34 research outputs found

    A set-theoretical approach for ABox reasoning services (Extended Version)

    Full text link
    In this paper we consider the most common ABox reasoning services for the description logic DL4LQSR, ⁣×(D)\mathcal{DL}\langle \mathsf{4LQS^{R,\!\times}}\rangle(\mathbf{D}) (DLD4, ⁣×\mathcal{DL}_{\mathbf{D}}^{4,\!\times}, for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment \flqsr. The description logic DLD4, ⁣×\mathcal{DL}_{\mathbf{D}}^{4,\!\times} is very expressive, as it admits various concept and role constructs, and data types, that allow one to represent rule-based languages such as SWRL. Decidability results are achieved by defining a generalization of the conjunctive query answering problem, called HOCQA (Higher Order Conjunctive Query Answering), that can be instantiated to the most wide\-spread ABox reasoning tasks. We also present a \ke\space based procedure for calculating the answer set from DLD4, ⁣×\mathcal{DL}_{\mathbf{D}}^{4,\!\times} knowledge bases and higher order DLD4, ⁣×\mathcal{DL}_{\mathbf{D}}^{4,\!\times} conjunctive queries, thus providing means for reasoning on several well-known ABox reasoning tasks. Our calculus extends a previously introduced \ke\space based decision procedure for the CQA problem.Comment: 27 pages. Extended version for RR 2017. arXiv admin note: text overlap with arXiv:1606.0733

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Query rewriting under linear EL knowledge bases

    Get PDF
    With the adoption of the recent SPARQL 1.1 standard, RDF databases are capable of directly answering more expressive queries than simple conjunctive queries. In this paper we exploit such capabilities to answer conjunctive queries (CQs) under ontologies expressed in the description logic called linear EL-lin, a restricted form of EL. In particular, we show a query answering algorithm that rewrites a given CQ into a conjunctive regular path query (CRPQ) which, evaluated on the given instance, returns the correct answer. Our technique is based on the representation of infinite unions of CQs by non-deterministic finite-state automata. Our results achieve optimal data complexity, as well as producing rewritings straightforwardly implementable in SPARQL 1.1

    Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes: Extended Version

    Get PDF
    Lightweight temporal ontology languages have become a very active field of research in recent years. Many real-world applications, like processing electronic health records (EHRs), inherently contain a temporal dimension, and require efficient reasoning algorithms. Moreover, since medical data is not recorded on a regular basis, reasoners must deal with sparse data with potentially large temporal gaps. In this paper, we introduce a temporal extension of the tractable language ELH⊥, which features a new class of convex diamond operators that can be used to bridge temporal gaps. We develop a completion algorithm for our logic, which shows that entailment remains tractable. Based on this, we develop a minimal-world semantics for answering metric temporal conjunctive queries with negation. We show that query answering is combined first-order rewritable, and hence in polynomial time in data complexity

    On the containment of SPARQL queries under entailment regimes

    Full text link
    Most description logics (DL) query languages allow instance retrieval from an ABox. However, SPARQL is a schema query language allowing access to the TBox (in addition to the ABox). Moreover, its entailment regimes enable to take into account knowledge inferred from knowledge bases in the query answering process. This provides a new perspective for the containment problem. In this paper, we study the containment of SPARQL queries over OWL EL axioms under entailment. OWL EL is the language used by many large scale ontologies and is based on EL++. The main contribution is a novel approach to rewriting queries using SPARQL property paths and the μ-calculus in order to reduce containment test under entailment into validity check in the μ-calculus

    Proceedings of the 2008 Oxford University Computing Laboratory student conference.

    Get PDF
    This conference serves two purposes. First, the event is a useful pedagogical exercise for all participants, from the conference committee and referees, to the presenters and the audience. For some presenters, the conference may be the first time their work has been subjected to peer-review. For others, the conference is a testing ground for announcing work, which will be later presented at international conferences, workshops, and symposia. This leads to the conference's second purpose: an opportunity to expose the latest-and-greatest research findings within the laboratory. The fourteen abstracts within these proceedings were selected by the programme and conference committee after a round of peer-reviewing, by both students and staff within this department

    Conjunctive Query Answering for the Description Logic SHIQ

    Full text link
    Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP
    corecore