Abstract

The functional-integral quantization of non-Abelian gauge theories is affected by the Gribov problem at non-perturbative level: the requirement of preserving the supplementary conditions under gauge transformations leads to a non-linear differential equation, and the various solutions of such a non-linear equation represent different gauge configurations known as Gribov copies. Their occurrence (lack of global cross-sections from the point of view of differential geometry) is called Gribov ambiguity, and is here presented within the framework of a global approach to quantum field theory. We first give a simple (standard) example for the SU(2) group and spherically symmetric potentials, then we discuss this phenomenon in general relativity, and recent developments, including lattice calculations.Comment: 24 pages, Revtex 4. In the revised version, a statement has been amended on page 11, and References 14, 16 and 27 have been improve

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019