1,706 research outputs found

    Dynamic and Leakage Power-Composition Profile Driven Co-Synthesis for Energy and Cost Reduction

    No full text
    Recent research has shown that combining dynamic voltage scaling (DVS) and adaptive body bias (ABB) techniques achieve the highest reduction in embedded systems energy dissipation [1]. In this paper we show that it is possible to produce comparable energy saving to that obtained using combined DVS and ABB techniques but with reduced hardware cost achieved by employing processing elements (PEs) with separate DVS or ABB capability. A co-synthesis methodology which is aware of tasks’ power-composition profile (the ratio of the dynamic power to the leakage power) is presented. The methodology selects voltage scaling capabilities (DVS, ABB, or combined DVS and ABB) for the PEs, maps, schedules, and voltage scales applications given as task graphs with timing constraints, aiming to dynamic and leakage energy reduction at low hardware cost. We conduct detailed experiments, including a real-life example, to demonstrate the effectiveness of our methodology. We demonstrate that it is possible to produce designs that contain PEs with only DVS or ABB technique but have energy dissipation that are only 4.4% higher when compared with the same designs that employ PEs with combined DVS and ABB capabilities

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    DART: Distribution Aware Retinal Transform for Event-based Cameras

    Full text link
    We introduce a generic visual descriptor, termed as distribution aware retinal transform (DART), that encodes the structural context using log-polar grids for event cameras. The DART descriptor is applied to four different problems, namely object classification, tracking, detection and feature matching: (1) The DART features are directly employed as local descriptors in a bag-of-features classification framework and testing is carried out on four standard event-based object datasets (N-MNIST, MNIST-DVS, CIFAR10-DVS, NCaltech-101). (2) Extending the classification system, tracking is demonstrated using two key novelties: (i) For overcoming the low-sample problem for the one-shot learning of a binary classifier, statistical bootstrapping is leveraged with online learning; (ii) To achieve tracker robustness, the scale and rotation equivariance property of the DART descriptors is exploited for the one-shot learning. (3) To solve the long-term object tracking problem, an object detector is designed using the principle of cluster majority voting. The detection scheme is then combined with the tracker to result in a high intersection-over-union score with augmented ground truth annotations on the publicly available event camera dataset. (4) Finally, the event context encoded by DART greatly simplifies the feature correspondence problem, especially for spatio-temporal slices far apart in time, which has not been explicitly tackled in the event-based vision domain.Comment: 12 pages, revision submitted to TPAMI in Nov 201

    Energy Optimization in Commercial FPGAs with Voltage, Frequency and Logic Scaling

    Get PDF
    This paper investigates the energy reductions possible in commercially available FPGAs configured to support voltage, frequency and logic scalability combined with power gating. Voltage and frequency scaling is based on in-situ detectors that allow the device to detect valid working voltage and frequency pairs at run-time while logic scalability is achieved with partial dynamic reconfiguration. The considered devices are FPGA-processor hybrids with independent power domains fabricated in 28 nm process nodes. The test case is based on a number of operational scenarios in which the FPGA side is loaded with a motion estimation core that can be configured with a variable number of execution units. The results demonstrate that voltage scalability reduces power by up to 60 percent compared with nominal voltage operation at the same frequency. The energy analysis show that the most energy efficiency core configuration depends on the performance requirements. A low performance scenario shows that serial computation is more energy efficient than the parallel configuration while the opposite is true when the performance requirements increase. An algorithm is proposed to combine effectively adaptive voltage/logic scaling and power gating in the proposed system and application

    Energy-Aware Scheduling for Streaming Applications

    Get PDF
    Streaming applications have become increasingly important and widespread,with application domains ranging from embedded devices to server systems.Traditionally, researchers have been focusing on improving the performanceof streaming applications to achieve high throughput and low response time.However, increasingly more attention is being shifted topower/performance trade-offbecause power consumption has become a limiting factor on system designas integrated circuits enter the realm of nanometer technology.This work addresses the problem of scheduling a streaming application(represented by a task graph)with the goal of minimizing its energy consumptionwhile satisfying its two quality of service (QoS) requirements,namely, throughput and response time.The available power management mechanisms are dynamic voltage scaling (DVS),which has been shown to be effective in reducing dynamic power consumption, andvary-on/vary-off, which turns processors on and off to save static power consumption.Scheduling algorithms are proposed for different computing platforms (uniprocessor and multiprocessor systems),different characteristics of workload (deterministic and stochastic workload),and different types of task graphs (singleton and general task graphs).Both continuous and discrete processor power models are considered.The highlights are a unified approach for obtaining optimal (or provably close to optimal)uniprocessor DVS schemes for various DVS strategies anda novel multiprocessor scheduling algorithm that exploits the differencebetween the two QoS requirements to perform processor allocation,task mapping, and task speedscheduling simultaneously

    Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

    Get PDF
    Reducing power consumption has become a major challenge in the design and operation of to-day’s computer systems. This chapter describes different techniques addressing this challenge at different levels of system hardware, such as CPU, memory, and internal interconnection network, as well as at different levels of software components, such as compiler, operating system and user applications. These techniques can be broadly categorized into two types: Design time power analysis versus run-time dynamic power management. Mechanisms in the first category use ana-lytical energy models that are integrated into existing simulators to measure the system’s power consumption and thus help engineers to test power-conscious hardware and software during de-sign time. On the other hand, dynamic power management techniques are applied during run-time, and are used to monitor system workload and adapt the system’s behavior dynamically to save energy
    corecore