Upcoming gravitational wave-experiments promise a window for discovering new
physics in astronomy. Detection sensitivity of the broadband laser
interferometric detectors LIGO/VIRGO may be enhanced by matched filtering with
accurate wave-form templates. Where analytic methods break down, we have to
resort to numerical relativity, often in Hamiltonian or various hyperbolic
formulations. Well-posed numerical relativity requires consistency with the
elliptic constraints of energy and momentum conservation. We explore this using
a choice of gauge in the future and a dynamical gauge in the past. Applied to a
polarized Gowdy wave, this enables solving {\em all} ten vacuum Einstein
equations. Evolution of the Schwarzschild metric in 3+1 and, more generally,
sufficient conditions for well-posed numerical relativity continue to be open
challenges.Comment: invited talk, Asian Pacific CTP Winter School on black hole
astrophysics, Pohang, Kore