623 2623 2627 2625
2622 2627 2627 2843
2623 2632 2627 2624
2631 2624 2627 2623
2625 2630 2627 2625
2624 2624 2628 2623
2680 2622 2628 2625
2650 2643 2628 2626
2627 2619 2628 2632
2631 2630 2628 2864
2631 2618 2629 2657
2628 2628 2629 2629
2624 2730 2629 2628
2623 2625 2630 2627
2624 2622 2630 2631
2623 2624 2630 2844
2632 2633 2630 2630
2621 2625 2630 2627
2622 2622 2631 2631
2743 2625 2632 2631
2623 2783 2658 2620
2628 2645 2855 2627
2624 2624 2867 2624
2622 2624 2902 2858

185

TABLE a.15 AES Algorithm Background Load Imbalance Data (msec) (4 Nodes)
G am m a 1.3 1 .12 1 .59 1 .23

1845 1844 1848 1846
1839 1842 1846 1844
1845 1845 1847 1844
1918 1845 1849 1848
1861 2033 1839 1845
1843 1846 1840 1844
1839 1844 1842 1843
1846 1847 1843 1844
1844 1846 1845 1844
1917 1849 1846 1848
1844 1922 1847 1847
1842 2007 1893 1844
1844 1844 1843 2003
1844 1841 1843 1893
1842 1842 1844 1843
1845 1923 1844 1846
1841 1843 1844 1845
1845 1843 1844 1845
1844 1846 1844 1990
1845 1903 1844 1849
1848 1846 1844 1845
1842 1841 1844 1845
1844 1855 1845 1848
1844 1841 1845 1843
1845 1845 1845 1844
1842 1837 1845 1845
1844 1842 1845 1931
1843 1842 1845 1846
1917 1845 1845 1843
1844 1850 1846 1839
1846 1846 1846 1844
1846 1842 1846 1844
1844 1841 1846 1843
1843 1843 1846 1842
1846 1844 1846 1843
1845 1847 1846 1846
1974 1843 1847 1846
1901 1985 1847 2083
1843 1887 1847 1845
1848 1844 1847 1844
1849 1846 1847 1846
1840 1842 1847 1843
1921 1846 1847 1845
1844 1919 1848 1845
1842 1846 1848 1842
2548 1844 1848 1845
1843 1846 1849 1846
1845 1844 1849 1840
1842 1937 1849 1844
1842 1842 1849 1843
1916 1847 1849 1846
1921 1844 1861 1997
1844 1844 1868 1843
1844 1865 1920 1846
1847 1845 1976 1837
1848 1844 1977 1846
1915 1844 1985 1843
1847 1842 1994 1845
1845 1846 1995 1848
1845 1845 2004 1847

186

TABLE a.16 AES Algorithm Background Load Imbalance Data (msec) (5 Nodes)
G a m m a 1 .3 6 1 .1 4 1 .7 1 .2 8

1 4 7 8 1 4 7 8 1 4 7 9 1 4 7 8
1 4 7 5 1 4 7 5 1 4 7 9 1 4 7 8
1 4 7 9 1 4 8 1 1 4 7 9 1 4 7 7
1 4 7 8 1 4 7 7 1 4 7 9 1 4 7 7
1 4 7 8 1 4 8 0 1 4 8 0 1 5 0 2
1 4 7 7 1 4 8 2 1 4 8 1 1 4 7 8
1 4 7 6 1 4 8 1 1 5 4 1 1 4 7 9
1 4 7 8 1 4 8 1 1 5 9 1 1 4 8 1
1 4 7 9 1 4 7 7 1 4 7 6 1 4 7 8
1 5 3 8 1 4 8 4 1 4 7 6 1 4 8 0
1 4 7 6 1 4 7 9 1 4 7 6 1 4 7 8
1 4 7 7 1 4 7 6 1 4 7 6 1 4 8 3
1 5 4 1 1 5 0 0 1 4 7 6 1 4 7 9
1 4 7 8 1 5 3 5 1 4 7 7 1 4 8 1
1 4 7 8 1 4 8 0 1 4 7 7 1 4 7 9
1 4 7 8 1 4 8 1 1 4 7 7 1 4 8 0
1 4 7 7 1 4 8 0 1 4 7 7 1 4 7 6
1 4 7 8 1 4 8 0 1 4 7 7 1 4 8 3
1 5 4 9 1 5 3 9 1 4 7 7 1 6 6 3
1 4 8 1 1 5 0 8 1 4 7 7 1 4 8 1
1 4 7 8 1 4 7 8 1 4 7 7 1 4 7 9
1 4 8 1 1 4 7 8 1 4 7 8 1 5 2 6
1 4 8 5 1 4 8 0 1 4 7 8 1 4 8 0
1 5 1 6 1 4 7 8 1 4 7 8 1 4 7 4
1 4 8 0 1 5 3 3 1 4 7 8 1 4 7 7
1 4 8 2 1 4 7 8 1 4 7 8 1 4 7 8
1 4 8 1 1 4 7 6 1 4 7 8 1 4 7 7
1 4 8 0 1 4 8 1 1 4 7 8 1 7 2 2
1 4 8 0 1 5 7 7 1 4 7 8 1 4 7 5
1 5 1 0 1 4 8 0 1 4 7 8 1 4 7 9
1 4 8 2 1 4 8 0 1 4 7 9 1 4 8 0
1 5 3 5 1 4 8 0 1 4 7 9 1 4 7 4
1 5 0 8 1 4 8 9 1 4 7 9 1 7 4 0
1 4 8 0 1 4 7 7 1 4 7 9 1 4 7 9
1 4 7 8 1 4 7 9 1 4 7 9 1 4 8 0
1 4 7 6 1 4 8 0 1 4 7 9 1 5 9 5
1 4 7 8 1 4 7 9 1 4 7 9 1 4 9 0
1 4 7 9 1 4 7 9 1 4 7 9 1 4 7 8
1 4 7 7 1 4 7 8 1 4 8 0 1 4 7 8
1 4 8 0 1 4 8 3 1 4 8 0 1 4 8 0
1 4 8 3 1 4 7 9 1 4 8 0 1 5 9 2
1 4 8 4 1 4 8 1 1 4 8 0 1 4 8 9
1 5 6 5 1 4 8 1 1 4 8 0 1 4 8 0
1 4 7 8 1 5 5 5 1 4 8 0 1 4 7 9
1 4 7 9 1 4 8 1 1 4 8 0 1 4 8 1
1 4 8 6 1 4 8 1 1 4 8 0 1 4 7 9
1 4 8 0 1 5 7 5 1 4 8 0 1 5 9 1
1 4 7 7 1 4 8 0 1 4 8 1 1 4 8 2
1 4 7 8 1 4 8 0 1 4 8 1 1 4 7 9
1 4 8 0 1 4 7 8 1 4 8 1 1 5 0 1
1 4 7 9 1 4 7 8 1 4 8 3 1 4 7 6
1 4 8 0 1 5 3 2 1 4 8 3 1 4 7 9
1 4 7 9 1 5 2 0 1 4 8 4 1 4 7 7
1 4 8 2 1 4 8 0 1 4 9 5 1 4 8 0
1 4 8 1 1 4 9 7 1 5 0 4 1 7 6 3
1 4 8 0 1 4 7 8 1 5 3 8 1 4 7 8
1 5 4 2 1 4 7 7 1 5 5 5 1 4 8 0
1 4 8 1 1 5 3 8 1 5 8 7 1 4 7 9
1 4 7 9 1 4 7 8 1 5 9 1 1 4 7 5
1 5 3 5 1 4 7 6 1 5 9 2 1 4 8 1

1 6 3 2
1 6 5 1
1 7 1 4
1 7 8 4

187

TABLE a.17 Runtime AES Application Homogeneous Resources Data

Workstations Runtime (msec) gamma
P=1 4933.236
P=2 5148.045 1.12E+00
P=3 2688.246 1.18E+00
P=4 1873.48 1.23E+00
P=5 1469.646 1.28E+00
P=6 1229.944 1.32E+00
P=7 1072.123 1.37E+00
P=8 960.944 1.41E+00
P=9 878.801 1.45E+00
P=10 815.919 1.49E+00
P=11 766.439 1.52E+00
P=12 726.641 1.56E+00
P=13 694.049 1.59E+00
P=14 666.952 1.62E+00
P=15 644.133 1.65E+00
P=16 624.703 1.67E+00
P=17 607.996 1.70E+00
P=18 593.506 1.72E+00
P=19 580.843 1.75E+00
P=20 569.699 1.77E+00
P=21 559.829 1.79E+00
P=22 551.038 1.81E+00
P=23 543.166 1.83E+00
P=24 536.083 1.85E+00
P=25 529.681 1.86E+00
P=26 523.87 1.88E+00
P=27 518.575 1.90E+00
P=28 513.732 1.91E+00
P=29 509.287 1.92E+00
P=30 505.196 1.94E+00
P=31 501.417 1.95E+00
P=32 497.919 1.96E+00
P=33 494.671 1.98E+00
P=34 491.648 1.99E+00
P=35 488.828 2.00E+00
P=36 486.191 2.01E+00
P=37 483.721 2.02E+00
P=38 481.403 2.03E+00
P=39 479.224 2.04E+00
P=40 477.171 2.04E+00
P=41 475.235 2.05E+00

188

TABLE a.18 AES Application Optimum Set Cost Function Homogeneous Resources Data
4933.236 1 5426.56 7399.854 9866.472 29599.42 54265.6 251595 498256.8 2471551 4938169
5148.045 2 10810.89 12870.11 15444.14 36036.32 61776.54 267698.3 525100.6 2584319 5158341
2688.246 3 8333.563 9408.861 10752.98 21505.97 34947.2 142477 276889.3 1352188 2696311

1873.48 4 7681.268 8430.66 9367.4 16861.32 26228.72 101167.9 194841.9 944233.9 1880974
1469.646 5 7495.195 8083.053 8817.876 14696.46 22044.69 80830.53 154312.8 742171.2 1476994
1229.944 6 7502.658 7994.636 8609.608 13529.38 19679.1 68876.86 130374.1 622351.7 1237324
1072.123 7 7612.073 8040.923 8576.984 12865.48 18226.09 61111.01 114717.2 543566.4 1079628

960.944 8 7783.646 8168.024 8648.496 12492.27 17296.99 55734.75 103782 488159.6 968631.6
878.801 9 7997.089 8348.61 8788.01 12303.21 16697.22 51849.26 95789.31 447309.7 886710.2
815.919 10 8240.782 8567.15 8975.109 12238.79 16318.38 48955.14 89751.09 416118.7 824078.2
766.439 11 8507.473 8814.049 9197.268 12263.02 16095.22 46752.78 85074.73 391650.3 774869.8
726.641 12 8792.356 9083.013 9446.333 12352.9 15986.1 45051.74 81383.79 372040.2 735360.7
694.049 13 9092.042 9369.662 9716.686 12492.88 15963.13 43725.09 78427.54 356047.1 703071.6
666.952 14 9404.023 9670.804 10004.28 12672.09 16006.85 42684.93 76032.53 342813.3 676289.3
644.133 15 9726.408 9984.062 10306.13 12882.66 16103.33 41868.65 74075.3 331728.5 653795
624.703 16 10057.72 10307.6 10619.95 13118.76 16242.28 41230.4 72465.55 322346.7 634698.2
607.996 17 10396.73 10639.93 10943.93 13375.91 16415.89 40735.73 71135.53 314333.9 618331.9
593.506 18 10742.46 10979.86 11276.61 13650.64 16618.17 40358.41 70033.71 307436.1 604189.1
580.843 19 11094.1 11326.44 11616.86 13940.23 16844.45 40078.17 69120.32 301457.5 591879
569.699 20 11450.95 11678.83 11963.68 14242.48 17090.97 39878.93 68363.88 296243.5 581093
559.829 21 11812.39 12036.32 12316.24 14555.55 17354.7 39747.86 67739.31 291670.9 571585.4
551.038 22 12177.94 12398.36 12673.87 14878.03 17633.22 39674.74 67226.64 287641.8 563160.8
543.166 23 12547.13 12764.4 13035.98 15208.65 17924.48 39651.12 66809.42 284075.8 555658.8
536.083 24 12919.6 13134.03 13402.08 15546.41 18226.82 39670.14 66474.29 280907.5 548949
529.681 25 13294.99 13506.87 13771.71 15890.43 18538.84 39726.08 66210.13 278082.5 542923

523.87 26 13673.01 13882.56 14144.49 16239.97 18859.32 39814.12 66007.62 275555.6 537490.6
518.575 27 14053.38 14260.81 14520.1 16594.4 19187.28 39930.28 65859.03 273289 532576.5
513.732 28 14435.87 14641.36 14898.23 16953.16 19521.82 40071.1 65757.7 271250.5 528116.5
509.287 29 14820.25 15023.97 15278.61 17315.76 19862.19 40233.67 65698.02 269412.8 524056.3
505.196 30 15206.4 15408.48 15661.08 17681.86 20207.84 40415.68 65675.48 267753.9 520351.9
501.417 31 15594.07 15794.64 16045.34 18051.01 20558.1 40614.78 65685.63 266252.4 516960.9
497.919 32 15983.2 16182.37 16431.33 18423 20912.6 40829.36 65725.31 264892.9 513852.4
494.671 33 16373.61 16571.48 16818.81 18797.5 21270.85 41057.69 65791.24 263659.6 510995.1
491.648 34 16765.2 16961.86 17207.68 19174.27 21632.51 41298.43 65880.83 262540 508364
488.828 35 17157.86 17353.39 17597.81 19553.12 21997.26 41550.38 65991.78 261523 505937
486.191 36 17551.5 17745.97 17989.07 19933.83 22364.79 41812.43 66121.98 260598.4 503693.9
483.721 37 17946.05 18139.54 18381.4 20316.28 22734.89 42083.73 66269.78 259758.2 501618.7
481.403 38 18341.45 18534.02 18774.72 20700.33 23107.34 42363.46 66433.61 258994.8 499696.3
479.224 39 18737.66 18929.35 19168.96 21085.86 23481.98 42650.94 66612.14 258301.7 497913.7
477.171 40 19134.56 19325.43 19564.01 21472.7 23858.55 42945.39 66803.94 257672.3 496257.8
475.235 41 19532.16 19722.25 19959.87 21860.81 24236.99 43246.39 67008.14 257102.1 494719.6

Rp P x/c 0.1 0.5 1 5 10 50 100 500 1000
Optimum P 1 1 7 10 13 23 30 41 41

189

Table a.19 lists the runtime (first column) and cost function data (third column) calculated

from the model for the AES Algorithm running on homogeneous resources as discussed in Sec.

6.1.2. The second column is the number of workstations in the set. The cost function data is calcu-

lated based on the background load on the workstations.

Table a.20 lists the runtime (second column) and background load factor gamma (third

column) calculated from the model for the AES Algorithm running on heterogeneous resources as

discussed in Sec. 6.1.1. The results from two HPRC network sizes are given (8 nodes and 16

nodes).

Table a.21 lists the runtime (first column) and cost function data (columns 3-10) calcu-

lated from the model for the AES Algorithm running on heterogeneous resources as discussed in

Sec. 6.1.2. The second column is the number of workstations in the set. The cost function data col-

umns differ by the value of x/c listed at the bottom of the table. Finally the Optimum P row

denotes the optimum set of workstations for the given x/c value.

TABLE a.19 AES Application Cost Function Based on Load Homogeneous Resources Data

Rp P Cost
5148.045 2 22857.32
2688.246 3 16559.6
1873.48 4 14763.02

1469.646 5 14108.6
1229.944 6 13922.97
1072.123 7 13980.48
960.944 8 14183.53
878.801 9 14482.64
815.919 10 14849.73
766.439 11 15267.46
726.641 12 15724.51
694.049 13 16212.98

190

TABLE a.20 Runtime AES Application Heterogeneous Resources Data

TABLE a.21 AES Application Optimum Set Cost Function Heterogeneous Resources Data

Workstations Runtime (msec) Gamma
P=1 4933.236
P=2 5235.925 1.27E+00
P=3 2826.208 1.53E+00
P=4 2036.825 1.75E+00
P=5 1780.229 2.40E+00
P=6 1625.309 2.88E+00
P=7 1847.784 4.61E+00
P=8 1972.558 5.83E+00

Workstations Runtime (msec) Gamma
P=1 4933.236
P=2 5235.925 1.27E+00
P=3 2826.208 1.53E+00
P=4 2036.825 1.75E+00
P=5 1649.485 1.93E+00
P=6 1421.359 2.08E+00
P=7 1306.71 2.35E+00
P=8 1226.075 2.57E+00
P=9 1166.757 2.75E+00
P=10 1121.73 2.91E+00
P=11 1125.305 3.23E+00
P=12 1127.788 3.50E+00
P=13 1129.874 3.74E+00
P=14 1131.881 3.95E+00
P=15 1347.254 5.21E+00
P=16 1507.915 6.20E+00

4933.236 1 5426.56 7399.854 9866.472 14799.71 29599.42 54265.6 251595 498256.8
5235.925 2 10995.44 13089.81 15707.78 20943.7 36651.48 62831.1 272268.1 534064.4
2826.208 3 8761.245 9891.728 11304.83 14131.04 22609.66 36740.7 149789 291099.4
2036.825 4 8350.983 9165.713 10184.13 12220.95 18331.43 28515.55 109988.6 211829.8
1780.229 5 9079.168 9791.26 10681.37 12461.6 17802.29 26703.44 97912.6 186924
1625.309 6 9914.385 10564.51 11377.16 13002.47 17878.4 26004.94 91017.3 172282.8
1847.784 7 13119.27 13858.38 14782.27 16630.06 22173.41 31412.33 105323.7 197712.9
1972.558 8 15977.72 16766.74 17753.02 19725.58 25643.25 35506.04 114408.4 213036.3

Rp P x/c 0.1 0.5 1 2 5 10 50 100
P 1 1 1 4 5 6 6 6

191

Table a.22 lists the runtime and cost function data calculated from the model for the SAT

Solver Application running on homogeneous resources as discussed in Sec. 6.1.3. The costs are

calculated for three different cases of hardware size or number of hardware solver engines (4, 8,

and 16), three different cases of hardware speed (based on the memory buss speed - divide by 3, 4,

and 5), and three different cases of application load imbalance (beta equal to 6, 8.5, and 12).

TABLE a.22 SAT Solver Application Optimization Space Homogeneous Resources Data

8 Copies 16 Copies 4 Copies
Workstations Runtime Cost Runtime Cost Runtime Cost

2 4.13E+04 82674.71 2.07E+04 41337.63 82670.31 165348.89
3 2.76E+04 82673.67 1.38E+04 41337.27 55113.66 165346.49
4 2.07E+04 82673.35 1.03E+04 41337.31 41335.33 165345.45
5 1.65E+04 82673.35 8.27E+03 41337.50 33068.35 165345.06
6 1.38E+04 82673.52 6.89E+03 41337.80 27557.03 165344.94
7 1.18E+04 82673.77 5.91E+03 41338.15 23620.38 165345.02
8 1.03E+04 82674.07 5.17E+03 41338.56 20667.89 165345.19
9 9.19E+03 82674.47 4.59E+03 41338.99 18371.51 165345.43

Divide by 5 Divide by 4 Divide by 3
Workstations Runtime Cost Runtime Cost Runtime Cost

2 4.13E+04 82674.71 33068.29 66139.887 24801.28 49605.04
3 2.76E+04 82673.67 22045.64 66139.125 16534.3 49604.553
4 2.07E+04 82673.35 16534.32 66138.933 12400.82 49604.52
5 1.65E+04 82673.35 13227.54 66139.023 9920.736 49604.672
6 1.38E+04 82673.52 11023.02 66139.222 8267.352 49604.939
7 1.18E+04 82673.77 9448.368 66139.521 7086.367 49605.278
8 1.03E+04 82674.07 8267.381 66139.875 6200.63 49605.66
9 9.19E+03 82674.47 7348.838 66140.277 5511.726 49606.085

Beta = 8.5 Beta = 6 Beta = 12
Workstations Runtime Cost Runtime Cost Runtime Cost

2 351348 702699.513 2.48E+05 496023.28 496020.5 992045.96
3 234232.1 702698.642 1.65E+05 496022.85 330680.5 992044.81
4 175674.2 702698.557 1.24E+05 496022.84 248010.5 992044.48
5 140539.4 702698.405 9.92E+04 496022.94 198408.4 992043.98
6 117116.2 702698.371 8.27E+04 496023.17 165340.4 992044.05
7 100385.4 702698.804 7.09E+04 496023.51 141720.4 992044.22
8 87837.3 702699.278 6.20E+04 496023.90 124005.4 992044.44
9 78077.66 702699.721 5.51E+04 496024.30 110227.1 992045

192

VITA

As a devoted wife of Harrison Smith and the mother of twin daughters Allison Melissa

and Courtney Diane, Melissa has carved a path through life with the utmost precision and detail.

Melissa was born October 17th, 1970 to Donald and Diane Crawley in Pensacola, Florida. She

attended J.M. Tate High School where she participated in the marching band and graduated with

honors in 1988. After graduation, she enrolled in pre-engineering courses at The University of

West Florida which allowed her to focus on her Electrical Engineering courses while gaining

valuable experience as a co-operative education student with the Naval Aviation Depot at NAS

Pensacola. In 1991 Melissa transferred to The Florida State University where, in 1993, she

graduated Magna Cum Laude, earning a Bachelors of Science degree in Electrical Engineering.

Melissa remained at The Florida State University as a graduate research assistant for the High-

Performance Computing and Research Laboratory where she was a project team leader in ICASE

tools and graduated with a Masters of Science in Electrical Engineering in 1994. While attending

Florida State University, Melissa was selected as a member of the nationally distinguished

engineering honor society, Tau Beta Pi. She proudly served as President of the Florida Eta chapter

of Tau Beta Pi during the 1993-94 term. She is also a member of the Electrical Engineering Honor

Society Eta Kappa Nu, Golden Key National Honor Society, and Phi Kappa Phi.

In 1994 Melissa accepted a research position with Oak Ridge National Laboratory

(ORNL) in Oak Ridge Tennessee where she works as a member of the Monolithic Systems

Development Group. Her research at ORNL has included the use of neural networks in control

systems, sensor development, and specialized data acquisition systems for high energy physics

experiments such as PHENIX and SNS. She is an active member in IEEE and ACM.

193

Melissa resides in East Tennessee where she is an active mother of twins, Allison and

Courtney. She is an instrument rated private pilot and her hobbies, when she is not busy with her

girls, include playing guitar and piano, golfing with her husband, watching football, and staying

active in fitness and body building.

By her husband,

Harrison G. Smith II

	Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of System Performance.
	Recommended Citation

	Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of Syst...
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	CHAPTER 1
	Introduction
	1.1 Motivation
	1.1.1 What is HPC?
	1.1.2 What is RC?
	1.1.3 What is HPRC?

	1.2 General Problem Statement
	1.2.1 Fork-Join and Synchronous Iterative Algorithms

	CHAPTER 2
	Background and Related Work
	2.1 Introduction
	2.2 Building the HPRC Architecture
	2.2.1 High Performance Computing and Networks of Workstations
	2.2.2 Reconfigurable Computing
	RC Hardware

	2.2.3 High Performance Reconfigurable Computing (HPRC)
	HPRC Hardware

	2.3 Performance Evaluation, Analysis and Modeling
	2.3.1 Overview
	2.3.2 Performance Evaluation Techniques
	Measurement
	Simulation Models
	Analytic Models

	2.3.3 Performance Modeling

	2.4 Performance Metrics
	2.5 Resource Allocation, Scheduling, and Load Balancing
	2.6 Development Environment
	2.6.1 HPC Development Environment and Available Software Tools
	2.6.2 RC Development Environment and Available Software Tools
	2.6.3 HPRC Development Environment and Available Software Tools

	CHAPTER 3
	Parallel Applications
	3.1 Introduction
	3.2 Boolean Satisfiability
	3.2.1 Boolean Satisfiability Implementation

	3.3 Matrix-Vector Multiplication
	3.3.1 Matrix-Vector Multiplication Implementation

	3.4 Encryption Using AES
	3.4.1 AES Implementation

	3.5 CHAMPION Demo Algorithms

	CHAPTER 4
	Model Development
	4.1 Introduction
	4.2 General Model Description
	4.3 HPC Analysis
	4.3.1 Workstation Relative Speed
	4.3.2 Communication Between Processors
	4.3.3 Speedup and Efficiency as Performance Metrics in HPC

	4.4 RC Node Analysis
	4.5 HPRC Multi-Node Analysis
	4.6 Load Imbalance Model
	4.6.1 Introduction
	4.6.2 General Load Imbalance Model
	4.6.3 Application Load Imbalance Model
	SAT Solver Application Imbalance
	Matrix Vector Multiplication Algorithm Application Imbalance
	Other Applications

	4.6.4 Background Load Imbalance Model
	4.6.5 Complete Load Imbalance Model

	CHAPTER 5
	Model Validation
	5.1 Validation Methodology
	5.2 Accuracy of Modeling Communication Times
	5.3 Accuracy of Single Node RC Model
	5.3.1 Wildforce Measurements
	5.3.2 Firebird Measurements
	5.3.3 Pilchard Measurements
	5.3.4 Single Node Boolean SAT Solver Comparisons

	5.4 HPRC Model Validation
	5.4.1 No-Load Imbalance Results
	SAT Solver
	AES Algorithm
	Matrix Vector Multiplication

	5.4.2 Application Load Imbalance Results
	SAT Solver
	Matrix Vector Multiplication

	5.4.3 Background Load Imbalance Results
	SAT Solver
	Matrix Vector Multiplication
	AES Algorithm

	5.4.4 Application and Background Load Imbalance Results
	SAT Solver
	Matrix Vector Multiplication

	5.4.5 Heterogeneity Results
	SAT Solver
	Matrix Vector Multiplication
	AES Algorithm

	CHAPTER 6
	Application of Model
	6.1 Application Scheduling
	6.1.1 Minimizing Runtime
	Homogeneous Resources
	Heterogeneous Resources

	6.1.2 Minimizing Impact to Other Users
	Identical Usage Costs: Homogeneous Resources
	Identical Usage Costs: Heterogeneous Resources
	Varying Usage Costs

	6.1.3 Analyzing Optimization Space
	6.1.4 Other Optimization Problems
	Optimization of Other Applications
	Static Load Balancing

	6.2 Scheduling in a NetSolve Environment

	CHAPTER 7
	Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	[1] AccelChip, http://www.accelchip.com/, 2003.
	[2] Adaptable Computing Cluster, http://www.parl.clemson.edu/acc/, 2003.
	[3] AFRL/IF, http://www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html, 2003.
	[4] Altera: Systems on a Programmable Chip, http://www.altera.com, 2001.
	[5] Annapolis Microsystems, http://www.annapmicro.com, 2001.
	[6] Atmel, http://www.atmel.com, 2001.
	[7] BLAS: Basic Library of Algebraic Subroutines, http://www.netlib.org/blas/index.html, 2001.
	[8] BYU Configurable Computing Laboratory, http://www.jhdl.org, 2002.
	[9] Celoxica, http://www.celoxica.com, 2003.
	[10] Configurable Computing Lab, http://www.ccm.ece.vt.edu/, 2003
	[11] I.S.I.East, SLAAC: System-Level Applications of Adaptive Computing, http:// slaac.east.isi.e...
	[12] MATCH, http://www.ece.northwestern.edu/cpdc/Match/
	[13] Nallatech FPGA-Centric Systems & Design Services, http://www.nallatech.com/, 2002.
	[14] NetSolve, http://icl.cs.utk.edu/netsolve/, 2001.
	[15] Ptolemy for Adaptive Computing Systems, http://ptolemy.eecs.berkeley.edu/, 2002.
	[16] SInRG: Scalable Intracampus Research Grid, http://www.cs.utk.edu/sinrg/index.html, 2001.
	[17] Top 500 Supercomputer Sites: Overview of Recent Supercomputers, Aad J. van der Steen and Jac...
	[18] University of Florida High-performance Computing and Simulation Research Lab, http:// www.hc...
	[19] Vector Signal Image Processing Library (VSIPL), http://www.vsipl.org, 2001.
	[20] Virtual Computer Corporation, http://www.vcc.com/index.html, 2002.
	[21] Agrawal, Vishwani, and Chakradhar, Srimat T., “Performance Analysis of Synchronized Iterativ...
	[22] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large Scale Computing...
	[23] Atallah, M. J., Black, C. L., Marinescu, D. C., Segel, H. J., and Casavant, T. L., "Models a...
	[24] Banerjee, P., N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha, A. Jones...
	[25] Basney, J., Raman, B., and Livny, M., “High Throughput Monte Carlo,” Proc. of the 9th SIAM C...
	[26] Baumgartner, K. and Wah, B.W., “Computer Scheduling Algorithms: Past, Present and Future,” I...
	[27] Bellows, P. and Hutchings, B. L., “JHDL - An HDL for Reconfigurable Systems,” Pocek, K. and ...
	[28] Bokjari, Shahid H., “Partitioning Problems in Parallel, Pipelined, and Distributed Computing...
	[29] Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S., Queueing Networks and Markov Chains...
	[30] Bondalapati, K., Dinz, P., Duncan, P., Granacki, J., Hall, M., Jain, R., and Ziegler, H., “D...
	[31] Bubendorfer, K. and Hine, J.H., “A Compositional Classification for Load-Balancing Algorithm...
	[32] Cantu-Paz, E., “Designing Efficient Master-Slave Parallel Genetic Algorithms,” in Genetic Pr...
	[33] Cap, Clemens H., and Volker Strumpen, “Efficient Parallel Computing in Distributed Workstati...
	[34] Casanova, H., Dongarra, J., and Jiang, W., “The Performance of PVM on MPP Systems,” CS-95-30...
	[35] Casanova, H., Kim, M., Plank, J.S., and Dongarra, J.J., “Adaptive Scheduling for Task Farmin...
	[36] Casavant, T. L., "A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems,...
	[37] Chamberlain, R. D., and Mark A. Franklin, “Hierarchical Discrete-Event Simulation on Hypercu...
	[38] Chamberlain, R. D., “Parallel Logic Simulation of VLSI Systems,” Proc. of 32nd Design Automa...
	[39] Choi, Tik-Hing, “Floating-Point Matrix-Vector Multiplication Using Reconfigurable System,” M...
	[40] Chou, Timothy C.K. and Abraham, Jacob A., “Load Balancing in Distributed System,” IEEE Trans...
	[41] Clement, M. J. and Quinn, M. J., “Analytical Performance Prediction on Multicomputers,” Proc...
	[42] Clement, M. J., Steed, M. R., and Crandall, P. E., "Network Performance Modeling for PVM Clu...
	[43] Compton, K. and Hauck, S., “Configurable Computing: A Survey of Systems and Software,” North...
	[44] David, H.A., Order Statistics, Wiley, 1970.
	[45] Davis, M. and Putnam, H., A Computing Procedure for Quantification Theory. Journal of the AC...
	[46] Davis, M., Logemann, G., and Loveland, D., A Machine Program for Theorem Proving.Communicati...
	[47] DeHon, Andre, "Reconfigurable Architectures for General-Purpose Computing," Ph.D. Massachuse...
	[48] DeHon, A., "Comparing Computing Machines," Proceedings of SPIE, vol. 3526, no. Configurable ...
	[49] de Souza e Silva, E. and Gerla, M., 'Queueing Network Models for Load Balancing in Distribut...
	[50] Dongarra, J., H. Meuer, H. Simon, and E. Strohmaier, “High Performance Computing Today,” htt...
	[51] Dongarra, J. and Dunigan, T., “Message-Passing Performance of Various Computers,” pp. - 16, ...
	[52] Dongarra, J., and H. Simon, “High Performance Computing in the U.S. in 1995,” Technical Repo...
	[53] Dongarra, J., Goel, P. S., Marinescu, D., and Jiang, W., “Using PVM 3.0 to Run Grand Challen...
	[54] Dubois, Michel, and Faye A. Briggs, “Performance of Synchronized Iterative Processes in Mult...
	[55] Efe, Kemal, and Schaar, Margaret A., “Performance of Co-Scheduling on a Network of Workstati...
	[56] Efe, Kemal, and Krishnamoorthy, Venkatesh, “Optimal Scheduling of Compute-Intensive Tasks on...
	[57] El-Rewini, H. and Lewis, T. G., Task Scheduling in Parallel Distributed Systems Prentice Hal...
	[58] Feitelson, Dror G. and Rudolph, Larry, “Metrics and Benchmarking for Parallel Scheduling,” I...
	[59] Flynn, M. J., "Some Computer Organizations and Their Effectiveness," IEEE Transactions on Co...
	[60] Franklin, Mark A. and Govindan, Vasudha, “The N-Body Problem: Distributed System Load Balanc...
	[61] Garey, Michael R. and Johnson, David S., Computers and Intractability: A Guide to the Theory...
	[62] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sundarem, V., PVM: A User...
	[63] Gokhale, M., Homes, W., Kopser, A., Lucas, S., Minnich, R., Sweely, D., and Lopresti, D., "B...
	[64] Goldstein, S. C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., and Taylor, R. R., "PipeRench...
	[65] Govindan, Vasudha and Franklin, Mark A., “Application Load Imbalance on Parallel Processors,...
	[66] Guccione, S. A., Levi, D., and Sundararajan, P., “JBits: A Java-Based Interface for Reconfig...
	[67] Gustafson, J. L., "Reevaluating Amdahl's Law," Communications of the ACM, vol. 31, no. 5, pp...
	[68] Hall, M., Anderson, J. M., Amarasinghe, S. P., Murphy, B. R., Liao, S.-W., Bugnion, E., and ...
	[69] Harchol-Balter, Mor and Downey, Allen B., “Exploiting Process Lifetime Distributions for Dyn...
	[70] Hauck, S., "The Roles of FPGAs in Reprogrammable Systems," Proceedings of the IEEE, vol. 86,...
	[71] Hauck, S., “The Future of Reconfigurable Systems, Keynote Address,” 5th Canadian Conference ...
	[72] Hauck, S., Fry, T. W., Hosler, M. M., and Kao, J. P., "The Chimaera Reconfigurable Functiona...
	[73] Hauser, J. R. and Wawrzynek, J., "Garp: A MIPS Processor with a Reconfigurable Coprocessor,"...
	[74] Hu, L. and Gorton, I., “Performance Evaluation for Parallel Systems: A Survey,” UNSW- CSE-TR...
	[75] Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, and Programmability, Fi...
	[76] Jacqmot, C. and Milgrom, E., “A Systematic Approach to Load Distribution Strategies for Dist...
	[77] Jones, A., "Matrix and Signal Processing Libraries Based on Intrinsic MATLAB Functions for F...
	[78] Jones, A., Nayak, A., and Banerjee, P., "Parallel Implementation of Matrix and Signal Proces...
	[79] Jones, M., Scharf, L., Scott, J., Twaddle, C., Yaconis, M., Yao, K., Athanas, P., and Schott...
	[80] Jones, M. T., Langston, M. A., and Raghavan, P., "Tools for mapping applications to CCMs," I...
	[81] Kant, K., Introduction to Computer System Performance Evaluation New York: McGraw- Hill, Inc...
	[82] Katz, D. S., Cwik, T., Kwan, B. H., Lou, J. Z., Springer, P. L., Sterling, T. L., and Wang, ...
	[83] Kremien, Orly and Kramer, Jeff, “Methodical Analysis of Adaptive Load Sharing Algorithms,” I...
	[84] Krueger, P., and Chawla, R., “The stealth distributed scheduler,” in Proc. 11th Int. Conf. D...
	[85] Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C., Quantitative System Perform...
	[86] Leland, Will E. and Ott, Teunis J., “Load-balancing Heuristics and Process Behavior,” In Pro...
	[87] Leong, P. H. W., Leong, M. P., Cheung, O. Y. H., Tung, T., Kwok, C. M., Wong, M. Y., and Lee...
	[88] Levine, Ben, "A Systematic Implementation of Image Processing Algorithms on Configurable Com...
	[89] Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and Stockwood, J., “Hardware-Softw...
	[90] Ma, P.R., Lee, E.Y.S., and Tsuchiya, M., “A Task Allocation Model for Distributed Computing ...
	[91] Mohapatra, P. and Das, C. R., "Performance Analysis of Finite-Buffered Asynchronous Multista...
	[92] Mohapatra, P., Das, C. R., and Feng, T., "Performance Analysis of Cluster-Based Multiprocess...
	[93] Moll, L., Vuillemin, J., and Boucard, P., “High-Energy Physics on DECPeRLe-1 Programmable Ac...
	[94] Myers, M., Jaget, K., Cadambi, S., Weener, J., Moe, M., Schmit, H., Goldstein, S. C., and Bo...
	[95] Natarajan, Senthil, "Development and Verification of Library Cells for Reconfigurable Logic,...
	[96] Natarajan, S., Levine, B., Tan, C., Newport, D., and Bouldin, D., “Automatic Mapping of Khor...
	[97] Noble, B. L. and Chamberlain, R. D., “Performance Model for Speculative Simulation Using Pre...
	[98] Noble, B. L. and Chamberlain, R. D., “Analytic Performance Model for Speculative, Synchronou...
	[99] Nupairoj, N. and Ni, L. M., “Performance Evaluation of Some MPI Implementations on Workstati...
	[100] Ong, Sze-Wei, "Automatic Mapping of Graphical Programming Applications to Microelectronic T...
	[101] Ong, S.-W., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D., and Bouldin, D., ...
	[102] Peterson, Gregory D., "Parallel Application Performance on Shared, Heterogeneous Workstatio...
	[103] Peterson, G. D. and Chamberlain, R. D., “Exploiting Lookahead in Synchronous Parallel Simul...
	[104] Peterson, G. D. and Chamberlain, R. D., “Performance of a Globally-Clocked Parallel Simulat...
	[105] Peterson, G. D. and Chamberlain, R. D., “Beyond Execution Time: Expanding the Use of Perfor...
	[106] Peterson, G. D. and Chamberlain, R. D., "Parallel application performance in a shared resou...
	[107] Peterson, G. D. and Smith, M. C., “Programming High Performance Reconfigurable Computers,” ...
	[108] Peterson, J. L., Petri Net Theory and the Modeling of Systems Englewood Cliffs, NJ: Prentic...
	[109] Platzner, Marco and De Micheli, Giovanni, “Acceleration of Satisfiability Algorithms by Rec...
	[110] Reed, Daniel A. and Fujimoto, Richard M., Multicomputer Networks: Message-Based Parallel Pr...
	[111] Reynolds, P. F., Jr. and Pancerella, C. M., “Hardware Support for Parallel Discrete Event S...
	[112] Reynolds, P. F., Jr., Pancerella, C. M., and Srinivasan, S., “Making Parallel Simulations G...
	[113] Reynolds, P. F., Jr., Pancerella, C. M., and Srinivasan, S., "Design and Performance Analys...
	[114] Shen, Chien-Chung and Tsai, Wen-Hsiang, “A Graph Matching Approach to Optimal Task Assignme...
	[115] Shetters, Carl Wayne, "Scheduling Task Chains on an Array of Reconfigurable FPGAs", Master ...
	[116] Smith, M. C., Drager, S. L., Pochet, Lt. L., and Peterson, G. D., “High Performance Reconfi...
	[117] Smith, M. C. and Peterson, G. D., “Programming High Performance Reconfigurable Computers (H...
	[118] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The Complete Refe...
	[119] SUIF, The Stanford SUIF Compilation System: Public Domain Software and Documentation, http:...
	[120] Tananbaum, Andrew S., Modern Operating Systems, Prentice Hall, Englewood Cliffs, New Jersey...
	[121] Tantawi, Asser N. and Towsley, Don, “Optimal Static Load Balancing in Distributed Computer ...
	[122] Thomasian, A. and Bay, P. F., "Analytic Queueing Network Models for Parallel Processing of ...
	[123] Underwood, K. D., Sass, R. R., and Ligon, W. B., III, “A Reconfigurable Extension to the Ne...
	[124] Underwood, K.D., W.B. Ligon, and R.R. Sass, “Analysis of a prototype intelligent network in...
	[125] Underwood, K.D., An Evaluation of the Integration of Reconfigurable Hardware with the Netwo...
	[126] Vuillemin, J., Bertin, P., Roncin, D., Shand, M., Touati, H., and Boucard, P., "Programmabl...
	[127] Wang, Y.T., and Morris, R.J.T., “Load Sharing in Distributed Systems,” IEEE Transactions on...
	[128] Xilinx, Virtex Series FPGAs, http://www.xilinx.com, 2001.
	[129] Xilinx, JBits SDK, http://www.xilinx.com/products/jbits/index.htm, 2002.
	[130] Yan, Y., Zhang, X., and Song, Y., "An Effective and Practical Performance Prediction Model ...
	[131] Ye, Z. A., Moshovos, A., Hauck, S., and Banerjee, P., "CHIMAERA: A High-Performance Archite...
	[132] Zhang, X. and Yan, Y., “Modeling and Characterizing Parallel Computing Performance on Heter...
	[133] Zhong, P., Martonosi, M., Ashar, P., and Malik, S., “Solving Boolean Satisfiability with Dy...
	[134] Zhong, P., Martonosi, M., Ashar, P., and Malik, S., “Using Reconfigurable Computing Techniq...

	Appendix
	Vita

