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Abstract. With the adoption of the recent SPARQL 1.1 standard, RDF databases
are capable of directly answering more expressive queries than simple conjunc-
tive queries. In this paper we exploit such capabilities to answer conjunctive
queries (CQs) under ontologies expressed in the description logic called linear
EL`in , a restricted form of EL. In particular, we show a query answering al-
gorithm that rewrites a given CQ into a conjunctive regular path query (CRPQ)
which, evaluated on the given instance, returns the correct answer. Our technique
is based on the representation of infinite unions of CQs by non-deterministic
finite-state automata. Our results achieve optimal data complexity, as well as pro-
ducing rewritings straightforwardly implementable in SPARQL 1.1.

1 Introduction

Ontologies have been successfully employed in conceptual modelling of data in several
areas, especially Information Integration and the Semantic Web. An ontology is a speci-
fication of the domain of interest of an application, and it is usually specified in terms of
logical rules which on the one hand restrict the form of the underlying data, and on the
other hand allow for inference of information that is not explicitly contained in the data.
Description Logic (DL) is a common family of knowledge representation formalisms
that are able to capture a wide range of ontological constructs [2]; they are based on
concepts (unary predicates representing classes of individuals) and roles (binary predi-
cates representing relations between classes). A DL knowledge base consists of a TBox
(terminological component) and an ABox (assertional component); the former is a con-
ceptual representation of the schema, while the latter is an instance of the schema. It is
important to note that a usual assumption in this context is the so-called open-world as-
sumption, that is, the information in the ABox is sound but not complete; the TBox, in
particular, determines how the ABox is to be completed with additional information so
as to answer queries. Answers to a query in this context are called, following database
parlance, certain answers, as they correspond to the answers that are true in all models
of the theory constituted by the knowledge base. This corresponds to cautious reasoning
as opposed to bold reasoning, where in the latter an answer is returned if it is entailed by
at least one model. The set of all models (which is not necessarily finite) is represented
by the so-called expansion (called chase in database parlance) of an ABoxA according
to a TBox T ; this is illustrated in the following example.
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Example 1. Consider the TBox T constituted by the assertions C v A andA v ∃S.C.
The concept ∃S.C denotes the objects connected via the role S to some object belong-
ing to the concept C; in other words, it contains all x such that S(x, y) and C(y) for
some y. The first assertion means that every object in the class C is also in A; the sec-
ond means that every object in the class A is also in the class represented by ∃S.C.
Now suppose we have the ABox A = {A(a)}; we can expand A according to the the
TBox T so as to add to it all atoms entailed by (T ,A); we therefore add S(a, z0) and
C(z0), where z0 is a so-called labelled null, that is, a placeholder for an unknown value
of which we know the existence. Given the query q defined as q(x) ← S(x, y), the
answer to it under (T ,A) is {a} because S(a, z0) is entailed by (T ,A); in fact, the
certain answers to q are obtained by evaluating q on the expansion and by considering
answers that do not contain nulls. If we consider the query q1 defined as q1(x)← C(x),
the answer is empty because z0, though known to exist, is not known.

Answers to queries over DL knowledge bases can be computed, in certain cases,
by a technique called query rewriting. In query rewriting, starting from a given query
q, a new query q′ is computed according to a knowledge base K = (T ,A), such
that the answers to q on K are obtained by evaluating q′ on A only; it is said that q
is rewritten into q′ and that q′ is the perfect rewriting of q with respect to T . The
language of q′, called the target language, can be more expressive than that of q. A
common rewriting technique for DLs and other knowledge representation formalisms,
inspired by resolution in Logic Programming, has union of conjunctive queries as target
language.

Example 2. Let us consider again the knowledge base of Example 1. The query q is
rewritten into the query q′ defined as q(x) ← A(x) ∪ S(x, y); intuitively, q′ captures
the fact that, to search for objects from which some other object is connected via the
role S, we need also to consider objects in A, because the TBox might infer the former
from the latter objects. The evaluation of q′ on A returns the correct answer.

In this paper we consider a DL which we call EL`in [17]. When executed on EL`in
TBoxes, the above rewriting technique does not guarantee termination. We therefore
resort to a more expressive target language for the rewriting, namely conjunctive regular
path queries (CRPQs).

Example 3. Consider the TBox T = {∃R.A v A} and the query q defined as q(x)←
A(x). It is easy to see that the above rewriting technique produces an infinite union of
conjunctive queries: q(x) ← A(x), q(x) ← R(x, y), A(y) and all conjunctive queries
of the form q(x) ← R(x, y1), . . . , R(yk, yk+1), A(yk+1), with k > 1. Now, in order
to capture this infinite rewriting, we can resort to the CRPQ rewriting q′ defined as
q(x)← R∗(x, y), A(y).

In this paper we propose a novel rewriting technique for the DL EL`in , where the
query language is that of conjunctive queries (CQs) and the target language is that
of CRPQs. This allows us to devise a query answering algorithm that has optimum
asymptotic complexity and relies on pure rewriting, without ABox expansion. Notice
that rewriting is generally considered efficient as the processing operates solely on the
query, while the ABox, which is normally considered to be much larger than the query



and the TBox, comes into play only at the last step, when the rewriting is evaluated on
it.

Our contributions are as follows.

– For illustrative purposes and technical reasons, we show a rewriting algorithm for
conjunctive queries on EL`in knowledge bases, which relies on a resolution-like
procedure widely adopted in the literature (see e.g. [10]).

– We present a novel rewriting technique, based on non-deterministic finite-state au-
tomata, for atomic queries on EL`in knowledge bases, with CRPQs as target lan-
guage. Intuitively, the expressive power of CRPQs is able to finitely capture the
infinite rewriting branches of the above algorithm.

– Finally, based on the rewriting technique for atomic queries, we present a technique
for rewriting CQs into CRPQs. This is achieved by splitting the problem in two:
first we deal with assertions that do not introduce labelled nulls; then, we show that
the rest of the assertions are guaranteed to have only tree-like (or, more precisely,
forest-like) models; this allows us to capture all paths (including the infinite ones)
from roots in the forest by means of finite-state automata. The final rewriting is
a CRPQ whose evaluation on the given ABox returns the correct answers to the
initial CQ. Since CRPQs can be straightforwardly expressed in SPARQL 1.1, by
the means of property paths, our approach is suitable for real-world settings.

– Our technique achieves optimal computational cost in data complexity, that is
where the TBox and the query are fixed and the ABox alone is a variable in-
put; in fact, our algorithm runs in NLOGSPACE in data complexity, which is the
known (tight) bound for CQ answering under EL`in knowledge bases. Notice also
that, regarding combined complexity (where query, TBox and ABox all constitute
the variable input), our rewriting is expressed in the language of CRPQs, which
can be evaluated in NP. Moreover, in the case of “simple” queries such as atomic
queries, our rewriting is expressed as a regular path query, which can be evaluated
in NLOGSPACE.

2 Preliminaries

In this section we present the formal notions which will be used in the rest of the paper.

2.1 Description Logics

We briefly introduce the syntax of the EL`in description logic (DL) [18, 16]. The al-
phabet contains three pairwise disjoint and countably infinite sets of concept names
A, role names R, and individual names I. A complex concept C is constructed from a
special primitive concept > (‘top’), concept names and role names using the following
grammar: C ::= A | ∃R.C | ∃R.>, where A ∈ A and R ∈ R. The set of complex
concepts is denoted by C. A terminological box (or TBox) T is a finite set of concept
and role inclusion axioms of the form C1 v C2 and R1 v R2, where C1, C2 ∈ C and
R1, R2 ∈ R. An assertion box (or ABox)A is a finite set of concept and role assertions
of the form C(a) and R(a, b), where C ∈ C, R ∈ R and a, b ∈ I. Given an ABox A,



we denote by ind(A) the set of individual names that occur inA. Taken together, T and
A comprise a knowledge base (or KB) K = (T ,A).

We adopt the semantics of DL defined in terms of interpretations. An interpretation
I is a pair (∆I , ·I) that consists of a non-empty domain of interpretation ∆I and an
interpretation function ·I which assigns (i) an element aI ∈ ∆I to each individual
name a, (ii) a subset AI ⊆ ∆I to each concept name A and (iii) a binary relation
P I ⊆ ∆I ×∆I to each role name P . We adopt the unique name assumption (UNA);
therefore distinct individuals are assumed to be interpreted by distinct domain elements.
The interpretation function ·I is extended inductively for complex concepts by taking:

(∃R.>)I = {u | there is a v such that (u, v) ∈ RI} ,
(∃R.C)I = {u | there is a v ∈ CI such that (u, v) ∈ RI} .

We now define the satisfaction relation |= for inclusions and assertions:

I |= C1 v C2 if and only if CI1 ⊆ CI2 ,
I |= R1 v R2 if and only if RI1 ⊆ RI2 ,
I |= C(a) if and only if aI ∈ CI ,
I |= R(a, b) if and only if (aI , bI) ∈ RI .

We say that an interpretation I is a model of a knowledge base K = (T ,A), written
I |= K, if it satisfies all concept and role inclusions of T and all concept and role
assertions of A. A TBox is said to be in normal form if each of its concept inclusion
axioms is of the forms A v B, ∃P.C v A, or A v ∃P.C, where A,B ∈ A, C ∈ A ∪
{>} and P ∈ R. We recall that every EL TBox can be transformed into an equivalent
TBox in normal form of size that is linear in the size of the original TBox [14].

2.2 Regular Languages and Conjunctive Regular Path Queries

We assume the reader is familiar with regular languages, represented either by regular
expressions or nondeterministic finite state automata. A nondeterministic finite state
automaton (NFA) over a set of symbols Σ is a tuple α = (Q,Σ, δ, q0, F ), where Q is
a finite set of states, δ ⊆ Q × Σ × Q the transition relation, q0 ∈ Q the initial state,
and F ⊆ S the set of final states. We use L(α) to denote the regular language defined
by an NFA α, and (Σ)∗ to denote the set of all strings over symbols in Σ, including the
empty string ε.

In order to define queries, we also need to assume the existence of a countably
infinite set of variables V. A term t is an individual name in I or a variable in V. An
atom is of the form α(t, t′), where t, t′ are terms, and α is an NFA or regular expression
defining a regular language over R ∪ A. We say that a string s ∈ (R ∪ A)∗ is a path.

A conjunctive regular path query (CRPQ) q of arity n has the form q(x)← γ(x,y),
where x = x1, . . . , xn and y = y1, . . . , ym are variables, and γ(x,y) is a set of atoms
with variables from x and y. q(x) is called the head of q and is denoted by head(q),
and γ(x,y) is the body of q and denoted by body(q). The variables in x = x1, . . . , xn
are the answer variables of q, while those in y = y1, . . . , ym are the existentially
quantified variables of q. A Boolean CRPQ is a CRPQ with no answer variables. A
regular path query (RPQ) is a CRPQ with a single atom in its body. A path query (PQ)



is an RPQ q = head(q) ← α(x, y) such that α ∈ (R ∪ A)∗, where α is the path of q
denoted by path(q).

A conjunctive query (CQ) q is a CRPQ such that, for each atom α(t, t′) ∈ body(q),
α ∈ (R ∪ A). Informally, CQs disallow regular expressions in their bodies. Given
a CRPQ q with answer variables x = x1, . . . , xn and an n-tuple of individuals
a = (a1, . . . , an), we use q(a) to refer to the Boolean query obtained from q by re-
placing xi with ai in body(q), for every 1 6 i 6 n.

We now define the semantics of CRPQs [7]. Given the individual names a, b, an
interpretation I, and a regular language α over the alphabet R ∪ A, we have that
I |= a

α−→ b if and only if there is some w = u1 . . . un ∈ L(α) and some sequence
e0, . . . , en with ei ∈ ∆I , 0 6 i 6 n, such that e0 = aI and en = bI , and for all
1 6 i 6 n : (i) if ui = A ∈ A, then ei−1 = ei ∈ AI ; (ii) if ui = R ∈ R, then
(ei−1, ei) ∈ RI . A match for a Boolean CRPQ q in an interpretation I is a mapping
π from the terms in body(q) to the elements in I such that: (1) π(c) = c if c ∈ I; (2)
I |= π(t)

α−→ π(t′) for each atom α(t, t′) in q.
Note that, to avoid notational clutter, we do not allow unary atoms in the body of the

query. In fact, each atom of the form A(t), where A ∈ A and t ∈ V ∪ I, can be always
replaced by a binary atom A(t, z), where z is a variable. However, for better legibility,
we use unary atoms in some examples throughout the paper. We write I |= q if there is
a match for q in I, and K |= q if I |= q for every model I of the KB K. For brevity,
given an ABox A we use A |= q to refer to (∅,A) |= q, where (∅,A) is a knowledge
base with empty TBox. Given a CRPQ q of arity n we say that a tuple of individual
names a = (a1, . . . , an) is a certain answer for q with respect to a KB K if and only if
K |= q(a) .

3 Rewriting of Conjunctive Queries into First-Order Queries

In this section we show a technique for rewriting CQs into a union of conjunctive
queries under an EL`in TBox. We base our approach on the rewriting algorithm pro-
posed in [9], which deals with DL-LiteR KBs. We do this to establish correctness of
the rewriting approach with the NFAs illustrated in Section 4. The technique is based
on two steps: a reduction step, which eliminates atoms that are more specific than some
other atom, and the actual rewriting step, which is similar to the resolution step in logic
programming. Notice that the algorithm might not terminate; we present it for technical
reasons, as in Sections 4 and 5 we will show that our CRPQ rewriting captures all the
rewriting branches produced by the algorithm, including infinite ones.

Following the approach of [9], we say that a term of an atom in a query is bound if it
corresponds to (i) an answer variable, (ii) a shared variable, that is, a variable occurring
at least twice in the query body, or (iii) a constant, that is an element in I. Conversely,
a term of an atom in a query is unbound if it corresponds to a non-shared existentially
quantified variable. As usual, we use the symbol ‘ ’ to represent an unbound term.

A set of atoms A = {a1, . . . , an}, where n > 2, unifies if there exists a substitution
φ, called unifier for A, such that (i) if t ∈ I, then φ(t) = t, and (ii) φ(a1) = · · · = φ(an).
Reduce is a function that takes as input a conjunctive query q and a set of atoms S
occurring in the body of q and returns a conjunctive query q obtained by applying to q



the most general unifier between the atoms of S. We point out that, in unifying a set of
atoms, each occurrence of the symbol is considered to be a different unbound variable.

We now define when concept and role inclusion axioms are applicable to atoms in
a query. An axiom I is applicable to an atom A(x1, x2) for A ∈ A if I is of the form
B v A, ∃R.> v A or ∃R.B v A. An axiom I is applicable to an atom P (x1, x2)
for P ∈ R if (1) x2 = and the right-hand side of I is ∃P.> or ∃P.A; or (2) the right-
hand side of I is P . An axiom I is applicable to a pair of atoms P (x1, x2), A(x2, x3)
if x2 does not appear in other atoms of the query body, x3 = and I is of the form
C v ∃P.A. Below we define the set of rewriting rules for atoms in the query body.
Let I be an inclusion assertion that is applicable to a sequence of query atoms g. The
sequence of atoms obtained from g by applying I , denoted by gr(g, I), is defined as
follows:

(a) If g = A(x1, x2) and I = B v A, then gr(g, I) = B(x1, x2);
(b) If g = A(x1, x2) and I = ∃P.> v A, then gr(g, I) = P (x1, );
(c) If g = A(x1, x2) and I = ∃P.B v A, then gr(g, I) = P (x1, z1), B(z1, ), where

z1 is a fresh variable;
(d) If g = P (x1, ) and I = A v ∃P.> or I = A v ∃P.B, then gr(g, I) = A(x1, );
(e) If g = P (x1, x2) and I = R v P , then gr(g, I) = R(x1, x2);
(f) If g = P (x1, x2), A(x2, ) and I = C v ∃P.A , then gr(g, I) = C(x1, );

We denote by Rewrite(q, T ) the rewriting procedure that generates the perfect rewrit-
ing of q with respect to T (see Figure 1).

Algorithm 1: Algorithm Rewrite(q, T )
Data: Conjunctive query q, TBox T .
Result: Union of conjunctive queries Q.
Q := {〈q, 1〉};
repeat

Q′ := Q ;
foreach 〈qr, x〉 ∈ Q′ do

/* Reduction step */
if there exists I ∈ T such that I is not applicable to qr then

foreach set of atoms S ⊆ body(qr) do
if S unify then

Q := Q ∪ 〈Reduce(qr, S), 0〉

/* Rewriting step */
foreach axiom I ∈ T do

if I is applicable to qr then
qr′ := rewrite qr according to I ;
Q := Q ∪ 〈qr′, 1〉

until Q′ = Q;
Qfin := {q | 〈q, 1〉 ∈ Q} ;
return Qfin



Example 4. Consider applying the Rewrite procedure to a query q of the form q(x)←
R(x, y), R( , y) over the TBox {A v ∃R.>}, where A ∈ A and R ∈ R. In this query,
the atoms R(x, y) and R( , y) unify, and executing Reduce(q, {R(x, y), R( , y)})
yields the atom R(x, y). The variable y is now unbound, so can be replaced by “ ”
(a don’t care). Note that the reduction step produces a query marked with ‘0’ whilst
the rewriting step marks queries with ‘1’, and only queries marked with ‘1’ are added
to the output set. We adopt this approach to avoid redundancy in the output set, as a
query marked with ‘0’ is always contained in a query marked with ‘1’. Now, the axiom
{A v ∃R.>} can be applied to R(x, ), whereas, before the reduction process, it could
not be applied to any atom of the query. Following this, the rewriting step reformulates
the query to q(x) ← A(x, ) which is added to the output set. For more details on the
rewriting procedure refer to [9, 10].

Now we show that each disjunct of the perfect rewriting of an atomic concept query
with respect to an EL`in TBox is of a special form called a simple path conjunctive
query, defined below. We then define some technical lemmas which will be used in
Section 4 for the rewriting of atomic concepts by means of a finite-state automaton.

Definition 1. A conjunctive query q is a simple path conjunctive query (SPCQ) if
body(q) is of one of the following forms: (i) A(x1, x2);
(ii) P1(x1, y1), P2(y1, y2), . . . , Pn−1(yn−2, yn−1), Pn(yn−1, x2); or
(iii) P1(x1, y1), P2(y1, y2), . . . , Pn−1(yn−2, yn−1), Pn(yn−1, yn), A(yn, x2), where:
x1, x2 are terms; for each i, yi is an existentially quantified variable and yi 6= yi+1;
n > 1; A ∈ A and P1, . . . , Pn ∈ R.

Note that query q in Example 4 is not an SPCQ. An SPCQ head(q) ←
Z1(x0, x1), . . . , Zn(xn−1, xn) is equivalent to an RPQ of the form head(q) ←
Z1 . . . Zn(x0, xn); thus, throughout the paper we will use either the RPQ form or the
CQ form of a SPCQ, whichever is more natural in the given context. For instance, given
a SPCQ q, with a little abuse of notation we have that path(q) is Z1 . . . Zn.

Given two paths p, p′, we say that p′ contains p, written p v p′, if for each ABoxA
and for each tuple a = (a, a′) it holds that, ifA |= q()← p(a) thenA |= q()← p′(a).
Given a path p and an NFAN over (R ∪ A)∗ we say thatN contains p, written p v N
if there exists some α ∈ L(N ) such that p v α.

Lemma 1. Given an SPCQ q, an EL`in TBox T and an axiom ρ ∈ T that is not
applicable to body(q), for each set of atoms S ⊆ body(q) that unify, ρ is also not
applicable to body(Reduce(q, S)).

Proof. (Sketch) We consider all the possible cases of ρ.
Case 1: ρ is of the type B v A, ∃P.>, ∃R.B v A, R v P . ρ is not

applicable to body(q) if an atom A(x1, x2) or P (x1, x2) are not in body(q). If
A(x1, x2) or P (x1, x2) is not in body(q), then A(x1, x2) or P (x1, x2) is clearly not
in body(Reduce(q, S)) and the claim follows.

Case 2: ρ is of the type A v ∃R.>. ρ is not applicable to body(q) if an atom
R(x1, x2) is not in body(q), or if R(x1, x2) is in body(q) and x2 6= . If R(x1, x2) is
not in body(q), then R(x1, x2) is clearly not in body(Reduce(q, S)). If R(x1, x2) is in



body(q) and x2 6= , since q is an SPCQ, this happens only if R(x1, x2) is not the last
atom of the path. The only way to have x2 = is to unify R(x1, x2) with the atom at its
right as it is the only atom that can have x2. If there exists a unification, the reduction
produces an atom R(xi, xi), with xi 6= and the claim follows.

Case 3: ρ is of the type A v ∃R.B. Since q is an SPCQ, ρ is not applicable to
body(q) if the atoms R(x1, x2), B(x2, x3) are not in body(q) or if R(x1, x2) is in
body(q) and x2 6= . It is easy to see that this case is similar to the case where ρ is of
the type A v ∃R.>.

Following from Lemma 1 we have that, to rewrite CQs with respect to EL`in TBoxes,
the reduction step generates queries that are never processed by the rewriting step. So, in
our case, the reduction step is of no use. However, we keep it in the rewriting algorithm
in order to handle future extensions to the ontology language.

Lemma 2. Let T be an EL`in TBox and q a CQ of the form q(x) ← A(x, y), with
A ∈ A. If qrew ∈ Rewrite(q, T ), then qrew is an SPCQ.

Proof. (Sketch) Following from Lemma 1 we know that queries produced by the reduc-
tion step are never processed by the rewriting step, and so they are never marked with
‘1’. So, queries produced by the reduction step are never in the output set, and thus we
can ignore the reduction step. The proof is then by induction on the set of queries that
are produced after each rewriting step. We denote byQ[i] the set of the queries produced
after the i-th iteration of the repeat loop in Algorithm 1.

BASE STEP. Q[1] = {q(x)← A(x, y)} plus the queries obtained by the 1st rewrit-
ing step. The possible cases are the rewriting rules (a), (b) and (c) which generate
SPCQs.

INDUCTIVE STEP. If q ∈ Q[i+1], then q is computed by applying a rewriting rule to
a query inQ[i]. The claim follows by induction if for each rewriting q to q′, we have that
q′ is a SPCQ. If q is a SPCQ then we can identify a fixed set of possible rewriting cases,
according to the rewriting rules. For each possible rewriting case, when q is rewritten
to q′, it is easy to see that if q is a SPCQ, then q′ is a SPCQ.

It is important to note that this algorithm is not guaranteed to terminate on EL`in
knowledge bases; see e.g. the TBox of Example 3. This is because the algorithm es-
sentially enumerates all rewritings produced by single applications of the reduction and
the rewriting steps; when the algorithm is forced by the TBox to cycle on a set of as-
sertions, it produces infinite branches and does not terminate. However, it is possible
to capture such cyclic applications of the rewriting steps if we adopt a more expressive
target language for the rewriting; this is the subject of the next two sections: in Section 4
we show how to encode the rewritings for an atomic query by means of a finite-state
automaton; in Section 5 we present a technique, similar to that shown in [14] for OWL
QL, that allows us to combine rewritings for atomic queries so as to obtain a CRPQ
rewriting for CQs.

4 Rewriting for Atomic Concept Queries

In this section we show how to encode rewritings for atomic queries under EL`in by
means of a finite-state automaton; intuitively, the automaton is able to encode infinite



sequences of rewriting steps executed according to the algorithm of Section 3. We con-
centrate on atomic queries having a concept atom in the body, since in the case of role
atoms, this is done by a simple check on sequences of role inclusions in the TBox —
see [13].

Definition 2. Let T be an EL`in TBox in normal form, Σ the alphabet R ∪ A and A a
concept name appearing in T . The NFA-rewriting of A with respect to T , denoted by
NFAA,T , is the NFA over Σ of the form (Q,Σ, δ, q0, F ) defined as follows:

(1) states SA and SFA are in Q, SFA is in F , and transition (SA, A, SFA) is in δ;
(2) SA is the initial state q0, S> is a final state;
(3) for each B ∈ A that appears in at least one concept or role inclusion axiom of T ,

states SB and SFB are in Q,SFB is in F , and transition (SB , B, SFB) is in δ;
(4) for each concept inclusion axiom ρ ∈ T : (4.1) if ρ is of the form B v C, where

B,C ∈ A, the transition (SC , ε, SB) is in δ; (4.2) if ρ is of the form B v ∃R.>,
where B ∈ A and R ∈ R, for each transition (SX , R, S>) ∈ δ, the transition
(SX , ε, SB) is in δ; (4.3) if ρ is of the form ∃R.> v B, where B ∈ A and R ∈ R,
the transition (SB , R, S>) is in δ; (4.4) if ρ is the form ∃R.D v C, whereC,D ∈ A
and R ∈ R, the transition (SC , R, SD) is in δ; (4.5) if ρ is the form C v ∃R.D,
where C,D ∈ A and R ∈ R, for any sequence of transitions starting from SX that
accepts the strings RD or R, the transition (SX , ε, SC) is in δ;

(5) for each role inclusion axiom T v S ∈ T and each transition of the form
(SC , S, SB) ∈ δ, the transition (SC , T, SB) is in δ.

Example 5. Consider the TBox T defined by the following inclusion assertions:
∃R.C v ∃P.>, ∃P.> v A, ∃P.> v B, ∃T.B v C and ∃S.A v A, where P ,
R, S, T are role names and A, B, C are concept names. Consider now the query
q = q(x) ← A(x, y). First, we transform T into normal form, say T ′, by adding a
fresh concept name X and by replacing ∃R.C v ∃P.> by ∃R.C v X and X v ∃P.>.
It is easy to see that Rewrite(q, T ′) runs indefinitely (for instance, we have an infinite
loop when rule (c) is applied to the atom A(x, y)). Let us consider the NFA rewrit-
ing of A with respect to T ′. We construct NFAA,T ′ as follows: by (3) we have the
transitions (SA, A, SFA), (SB , B, SFB), (SC , C, SFC) and (SX , X, SFX); by (4.3)
and the inclusion assertions ∃P.> v A and ∃P.> v B, we have the transitions
(SA, P, S>) and (SB , P, S>); by (4.2) and the inclusion assertion X v ∃P.>, we
have the transitions (SA, ε, SX) and (SB , ε, SX); finally, by (4.4) and the inclusion as-
sertions ∃R.C v X , ∃T.B v C and ∃S.A v A, we have the transitions (SX , R, SC),
(SC , T, SB) and (SA, S, SA). The NFA NFAA,T ′ is illustrated in Figure 1. The lan-
guage accepted by NFAA,T ′ can be described by the following regular expression:
(∃S.)∗(A|X|(RT )∗(P |RC|RT (B|X))). It is easy to see that all the infinite outputs
of Rewrite(q, T ′) are of the form q(x)← NFAA,T ′(x, y). For instance, some possible
rewritings of q are:

q(x)← S(x, z1), S(z1, z2), P (z2, y)
q(x)← S(x, z1), S(z1, z2), A(z2, y)
q(x)← R(x, z1), T (z1, z2), R(z2, z3), C(z3, y)
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Fig. 1. NFA for Example 5.

It is easy to verify that each of these output queries is a SPCQ and each path is in
L(NFAA,T ′).

Theorem 1. Let T be an EL`in TBox, and a concept A. We have that q ∈
Rewrite(q(x)← A(x, y), T ) if and only if path(q) ∈ L(NFAA,T ).

Proof. (Sketch) (⇒) The proof is by induction on the set of queries that are marked
with ‘1’ after each rewriting step, as the queries marked with ‘0’ are not returned by the
algorithm. We denote byQ[i] the set of queries marked with ‘1’ after the i-th application
of the rewriting step.

BASE STEP. Q[0] = {q}. By (2) we have that SA is the initial state q0 and by (3)
we have the transition (SA, A, SFA) therefore A ∈ L(NFAA,T ) and the claim follows
trivially.

INDUCTIVE STEP. From Lemma 1 we have that, if an axiom ρ ∈ T is not applicable
to body(q), for each set of atoms S ⊆ body(q) that unify, ρ is also not applicable
to body(Reduce(q, S)). It follows that if a query q′ is marked with ‘0’ then there is
no axiom in T that is applicable to q′. Thus, if q ∈ Q[i+1], then q is computed by
applying a rewriting rule to a query that is marked with ‘1’ at i-th application of the
rewriting step, which is a query in Q[i]. Suppose that for each q ∈ Q[i] we have that
Path(q) ∈ L(NFAA,T ), the claim follows by induction if for each rewriting q to q′, we
have that Path(q′) ∈ L(NFAA,T ). From Lemma 2 it follows that the body of each query
marked with ‘1’ is a simple path, thus we can identify a fixed set of possible rewriting
cases. For each of possible rewriting case, when q is rewritten to q′, there is a rule in the
definition of L(NFAA,T ) such that Path(q) ∈ L(NFAA,T )→ Path(q′) ∈ L(NFAA,T )
is true.

(⇐) The claim follows by induction on the construction rules of the NFAA,T start-
ing from A, which correspond to all the possible rewriting steps of Rewrite(q(x) ←
A(x, y), T ).

Theorem 2. Given an EL`in TBox T , concept A and a complex concept B, we have
that T |= B v A if and only if B v NFAA,T .



Proof. From Theorem 1 we have that NFAA,T is a perfect rewriting of A with respect
to T and the claim follows.

5 CRPQ rewriting for EL`in

In this section, following the approach of [13, 14], we split the problem of rewriting
CQs under EL`in in two: we deal separately with the part of the TBox that does not
have existential quantification on the right-hand side of assertions (that is, the part that
when expanded does not produce any labelled null) and with the rest of the TBox. We
make use of the algorithm for atomic queries presented in the previous section. Then,
we put together the solutions devised for the two parts to produce a rewriting algorithm
for CQs under EL`in .

Given an EL`in knowledge base (T ,A) with T in normal form, we can find all
answers to a CQ q over this KB by evaluating q over the (possibly infinite) canonical
model CT ,A which can be constructed using the chase procedure. We begin by defining
the standard model IA of the ABox A as follows: (1) ∆IA = ind(A); (2) aIA = a,
for a ∈ ind(A); (3) AIA = {a | A(a) ∈ A}, for concept name A; (4) P IA =
{(a, b) | P (a, b) ∈ A}, for role name P . Then we take the standard model IA as I0
and apply inductively the following rules to obtain Ik+1 from Ik: (a’) if d ∈ AIk1 and
A1 v A2 ∈ T , then we add d to AIk+1

2 ; (b’) if (d, d′) ∈ RIk1 and R1 v R2 ∈ T , then
we add (d, d′) toRIk+1

2 ; (c’) if d ∈ (R.D)Ik and ∃R.D v A ∈ T , whereD is a concept
name or >, then we add d to AIk+1 ; (d’) if d ∈ AIk and A v ∃R.D ∈ T , where D is a
concept name or>, then we take a fresh labelled null, d′, and add d′ toDIk+1 and (d, d′)
to RIk+1 . The canonical model CT ,A constructed using rules (a’), (b’), (c’) and (d’) in
a bottom-up fashion can alternatively be defined with the top-down approach illustrated
in this section; this will be required for query rewriting in Section 5.2. There are two key
observations that lead us to the alternative definition: first, fresh labelled nulls can only
be added by applying (d’), and, second, if two labelled nulls, d1 and d2, are introduced
by applying (d′) with the same concept inclusion A v ∃R.D, then the same rules will
be applicable to d1 and d2 in the continuation of the chase procedure. So, each labelled
null d′ resulting from applying (d′) to some A v ∃R.D on a domain element d can
be identified with a pair of the form (d,∃R.D). Following from Theorem 2, for each
concept ∃R.D that appears at the RHS of a concept inclusion axiom in T , we introduce
a fresh symbol w∃R.D that is a witness for ∃R.D and define a generating relation ;T ,A
on the set of these witnesses together with ind(A) by taking:

– a;T ,A w∃R.D, if a ∈ ind(A), IA |= B(a) and B v NFAA,T ,
– w∃S.B ;T ,A w∃R.D if B v NFAA,T and A v ∃R.D ∈ T ,

where S is a role name. We point out that we are able to define a finite generating
relation ;T ,A for an EL`in knowledge base (T ,A) with the definition of NFAA,T . In
fact, NFAA,T captures all (possibly infinite) expressionsB such that T |= B v A. This
allows us to exploit the Tree-Witness rewriting technique in [14] (see Section 5.2).

A path;T ,A σ is a finite sequence aw∃R1.D1
. . . w∃Rn.Dn

, n > 0, such that a ∈
ind(A) and, if n > 0, then a;T ,A w∃R1.D1

and w∃Ri.Di
;T ,A w∃Ri+1.Di+1

, for i <
n. Thus, a path of the form σw∃R.D is also the fresh labelled null introduced by applying



(d’) to some A v ∃R.D on the domain element σ (and which corresponds to the pair
(σ, ∃R.D) mentioned above). Let us denote by tail(σ) the last element in σ; as we noted
above, the last element in σ uniquely determines all the subsequent rule applications.
The canonical model CT ,A is defined by taking ∆CT ,A to be the set of all path;T ,A

and taking: (1) aCT ,A = a, for a ∈ ind(A); (2) ACT ,A = {a ∈ ind(A) | IA |=
B(a) and B v NFAA,T } ∪ {σw∃R.D | D v NFAA,T }, for each concept name A; (3)
P CT ,A = {(a, b) | IA |= R(a, b) and T |= R v P} ∪ {(σ, σw∃R.D) | tail(σ) ;T ,A
w∃R.D, T |= R v P}, for a role name P. We point out that, by the definition of rule
(b’), we have that T |= R v P only if there is a sequence of roles R0, . . . , Rn such
that Ri−1 v Ri are in T , for 1 6 i 6 n, and Rn = P . For proof refer to [13].

Given a CQ q, we use the assertions of the TBox T to rewrite q into another query
q′ that returns, when evaluated over the data instance (ABox)A, all the certain answers
of q with respect to (T ,A). Notice that the rewriting q′ only depends on the TBox T
and the given query q; it is independent of the ABox A. In query processing, therefore,
we use A only in the final step, when the rewriting is evaluated on it.

We call a CQ q and a TBox T CRPQ-rewritable if there exists a CRPQ q′

such that, for any ABox A and any tuple a of individuals in ind(A), we have
(T ,A) |= q(a) if and only if A |= q′(a).

5.1 Rewriting for Flat EL`in

We first consider an important special case of flat EL`in TBoxes that do not contain
existential quantifiers on the right-hand side of concept inclusions. In other words, flat
EL`in in normal form can only contain concept and role inclusions of the form A1 v
A2, ∃R.D v A and R1 v R2, for concept names A,A1, A2, role names R1, R2, and
D a concept name or >. Now let T be a flat EL`in TBox, q a conjunctive query and
a a tuple of individuals. Since CT ,A is the canonical model for (T ,A), we have that
(T ,A) |= q(a) if and only if q(a) is true in the canonical model CT ,A. The TBox
is flat, the generating relation ;T ,A is empty, the canonical model CT ,A contains no
labelled nulls, and so, by the definition of CT ,A, we have that:

– CT ,A |= A(a) if and only if IA |= B(a) and T |= B v NFAA,T , for some B,
– CT ,A |= P (a, b) if and only if IA |= R(a, b) and T |= R v P , for some R.

For a CQ q, we define now rewriting qext as a union of CRPQs which is the result
of replacing every atom A(z1, z2) in q with Aext(z1, z2) and every atom P (z1, z2)
in q with Pext(z1, z2), where Aext(u1, u2) = NFAA,T (u1, u2) and Pext(u1, u2) =⋃
T |=RvP

R(u1, u2). This leads to the following results.

Proposition 1. For all concept names A, role names P and individual names a and b
we have: (1) CT ,A |= A(a) if and only if IA |= q()← Aext(a, a), (2) CT ,A |= P (a, b)
if and only if IA |= q()← Pext(a, b).

Proof. Follows immediately from the definitions of the formulas Aext and Pext.

Proposition 2. For any CQ q and any flat EL`in TBox T , qext is the CRPQ rewriting
of q with respect to T .



Proof. Follows immediately from the previous proposition and from the fact that each
formula of the form R1(u1, u2) ∪ · · · ∪ Rn(u1, u2) can be expressed as a regular path
formula of the form R1| · · · |Rn(u1, u2).

5.2 Tree-Witness Rewriting for Full EL`in

Following a divide and conquer strategy, we show how the process of constructing FO-
rewritings can be split into two steps: the first step considers only the flat part of the
TBox and uses the formulas Aext(u1, u2) and Pext(u1, u2) defined in Section 5.1; the
second step (to be described below) takes account of the remaining part of the TBox,
that is, inclusions of the form A v ∃R.D. We first need some preliminary definitions.

Definition 3. (H-completeness) Let T be a (not necessarily flat) EL`in TBox. A simple
ABoxA is said to be H-complete with respect to T if, for all concept namesA and role
names P , we have:

– A(a) ∈ A if IA |= B(a) and B v NFAA,T , for some B,
– P (a, b) ∈ A if IA |= R(a, b) and T |= R v P , for some R.

Observe that, if an ABox A is H-complete with respect to T , then the ABox part of
CT ,A coincides with IA. Thus, if T is flat then q itself is clearly the perfect rewriting
of q and T over H-complete ABoxes. This leads to the following proposition.

Proposition 3. If q′ is the perfect rewriting of q and T over H-complete ABoxes, then
q′ext is the perfect rewriting of q with respect to T .

So, to generate a CRPQ rewriting we can now focus on constructing rewritings over
H-complete ABoxes. To achieve this, we reuse a technique adopted in [14] called Tree
Witness. Suppose T is a EL`in TBox in normal form. To compute certain answers to
q over (T ,A), for some A, it is enough to find answers to q in the canonical model
CT ,A. To do this, we have to check, for every tuple a of elements in ind(A), whether
there exists a homomorphism from q(a) to CT ,A. Thus, as in the case of flat TBoxes,
the answer variables take values from ind(A). However, the existentially quantified
variables in q can be mapped both to ind(A) and to the labelled nulls in CT ,A. In
order to identify how the existential variables can be mapped to the anonymous part,
it is sufficient to take a look at the tree-like structure of the generating relation. This
technique allows us to rewrite a CQs with respect to EL`in TBoxes over H-complete
ABoxes; for details on the Tree Witness rewriting technique, consult [13, 14].

Theorem 3. Let T be an EL`in TBox and q a CQ. Let q′ be the Tree Witness rewriting
for q with respect to T over H-complete ABoxes. For any ABox A and any tuple a in
ind(A), we have CT ,A |= q(a) if and only if IA |= q′ext(a).

Corollary 1. Let T be an EL`in TBox and q a CQ. T is CRPQ-rewritable with respect
to q.



6 Discussion

In this paper we presented a rewriting algorithm for answering conjunctive queries un-
der EL`in knowledge bases. We showed how to encode rewritings of atomic queries
with finite-state automata, and finally how to combine such automata in order to pro-
duce rewritings for the full language of CQs. We believe that our contribution sheds
light on the possibilities of efficient query rewriting under DLs. Our rewriting tech-
nique achieves optimal data complexity (see below), and produces a “compact” rewrit-
ing without having to take the ABox into account; then the rewriting is evaluated on the
ABox, which does not need to be expanded. We therefore argue that this pure rewriting
approach is likely to be suitable for real-world cases, especially considering that the
final CRPQ evaluation step can be performed by expressing the CRPQ in SPARQL 1.1.

Complexity. When considering query answering under ontologies, the most important
asymptotic complexity measure is the so-called data complexity, i.e. the complexity
w.r.t. the ABox A. Our rewriting is evaluated on A in NLOGSPACE in data complex-
ity [4], which coincides with the lower bound for CQ answering in EL`in (see [17],
where EL`in is called DL-lite+). In terms of combined complexity, i.e. the complex-
ity w.r.t. A, T and q, we limit ourselves to a few consideration, leaving the issue to
another work. Our rewriting, which is exponential in the query and the TBox, sim-
ilarly to other approaches, has the advantage of being expressed in CRPQs (which
implies the possibility of being easily translated in SPARQL, as above noted) whose
evaluation is in NP [8]. Moreover our technique behaves as “pay-as-you-go” because in
the case of atomic queries it produces a rewriting as an RPQ which can be evaluated
in NLOGSPACE.

Related work. Query rewriting has been extensively employed in query answering
under ontologies [10, 16, 15]. In particular, [17] presents a resolution-based query
rewriting algorithm for DL-Lite+ ontologies (which is EL`in ), with Linear Datalog
as target language. In [3] the authors introduce a backward chaining mechanism to
identify decidable classes of tuple-generating dependencies. Tractable query rewriting
(in NLOGSPACE) for the DL-Lite family was presented in [9]; similarly, Rosati [18]
used a rewriting algorithm for DL TBoxes expressed in the EL family of languages [1]
to show that query answering in EL is PTIME-complete in data complexity. Other
works [5, 6] study FO-rewritability of conjunctive queries in the presence of ontolo-
gies formulated in a description logic between EL and Horn-SHIF , along with related
query containment problems. In [12, 11] the authors propose an algorithm for comput-
ing FO rewritings of concept queries under EL TBoxes that is tailored towards efficient
implementation. The tree-witness technique adopted in this paper is derived from that
of [13, 14], which address query rewriting over EL, QL andRL, and propose the tree-
witness approach to rewrite QL. The complexity of answering CRPQs under DL-Lite
and EL families is studied in [7].

Future work. We are extending our work in several directions. The most immediate
ones are the following: (1) we plan to consider CRPQs as the language for queries, and
devise a suitable rewriting algotithm; (2) we plan to consider inverse roles, and identify



syntactic properties that would still guarantee rewritability of CQs into CRPQs; note
that the ontology language so defined subsumes QL; (3) we intend to include complex
role chains and unions in the language, as in [15]. We already have results on (1) and (3).

Acknowledgments. We thank Michael Zakharyaschev and Roman Kontchakov for pre-
cious discussions about this material.
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