The functional-integral quantization of non-Abelian gauge theories is
affected by the Gribov problem at non-perturbative level: the requirement of
preserving the supplementary conditions under gauge transformations leads to a
non-linear differential equation, and the various solutions of such a
non-linear equation represent different gauge configurations known as Gribov
copies. Their occurrence (lack of global cross-sections from the point of view
of differential geometry) is called Gribov ambiguity, and is here presented
within the framework of a global approach to quantum field theory. We first
give a simple (standard) example for the SU(2) group and spherically symmetric
potentials, then we discuss this phenomenon in general relativity, and recent
developments, including lattice calculations.Comment: 24 pages, Revtex 4. In the revised version, a statement has been
amended on page 11, and References 14, 16 and 27 have been improve