2,074 research outputs found

    Constrained Hybrid Monte Carlo algorithms for gauge-Higgs models

    Full text link
    We develop Hybrid Monte Carlo (HMC) algorithms for constrained Hamiltonian systems of gauge- Higgs models and introduce a new observable for the constraint effective Higgs potential. We use an extension of the so-called Rattle algorithm to general Hamiltonians for constrained systems, which we adapt to the 4D Abelian-Higgs model and the 5D SU(2) gauge theory on the torus and on the orbifold. The derivative of the potential is measured via the expectation value of the Lagrange multiplier for the constraint condition and allows a much more precise determination of the effective potential than conventional histogram methods. With the new method, we can access the potential over the full domain of the Higgs variable, while the histogram method is restricted to a short region around the expectation value of the Higgs field in unconstrained simulations, and the statistical precision does not deteriorate when the volume is increased. We further verify our results by comparing to the one-loop Higgs potential of the 4D Abelian-Higgs model in unitary gauge and find good agreement. To our knowledge, this is the first time this problem has been addressed for theories with gauge fields. The algorithm can also be used in four dimensions to study finite temperature and density transitions via effective Polyakov loop actions.Comment: added comparison to one-loop potential in section 3.3, improved text; version accepted for publication in Computer Physics Communication

    Vistas in numerical relativity

    Get PDF
    Upcoming gravitational wave-experiments promise a window for discovering new physics in astronomy. Detection sensitivity of the broadband laser interferometric detectors LIGO/VIRGO may be enhanced by matched filtering with accurate wave-form templates. Where analytic methods break down, we have to resort to numerical relativity, often in Hamiltonian or various hyperbolic formulations. Well-posed numerical relativity requires consistency with the elliptic constraints of energy and momentum conservation. We explore this using a choice of gauge in the future and a dynamical gauge in the past. Applied to a polarized Gowdy wave, this enables solving {\em all} ten vacuum Einstein equations. Evolution of the Schwarzschild metric in 3+1 and, more generally, sufficient conditions for well-posed numerical relativity continue to be open challenges.Comment: invited talk, Asian Pacific CTP Winter School on black hole astrophysics, Pohang, Kore

    Gribov Problem for Gauge Theories: a Pedagogical Introduction

    Full text link
    The functional-integral quantization of non-Abelian gauge theories is affected by the Gribov problem at non-perturbative level: the requirement of preserving the supplementary conditions under gauge transformations leads to a non-linear differential equation, and the various solutions of such a non-linear equation represent different gauge configurations known as Gribov copies. Their occurrence (lack of global cross-sections from the point of view of differential geometry) is called Gribov ambiguity, and is here presented within the framework of a global approach to quantum field theory. We first give a simple (standard) example for the SU(2) group and spherically symmetric potentials, then we discuss this phenomenon in general relativity, and recent developments, including lattice calculations.Comment: 24 pages, Revtex 4. In the revised version, a statement has been amended on page 11, and References 14, 16 and 27 have been improve

    Numerical Approaches to Spacetime Singularities

    Get PDF
    This Living Review updates a previous version which its itself an update of a review article. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.Comment: 51 pages, 6 figures may be found in online version: Living Rev. Relativity 2002-1 at www.livingreviews.or

    A simplicial gauge theory

    Full text link
    We provide an action for gauge theories discretized on simplicial meshes, inspired by finite element methods. The action is discretely gauge invariant and we give a proof of consistency. A discrete Noether's theorem that can be applied to our setting, is also proved.Comment: 24 pages. v2: New version includes a longer introduction and a discrete Noether's theorem. v3: Section 4 on Noether's theorem has been expanded with Proposition 8, section 2 has been expanded with a paragraph on standard LGT. v4: Thorough revision with new introduction and more background materia

    Lecture Notes on Turbulent Instability of Anti-de Sitter Spacetime

    Full text link
    In these lecture notes we discuss recently conjectured instability of anti-de Sitter space, resulting in gravitational collapse of a large class of arbitrarily small initial perturbations. We uncover the technical details used in the numerical study of spherically symmetric Einstein-massless scalar field system with negative cosmological constant that led to the conjectured instability.Comment: Lecture notes from the NRHEP spring school held at IST-Lisbon, March 2013. To be published by IJMPA (V. Cardoso, L. Gualtieri, C. Herdeiro and U. Sperhake, Eds., 2013); v2: sec. 6 and acknowledgments added, matches published versio

    A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization - an ADM formulation

    Full text link
    This article studies a numerical relativity approach to the initial value problem in Anti-de Sitter spacetime relevant for dual non-equilibrium evolution of strongly coupled non-Abelian plasma undergoing Bjorken expansion. In order to use initial conditions for the metric obtained in arXiv:0906.4423 we introduce new, ADM formalism-based scheme for numerical integration of Einstein's equations with negative cosmological constant. The key novel element of this approach is the choice of lapse function vanishing at fixed radial position, enabling, if needed, efficient horizon excision. Various physical aspects of the gauge theory thermalization process in this setup have been outlined in our companion article arXiv:1103.3452. In this work we focus on the gravitational side of the problem and present full technical details of our setup. We discuss in particular the ADM formalism, the explicit form of initial states, the boundary conditions for the metric on the inner and outer edges of the simulation domain, the relation between boundary and bulk notions of time, the procedure to extract the gauge theory energy-momentum tensor and non-equilibrium apparent horizon entropy, as well as the choice of point for freezing the lapse. Finally, we comment on various features of the initial profiles we consider.Comment: 25 pages, 9 figures, 1 table; see also the companion article arXiv:1103.3452; v2: typos fixed; v3: references added and updated, publishe

    Non-Abelian Dual Superconductor Picture for Quark Confinement

    Full text link
    We give a theoretical framework for defining and extracting non-Abelian magnetic monopoles in a gauge-invariant way in SU(N) Yang-Mills theory to study quark confinement. Then we give numerical evidences that the non-Abelian magnetic monopole defined in this way gives a dominant contribution to confinement of fundamental quarks in SU(3) Yang-Mills theory, which is in sharp contrast to the SU(2) case in which Abelian magnetic monopoles play the dominant role for quark confinement.Comment: 9 pages, 3 figures (4 ps files); The paper was extensively revised, focusing especially on the lattice par

    Numerical and analytical methods for asymptotically flat spacetimes

    No full text
    This article begins with a brief introduction to numerical relativity aimed at readers who have a background in applied mathematics but not necessarily in general relativity. I then introduce and summarise my work on the problem of treating asymptotically flat spacetimes of infinite extent with finite computational resources. Two different approaches are considered. The first approach is the standard one and is based on evolution on Cauchy hypersurfaces with artificial timelike boundary. The well posedness of a set of constraint-preserving boundary conditions for the Einstein equations in generalised harmonic gauge is analysed, their numerical performance is compared with various alternate methods, and improved absorbing boundary conditions are constructed and implemented. In the second approach, one solves the Einstein equations on hyperboloidal (asymptotically characteristic) hypersurfaces. These are conformally compactified towards future null infinity, where gravitational radiation is defined in an unambiguous way. We show how the formally singular terms arising in a 3+13+1 reduction of the equations can be evaluated at future null infinity, present stable numerical evolutions of vacuum axisymmetric black hole spacetimes and study late-time power-law tails of matter fields in spherical symmetry
    • …
    corecore